
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOT ALL PROMPTS ARE MADE EQUAL: PROMPT-
BASED PRUNING OF TEXT-TO-IMAGE DIFFUSION MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-image (T2I) diffusion models have demonstrated impressive image genera-
tion capabilities. Still, their computational intensity prohibits resource-constrained
organizations from deploying T2I models after fine-tuning them on their inter-
nal target data. While pruning techniques offer a potential solution to reduce the
computational burden of T2I models, static pruning methods use the same pruned
model for all input prompts, overlooking the varying capacity requirements of
different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-
network for each prompt, but it prevents batch parallelism on GPUs. To overcome
these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel
prompt-based pruning method designed for T2I diffusion models. Central to our
approach is a prompt router model, which learns to determine the required capacity
for an input text prompt and routes it to an architecture code, given a total desired
compute budget for prompts. Each architecture code represents a specialized model
tailored to the prompts assigned to it, and the number of codes is a hyperparameter.
We train the prompt router and architecture codes using contrastive learning, ensur-
ing that similar prompts are mapped to nearby codes. Further, we employ optimal
transport to prevent the codes from collapsing into a single one. We demonstrate
APTP’s effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and
COCO as target datasets. APTP outperforms the single-model pruning baselines
in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned
by APTP reveals they are semantically meaningful. We also show that APTP can
automatically discover previously empirically found challenging prompts for SD,
e.g., prompts for generating text images, assigning them to higher capacity codes.

1 INTRODUCTION

In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019;
Song et al., 2021b) have revolutionized generative modeling. For instance, modern Text-to-Image
(T2I) diffusion models (Adobe FireFly, 2023; Midjourney, 2023; Betker et al., 2023) like Stable
Diffusion (Rombach et al., 2022; Podell et al., 2024) have achieved remarkable success in generating
realistic images (Nichol et al., 2021; Saharia et al., 2022; Ramesh et al., 2022) and editing them (Kim
et al., 2022; Hertz et al., 2022; Zhang et al., 2023b). Consequently, their integration into various
applications is of great interest. However, the sampling process of T2I diffusion models is slow and
computationally intensive, making them expensive to deploy on GPU clouds for a large number of
users and preventing their utilization on edge devices. Thus, reducing the computational cost of T2I
models is essential prior to serving them.

Two orthogonal factors underlie the sampling cost of T2I diffusion models: their large number of
denoising steps and their parameter-heavy backbone architectures. Most acceleration methods for T2I
models reduce the computation per sampling step or skip steps using techniques like distillation (Meng
et al., 2023; Salimans & Ho, 2022; Habibian et al., 2023) and improved noise schedules (Song et al.,
2021a; Nichol & Dhariwal, 2021). Other ideas address the second factor and propose efficient
architectures for T2I models. Architecture modification methods (Zhao et al., 2023; Kim et al.,
2023) modify the U-Net (Ronneberger et al., 2015) of Stable Diffusion (SD) (Rombach et al., 2022)
to reduce its parameters and FLOPs while preserving performance. Still, they only provide a few

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒑𝟏:	A baseball game where the
batter is waiting for the pitch.
𝒑𝟐:	a baseball player on a
baseball field.
𝒑𝟑:	A skateboarder is
doing a jumping trick.
𝒑𝟒:	Legs on a skateboard going
down a small ramp

Prompt
Router

𝒑𝟏:	A baseball game where the
batter is waiting for the pitch.
𝒑𝟐:	a baseball player on a
baseball field.
𝒑𝟑:	A skateboarder is
doing a jumping trick.
𝒑𝟒:	Legs on a skateboard going
down a small ramp

Figure 1: Overview: We prune a text-to-image diffusion model like Stable Diffusion (left) into a mixture of
efficient experts (right) in a prompt-based manner. Our prompt router routes distinct types of prompts to different
experts, allowing experts’ architectures to be separately specialized by removing layers or channels.

architectural configurations, and generalizing their design choices to new compute budgets or datasets
is highly non-trivial. Search-based methods (Li et al., 2024; Liu et al., 2023a) search for an efficient
architecture (Li et al., 2024) or an efficient mixture (Liu et al., 2023a) of pretrained T2I models in a
model zoo. Yet, evaluating each action in the search process and gathering a model zoo of T2I models
are both extremely costly, making search methods impractical in resource-constrained scenarios.

The efficient architecture design methods (Zhao et al., 2023; Kim et al., 2023; Li et al., 2024) have
shown promise, but they aim to develop ‘one-size-fits-all’ architectures for all applications. We argue
that this approach is misaligned with the common practice for two reasons: 1) Organizations typically
fine-tune pretrained T2I models (e.g., SD) on their proprietary target data and deploy the resulting
model for their specific application. They prioritize performance on their target data distribution
while meeting their computation budget, and the trade-off between efficiency and performance can
vary depending on the complexity of the target dataset between organizations. 2) Verifying the
validity of each design choice on large-scale datasets used in one-size-fits-all methods is costly and
slow to iterate, making them impractical.

Model pruning (Cheng et al., 2023) can reduce a model’s computational burden to any desired budget
with significantly less effort than designing (Zhao et al., 2023; Kim et al., 2023) or searching (Li
et al., 2024) for efficient architectures. Still, T2I models have unique characteristics making existing
pruning techniques unsuitable for them. Static pruning methods are input-agnostic and use the
same pruned model for all inputs, but distinct prompts of T2I models may require different model
capacities. Dynamic pruning employs a separate model for each input sample, but it cannot benefit
from batch-parallelism in modern hardware like GPUs and TPUs.

In this paper, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning
method for T2I diffusion models. APTP prunes a T2I model pretrained on a large-scale dataset (e.g.,
SD) using a smaller target dataset given a desired compute budget. It tackles the challenges of static
and dynamic pruning methods for T2I models by training a prompt router module along with a set
of architecture codes. The prompt router learns to route an input prompt to an architecture code,
determining the sub-architecture, called expert, of the T2I model to use. Each expert specializes in
generating images for the prompts assigned to it by the prompt router (Fig. 1), and the number of
experts is a hyperparameter. We train the prompt router and architecture codes using a contrastive
learning objective that regularizes the prompt router to select similar architecture codes for similar
prompts. In addition, we employ optimal transport to diversify the architecture codes and the
resulting experts’ budgets, allowing deploying them on hardware with varying capabilities. We
take CC3M (Sharma et al., 2018) and MS-COCO (Lin et al., 2014) as the target datasets and prune
Stable Diffusion V2.1 (Rombach et al., 2022) using APTP in our experiments. APTP outperforms
the single-model pruning baselines, and we show that our prompt router learns to group the input
prompts into semantic clusters. Further, our analysis demonstrates that APTP can automatically
discover challenging prompts for SD, such as prompts for generating text images, found empirically
by prior work (Chen et al., 2024; Yang et al., 2024). We summarize our contributions as follows:

• We introduce APTP, a novel prompt-based pruning method for T2I diffusion models. It
is more suitable than static pruning for T2I models as it is not input-agnostic. In addition,
APTP enables batch parallelism on GPUs, which is not possible with dynamic pruning.

• APTP trains a prompt router and a set of architecture codes. The prompt router maps an input
prompt to an architecture code. Each architecture code resembles a pruned sub-architecture
expert of the T2I model, specialized in handling certain types of prompts assigned to it.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We develop a framework to train the prompt router and architecture codes using contrastive
learning and employ optimal transport to diversify the architecture codes and their corre-
sponding sub-architectures’ computational requirements, given a desired compute budget.

2 RELATED WORK

Several works have addressed improving the architectural efficiency of diffusion models, which is our
paper’s primary focus. Multi-expert (Lee et al., 2024; Zhang et al., 2023a; Liu et al., 2023a; Pan et al.,
2024; Xue et al., 2023) methods employ several models each responsible for an interval of diffusion
model’s denoising process. These methods design expert model architectures (Lee et al., 2024; Zhang
et al., 2023a; Xue et al., 2023), train several models with varying capacities from scratch (Liu et al.,
2023a), or utilize existing pretrained models (Liu et al., 2023a; Pan et al., 2024). However, pretrained
experts may not be available, and training several models from scratch, as done by multi-expert
methods, is prohibitively expensive. Architecture Design (Zhao et al., 2023; Yang et al., 2023a;
Kim et al., 2023) approaches redesign the U-Net architecture (Ronneberger et al., 2015) of diffusion
models to enhance its efficiency. MobileDiffusion (Zhao et al., 2023) does so using empirical
heuristics derived from performance metrics on MS-COCO (Lin et al., 2014). BK-SDM (Kim et al.,
2023) removes some blocks from the SD’s U-Net and applies distillation (Hinton et al., 2015) to
train the pruned model. Spectral Diffusion (Yang et al., 2023a) introduces a wavelet gating operation
and performs frequency domain distillation. Yet, generalizing heuristics and design choices of
the architecture design methods to other tasks and compute budgets is non-trivial. Alternatively,
SnapFusion (Li et al., 2024) searches for an efficient architecture for T2I models. Yet, evaluating
each action in the search process requires 2.5 A100 GPU hours, making it costly in practice. Finally,
SPDM (Fang et al., 2023) estimates the importance of different weights using Taylor expansion and
removes the low-scored ones. Despite their promising results, all these methods are ‘static’ in that
they obtain an efficient model and utilize it for all inputs. This is sub-optimal for T2I models as input
prompts may vary in complexity, demanding different model capacity levels. Our method differs
from existing approaches by introducing a prompt-based pruning technique for T2I models. It is the
first method that allocates computational resources to prompts based on their individual complexities
while ensuring optimal utilization and batch-parallelizability. We refer to Appendix B for a detailed
review of related work, with more focus on sampling efficiency studies that are orthogonal to our
approach.

