
A Step sizes and eigenvalues of the iterative matrix
The eigenvalues of the iterative matrices in the linear differences systems in (2) (3) and (4) play a
crucial role in analyzing the dynamic behavior of learning dynamics. In this section, we study how
the choice of step sizes in learning dynamics affects the eigenvalues of these iterative matrices.

We firstly present the following corollary of Schur’s theorem, which was also used in Zhang and Yu
[2020] to demonstrate the convergence of learning dynamics in time-independent games.

Lemma A.1. (Corollary 2.1 in Zhang and Yu [2020]). The roots of a real quartic polynomial
�
4 + a�

3 + b�
2 + c� + d are within the (open) unit disk of the complex plane if and only if

|c� ad| < 1� d
2, |a+ c| < b+ d+ 1 and b < (1 + d) + (c� ad)(a� c)/(d� 1)2.

Lemma A.2. Let � be the maximum modulus of the singular value of payoff matrix A. Then if for
extra-gradient method with step size ↵ = � <

1
2� , optimistic gradient descent ascent with step size

⌘ <
1
2� , and negative momentum method with step size ⌘ <

1
�

and momentum parameters �1 = �
1
2

and �2 = 0, then for the iterative matrices A in (2) (3) and (4), we have the following conclusion:

• If payoff matrix A is non-singular, then the modulus of eigenvalues of these iterative matrices
A are strictly less than 1.

• If payoff matrix A is singular, then 1 is an eigenvalue of the iterative matrix A, and other
eigenvalues of A have modulus strictly less than 1.

Proof. OGDA. We first write the characteristic polynomials of the iterative matrix A in (2) when
payoff matrix is equal to A. Recall in this case, we have

A =

2

66666664

I �2⌘A> 0 ⌘A
>

2⌘A I �⌘A 0

I 0 0 0

0 I 0 0

3

77777775

. (8)

The characteristic polynomial equations are:

�
2(�� 1)2 + ⌘

2
�
2
i
(1� 2�)2 = 0, i 2 [m] (9)

where �i is a singular value of A. And then according to Lemma A.1, it is easy to verify if
0 < ⌘� <

1
2 , then the norm of roots of the above polynomial is always less than 1. When �i = 0, we

have the eigenvalues of A come from (9) are equal to 1.

In all, if the payoff matrix A is non-singular, we have the modulus of eigenvalue of A is strictly
smaller than 1. And if there exists some singular value of A equals to 0, we can obtain that if �i = 0,
then A has eigenvalue equal to 1, otherwise, A only has eigenvalues whose norm is less than 1.

EG. We first write characteristic polynomial of iterative matrix A in (3), with payoff matrix equals to
A. We have

A =

2

4
I � ↵�AA

>
�↵A

↵A
>

I � �↵A
>
A

3

5 .

The characteristic polynomial equations are:

(�� 1)2 + 2�↵�2
i
(�� 1) + ↵

2
�
2
i
+ ↵

2
�
2
�
4
i
= 0, i 2 [m]

where �i is a singular value of A. And then by Lemma A.1, the norm of roots of the above polynomial
is always less than 1 if the following holds for all i 2 [m],

↵
2
�
2
i
+ (↵��2

i
� 1)2 < 1. (10)

It is easy to verify that ↵ = � <
1
2� satisfies the above inequalities. Then we can use similar analysis

in the part of OGDA to prove the conclusion for EG.
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Negative Momentum Method. First we write characteristic polynomial of iterative matrix A defined
in (4) when payoff payoff equals to A, we have

A =

2

66666664

(1 + �1)I �⌘A ��1I 0

⌘(1 + �1)A> (1 + �2)I � ⌘
2
A

>
A �⌘�1A

>
��2I

I 0 0 0

0 I 0 0

3

77777775

. (11)

The characteristic polynomial equations are:

(�� 1)2(�� �1)(�� �2) + ⌘
2
�
2
i
�
3 = 0, i 2 [m]

when �1 = �
1
2 , �2 = 0 and ⌘ <

1
�

satisfies conditions in Lemma A.1. We can also use a similar
analysis as in the OGDA part to prove the conclusion for negative momentum method.

B Omitted Proofs from Theorem 3.1
Theorem 3.1. When two players use extra-gradient in a periodic games with period T , with step size
↵ = � <

1
�

where � = max{�0
|�

0 is a singular value of Ai for some i 2 [T ]}. Then

�i,t 2 O

⇣
(�⇤)

t/T
· Poly(t)

⌘
, 8i 2 [T ]

where �⇤ = max{ |�| | � is an eigenvalue of
⇣QT

t=1 At

⌘
,� 6= 1}, and �⇤ < 1.

In this section, we prove Theorem 3.1. In the following, we use Ã to denote matrix
Q

T

i=1 Ai. As
shown by the Floquet theorem, the asymptotic behavior of a periodic linear system is determined by
the product of iterative matrices over one period. Therefore, the analysis can be reduced to that of an
autonomous system. We analyze the Jordan normal form of the product matrix for extra-gradient. We
prove that the product matrix has no eigenvalues with a modulus larger than 1. Moreover, the Jordan
blocks of 1 as an eigenvalue of the product matrix have size equals to 1. These facts are enough to
show the exponentially convergent behavior of extra-gradient. Before going through details of the
proof, we provide a road map for the proof in Figure 5.

Figure 5: Road map for the proof of Theorem 3.1

Recall that EG can be written in a single linear difference system as
"
xt+1

yt+1

#
=

2

4
I � ↵�AtA

>
t

�↵At

↵A
>
t

I � �↵A
>
t
At

3

5
"
xt

yt

#
. (12)

Denote At the iterative matrix in (12). The following lemma tells us that At is a normal matrix.
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Lemma B.1. For any i 2 [T ], Ai is a normal matrix.