3 METHOD

We introduce a framework for prompt-based pruning of T2I diffusion models termed Adaptive
Prompt-Tailored Pruning (ATPT). APTP prunes a T2I model pretrained on large-scale datasets (e.g.,
Stable Diffusion (Rombach et al., 2022)) using a smaller target dataset. This approach mirrors the
common practice where organizations fine-tune pretrained T2I models on their internal proprietary
data and deploy the resulting model for their customers. The core component of APTP is a prompt
router that learns to map an input prompt to an architecture code during the pruning process. Each
architecture code corresponds to a specialized expert model, which is a sub-network of the T2I
model. We train the prompt router and architecture codes in an end-to-end manner. After the pruning
phase, APTP fine-tunes each specialized model using samples from the target dataset assigned to it
by the prompt router. We elaborate on the components of APTP in the following subsections.

3.1 BACKGROUND

Given an input text prompt, text-to-image (T2I) diffusion models generate a corresponding image by
iteratively denoising a Gaussian noise (Ho et al., 2020; Song & Ermon, 2019; Sohl-Dickstein et al.,
2015). They achieve this by training a denoising model, ϵ(·; θ), parameterized by θ. For a given
training image-text pair (x0, p) ∼ P , T2I models define a forward diffusion process, progressively
adding Gaussian noise to the initial image x0 over T steps. This process is defined as q(xt|x0) =
N (xt;

√
ᾱtx0, (1− ᾱt)I), where ᾱt is the forward noise schedule parameter, typically chosen such

that q(xt|x0) → N (0, I) as t → T . T2I models are trained using the variational evidence lower
bound (ELBO) objective (Ho et al., 2020):

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A skateboarder is
doing a jumping trick.

Prompt
Encoder 𝔃 𝒆Architecture

Predictor Router

Architecture Codes

Optimal

Transport

𝒖(𝒊), 𝒗(𝒊)

	𝑣!
(#)𝒍-𝒕𝒉 layer

	⨀

Channel Pruning given 𝑣!
(#) Remove 𝑗- 𝑡ℎ block

Given 𝑢%
(#)

	𝑢%
(#)

Pruning DepthPruning Width

	𝒂(𝒊)
	ℛ	ℒ$%&'

	ℒ(()*

	ℒ+,-',..

Prompt Router

100110

001011

111100

…

Figure 2: Our pruning scheme. We train our prompt router and the set of architecture codes to prune a
text-to-image diffusion model into a mixture of experts. The prompt router consists of three modules. We use a
Sentence Transformer (Reimers & Gurevych, 2019) as our prompt encoder to encode the input prompt into a
representation z. Then, the architecture predictor transforms z into the architecture embedding e that has the
same dimensionality as architecture codes. Finally, the router routes the embedding e into an architecture code
a(i). We use optimal transport to evenly assign the prompts in a training batch to the architecture codes. The
architecture code a(i) = (u(i), v(i)) determines pruning the model’s width and depth. We train the prompt
router’s parameters and architecture codes in an end-to-end manner using the denoising objective of the pruned
model LDDPM, distillation loss between the pruned and original models Ldistill, average resource usage for the
samples in the batch R, and contrastive objective Lcont, encouraging embeddings e preserving semantic similarity
of the representations z.

LDDPM(θ) = E (x0,p)∼P
t∼[1,T]

ϵ∼N (0,I)
xt∼q(xt|x0)

||ϵ(xt, p, t; θ)− ϵ||2 (1)

T2I models sample an image starting from a Gaussian noise xT ∼ N (0, I) and denoising it using the
trained denoising model. We refer to appendix for a thorough review of diffusion models.

3.2 PROMPT ROUTER AND ARCHITECTURE CODES

Our approach prunes a diffusion model into a Mixture of Experts, where each expert specializes
in handling a distinct group of prompts with different complexities. Each expert corresponds to a
unique sub-network a(i) ∈ RD, where D represents the total number of prunable units in the T2I
model. These sub-networks are optimized to efficiently process their assigned prompt groups while
maintaining high performance. To assign prompts to the appropriate expert sub-network, we design a
prompt router model comprising three key components:

1. Prompt Encoder: This module encodes input prompts into semantically meaningful em-
beddings. Prompts with similar semantics are mapped to embeddings that are close in the
embedding space, ensuring that similar prompts are routed to similar sub-networks.

2. Architecture Predictor: The encoded prompt embeddings are further transformed into
architecture embeddings e. This step bridges the gap between the high-level semantics of
prompts and the architectural configurations needed to process them efficiently.

3. Router Module: The architecture embeddings e are finally mapped to specific architecture
codes a, which define the structure of the sub-network (expert) that will handle the prompt.

The remainder of this section provides detailed descriptions of how each component functions and
contributes to the overall pruning and routing process.

We employ our prompt router to determine the specialized sub-network of the T2I model to be used
for a given input prompt. Specifically, we denote our prompt router with the function fPR(·; η,A),
parameterized by η, which maps an input prompt p to an architecture code a:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a = fPR(p; η,A) (2)

We define the set of learnable architecture codes as A = {a(i)}Ni=1, where N is a hyperparame-
ter. Also, a(i) ∈ RD, with D being the number of prunable width and depth units in the T2I model.
Given a desired constraint Td on the total compute budget (latency, MACs, etc.) for the prompts in
the target dataset, we train the prompt router’s parameters η and architecture codes in A to obtain a
set of expert models. These experts are specialized, efficient, and performant sub-networks of the T2I
model, as determined by the architecture codes. As illustrated in Fig. 2, the prompt router consists
of a prompt encoder, an architecture predictor, and a router module. We provide details of these
components in the following subsections and present our pruning objective in Eq. 15.

3.2.1 PROMPT ENCODER AND ARCHITECTURE PREDICTOR

Our primary intuition in designing the prompt router is that it should route semantically similar
prompts to similar sub-networks of a T2I model. Accordingly, we use a pretrained frozen Sentence
Transformer model (Reimers & Gurevych, 2019) as our prompt encoder module. It can effectively
encode input prompts p into semantically meaningful embeddings z:

z = fPE(p) (3)

fPE(·) is the prompt encoder. We do not explicitly show the prompt encoder’s parameters as we do
not train them in our pruning method. The Sentence Transformer can encode semantically similar
prompts to nearby embeddings and distant from dissimilar ones. We leverage this property in our
framework (Eq. 13) to ensure the prompt router maps similar prompts to similar architecture codes.

The architecture predictor module transforms prompt embeddings z into architecture embeddings e:

e = fAP(z; η) (4)

η denotes the parameters of the architecture predictor fAP(·), implemented with a single feed-
forward layer (more details in Appendix D). The embeddings e have the same dimensionality as the
architecture codes a.

3.2.2 ROUTER

The router module takes an architecture embedding e and routes it to an architecture code a ∈ A. A
straightforward way to implement the router is to map an input embedding e to its nearest architecture
code in A. However, we found that this approach may lead to the collapse of architecture codes,
as they could converge to a single code that meets the desired compute budget Td with a relatively
decent performance, causing the prompt router to route all input prompts to it.

To tackle this challenge, we employ optimal transport in our router module during the pruning phase.
Formally, let E = [e1, · · · , eB] represent B architecture embeddings in a training batch, and A =
[a(1), · · · , a(N)] represent the N codes. The goal is to find an assignment matrix Q = [q1, · · · , qB]
that maximizes the similarity between architecture embeddings and their assigned architecture codes:

max
Q∈Q

Tr(QTATE) + ϵH(Q) (5)

H is an entropy term H(Q) = −
∑

i,j qij log(qij) and ϵ is the regularization strength. It has been
shown (YM. et al., 2020; Caron et al., 2020) that high values of ϵ lead to a uniform assignment matrix
Q, causing all codes in A to collapse to a single code. Thus, we set ϵ to a small value. Further, we
impose an equipartition (YM. et al., 2020) constraint on Q so that architecture embeddings in a batch
are assigned equally to architecture codes:

Q = {Q ∈ RN×B
+ | Q1B =

1

N
1N , QT 1N =

1

B
1B} (6)

Here, 1{B,N} are vectors of ones with length B and N , respectively. These constraints enforce that,
on average, B

N embeddings are assigned to an architecture code per training batch, thereby ensuring

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that each architecture code gets enough samples for training. The optimal transport problem in Eq. 5
with the constraints in Eq. 6 can be solved using the fast version (Cuturi, 2013) of the Sinkhorn-Knopp
algorithm and the solution has the normalized exponential matrix form (Cuturi, 2013):

Q∗ = diag(m)exp(
ATE

ϵ
)diag(n) (7)

Here, m and n are renormalization vectors that can be calculated using a few iterations of the
Sinkhorn-Knopp algorithm. With ϵ set to a small value, the matrix BQ∗ will have columns that are
close to one-hot vectors, which we use to assign the architecture embeddings to the architecture
codes. In summary, the router module’s function during the pruning process is:

a = fR(e,A;Q∗) (8)

After the pruning stage, the trained router simply routes an input architecture embedding to an
architecture code with the highest cosine similarity. We provide the definition of fR in Appendix D.2.