Proof. We have

AiA
>
i
= A

>
i
Ai =

2

4
(I � ↵�AiA

>
i
)2 + ↵

2
AiA

>
i

0

0 (I � ↵�A
>
i
Ai)2 + ↵

2
A

>
i
Ai

3

5 .

Using above lemma, we can present several useful lemmas to describe Jordan form of matrix Ã.

Lemma B.2. If ↵ = � <
1
�

, then for any i 2 [T ], kAik2 1, and ker(Ã� I) = \
T

i=1 ker(Ai � I).
Moreover, denote

�⇤ = max{ |�| | � is an eigenvalue of Ã,� 6= 1},

then we have �⇤ < 1.

Proof. (() : If v 2 \
T

i=1 ker(Ai � I), then for any i 2 {1, ..., T}, Aiv = v, thus

Ãv = ATAT�1...A1v = v.

Then we have \
T

i=1 ker(Ai � I) ✓ ker(Ã� I).

()) : Let v 2 ker(Ã� I), then we have kvk2= kAT ...A1vk2. Denote k·k2 as 2-norm of matrices
and vectors. According to Lemma A.2, if ↵ = � <

1
�

, then the spectral radius ⇢(Ai) of Ai is no
larger than 1. Combining with the fact that Ai is normal, we have kAik2= ⇢(Ai)  1 for i 2 [T ]. We
claim that if kvk2= kAT ...A1vk2, then we have Aiv = v for i 2 [T ]. We prove it by contradiction.
Suppose the claim is not true. Let s be the minimum i such that Aiv 6= v. Since As is normal and its
eigenvalues whose modulus equal to 1 can only be 1, we have kAsvk2< kvk2, then there holds

kvk2 = kAT ...As...A1vk2

= kAT ...Asvk2

< kAT ...As+1k2kvk2

 kvk2,

which leads to a contradiction. Therefore, for any i 2 [T ], we obtain that Aiv = v, i.e., v 2

ker(Ai � I). From the claim, we know that if v 2 ker(Ã� I) , then v 2 ker(Ai � I) for i 2 [T ].
Thus we have ker(Ã� I) ✓ \

T

i=1 ker(Ai � I).

Next we prove that �⇤  1. By the definition of �⇤, we obtain

�⇤  ⇢(AT · · · A1)

 kAT · · · A1k2

 kAT k2· · · kA1k2 1,

where the second inequality holds because the spectral radius ⇢(A)  kAk2 for any matrix A.

Now we prove that �⇤ 6= 1, which means that Ã have no eigenvalue � satisfying � 6= 1 and
|�|= 1. Assuming v is the eigenvector of Ã corresponding to �

0, where |�
0
|= 1, we can obtain

kAT ...A1vk2= k�
0
vk2= kvk2. Similar to the proof above, Aiv = v for i 2 [T ], which implies that

�
0 = 1. This completes the proof of �⇤ < 1.

Lemma B.3. Under a suitable orthogonal normal basis, Ã has form
"
Ir⇥r 0

0 C

#
, (13)

where Ir⇥r 2 Rr⇥r, C 2 R(n+m�r)⇥(n+m�r), and r = dimR(ker(Ã� I)).
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Proof. Let {v1, ..., vr} be an orthogonal normal basis of ker(Ã � I), i.e., hvi, vji = 1 if i = j,
hvi, vji = 0 if i 6= j. First, we extend {v1, ..., vr} to an orthonormal basis of Rn+m and
denote this basis by {v1, ..., vr, vr+1, ..., vn+m}. We also denote M the matrix consisting of
{v1, ..., vr, vr+1, ..., vn+m} as columns. With these settings, we have M

>
M = MM

> = I .

Under this basis, Ai is represented by matrix
"
Ir⇥r 0

Ci,1 Ci,2

#
. (14)

Moreover, as Ai is a normal matrix, its representation under an orthogonal normal basis is still a
normal matrix, thus we have

"
Ir⇥r 0

Ci,1 Ci,2

#2

4
Ir⇥r C>

i,1

0 C>
i,2

3

5 =

2

4
Ir⇥r C>

i,1

0 C>
i,2

3

5
"
Ir⇥r 0

Ci,1 Ci,2

#
. (15)

Note that (15) is equivalent to
2

4
Ir⇥r C>

i,1

Ci,1 Ci,1C>
i,1 +Ci,2C>

i,2

3

5 =

2

4
Ir⇥r +C>

i,1Ci,1 C>
i,1Ci,2

C>
i,2Ci,1 C>

i,2Ci,2

3

5 .

As a consequence, we have C>
i,1Ci,1 = 0, and furthermore, this implies Ci,1 = 0. Thus (14) has

form

"
Ir⇥r 0

0 Ci,2

#
,

and under this basis, Ã can be represented by
2

4
Ir⇥r 0

0
Q

T

i=1 Ci,2

3

5 .

Since
Q

T

i=1 Ci,2 is a matrix with size of (n+m� r)⇥ (n+m� r), we complete the proof.

Corollary B.4. If � = 1 is an eigenvalue of Ã, then the Jordan blocks of Ã corresponding to
eigenvalue 1 has size 1.