3.3 PRUNING

We divide each architecture code a(i) ∈ A into two sub-vectors a(i) = (u(i), v(i)). We utilize the
vectors u(i) and v(i) to prune the depth layers and determine widths of the layers, respectively.

A simple approach to prune the width of a layer (a depth layer) is to use binary vectors v(i) (u(i)),
indicating whether the channels (layers) should be pruned. Yet, doing so is not differentiable, and one
needs to solve a discrete optimization problem to find the optimal binary vectors. Instead, we employ
soft vectors v(i) (u(i)) that are continuous and differentiable for pruning. We calculate them as:

v(i) = sigmoid(
v(i) + gv

γ
), u(i) = sigmoid(

u(i) + gu
γ

) (9)

g{u,v} ∼ Gumbel(0, 1) represents a noise vector sampled from the Gumbel distribution (Gumbel,
1954), and γ is the temperature. This formulation, known as the Gumbel-sigmoid reparameteriza-
tion (Jang et al., 2017; Maddison et al., 2017), is a differentiable approximation of sampling from
Bernoulli distributions with parameters sigmoid(v(i)) and sigmoid(u(i)). When the tempera-
ture γ is set appropriately, the vectors v(i) and u(i) will be close to binary vectors, and we use them
for pruning the layers’ width and depth layers. Assuming v(i) = [v(i)

l]Ll=1 where L is the number of
the model’s layers, we prune the width of the l-th layer as:

F̂l = Fl ⊙ v(i)l (10)

In this equation, Fl represents feature maps of the l-th layer, and ⊙ is the element-wise multiplica-
tion. We prune the channels of the convolution layers in the ResBlocks (He et al., 2016), attention
heads in the Transformer layers (Vaswani et al., 2017), and the channels of the feed-forward layers in
the Transformer layers.

In a similar manner, we apply the vectors u(i) = [u(i)
j]Mj=1 (where M is the number of depth layers

that we prune) for pruning the model’s depth. Specifically, we prune the j-th depth layer fj as:

F̂j = u
(i)
j fj(Fj−1) + (1− u

(i)
j)Fj−1 (11)

Fj−1 denotes the previous layer’s feature maps. The granularity of our depth pruning is a ResBlock
or a Transformer layer in the U-Net of the T2I model. We provide more details in Appendix D.3. In
summary, we employ the architecture vectors a(i) = (v(i),u(i)) to prune the T2I model.

3.3.1 TRAINING THE PROMPT ROUTER AND ARCHITECTURE CODES

We jointly train the prompt router and architecture codes in an end-to-end manner, guiding the prompt
router to map similar prompts to similar architecture codes. In addition, we regularize the architecture
codes to correspond to performant sub-networks of the T2I model, be diverse, and adhere to the
desired compute budget Td on aggregate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Contrastive Training. Given a training batch with B prompts, we compute their prompt em-
beddings z (Eq. 3) and architecture embeddings e (Eq. 4). Then, we calculate architecture vectors
e′:

e′ = sigmoid(
e+ g

γ
) (12)

where γ and g have the same definitions as Eq. 9. We define the cosine similarity of two vectors as
sim(m,n) = mT n/||m|| · ||n||, and we use the following objective to train the architecture predictor:

Lcont(η) =
1

B2

B∑
i=1

B∑
j=1

ri,j log(si,j) + (1− ri,j)log(1− si,j) (13)

ri,j =
exp(sim(zi, zj)/τ)∑B
k=1 exp(sim(zi, zk)/τ)

, si,j =
exp(sim(e′i, e′j)/τ)∑B
k=1 exp(sim(e′i, e′k)/τ)

(14)

τ is a temperature parameter. Eq. 13 regularizes the architecture predictor to map representations z to
the regions of the space of the architecture embeddings e such that their corresponding architecture
vectors e′ maintain the similarity between the prompts. Note that we do not actually use the architec-
ture vectors e′ to prune the model (Sec. 3.2.2, 3.3). Yet, we apply our contrastive regularization to the
vectors e′ instead of embeddings e. This design choice is a result of our observation that applying
Lcont to embeddings e may not lead to diverse architecture vectors a(i) = (v(i),u(i)) that we use
for pruning (Sec. 3.3). For instance, embeddings e (and their nearby architecture codes a) can be
distributed in the embedding space (before Gumbel-Sigmoid estimation), but all be in saturation
regions of the sigmoid function (Eqs. 9, 12), resulting in similar architecture vectors e′ and a(i).

In contrast, Eq. 13 implicitly diversifies the architecture vectors a(i). The reason is that the router
routes embeddings e to codes a (Eq. 8) that have high similarity with each other (Eq. 7). Also, Eq. 13
distributes embeddings e in the space of the architecture embeddings such that the architecture vectors
e′ become similar (different) for similar (dissimilar) prompts. As the vectors e′ and a(i) are calculated
in a similar manner (Eqs. 9, 12), the diversity of vectors e′ implies the same for vectors a(i).

Assuming B(i) samples get routed to the architecture code a(i) in a training batch (
∑

i B
(i) = B),

we train the prompt router and the architecture codes using the following objective:

min
η,A

L =[
1

N

N∑
i=1

[
1

B(i)

B(i)∑
j=1

[LDDPM(x
(i)
j , p

(i)
j ; a(i)) + λdistillLdistill(x

(i)
j , p

(i)
j ; a(i))]]]

+ λresR(T̂ (A), Td) + λcontLcont(η)

(15)

LDDPM((x
(i)
j , p

(i)
j); a(i)) denotes the denoising objective for the sample (x

(i)
j , p

(i)
j) routed to sub-

network chosen by the architecture code a(i). R(T̂ (A), Td) regularizes the weighted average of
the MACs used by architecture codes (T̂ (A) =

∑
i
B(i)

B [T̂ (a(i))]) to be close to Td. We define
R(x, y) = log(max(x, y)/min(x, y)), and {λdistill, λres, λcont} are hyperparameters. Finally, Ldistill is
the distillation objective (Kim et al., 2023) regularizing the pruned model having similar outputs to
the original one. We refer to Appendix D.4 for more details about our distillation objective.

3.4 FINE-TUNING THE PRUNED EXPERT MODELS

After the pruning stage, we use the learned architecture codes to prune the T2I model into our
experts. Then, we fine-tune experts using samples routed to them. We use the same training objective
as the pretraining stage while adding distillation to fine-tune experts and refer to Appendix D.5 for
more details. At test time, our trained prompt router routes an input prompt to one of the experts, and
we use the expert to generate an image for it.

4 EXPERIMENTS

We use Conceptual Captions 3M (CC3M) (Sharma et al., 2018) and MS-COCO (Lin et al., 2014)
as our target datasets to prune the Stable Diffusion (SD) V2.1 model to demonstrate APTP’s ef-
fectiveness. On CC3M, we prune the model with Base: (0.85 MACs, 16 experts) and Small: (0.66

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Samples of the APTP-Base experts after pruning the Stable Diffusion V2.1 using
CC3M Sharma et al. (2018) and COCO Lin et al. (2014) as the target datasets. Expert IDs are
shown on the top right of images. (See Table 7 for prompts)

MACs, 8 experts) configurations. On MS-COCO, we perform Base: (0.78 MACs, 8 experts) and
Small: (0.64 MACs, 8 experts) pruning settings. We set (λdistill, λres, λcont)=(0.2, 2.0, 100) (Eq. 15)
and the temperature τ (Eq. 14) to 0.03. We evaluate all models with FID (Heusel et al., 2017),
CLIP (Hessel et al., 2021), and CMMD (Jayasumana et al., 2023) scores using 14k samples in the
validation set of CC3M and 30k samples from the MS-COCO’s validation split. For all models, we
sample the images at the resolution of 768 and resize them to 256 for calculating the metrics, using
the 25-steps PNDM (Liu et al., 2022) sampler following BK-SDM (Kim et al., 2023). We refer to
Appendix E for more details.

4.1 COMPARISON RESULTS

As APTP is the first pruning method specifically designed to prune a pretrained T2I model on a target
dataset, we compare its performance with SD V2.1, weight norm pruning (Li et al., 2017), and two
recently proposed static pruning baselines, namely Structural Pruning (SP) (Fang et al., 2023) and
BKSDM (Kim et al., 2023). Table 1 shows the results. We fine-tune APTP, SP and BKSDM for 30k
iterations after pruning and give Norm-pruning 50k fine-tuning iterations to ensure they all reach
their final performance level.

CC3M: Table 1a summarizes the results on CC3M. With a similar MACs budget and latency values,
APTP (0.85) significantly outperforms the Norm pruning (Li et al., 2017), SP (Fang et al., 2023),
and BKSDM (Kim et al., 2023) baselines with a significant margin in terms of FID, CLIP, and
CMMD scores. It also achieves 15% less latency while showing close performance scores to SD
V2.1. Notably, APTP (0.66) has approximately 23% less latency and 21% lower MACs budget than
the baselines, but it still outperforms them on all metrics. These results illustrate the advantages of
prompt-based compared to static pruning.

MS-COCO: We present the results for MS-COCO in Table 1b. APTP (0.78) reduces the latency of
SD by 22.5% while preserving its CLIP score and achieving a close CMMD score. Further, with
a similar latency, APTP (0.78) significantly outperforms the static pruning baselines with at least
3.71 FID (BKSDM), 2.34 CLIP (SP), and 0.042 CMMD (BKSDM) scores. Similar to the results on
CC3M, APTP (0.64) achieves approximately 19.3% less latency than the Norm pruning and SP while
outperforming them on all scores. In summary, our quantitative evaluations show the clear advantage
of prompt-based compared to static pruning for T2I models. We provide samples of APTP on the
validation sets of CC3M and MS-COCO in Fig. 3 and Appendix E.4.6.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on CC3M and MS-COCO. We report performance metrics using samples generated at the
resolution of 768 then downsampled to 256 (Kim et al., 2023). We measure models’ MACs/Latency with the
input resolution of 768 on an A100 GPU. @30/50k shows fine-tuning iterations after pruning.

CC3M

Method

Complexity Performance

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
FID (↓) CLIP (↑) CMMD (↓)

Norm (Li et al., 2017)
@50k 1185.3G 3.4 141.04 26.51 1.646

SP (Fang et al., 2023)
@30k 1192.1G 3.5 75.81 26.83 1.243

BKSDM (Kim et al., 2023)
@30k 1180.0G 3.3 87.27 26.56 1.679

APTP(0.66)
@30k 916.3G 2.6 60.04 28.64 1.094

APTP(0.85)
@30k 1182.8G 3.4 36.77 30.84 0.675

SD 2.1 1384.2G 4.0 32.08 31.12 0.567

(a)

MS-COCO

Method

Complexity Performance

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
FID (↓) CLIP (↑) CMMD (↓)

Norm (Li et al., 2017)
@50k 1077.4G 3.1 47.35 28.51 1.136

SP (Fang et al., 2023)
@30k 1071.4G 3.3 53.09 28.98 0.926

BKSDM (Kim et al., 2023)
@30k 1085.4G 3.1 26.31 28.89 0.611

APTP(0.64)
@30k 890.0G 2.5 39.12 29.98 0.867

APTP(0.78)
@30k 1076.6G 3.1 22.60 31.32 0.569

SD 2.1 1384.2G 4.0 15.47 31.33 0.500

(b)

Table 2: The most frequent words in prompts assigned to each expert of APTP-Base pruned on CC3M. The
resource utilization of each expert is indicated in parentheses.

Expert 1 (0.72) Expert 2 (0.73) Expert 3 (0.75) Expert 4 (0.76)
View - Sunset - City - Building - Sky View - Boat - Sea Artist - Actor Actor - Dress - Portrait

Expert 5 (0.77) Expert 6 (0.78) Expert 7 (0.79) Expert 8 (0.79)
Illustration - Portrait - Photo Player - Ball - Game - Team Background - Water - River - Tree Biological Species - Dog - Cat

Expert 9 (0.79) Expert 10 (0.80) Expert 11 (0.81) Expert 12 (0.81)
Illustration - Vector People Car - City - Road Person - Player - Team - Couple

Expert 13 (0.86) Expert 14 (0.90) Expert 15 (0.95) Expert 16 (0.98)
Room - House Art - Artist - Digital Food - Water Person - Man - Woman - Text

A
PT

P
(O

ur
s)

S
D

 V
2.

1

CC3M low budget COCO low budget CC3M high budget COCO high budget

Patterns in the
sand beach.

White paper
Christmas tree
on a red matte

Background.

A slice of pizza
that is sitting on

a paper plate.

Painting of a
ship in grass

with
lighthouse in

the background.

A woman on a white
background looks down
and away from camera
with a forlorn look on

her face.

Tiny text in
the manual.

A hand holds a
hot dog while
a little girl
stands near.

A infant holding
a baby toothbrush

in his hand
looking at it.

Figure 4: Comparison of samples generated by low and high budget experts of APTP-Base vs. SD V2.1 on
CC3M and MS-COCO validation sets.

4.2 ANALYSIS OF THE PROMPT ROUTER

We analyze our prompt router’s behavior by examining the prompts it assigns to experts in the
APTP-Base (0.85) model for the CC3M experiment. Table 2 displays the most frequent words in the
prompts routed to each expert, along with the experts’ MACs budgets. Our prompt router effectively
“specializes” experts by assigning distinct topics to experts with varying budgets. For instance, Expert
1 focuses on cityscapes, Expert 8 on animals, and Expert 13 on house interiors and exteriors. Notably,
the prompt router assigns images of textual content and human beings to Expert 16, which has the
highest budget. These categories have been empirically found to be challenging for SD 2.1 (Chen
et al., 2024; Yang et al., 2024), and our prompt router can automatically discover and route them to
higher-capacity experts. In contrast, paintings and illustrations are assigned to lower-budget experts,
as they seem to be easier for the model to generate. We provide examples of high and low resource
prompts for APTP-Base on both CC3M and COCO in Fig. 4.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ABLATION STUDY

We conduct two ablation experiments to study the impact of APTP’s components on its performance.
First, we implement a naive baseline that uses parameterizations v = sigmoid((ηv + gv)/τ) and
u = sigmoid((ηu + gu)/τ) (Eq. 9) to prune a single model. It directly trains two vectors (ηv, ηu) to
do so (‘Uni-Arch Baseline’ in Table 3). Then, we start with a router trained only using the contrastive
objective (Eq. 13) and add optimal transport and distillation incrementally to prune SD V2.1 into 8
experts with 80% MACs budget on MS-COCO (Lin et al., 2014). We fine-tune all pruned models
with 10k iterations, and Table 3 presents the results. We observe that the contrastive training (Eq. 13)
alone fails to improve results from pruning a single model to a mixture of experts. This is because
although the contrastive objective makes the architecture codes diverse, it does not enforce the
prompt router to distribute the prompts between architecture codes. Thus, it routes most of the input
prompts to a single expert. As a result, all experts except one receive insufficient training samples and
generate low-quality samples after fine-tuning, leading to the mixture showing worse metrics than the
baseline. Employing optimal transport (Eq. 5) in the prompt router significantly improves FID (10.22),
CLIP (1.17), and CMMD (0.18) scores of the mixture. In addition, distillation can further improve
the architecture search process of the experts, resulting in a more performant mixture. In summary,
these results validate the effectiveness of our design choices for APTP.

Table 3: Ablation results of APTP’s components on 30k samples from MS-COCO (Lin et al., 2014)
validation set. We fine-tune all models for 10k iterations after pruning.

Method MACs(@768) Latency(@768) FID (↓) Clip Score (↑) CMMD (↓)

Uni-Arch Baseline 1088.8G 3.1 46.56 29.11 0.91

Contrastive Router 1079.5G 3.1 48.78 28.90 0.92
+ Optimal Transport 1076.6G 3.1 38.56 30.07 0.74
+ Distillation (APTP) 1076.6G 3.1 25.57 31.13 0.58

In our second ablation experiment, we explore the impact of the number of experts on APTP. We prune
SD V2.1 to 80% MACs budget using APTP with 4, 8, and 12 experts on MS-COCO. Fig. 5 shows
the results. Interestingly, the results demonstrate that the relationship between FID and CLIP scores
with the number of experts is nonlinear, and the optimal number of experts is dataset-dependent. This
observation illustrates that prompt-based pruning is more suitable than static pruning for T2I models.

5 CONCLUSION

4 8 12
Number	of	Experts

25

27

29

31

33

35

A
F
ID

30.7

30.8

30.9

31

31.1

31.2

31.3

31.4
C
L
IP

S
co

re
!

Figure 5: Ablation Results for the number
of experts of APTP on MS-COCO.

In this paper, we develop Adaptive Prompt-Tailored Prun-
ing (APTP), the first prompt-based pruning method for
text-to-image (T2I) diffusion models. APTP takes a T2I
model, pretrained on large-scale data, and prunes it using a
target dataset, resembling the common practice that orga-
nizations fine-tune T2I models on their internal data before
deployment. The core element of APTP is a prompt router
module that learns to decide the model capacity required
to generate a sample for an input prompt, routing it to an
architecture code given a desired compute budget. Each
architecture code corresponds to a sub-network of the T2I
model, specializing in generating images for the prompts
that prompt router routes to it. APTP trains the prompt
router and architecture codes in an end-to-end manner,
encouraging the prompt router to route similar prompts
to similar architecture codes. Further, we utilize optimal
transport in the prompt router of APTP during pruning to diversify the architecture codes. Our experi-
ments in which we prune Stable Diffusion (SD) V2.1 using CC3M and MS-COCO as target datasets
demonstrate the benefit of prompt-based pruning compared to conventional static pruning methods for
T2I models. Further, our analysis on APTP’s prompt router reveals that it can automatically discover
challenging prompt types for SD, like generating text, humans, and fingers, routing them to experts
with high compute budgets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Adobe FireFly. Firefly, 2023. URL https://www.adobe.com/sensei/generative-ai/
firefly.html.