Proof. From Lemma B.3, we have a decomposition Rm+n = ker(Ã � I) � V
0, and both these

two spaces are invariant under the action of Ã. Thus we can choose a basis of V 0 consisting of
Jordan chains and denote this basis by {w1, ..., wm+n�r}, then under the basis {w1, ..., wm+n�r} [

{v1, ..., vr}, Ã is a block diagonal matrix. Moreover, there is no eigenvectors corresponding to
eigenvalue 1 in {w1, ..., wm+n�r}, because any wi is linearly independent with {v1, ..., vr} (since
they are basis), thus if some wi is an eigenvector of eigenvalue 1, then a contradiction is conducted
since it is assumed that dimR(ker(Ã� I)) = r.

Lemma B.5. Denote Xt = (xt, yt) be the strategies of players at round of t when they are playing
extra-gradient. For any i 2 [T ], if k(Ai � I)Xtk2 converges to 0 with rate O

�
(�⇤)t/T · Poly(t)

�
,

then �i,t converges to 0 with rate O
�
(�⇤)t/T · Poly(t)

�
.
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Proof. Writing (Ai � I)Xt in a matrix form:
2

4
�↵�AiA

>
i

�↵Ai

↵A
>
i

�↵�A
>
i
Ai

3

5
"
xt�1

yt�1

#
=

2

4
�↵�AiA

>
i
xt�1 � ↵Aiyt�1

↵A
>
i
xt�1 � ↵�A

>
i
Aiyt�1

3

5 .

For the sake of readability, we denote g(t) = (�⇤)t/T · Poly(t). According to the assumption, there
is a constant c such that k(Ai � I)Xtk2 cg(t), then we have

k��AiA
>
i
xt�1 �Aiyt�1k2

cg(t)

↵
,

kA
>
i
xt�1 � �A

>
i
Aiyt�1k2

cg(t)

↵
.

Let c1 = max{kAik2, i 2 [T ]}. Using these two inequalities to bound kA
>
i
xtk2, we have

k(�2
A

>
i
Ai + I)A>

i
xt�1k2

=k�
2
A

>
i
AiA

>
i
xt�1 +A

>
i
xt�1k2

=kA
>
i
xt�1 � �A

>
i
Aiyt�1 � �A

>
i
(��AiA

>
i
xt�1 �Aiyt�1)k2

kA
>
i
xt�1 � �A

>
i
Aiyt�1k2+�kA

>
i
k2k��AiA

>
i
xt�1 �Aiyt�1k2


c(1 + �c1)g(t)

↵
.

Since matrix �
2
A

>
i
Ai + I is invertible, then

kAixtk2=(�2
A

>
i
Ai + I)�1(�2

A
>
i
Ai + I)A>

i
xt�1k2

k(�2
A

>
i
Ai + I)�1

k2k(�
2
A

>
i
Ai + I)A>

i
xt�1k2

k(�2
A

>
i
Ai + I)A>

i
xt�1k2


c(1 + �)g(t)

↵
,

where the last inequality is due to k(�2
A

>
i
Ai + I)�1

k2 1. Similarly, we can obtain

kAiytk2
c(1 + �c1)g(t)

↵
.

Thus by definition of �i,t = kA
>
i
xtk2+kAiytk2, �i,t converges to 0 with rate O

�
(�⇤)t/T · Poly(t)

�
.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We have proved �⇤ < 1 in Lemma B.2, now we prove the part of convergence
rate. Note that here we cannot directly apply the Floquet theorem in Proposition 2.4, as it requires all
iterative matrices within a period to be invertible. However, the proof here follows the same idea as
the Floquet theorem : the convergence behavior of a periodic linear difference system is determined
by the product of all iterative matrices of the system in a period. According to Corollary B.4, we can
write Jordan form J of Ã in the following way:

J =


I 0
0 J̃

�
,
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where J̃ consists of Jordan blocks corresponding to eigenvalues whose modulus not equal to 1.
According to Lemma B.2, we have that the modulus of eigenvalues of J̃ are less than 1. Moreover,
we assume

J = P
�1

ÃP.

Denote Jk(�) as a Jordan block corresponding to eigenvalue � with size k, and |�|< 1. We can write
Jk(�) = �I +N , where N represents the nilpotent matrix whose superdiagonal contains 1’s and all
other entries are zero. Moreover, we have N

k = 0 and kNk2= 1.

For each Jordan block Jk(�), without loss of generality, when s > 2k, by the binomial theorem:

J
s

k
(�) = (�I +N)s =

sX

r=0

✓
s

r

◆
�
s�r

N
r
.

Then

kJ
s

k
(�)k2 (k � 1)

✓
s

k � 1

◆
|�|

s�k+1
,

since kNk2= 1 and s > 2k. We know that
✓

s

k � 1

◆
is a polynomial of s with degree k  n+m.

Since |�|< 1, kJs

k
(�)k2 goes to zero in rate O ((�⇤)s · Poly(s)). Since J

s

k
(�) are blocks in block

diagnol matrix J̃
s, then

kJ̃
s
k2

X

�2Eigenvalue(Ã),� 6=1

kJ
s

k
(�)k2,

and kJ̃
s
k2 goes to zero in rate O ((�⇤)s · Poly(s)). For any t, without loss of generality, we assume

that t = sT + j, and j 2 [T ] is the remainder. Then we have

(Ã� I)Xt =(Ã� I)ÃsXj

=(Ãs+1
� Ã

s)Xj

=P
�1(Js+1

� J
s)PXj

=P
�1

✓
I 0
0 J

s+1
1

�
�


I 0
0 J

s
1

�◆
PXj

=P
�1

✓
0 0
0 J

s+1
1 � J

s
1

�◆
PXj .

Taking norm on both sides, we have

k(Ã� I)Xtk2 (kJs+1
1 k2+kJ

s

1k2)kXjk2 2kJs

1k2kXjk2.