Shubham Agarwal, Subrata Mitra, Sarthak Chakraborty, Srikrishna Karanam, Koyel Mukherjee,
and Shiv Saini. Approximate caching for efficiently serving diffusion models. arXiv preprint
arXiv:2312.04429, 2023.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylxE1HKwS.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
pruning of latent diffusion models using task-agnostic insights. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2024 - Workshops, Seattle, WA, USA, June
17-18, 2024, pp. 821–830. IEEE, 2024. doi: 10.1109/CVPRW63382.2024.00087. URL https:
//doi.org/10.1109/CVPRW63382.2024.00087.

Haoxing Chen, Zhuoer Xu, Zhangxuan Gu, Yaohui Li, Changhua Meng, Huijia Zhu, Weiqiang Wang,
et al. Diffute: Universal text editing diffusion model. Advances in Neural Information Processing
Systems, 36, 2024.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning-
taxonomy, comparison, analysis, and recommendations. arXiv preprint arXiv:2308.06767, 2023.

Huanpeng Chu, Wei Wu, Chengjie Zang, and Kun Yuan. Qncd: Quantization noise correction for
diffusion models. arXiv preprint arXiv:2403.19140, 2024.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilanjan Ray. Fire together wire together: A
dynamic pruning approach with self-supervised mask prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12454–12463, 2022.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Advances
in Neural Information Processing Systems, 2023.

Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models. arXiv preprint arXiv:2311.12092,
2023.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

Amirhossein Habibian, Amir Ghodrati, Noor Fathima, Guillaume Sautiere, Risheek Garrepalli, Fatih
Porikli, and Jens Petersen. Clockwork diffusion: Efficient generation with model-step distillation.
arXiv preprint arXiv:2312.08128, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

11

https://www.adobe.com/sensei/generative-ai/firefly.html
https://www.adobe.com/sensei/generative-ai/firefly.html
https://openreview.net/forum?id=HylxE1HKwS
https://doi.org/10.1109/CVPRW63382.2024.00087
https://doi.org/10.1109/CVPRW63382.2024.00087

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2023. doi: 10.1109/
TPAMI.2023.3334614.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-
training quantization for diffusion models. Advances in Neural Information Processing Systems,
36, 2024.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784–800, 2018.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598, 2022.
doi: 10.48550/ARXIV.2207.12598. URL https://doi.org/10.48550/arXiv.2207.
12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. arXiv
preprint arXiv:2401.09603, 2023.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. On architectural
compression of text-to-image diffusion models. arXiv preprint arXiv:2305.15798, 2023.

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2426–2435, 2022.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html.

Ashish Kumar, Daneul Kim, Jaesik Park, and Laxmidhar Behera. Pick-or-mix: Dynamic channel sam-
pling for convnets, 2024. URL https://openreview.net/forum?id=Howb7fXB4V.

12

https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.48550/arXiv.2207.12598
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://papers.nips.cc/paper_files/paper/2023/hash/73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html
https://openreview.net/forum?id=Howb7fXB4V

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yunsung Lee, JinYoung Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi.
Multi-architecture multi-expert diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 13427–13436, 2024.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rJqFGTslg.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
Advances in Neural Information Processing Systems, 36, 2024.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJem8lSFwB.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. arXiv preprint arXiv:2306.08860, 2023a.

Enshu Liu, Xuefei Ning, Huazhong Yang, and Yu Wang. A unified sampling framework for solver
searching of diffusion probabilistic models. arXiv preprint arXiv:2312.07243, 2023b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=PlKWVd2yBkY.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is enough
for high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024a. URL https://openreview.net/forum?id=1k4yZbbDqX.

Xuewen Liu, Zhikai Li, Junrui Xiao, and Qingyi Gu. Enhanced distribution alignment for post-training
quantization of diffusion models. arXiv preprint arXiv:2401.04585, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver++:
Fast solver for guided sampling of diffusion probabilistic models, 2023. URL https://
openreview.net/forum?id=4vGwQqviud5.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858, 2023.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=S1jE5L5gl.

13

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=1k4yZbbDqX
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=S1jE5L5gl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Midjourney. Midjourney, 2023. URL https://www.midjourney.com/home.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei Cai,
and Anima Anandkumar. T-stitch: Accelerating sampling in pre-trained diffusion models with
trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

Nilesh Prasad Pandey, Marios Fournarakis, Chirag Patel, and Markus Nagel. Softmax bias correction
for quantized generative models. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1453–1458, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410.
URL https://aclanthology.org/D19-1410.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

14

https://www.midjourney.com/home
https://openreview.net/forum?id=di52zR8xgf
https://aclanthology.org/D19-1410
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yuda Song, Zehao Sun, and Xuanwu Yin. Sdxs: Real-time one-step latent diffusion models with
image conditions. arXiv preprint arXiv:2403.16627, 2024.

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu.
Post-training quantization with progressive calibration and activation relaxing for text-to-image
diffusion models. arXiv preprint arXiv:2311.06322, 2023.

Yehui Tang, Yunhe Wang, Yixing Xu, Yiping Deng, Chao Xu, Dacheng Tao, and Chang Xu. Manifold
regularized dynamic network pruning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5018–5028, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers for dif-
fusion models by differentiating through sample quality. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=VFBjuF8HEp.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sample
from diffusion probabilistic models, 2022b. URL https://openreview.net/forum?id=
LOz0xDpw4Y.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. arXiv preprint arXiv:2312.03209, 2023.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. arXiv preprint arXiv:2306.14878, 2023.

Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo.
RAPHAEL: text-to-image generation via large mixture of diffusion paths. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
821655c7dc4836838cd8524d07f9d6fd-Abstract-Conference.html.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made
slim. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22552–22562, 2023a.

Yuewei Yang, Xiaoliang Dai, Jialiang Wang, Peizhao Zhang, and Hongbo Zhang. Efficient quantiza-
tion strategies for latent diffusion models. arXiv preprint arXiv:2312.05431, 2023b.

Yukang Yang, Dongnan Gui, Yuhui Yuan, Weicong Liang, Haisong Ding, Han Hu, and Kai Chen.
Glyphcontrol: Glyph conditional control for visual text generation. Advances in Neural Information
Processing Systems, 36, 2024.

15

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=VFBjuF8HEp
https://openreview.net/forum?id=LOz0xDpw4Y
https://openreview.net/forum?id=LOz0xDpw4Y
http://papers.nips.cc/paper_files/paper/2023/hash/821655c7dc4836838cd8524d07f9d6fd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/821655c7dc4836838cd8524d07f9d6fd-Abstract-Conference.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li, and Tong Zhang. Joint-detnas: Upgrade your
detector with nas, pruning and dynamic distillation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10175–10184, 2021.

Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via simultaneous clustering and rep-
resentation learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Hyx-jyBFPr.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Trans. Mach. Learn. Res., 2022, 2022. URL https://openreview.
net/forum?id=AFDcYJKhND.

Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, and Qing Qu.
Improving efficiency of diffusion models via multi-stage framework and tailored multi-decoder
architectures. arXiv preprint arXiv:2312.09181, 2023a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023b.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gDDIM: Generalized denoising diffusion implicit
models. In The Eleventh International Conference on Learning Representations, 2023c. URL
https://openreview.net/forum?id=1hKE9qjvz-.

Yang Zhao, Yanwu Xu, Zhisheng Xiao, and Tingbo Hou. Mobilediffusion: Subsecond text-to-image
generation on mobile devices. arXiv preprint arXiv:2311.16567, 2023.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

16

https://openreview.net/forum?id=Hyx-jyBFPr
https://openreview.net/forum?id=AFDcYJKhND
https://openreview.net/forum?id=AFDcYJKhND
https://openreview.net/forum?id=1hKE9qjvz-
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: APTP generalizes to various styles, even if they are not present in the target dataset.

Figure 7: A visual comparison of randomly sampled generated images from Stable Diffusion 2.1,
BKSDM (the best baseline), and APTP. The top section displays models trained on the COCO dataset,
while the bottom section showcases samples from models trained on CC3M. Overall, APTP produces
higher-quality images compared to the baseline.

A MORE VISUAL RESULTS

We provide samples from APTP pruned models on various styles in Fig. 6. APTP preserves the
original model’s versatility and generalizes well to out-of-distribution prompts.