From definition of s, we know that s = bt/T c � t/T � 1, leading to (�⇤)s 
1
�⇤

(�⇤)t/T . Since
kJ

s
1k2 converges to zero with rate O ((�⇤)s · Poly(s)), then k(Ã� I)Xtk2 converges to zero with

rate O
�
(�⇤)t/T · Poly(t)

�
. By Lemma B.2, for any i 2 [T ], k(Ai � I)Xtk2 goes to zero in rate

O
�
(�⇤)t/T · Poly(t)

�
.

According to Lemma B.5, we conclude for any i 2 [T ], �i,t goes to zero with convergence rate
O
�
(�⇤)t/T · Poly(t)

�
, this completes the proof.
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C Omitted Proofs from Theorem 3.2
Theorem 3.2. Consider a periodic game with period T = 2, and described by the following payoff
matrix

At =

⇢
[1,�1] , t is odd
[�1, 1] , t is even

(6)

with xt 2 R, yt 2 R2. If two players use optimistic gradient descent ascent or negative momentum
method, then regardless of how they choose step sizes and momentum parameters, we have

sup
s2[t]

�i,s 2 ⌦(�t), where � > 1, i 2 {1, 2}.

Here � is determined by the largest modulus of the eigenvalues of the iterative matrix of optimistic
gradient descent ascent or negative momentum method.

C.1 On initialization
Before proving Theorem 3.2, we discuss a more detailed question :

Which initial points will make (OGDA) and (NM) diverge ?

In fact, it is obviously that not every initial point will make optimistic gradient descent ascent and
negative momentum method diverge. For example, if the initial point is chosen to be

(x0, y0) 2 (kerA>
t
, kerAt), (16)

then these point will be not diverge because they are stationary points of the game dynamics.

In the proof of Theorem 3.2 below, we explicitly construct initial points that diverge exponentially fast
under (OGDA) or (NM). In Figure 6, we present an example of an initial point that converges under
(NM) with the game defined by (35). In fact, we can see that these converge initial points of (OGDA)
or (NM) lie on a low dimension space, thus have measure zero. Note that this doesn’t conflict with
Theorem 3.2, since we are not claiming that optimistic gradient descent ascent or negative momentum
method will make every initial point diverge.

Figure 6: A converge initial point for negative momentum method, with initial condition x0 = x�1 = 0, and
y0 = (�0.4, 1), y�1 = (1,�1). The curve is �1,t.

In the following sections C.2 and C.3, we will prove that both negative momentum method and OGDA
diverge with an exponential rate under certain initial conditions. The proof idea is the same for these
two learning dynamics : firstly, we prove that the product of iterative matrices in a period for these
learning dynamics have an eigenvalue with modulus larger than 1; then, we show that eigenvectors
corresponding to this eigenvalue as initial condition will diverge under the learning dynamics.

C.2 Negative Momentum Method
We first consider negative momentum method with step size ⌘, recall it can be written as:

xt+1 = xt � ⌘Atyt + �1(xt � xt�1),

yt+1 = yt + ⌘A
>
t+1xt+1 + �2(yt � yt�1),
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where �1,�2  0 are the momentum parameters. Writing negative momentum method in matrix
form, we have

2

6666664

xt+1

yt+1

xt

yt

3

7777775
=

2

66666664

(1 + �1)I �⌘At ��1I 0

⌘(1 + �1)A>
t+1 (1 + �2)I � ⌘

2
A

>
t+1At �⌘�1A

>
t+1 ��2I

I 0 0 0

0 I 0 0

3

77777775

2

6666664

xt

yt

xt�1

yt�1

3

7777775
(17)

Denote the iterative matrix in (17) as At and Xt = (x>
t
, y

>
t
, x

>
t�1, y

>
t�1)

>. Let ÃNM = At+1At,
by Floquet Theorem, ÃNM will determine the dynamical behaviors of negative momentum method.
We have

Xt = ÃNMXt�2, for any t � 2.

In the following lemma, we show that the spectral radius of ÃNM is always larger than 1.

Lemma C.1. For any step size ⌘ > 0, and momentum parameters �1, �2  0, the spectral radius of
ÃNM is larger than 1.

Proof. We directly compute the characteristic polynomial PÃNM
(�) of matrix ÃNM as follows ‡ :

PÃNM
(�) = det(�I � ÃNM )

=[�4
�
�
4⌘4 + 4⌘2(�2 � �1) + �

2
1 + �

2
2 + 2

�
· �

3

+
�
4⌘2(�2 � �1) + �

2
1�

2
2 + 2�2

1 + 2�2
2 + 1

�
· �

2

�
�
2�2

1�
2
2 + �

2
1 + �

2
2

�
· �+ �

2
1�

2
2 ] · (�� 1) · (�� �

2
2).

Note that this is a polynomial on � of degree 6, with two roots � = 1 and � = �
2
2 .

Thus, eigenvalues of matrix ÃNM consists of 1, �2
2 and roots of the quartic polynomial

g(�) = �
4 + a�

3 + b�
2 + c�+ d,

with coefficients
a = �(4⌘4 + 4⌘2(�2 � �1) + �

2
1 + �

2
2 + 2),

b = 4⌘2(�2 � �1) + �
2
1�

2
2 + 2�2

1 + 2�2
2 + 1,

c = �(2�2
1�

2
2 + �

2
1 + �

2
2),

d = �
2
1�

2
2 .

In order to prove the spectral radius of ÃNM is larger than 1, we just need to verify that the maximal
modulus of the roots of g is larger than 1. According to Lemma A.1, the polynomial g(�) has a root
with modulus no less than 1 if |a+ c| > b+ d+ 1. Next we want to prove that |a+ c| > b+ d+ 1
holds for any step size ⌘ > 0 and any momentum parameter �1, �2. Computing directly,

|a+ c|� (b+ d+ 1) = � (a+ c)� (b+ d+ 1)

= 4⌘4 + 4⌘2(�2 � �1) + �
2
1 + �

2
2 + 2 + 2�2

1�
2
2 + �

2
1 + �

2
2

� (4⌘2(�2 � �1) + �
2
1�

2
2 + 2�2

1 + 2�2
2 + 1 + �

2
1�

2
2 + 1)

= 4⌘4 > 0,

‡Symbolic computing software, such as Matlab, can be used to perform the computation of characteristic
polynomial.
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where the first equality holds since

a+ c = �(4⌘4 + 4⌘2(�2 � �1) + 2�2
1 + 2�2

2 + 2 + 2�2
1�

2
2)

 �(4⌘4 + 4⌘2(�2 � �1) + (�1 � �2)
2)

 �(2⌘2 + �2 � �1)
2

 0.

The inequality |a+ c| > b+ d+ 1 violates the second condition in Corollary A.1, which means the
maximal modulus of the roots of g is at least 1.

Next, we want to prove the maximal modulus of the roots of g is strictly larger than 1. Assuming that
the maximal modulus of the roots of g is equal to 1, then for any given r > 1, the roots of

(r�)4 + a(r�)3 + b(r�)2 + c(r�) + d = 0

are within the (open) unit disk of the complex plane (the roots � satisfy |r�|  1). Divide the quartic
polynomial by r

4, we have �4+ a

r
�
3+ b

r2
�
2+ c

r3
�+ d

r4
= 0. By Corollary A.1, we have the second

condition for the polynomial above, that is,
���
a

r
+

c

r3

��� <
b

r2
+

d

r4
+ 1.

Notice that the inequality above holds for any r > 1. Let r ! 1+, we obtain,

|a+ c|  b+ d+ 1

(,)

|4⌘4 + 4⌘2(�2 � �1) + 2�2
1 + 2�2

2 + 2 + 2�2
1�

2
2 |

 4⌘2(�2 � �1) + 2�2
1 + 2�2

2 + 2�2
1�

2
2 + 2

(,)

⌘
4
 0.

which contradicts with the step size ⌘ > 0. Therefore, our assumption that the maximal modulus of
the roots of g is equal to 1 cannot hold.

In conclusion, we have that the spectral radius of ÃNM is strictly greater than 1.

Now we are ready to proof Theorem 3.2 for the part of negative momentum method.

proof of Theorem 3.2, (part I, Negative Momentum). As we have shown in Lemma C.1, 1 and �
2
2

are two eigenvalues of ÃNM . We claim that if [0, a, a, 0, b, b]> 2 R6 is an eigenvector of ÃNM ,
with condition a and b not simultaneously equal to 0, then it can only be an eigenvector corresponds
to either 1 or �2

2 . In the following,we prove the above claim.

Without loss of generality, we assume that b 6= 0 (the case a 6= 0 is similar), moreover, we can assume
that b = 1 by a normalization. Then, we have

ÃNM ·

2

666664

0
a

a

0
1
1

3

777775
=

2

666664

0
a(�2

2 + �2 + 1)� �2(�2 + 1)
a(�2

2 + �2 + 1)� �2(�2 + 1)
0

a(�2 + 1)� �2

a(�2 + 1)� �2

3

777775

Firstly, if a = 0 and [0, a, a, 0, 1, 1]> = [0, 0, 0, 0, 1, 1]> is an eigenvector of ÃNM , then either
�2 = 0 or �2 = �1. If �2 = 0, then [0, 0, 0, 0, 1, 1]> is eigenvector corresponding to eigenvalue �

2
2 ;

if �2 = �1, then [0, 0, 0, 0, 1, 1]> is eigenvector corresponding to eigenvalue 1.

Secondly, if a 6= 0 and [0, a, a, 0, 1, 1]> is eigenvector of ÃNM , then

a(�2
2 + �2 + 1)� �2(�2 + 1)

a
=

a(�2 + 1)� �2

1
)(a� �2)(a� 1)(�2 + 1) = 0.
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When �2 6= �1, then a = �2 or a = 1, and [0, a, a, 0, 1, 1]> is an eigenvector corresponding to
eigenvalue �

2
2 or 1. When �2 = �1, [0, 1, 1, 0, 1, 1]> and [0, 0, 0, 0, 1, 1]> are eigenvectors of ÃNM

corresponding to eigenvalue 1. Thus we conclude for any a and b not simultaneously equal to 0,
[0, a, a, 0, b, b]> can only be an eigenvector of ÃNM corresponding to eigenvalue 1 and �

2
2 , this

completes the proof of the claim.

Next we construct an initial condition that has exponential divergence rate under negative momentum
method. Let �0 be the eigenvalue of ÃNM with largest modulus except �2

2 , then by Lemma C.1,
|�

0
|> 1. We also denote X0 = [x0, y0,1, y0,2, x�1, y�1,1, y�1,2]> 2 R6 as the corresponding

eigenvector of �0. Here yi = (yi,1, yi,2), and xi for i = 0,�1 are initial conditions. Then from
the claim proved above, one of x0, x�1, y0,1 � y0,2 and y�1,1 � y�1,2 not equals to 0. Let c =
max{|x0|, |x�1|, |y0,1 � y0,2|, |y�1,1 � y�1,2|}, then c > 0.