We provide samples comparing APTP to the best baseline, namely BKSDM Kim et al. (2023)), on
different prompts from the PartiPrompts Yu et al. (2022) datasets in Fig. 7. APTP produces better
images compared to the baseline.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B RELATED WORK

Efficient Diffusion Models: Methods for accelerating and improving the efficiency of diffusion
models fall into two categories. The first group focuses on reducing the complexity or the number
of sampling steps of diffusion models. They use techniques like distillation Habibian et al. (2023);
Meng et al. (2023); Salimans & Ho (2022); Song et al. (2024); Liu et al. (2024a), learning optimal
denoising time-steps Watson et al. (2022b;a), designing improved noise schedules Nichol & Dhariwal
(2021); Song et al. (2021a); Zhang et al. (2023c), caching intermediate computations Ma et al. (2023);
Agarwal et al. (2023); Wimbauer et al. (2023), and proposing faster solvers Lu et al. (2023); Xu
et al. (2023); Liu et al. (2023b). The second group is aimed at improving the architectural efficiency
of diffusion models, which is the main focus of our paper. Multi-expert Lee et al. (2024); Zhang
et al. (2023a); Liu et al. (2023a); Pan et al. (2024); Xue et al. (2023) methods employ multiple expert
models each responsible for a separate part of the denoising process of diffusion models. These
methods either design expert model architectures Lee et al. (2024); Zhang et al. (2023a); Xue et al.
(2023), train several models with varying capacities from scratch Liu et al. (2023a), or utilize existing
pretained experts Liu et al. (2023a); Pan et al. (2024) with different capacities. However, pretrained
experts are not necessarily available, and training several models from scratch, as required by
multi-expert methods, is prohibitively expensive in practice. Architecture Design approaches Zhao
et al. (2023); Yang et al. (2023a); Kim et al. (2023) redesign the architecture of diffusion models
to enhance efficiency. MobileDiffusion Zhao et al. (2023) modifies the U-Net Ronneberger et al.
(2015) architecture of Stable Diffusion (SD) based on empirical heuristics derived from the model’s
performance on the MS-COCO Lin et al. (2014) dataset. BK-SDM Kim et al. (2023) removes some
blocks from the U-Net model of SD and applies knowledge distillation from the original SD model
to the pruned model. Spectral Diffusion Yang et al. (2023a) introduces a wavelet gating operation
and performs frequency domain distillation from a pretrained teacher model into a small student
model. Yet, generalization of the heuristics and design choices in the architecture design methods
to other tasks and compute budgets is non-trivial. Quantization methods So et al. (2024); He et al.
(2024); Pandey et al. (2023); Yang et al. (2023b); Liu et al. (2024b); Tang et al. (2023); Chu et al.
(2024); Li et al. (2023) reduce the precision of model weights and activations during the forward
pass to accelerate the sampling process. Different from these methods, SnapFusion Li et al. (2024)
searches for an efficient architecture for T2I models. However, evaluating each action in the search
process consumes about 2.5 A100 GPU hours, rendering it impractical for resource-constrained
scenarios. Finally, SPDM Fang et al. (2023) estimates the importance of different weights in the
model using Taylor expansion and removes the low-scored architectures. Despite their promising
results, all these methods are ‘static’ in that they obtain an efficient model and utilize it for all inputs.
This is suboptimal for T2I models as input prompts may vary in complexity, demanding different
model capacity levels.

Pruning and Neural Architecture Search (NAS): Our paper also intersects with model prun-
ing Cheng et al. (2023) and NAS Zoph & Le (2017); Liu et al. (2019); Cai et al. (2020); Yao et al.
(2021); Hou et al. (2020); White et al. (2023) methods. These methods prune pretrained models and
search for suitable architectures given a specific task and computational budget. Existing pruning
techniques can be categorized into Static and Dynamic methods. Static pruning approaches He et al.
(2018); Li et al. (2017); Han et al. (2015); Castells et al. (2024) prune a pretrained model and use the
pruned model for all inputs. Conversely, dynamic pruning methods Elkerdawy et al. (2022); Kumar
et al. (2024); Lin et al. (2020); Tang et al. (2021) employ a separate sub-network of the model for each
input. Although static and dynamic pruning methods have been successful for image classification,
they are not suitable to be directly applied to T2I models. Static pruning methods neglect prompt
complexity and employ the same model for all prompts while dynamic pruning ideas cannot utilize
batch-parallelism in GPUs. We refer to recent surveys White et al. (2023); He & Xiao (2023); Cheng
et al. (2023) for a comprehensive review of pruning and NAS methods.

Our method distinguishes itself from existing approaches by introducing a prompt-based pruning
technique for T2I models. This work marks the first instance where computational resources are
allocated to prompts based on their individual complexities while ensuring optimal utilization and
batch-parallelizability.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C OVERVIEW OF DIFFUSION MODELS

Given a random variable x0 ∼ P , the goal of diffusion models Sohl-Dickstein et al. (2015); Ho et al.
(2020) is to model the underlying distribution P using a training set D = {x0} of samples. To do so,
first, diffusion models define a forward process parameterized by t in which they gradually perturb
each sample x0 with Gaussian noise with the variance schedule of βt:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (16)

where t ∈ [1, T]. Thus, q(xt|x0) has a Gaussian form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (17)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. The noise schedule βt is usually selected Ho et al. (2020)
such that q(xT) → N (0, I). Assuming βt is small, diffusion models approximate the denoising
distribution q(xt−1|xt) by a parameterized Gaussian distribution pθ(xt−1|xt) = N (xt−1;

1√
αt
(xt −

βt√
1−ᾱt

ϵθ(xt, t)), σ
2
t I), and σ2

t is often set to βt. Diffusion models implement ϵθ(.) with a neural
network called the denoising model and train it with the variational evidence lower bound (ELBO)
objective Ho et al. (2020):

LDDPM(θ) = E t∼[1,T]
ϵ∼N (0,I)

xt∼q(xt|x0)

||ϵ(xt, t; θ)− ϵ||2 (18)

Similarly, T2I diffusion models train a denoising model using pairs of image and text prompts
(x0, p) ∼ P to model the distribution P(x0|p) of images given an input text prompt:

LDDPM(θ) = E (x0,p)∼P
t∼[1,T]

ϵ∼N (0,I)
xt∼q(xt|x0)

||ϵ(xt, p, t; θ)− ϵ||2 (19)

T2I Diffusion models generate a new sample by sampling an initial noise from xT ∼ p(xT) =
N (0, I) and iteratively denoising it using the denoising model by sampling from pθ(xt−1|xt, p). Thus,
the sampling process requires T sequential forward calculation of the denoising model, making it a
slow and costly process.

D MORE DETAILS OF APTP

In this section we provide more details of the architecture predictor, the prompt router module, and
our pruning method.

D.1 ARCHITECTURE PREDICTOR

fAP(·) in Eq. 4 is the architecture predictor. The architecture predictor changes the dimensionality
of z to the dimensionality of e and codes a, which is the number of prunable width and depth units
in the T2I model. We implement the fAP function with a single feed-forward layer. Our prompt
encoder, Sentence Transformer Reimers & Gurevych (2019), has an output dimension of 768. The
total number of prunable units in SD 2.1 is 1620, so the architecture predictor has an input dimension
of 768 and an output dimension of 1620 in all of our experiments.

D.2 ROUTER MODULE DEFINITION

During the pruning process, we use the assignment matrix Q∗ calculated by optimal transport (Eq. 7)
to route the architecture embeddings e to the architecture codes a. Thus, during the pruning process,
the definition of function fR is as follows:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

I = argmax(BQ∗,dim = 0) (20)

fR(e, A, Q∗) = A[:, I] (21)

where e represents the architecture embeddings in a pruning batch, A is the set of architecture codes,
Q∗ is the calculated optimal assignment matrix, and A is the matrix of architecture codes.

At test time, the router function routes an input architecture embedding e to the most similar trained
architecture code:

fR(e,A) = argmaxa∈A
eTa

||e||||a||
(22)

D.3 PRUNING DEPTH

We apply the vectors u(i) = [u(i)
j]Mj=1 (Eq. 9) to prune the model’s depth with M being the total

number of layers we prune. As the U-Net Ronneberger et al. (2015) architecture of T2I models has
skip connections, we prune the depth layers in the encoder and decoder sides separately.

Pruning Depth in Encoder. We prune the j-th depth layer fj in the encoder by applying the vector
u
(i)
j with the following formulation:

F̂j = u
(i)
j fj(Fj−1) + (1− u

(i)
j)Fj−1 (23)

where Fj−1 is the feature maps of the previous layer. When u
(i)
j is close to one/zero, the j-th layer

will be kept/pruned.

Pruning Depth in Decoder. In the decoder, the input of each layer is a concatenation of feature maps
of the previous layer and feature maps of its corresponding encoder layer from the skip connection
Fj,skip. Thus, we prune the j-th depth layer fj in the decoder as:

F̂j = u
(i)
j fj(Fj−1||Fj,skip) + (1− u

(i)
j)Fj−1 (24)

D.4 DISTILLATION OBJECTIVE

Assuming B(i) samples get routed to the architecture code a(i) in a training batch (
∑

i B
(i) = B),

we train the prompt router and the architecture codes using the following objective:

min
η,A

L =[
1

N

N∑
i=1

[
1

B(i)

B(i)∑
j=1

[LDDPM(x
(i)
j , p

(i)
j ; a(i)) + λdistillLdistill(x

(i)
j , p

(i)
j ; a(i))]]]

+ λresR(T̂ (A), Td) + λcontLcont(η)

(25)

LDDPM(x
(i)
j , p

(i)
j ; a(i)) denotes the denoising objective for the sample (x

(i)
j , p

(i)
j) routed to the sub-

network chosen by the architecture code a(i) (Eq. 19). R(T̂ (A), Td) regularizes the weighted average
of the MACs used by architecture codes (T̂ (A) =

∑
i
B(i)