In the following, we construct the initial point by considering two cases : �
0 is a real number or

complex number.

Firstly, we consider the case that �0 is a real number. We can write the iterative process using ÃNM

as follows:
X2t = Ã

t

NM
X0 = (�0)tX0.

which implies
x2t = (�0)tx0, y2t,1 = (�0)ty0,1, y2t,2 = (�0)ty0,2,

x2t�1 = (�0)tx�1, y2t�1,1 = (�0)ty�1,1, y2t�1,2 = (�0)ty�1,2.

Since A1 = [1,�1], then

A
>
1 xt =[xt,�xt]

>
, A1yt = yt,1 � yt,2,

) �1,t =kA
>
1 xtk2+kA1ytk2

=
p
2|xt|+|yt,1 � yt,2|

=

8
<

:

|�
0
|
t

2 (
p
2|x0|+|y0,1 � y0,2|), if t is even

|�
0
|
t+1
2 (

p
2|x�1|+|y�1,1 � y�1,2|), if t is odd.

Then, max{�1,t�1,�1,t} � c|�
0
|
t

2 . Let � = |�
0
|
1
2 , we have sups2[t] �1,s � c�

t
2 ⌦ (�t).

Similarly, then we have sups2[t] �2,s 2 ⌦ (�t).

Secondly, we consider �0 as a complex number. Denote this eigenvalue by a+ bi, then a� bi is also
an eigenvalue of ÃNM . Denote v the eigenvector of eigenvalue a+ bi, then v̄ is the eigenvector of
eigenvalue a� bi. Let X0 = v + v̄. In the following, we prove X0 6= 0 by contradiction. Assuming
X0 = 0 which means v = v

0
i, where v0 is a real vector. Then, Av = Av

0
i = (a+bi)v0i = av

0
i�bv

0.
Since A is a real matrix, then vector Av

0
i only consists of pure imaginary numbers, leading to b = 0.

Then the contradiction appears since �
0 = a + bi is a complex number. According to previous

analysis, one of x0, x�1, y0,1 � y0,2 and y�1,1 � y�1,2 is not 0. Here we analyze the case when
c = |y0,1 � y0,2| is not equal to zero and omit other cases because these analyses are very similar.
According to the iterative process, we have

X2t =Ã
t

NM
X0

=Ã
t

NM
(v + v̄)

=(a+ bi)tv + (a� bi)tv̄

=e
it✓(a2 + b

2)
t

2 v + e
�it✓(a2 + b

2)
t

2 v̄,

where ✓ = sign(b)⇡2 if a = 0, otherwise ✓ = arctan( b
a
). Since A1 = [1,�1], then,

kA1ytk2=|yt,1 � yt,2|

=|2c(eit✓ + e
�it✓)(a2 + b

2)
t

2 |

=|4c · cos(t✓)|(a2 + b
2)

t

2 .
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For cos(t✓), either cos(t✓) ⌘ 1 when ✓ = 0, or limt!+1 cos(t✓) doesn’t exist, which means there
exists a constant � > 0 and {tj}j=1,2,... , where {tj}j=1,2,... is a sequence that goes to infinity, such
that |cos(tj✓)|> �. We know that |�0

|= (a2 + b
2)

1
2 , then |�

0
|> 1. Let � = |�

0
|
1
2 , leading to � > 1.

In addition to c 6= 0, we have
�1,tj � kA1ytjk2� ��

t
2 ⌦(�t).

Thus sups2[t] �1,s 2 ⌦(�t), and sups2[t] �2,s 2 ⌦(�t) can be proven in the same way.

C.3 Optimistic Gradient Descent Ascent
In this subsection, we consider optimistic gradient descent ascent with step size ⌘. Recall that the
linear difference form of OGDA can be written as following:

2

6666664

xt

yt

xt�1

yt�1

3

7777775
=

2

66666664

I �2⌘At�1 0 ⌘At�2

2⌘A>
t�1 I �⌘A

>
t�2 0

I 0 0 0

0 I 0 0

3

77777775

2

6666664

xt�1

yt�1

xt�2

yt�2

3

7777775
. (18)

We denote the matrix in (18) as At and let Xt = (x>
t
, y

>
t
, x

>
t�1, y

>
t�1)

>. Since payoff matrix has
period of 2, by Floquet Theorem, we only have to analyze matrix At+1At. Let ÃOGDA = At+1At,
then, we have

Xt = ÃOGDAXt�2, for any t � 2.

Lemma C.2. For any step size ⌘ > 0, the spectral radius of ÃOGDA is larger than 1.

Proof. Directly compute the characteristic polynomial PÃOGDA
(�) of matrix ÃOGDA gives

PÃOGDA
(�) = det(�I � ÃOGDA)

= � · (�� 1) ·

✓
��

✓
4⌘2 �

1

2

p
64⌘4 + 8⌘2 + 1 +

1

2

◆◆2

·

✓
��

✓
4⌘2 +

1

2

p
64⌘4 + 8⌘2 + 1 +

1

2

◆◆2

.

Then, ÃOGDA has an eigenvalue �
0 = 4⌘2 + 1

2

p
64⌘4 + 8⌘2 + 1 + 1

2 . It is easy to verify that �0

is strictly monotonically increasing with ⌘ 2 [0,+1), and �
0 equals to 1 iff ⌘ = 0. Since step size

⌘ > 0, thus the spectral radius of matrix ÃOGDA is larger than 1.

Now we are ready to prove Theorem 3.2 for the part of optimistic gradient descent ascent method.

proof of Theorem 3.2, (part II, OGDA). Let X0 = [x0, y0,1, y0,2, x�1, y�1,1, y�1,2]> be the eigen-
vector corresponding to the eigenvalue �

0 defined above. Then, it is directly to verify x0, x�1 6= 0.

In the iterative process, we have
X2t = Ã

t

OGDA
X0 = (�0)tX0, x2t = (�0)tx0.

Since A1 = [1,�1], then
A

>
1 xt =[xt,�xt]

>
, A1yt = yt,1 � yt,2.

) �1,t =kA
>
1 xtk2+kA1ytk2

=
p
2|xt|+|yt,1 � yt,2|

�
p
2�0 t2 min{x0, x�1}.

By Theorem C.2, �0
> 1. Let � = (�0)

1
2 , then � > 1. According to the inequality above, we have

sup
s2[t]

�1,s � �1,t �
p
2min{x0, x�1}�

t
2 ⌦

�
�
t
�
.

Similarly, we have sups2[t] �2,s 2 ⌦ (�t).
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D Proof for convergent perturbed games with invertible payoff matrix
In this section, we provide a proof of a special case of Theorem 3.3 under the assumption that the
payoff matrix is an invertible square matrix. Furthermore, we can demonstrate that this assumption
leads to an exponential convergence rate.

Proposition D.1. When the payoff matrix A of the stable game is an invertible square matrix and
limt!1 Bt = 0, we have limt!1(xt, yt) = (0,0) 2 R2n in (OGDA), (EG), and (NM) with an
exponential rate.

Proof. According to Perron Theorem 2.5, we only need to prove maximum modulus of eigenvalues
of iterative matrix A is less than 1. Lemma A.2 indicates that if the parameter condition on step
sizes is satisfied, we have maximum modulus of eigenvalues of iterative matrix A is less than 1. This
complete the proof.

The above proof cannot be generalized to non-invertible matrices, as we have shown in Lemma
A.2 that when the payoff matrix is non-invertible, then iterative matrices of the difference system
associated with the game dynamics must have an eigenvalue equals to 1.

In the following, we prove Theorem 3.3 for the general case.

E Omitted Proofs from Theorem 3.3
Theorem 3.3. Assume that the (BAP assumption) holds, i.e.,

P1
t=0kBtk2 is bounded, and let � be

the maximum modulus of the singular value of payoff matrix A, then with parameters choice:

• for extra-gradient with step size ↵ = ⌘ <
1
2� ,

• for optimistic gradient descent ascent with step size ⌘ <
1
2� ,

• for negative momentum method with step size ⌘ <
1
�

and momentum parameters �1 = �
1
2

and �2 = 0,

we have �t converge to 0 with rate O(f(t)). Here

f(t) = max{�t
,

1X

i=t/2

kBik2},

and � 2 (0, 1) is determined by the eigenvalues of the iterative matrix of corresponding learning
dynamics and the payoff matrix A of the stable game.

We separate the proof into several lemmas. Before going into details, we present a road map of the
proof in Figure (7).

Figure 7: Road map for the prove of Theorem 3.3
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As a first step, we demonstrate that the iterative matrices of learning dynamics can be diagonalized
using singular value decomposition (SVD), as shown in Lemma E.2. This phenomenon was also
shown in Gidel et al. [2019] for a general class of first order method. By singular value decomposition,
we can write A = U⌃AV

>, where U , V are unitary matrices, and ⌃A is rectangular diagonal matrix
with its diagonal entries being singular values of A. We denote this by

⌃A =

2

4
�r⇥r 0r⇥(m�r)

0(n�r)⇥r 0(n�r)⇥(m�r)

3

5 2 Rn⇥m
,

and

�r⇥r =

2

64
�1

. . .
�r

3

75 2 Rr⇥r
,

where �i > 0 are the singular values of A, i 2 [r]. Let x̄t = U
>
xt, ȳt = V

>
yt, then we can

transform the iterative process of three algorithms in convergent perturbed game into the equivalent
form as followings :

SVD formulation for OGDA in convergent perturbed game:
x̄t+1 = x̄t � 2⌘(⌃A + U

>
BtV )ȳt + ⌘(⌃A + U

>
Bt�1V )ȳt�1,

ȳt+1 = ȳt + 2⌘(⌃A + V
>
B

>
t
U)x̄t � ⌘(⌃A + V

>
B

>
t�1U)x̄t�1.

We represent the above in the form of a linear difference system:
X̄t+1 = (Ā+ B̄t)X̄t, (19)

where X̄t = (x̄>
t
, ȳ

>
t
, x̄

>
t�1, ȳ

>
t�1)

>,

Ā =

2

66666664

I �2⌘⌃A 0 ⌘⌃A

2⌘⌃>
A

I �⌘⌃>
A

0

I 0 0 0

0 I 0 0

3

77777775

2 R2(m+n)
, (20)

and

B̄t =

2

66666664

0 �2⌘U>
BtV 0 ⌘U

>
Bt�1V

2⌘V >
B

>
t
U 0 �⌘V

>
B

>
t�1U 0

0 0 0 0

0 0 0 0

3

77777775

2 R2(m+n)
. (21)

SVD formulation for EG in convergent perturbed game:
x̄t+1 = (I � ↵�(⌃A⌃

>
A
+ U

>(AB
>
t
+BtA

> +BtB
>
t
)U)x̄t � ↵(⌃A + U

>
BtV )ȳt,

ȳt+1 = (I � ↵�(⌃>
A
⌃A + V

>(A>
Bt +B

>
t
A+B

>
t
Bt)V )ȳt + ↵(⌃>

A
+ V

>
B

>
t
U)x̄t.