B T̂ (a(i))) to be close to Td. We define

R(x, y) = log(max(x, y)/min(x, y)) (26)

as it can keep the resource usage close to the target value. Lcont, given by Eq. 13, is the contrastive
loss that guides the architecture predictor to map prompt representations to the regions of the space of
the architecture embeddings such that their corresponding architecture vectors maintain the similarity
between the prompts. Finally, Ldistill is the distillation objective Hinton et al. (2015), regularizing the
pruned model to have similar outputs to the original one. We do distillation at two levels, output level
and block level. The output level distillation objective is:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Loutput-distill(x
(i)
j , p

(i)
j ; a(i)) = E t∼[1,T]

ϵ∼N (0,I)

x
(i)
j,t∼q(xt|x(i)

j)

[||ϵTeacher(x
(i)
j,t , p

(i)
j , t; θ)−ϵSub-Net(x

(i)
j,t , p

(i)
j , t; θ, a(i))||2]

(27)

Here, ϵTeacher(x
(i)
j,t , p

(i)
j , t; θ) denotes the original model’s output and ϵSub-Net(x

(i)
j,t , p

(i)
j , t; θ, a(i)) de-

notes the output of the sub-network chosen by the architecture code a(i). The way we prune the
U-Net preserves the output shape of each block. Doing so enables us to do distillation at block level
as well and regularize the sub-network to match the output of the original model at each block. The
block-level distillation objective is:

Lblock-distill(x
(i)
j , p

(i)
j ; a(i)) = E t∼[1,T]

ϵ∼N (0,I)

x
(i)
j,t∼q(xt|x(i)

j)

[
∑
b

||ϵbTeacher(x
(i)
j,t , p

(i)
j , t; θ)−ϵbSub-Net(x

(i)
j,t , p

(i)
j , t; θ, a(i))||2]

(28)

Here, ϵbTeacher and ϵbSub-Net denote the outputs of block b of the original model and the chosen sub-
network of it, respectively. The total distillation loss Ldistill is simply the sum of the output-level loss
and the block-level distillation loss:

Ldistill = Loutput-distill + Lblock-distill (29)

D.5 FINE-TUNING

The finetuning loss is a weighted average of the original DDPM objective (Eq. 19) and the distillation
loss term (Eq. 29):

Lfinetuning = αDDPMLDDPM + αdistillLdistill (30)

E EXPERIMENTS

E.1 MODELS AND DATASETS

We use two datasets as our target datasets: Conceptual Captions 3M (CC3M) Sharma et al. (2018)
and MS-COCO Captions 2014 Lin et al. (2014) with approximately 2.5M and 400K image-caption
pairs, respectively. We apply APTP to the Stable Diffusion 2.1 (SD 2.1) Rombach et al. (2022) model.
On CC3M, we prune SD2.1 with two settings: Base (0.85 budget, 16 experts) and Small (0.66 budget,
8 experts). Similarly, for COCO, we have two settings: Base (0.78 budget, 8 experts) and Small (0.64
budget, 8 experts). We use a pruned SD 2.1 using weight norm pruning Li et al. (2017) as a baseline
for our main experiments.

E.2 EXPERIMENTAL SETTINGS

We train at a fixed resolution of 256×256 across all settings. During pruning, we first train the
architecture predictor for 500 iterations as a warm-up phase. During this warm-up phase, we directly
use its predicted architectures for pruning. Then, we start architecture codes and train the architecture
predictor jointly with the codes for an additional 2500 iterations. We use the AdamW Loshchilov &
Hutter (2019) optimizer and a constant learning rate of 0.0002 for both modules, with a 100-iteration
linear warm-up. The effective pruning batch size is 1024, achieved by training on 16 NVIDIA A100
GPUs with a local batch size of 64. The temperature of the Gumbel-Sigmoid reparametrization
(Eq. 9) is set to γ = 0.4. We set the regularization strength of the optimal transport objective (Eq. 5)
to ϵ = 0.05. We use 3 iterations of the Sinkhorn-Knopp algorithm Cuturi (2013) to solve the optimal
transport problem Caron et al. (2020). We set the contrastive loss temperature τ to 0.03. The total
pruning loss is the weighted average of DDPM loss, distillation loss, resource loss, and contrastive
loss (see Eq. 15) with weights λdistill = 0.2, λres = 2.0, and λcont = 100.0. After the pruning phase,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Resource loss. (b) Contrastive loss.

Figure 8: Resource and Contrastive loss observed when applying APTP-Base with a MAC budget of
0.77 to prune Stable Diffusion 2.1 using the COCO dataset. The comparison is made between two
settings: with and without optimal transport. APTP both adheres to the target MAC budget and finds
architecture vectors that maintain the similarity between the prompts.

we fine-tune the experts with the prompts assigned to them for 30,000 iterations using the AdamW
optimizer, a fixed learning rate of 0.00001, and a batch size of 128. Upon experiments, we observed
that higher weights of the DDPM loss result in unstable fine-tuning and slow convergence. As a result,
we set the DDPM loss weight in the fine-tuning loss (Eq. 30) αDDPM to 0.0001. We set αdistill = 1.0.
For sample generation, we use the classifier-free guidance Ho & Salimans (2022) technique with the
scale of 7.5 and 25 steps of the PNDM sampler Liu et al. (2022).

E.3 EVALUATION

For quantitative evaluation of models pruned on CC3M, we use its validation dataset of approximately
14k samples. For COCO, we sample 30k captions of unique images from its 2014 validation dataset.
We report Fréchet inception distance (FID) Heusel et al. (2017), CLIP score Hessel et al. (2021), and
Maximum Mean Discrepancy with CLIP Embeddings (CMMD) Jayasumana et al. (2023) for APTP,
the baselines, and SD 2.1 itself.

E.4 RESULTS

E.4.1 TRAINING LOSS

Introduced in section 3.3.1, the resource loss regularizes the weighted average of the MACs used by
architecture codes (T̂ (A) =

∑
i
B(i)

B [T̂ (a(i))]) to be close to Td. We define resource loss as:

R(x, y) = log(max(x, y)/min(x, y)) (31)

Fig. 8a illustrates the resource loss when applying APTP-Base to prune Stable Diffusion 2.1 using the
COCO dataset as the target. This is shown under two conditions: with and without optimal transport
following the initial warm-up phase (refer to E for details). APTP effectively regularizes the model
so average MACs of the architecture codes is very close to the target budget. Fig. 8b presents the
contrastive loss (Eq. 13) under the same conditions. APTP maps the prompt embeddings to regions of
architecture embeddings such that their corresponding architectures maintain the similarity between
prompts.

E.4.2 VISUALIZATION OF THE IMPACT OF OPTIMAL TRANSPORT

Fig. 9 displays the assignment of prompts to experts with and without optimal transport. By adding
optimal transport, the assignment becomes more diverse, ensuring all experts get enough samples.
This results in a significant improvement of performance metrics (See Table 3). Fig. 10 shows the
distribution of the number of training CC3M samples mapped to each expert of APTP-Base.

E.4.3 ANALYSIS OF PROMPT ROUTER ON COCO

Table 4 demonstrates the most frequent words in the prompts assigned to each expert of APTP-Base
pruned on COCO, revealing distinct topics and effective specialization. For example, Expert 1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Without Optimal Transport (b) With Optimal Transport

Figure 9: Comparison of sample assignments in a batch to experts with and without optimal transport.
The incorporation of optimal transport results in a more diverse assignment pattern. In the figure,
each square represents a prompt within the batch, and the color signifies the budget level of the expert
assigned to the prompt. Higher-resource experts are indicated by darker blue.

Figure 10: Distribution of CC3M Samples Mapped to Each Expert of APTP-Base, Including Resource
Utilization Ratios

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

specializes in indoor scences, Expert 5 in wildlife, and Expert 6 in urban scences. Expert 8 which
has the highest resource utilization, focuses on images of human beings and hands, an observation
consistent with our prompt analysis on CC3M (Table 2). Hands are another category that have been
found to be challenging for SD 2.1 Gandikota et al. (2023).

Table 4: The most frequent words in prompts assigned to each expert of APTP-Base pruned on
COCO. The resource utilization of each expert is indicated in parentheses.

Expert 1 (0.65, Indoor Scenes and Dining) Expert 2 (0.77, Food and Small Groups)
table - plate - kitchen - sitting food - pizza - sandwich

Expert 3 (0.78, People and Objects) Expert 4 (0.79, Sports and Activities)
skateboard - surfboard - laptop - tie - phone tennis - baseball - racquet - skateboard - skis

Expert 5 (0.79, Wildlife and Nature) Expert 6 (0.80, Urban Scenes and Transportation)
giraffe - herd - sheep - zebra - elephants street - train - bus - park - building

Expert 7 (0.81, Outdoor Activities and Nature) Expert 8 (0.83, Domestic Life and Pets)
beach - ocean - surfboard - kite - wave man - woman - girl - hand - bed - cat

E.4.4 QUANTITATIVE RESULTS

The quantitative results on the CC3M and MS-COCO datasets (Table 5) indicate that APTP signifi-
cantly outperforms the baseline Norm method in terms of FID and CLIP scores while also reducing
complexity. For both datasets, APTP at 30k and 50k fine-tuning iterations shows lower FID and
CMMD values and higher CLIP scores compared to the baseline, demonstrating the advantage of
prompt based pruning compared to static pruning ideas for T2I models.

We also benchmark our method and the baselins on the PartiPrompt Yu et al. (2022) dataset using
PickScore Kirstain et al. (2023). The prompts in this benchmark can be considered out-of-distribution
for our model as many of them are significantly longer and semantically different from the ones
in MSCOCO. We report the PickScore Kirstain et al. (2023) as a proxy for human preference and
present the results in Table 2 below. We can observe that the Pickscore of the pruned model is only
1% below the original Stable Diffusion 2.1, indicating that the pruned model can preserve the general
knowledge and generation capabilities of the Stable Diffusion model. Table 6 demonstrates that

E.4.5 EXPERT ARCHITECTURES

Figures 11 and 12 display the block-level U-Net architecture of all experts of APTP-Base, with CC3M
and COCO as the target datasets, respectively. The retained MAC patterns are markedly different,
further corroborating that different datasets require distinct architectures and that a ’one-size-fits-all’
approach is not well-suited for T2I models. For CC3M, down-sampling blocks generally are retained
with higher ratios. Overall, APTP tends to prune Resnet Blocks more frequently and aggressively
compared to Attention Blocks.

E.4.6 SAMPLES OF APTP

Table 7 displays the prompts for the images in Fig. 3 from CC3M and COCO validation sets.

We also provide more samples from APTP-Base pruned on CC3M and COCO. Fig. 13 presents
samples from the validation set of CC3M generated by each 16 experts of APTP-Base at 0.85 MACs
budget. Fig. 14 shows samples from the validation set of COCO from each of the 8 experts of
APTP-Base pruned to 0.78 MACs budget.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 11: The block-level retained MAC ratio of the UNet architecture of all experts of APTP-Base
applied to Stable Diffusion 2.1 with CC3M as the target dataset. The groups of ResBlocks and the
heads of Attention Blocks are pruned based on the outputs of the architecture predictor. The intensity
of the color of each block represents the resource utilization of it. The number in each block indicates
the precise ratio of retained MACs of the block. Conv in, Conv out, and skip connections between
corresponding down and up blocks are omitted for brevity.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 12: The block-level retained MAC ratio of the UNet architecture of all experts of APTP-Base
applied to Stable Diffusion 2.1 with COCO as the target dataset. The groups of ResBlocks and the
heads of Attention Blocks are pruned based on the outputs of the architecture predictor. The intensity
of the color of each block represents the resource utilization of it. The number in each block indicates
the precise ratio of retained MACs of the block. Conv in, Conv out, and skip connections between
corresponding down and up blocks are omitted for brevity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 13: Samples of the APTP-Base experts after pruning the Stable Diffusion V2.1 using
CC3M Sharma et al. (2018) as the target dataset. Each row corresponds to a unique expert. Please
refer to Table 2 for the groups of prompts assigned to each expert.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 14: Samples of the APTP-Base experts after pruning the Stable Diffusion V2.1 using MS-
COCO Lin et al. (2014) as the target dataset. Each row corresponds to a unique expert. Please refer
to Table 4 for the groups of prompts assigned to each expert.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 5: Quantitative results on CC3M and MS-COCO. We report the performance metrics using
samples generated at the resolution of 768 and downsampled to 256 Kim et al. (2023). We measure
models’ MACs and Latency with the input resolution of 768 on an A100 GPU. @30/50k shows the
model’s fine-tuning iterations after pruning.

CC3M

Method

Complexity Performance

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
FID (↓) CLIP (↑) CMMD (↓)

Norm Li et al. (2017)
@30k 1185.3G 3.4 157.51 26.23 1.778

Norm Li et al. (2017)
@50k 1185.3G 3.4 141.04 26.51 1.646

APTP(0.66)
@30k 916.3G 2.6 60.04 28.64 1.094

APTP(0.66)
@50k 916.3G 2.6 54.95 29.08 1.017

APTP(0.85)
@30k 1182.8G 3.4 36.77 30.84 0.675

APTP(0.85)
@50k 1182.8G 3.4 36.09 30.90 0.669

SD 2.1 1384.2G 4.0 32.08 31.12 0.567

(a)

MS-COCO

Method

Complexity Performance

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
FID (↓) CLIP (↑) CMMD (↓)

Norm Li et al. (2017)
@30k 1077.4G 3.1 60.42 27.06 1.524

Norm Li et al. (2017)
@50k 1077.4G 3.1 47.35 28.51 1.136

APTP(0.64)
@30k 890.0G 2.5 39.12 29.98 0.867

APTP(0.64)
@50k 890.0G 2.5 36.17 30.21 0.739

APTP(0.78)
@30k 1076.6G 3.1 22.60 31.32 0.569

APTP(0.78)
@50k 1076.6G 3.1 22.26 31.38 0.561

SD 2.1 1384.2G 4.0 15.47 31.33 0.500

(b)

Table 6: Results on PartiPrompts. We report performance metrics using samples generated at the resolution of
768. We measure models’ MACs/Latency with the input resolution of 768 on an A100 GPU. @30/50k shows
fine-tuning iterations after pruning.

Train on CC3M

Method

Complexity PartiPrompts

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
PickScore (↑)

Norm (Li et al., 2017)
@50k 1185.3G 3.4 18.114

SP (Fang et al., 2023)
@30k 1192.1G 3.5 18.727

BKSDM (Kim et al., 2023)
@30k 1180.0G 3.3 19.491

APTP(0.66)
@30k 916.3G 2.6 19.597

APTP(0.85)
@30k 1182.8G 3.4 21.049

SD 2.1 1384.2G 4.0 21.316

(a)

Train on MS-COCO

Method

Complexity PartiPrompts

MACs
(@768)

Latency (↓)
(Sec/Sample)

(@768)
PickScore (↑)

Norm (Li et al., 2017)
@50k 1077.4G 3.1 18.563

SP (Fang et al., 2023)
@30k 1071.4G 3.3 19.317

BKSDM (Kim et al., 2023)
@30k 1085.4G 3.1 19.941

APTP(0.64)
@30k 890.0G 2.5 20.626

APTP(0.78)
@30k 1076.6G 3.1 21.150

SD 2.1 1384.2G 4.0 21.316

(b)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

CC3M Prompts
Saw this beautiful sky on my way home.
A silhouetted palm tree with boat tied to it rests on a beach that a man walks across during golden hour.
Sketch of a retro photo camera drawn by hand on a white background.
From left: person person, the dress on display.
Never saw a doll like this before but she sure is sweet looking.
The team on the summit.
A water drop falls towards a splash already made by another water drop.
Husky dog in a new year’s interior.
Old paper with a picture of flowers, ranked in a moist environment.
People on new year’s eve!
I drive over stuff - a pretty cool jeep, 4x4, or truck t-shirt.
The crowds arrive for day of festival.
A scary abandoned house under a starry sky.
Freehand fashion illustration with a lady with decorative hair.
Introduce some new flavors to your favorite finger food with these inspired chicken wings.
Gloomy face of a sad woman looking down, zoom in, gray background.

COCO Prompts
A white plate topped with a piece of chocolate covered cake.
Decorated coffee cup and knife sitting on a patterned surface.
A desk topped with a laptop computer and speakers.
A man sitting on the beach behind his surfboard.
A pizza type dish with vegetables and a lemon wedge.
The browned cracked crust of a baked berry pie.
A tennis player in an orange skirt walks off the court.
The skier in the helmet moves through thick snow.
A giraffe walks leisurely through the tall grass.
Several brown horses are standing in a field.
A red fire hydrant on a concrete block.
A bus driving in a city area with traffic signs.
There is a man on a surf board in the ocean.
A boat parked on top of a beach in crystal blue water.
A small kitchen with low a ceiling.
A calico cat curls up inside a bowl to sleep.

Table 7: Prompts for Fig. 3

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Prompts
a trash bin
a woman with sunglasses and red hair
a close-up of an ostrich’s face
a black t-shirt
A helicopter flies over Yosemite.
a spaceship hovering over The Alamo
a corgi
A bar of chocolate without a wrapper that has the word ”WRAPPER” printed on it.
a laptop screen showing a bunch of photographs
a street
a handpalm with leaves growing from it
a close-up of the keys of a piano
the Eiffel Tower in a desert
a view of the Earth from the moon
the silhouette of the Milllenium Wheel at dusk
an avocado on a table
a glass of orange juice to the right of a plate with buttered toast on it
a Styracosaurus
view of a clock tower from below
a hat

Table 8: Prompts for Fig. 7

31

	Introduction
	Related Work
	Method
	Background
	Prompt Router and Architecture Codes
	Prompt Encoder and Architecture Predictor
	Router

	Pruning
	Training the Prompt Router and Architecture Codes

	Fine-tuning the Pruned Expert Models

	Experiments
	Comparison Results
	Analysis of the Prompt Router
	Ablation Study

	Conclusion
	More Visual Results
	Related Work
	Overview of Diffusion Models
	More Details of APTP
	Architecture Predictor
	Router Module Definition
	Pruning Depth
	Distillation Objective
	Fine-tuning

	Experiments
	Models and Datasets
	Experimental Settings
	Evaluation
	Results
	Training Loss
	Visualization of the Impact of Optimal Transport
	Analysis of Prompt Router on COCO
	Quantitative Results
	Expert Architectures
	Samples of APTP