We represent the above in the form of a linear difference system:
X̄t+1 = (Ā+ B̄t)X̄t, (22)

where X̄t = (x̄>
t
, ȳ

>
t
),

Ā =

2

64

I � ↵�⌃A⌃>
A

�↵⌃A

↵⌃>
A

I � ↵�⌃>
A
⌃A

3

75 2 Rm+n (23)
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and

B̄t =

2

64

�↵�U
>(AB

>
t
+BtA

> +BtB
>
t
)U �↵U

>
BtV

↵V
>
B

>
t
U ↵�V

>(A>
Bt +B

>
t
A+B

>
t
Bt)V

3

75 . (24)

SVD formulation for NM in convergent perturbed game:
x̄t+1 = (1 + �1)x̄t � ⌘

�
⌃A + U

>
BtV

�
ȳt � �1x̄t�1,

ȳt+1 =
�
I � ⌘

2
�
⌃>

A
⌃A + V

>(A>
Bt +B

>
t+1A+B

>
t+1Bt)V

��
ȳt

+ ⌘
�
⌃>

A
+ V

>
B

>
t+1U

�
((1 + �1)x̄t � �1x̄t�1)� �2ȳt�1.

We represent the above in the form of a linear difference system:
X̄t+1 = (Ā+ B̄t)X̄t, (25)

where X̄t = (x̄>
t
, ȳ

>
t
, x̄

>
t�1, ȳ

>
t�1)

>,

Ā =

2

66666664

(1 + �1)I �⌘⌃A ��1I 0

⌘(1 + �1)⌃>
A

I � ⌘
2⌃>

A
⌃A �⌘�1⌃>

A
��2I

I 0 0 0

0 I 0 0

3

77777775

2 R2(m+n)
, (26)

and

B̄t =

2

66666664

0 �⌘U
>
BtV 0 0

⌘(1 + �1)V >
B

>
t+1U �⌘

2
V

>(A>
Bt +B

>
t+1A+B

>
t+1Bt)V �⌘�1V

>
B

>
t+1U 0

0 0 0 0

0 0 0 0

3

77777775

.

(27)

Lemma E.1. The iterative matrix of SVD formulation for EG in convergent perturbed game in (23)
is a normal matrix.

Proof. Directly calculate shows

ĀĀ
> = Ā

>
Ā =

2

4
(I � ↵�⌃A⌃>

A
)2 + ↵

2⌃A⌃>
A

0

0 (I � ↵�⌃>
A
⌃A)2 + ↵

2⌃>
A
⌃A

3

5 . (28)

Lemma E.2. For a fixed payoff matrix A, the corresponding iterative matrices in (20) for OGDA,
(23) for EG, and (26) for negative momentum method are diagonalizable.

Note that the claim is true for EG since the iterative matrix is normal as we have shown in lemma
E.1. Therefore, we will only consider the cases of OGDA and negative momentum method below.
The idea behind proving these two claims is the same, we construct a set of linearly independent
eigenvectors of (20) or (26) that form a basis of R2(m+n), and under this basis, (20) or (26) can be
represented by a diagonal matrix.

Proof. We firstly define some notation. In the following, we denote e
n

i
as an n-dimensional unit

vector with 1 in the i-th position and 0 in other positions and denote �p as the p-th singular value of
the payoff matrix A of the stable game, and denote r as the rank of A. Thus for p 2 [r], �p > 0, and
otherwise �p = 0. We will also denote the n-dimensional (m-dimensional) zero vector as 0n(0m).
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Part I, Diagonalization of (20): Now we consider the diagonalization of matrix in (20). Recall that

⌃A =

2

4
�r⇥r 0r⇥(m�r)

0(n�r)⇥r 0(n�r)⇥(m�r)

3

5 2 Rn⇥m
,

and

�r⇥r =

2

64
�1

. . .
�r

3

75 2 Rr⇥r
.

To prove Ā is diagonalizable, we only need to find 2(n+m) linearly independent eigenvectors of
the matrix.

Then we can check the equations below
8
<

:

⌃Ae
m
p

= �pe
n
p
, for 1  p  r,

⌃Ae
m

j
= 0n, for r + 1  j  m,

and
8
<

:

⌃>
A
e
n
p
= �pe

m
p
, for 1  p  r,

⌃>
A
e
n

i
= 0m, for r + 1  i  n.

Now we respectively construct the eigenvectors corresponding to each eigenvalue, and prove these
2(n+m) vectors are linearly independent, forming a basis of R2(n+m).

Case 1 Eigenvectors correspond to eigenvalue 1 :
It can be verified that for r + 1  i  n

v1,i =

2

6666664

e
n

i

0m

0n

0m

3

7777775
,

and for r + 1  j  m

w1,j =

2

66666664

0n

e
m

j

0n

0m

3

77777775

are eigenvectors of Ā belonging to eigenvalue 1.

Case 2 Eigenvectors correspond to eigenvalue 0 :
It can be verified that for r + 1  i  n,

v0,i =

2

6666664

0n

0m

e
n

i

0m

3

7777775
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and for r + 1  j  m,

w0,j =

2

66666664

0n

0m

0n

e
m

j

3

77777775

are eigenvectors of Ā belonging to eigenvalue 0.

Case 3 Other eigenvectors :
For p = 1, · · · , r, consider the roots of the following polynomial :

�
2(�� 1)2 + ⌘

2
�
2
p
(1� 2�)2 = 0 (29)

where �p is the p-th diagonal element of ⌃A, and the solution of these polynomials are
eigenvalues of Ā.

We first claim that except for finite choices of ⌘, equation (29) has four different non-zero
roots, denote them as �p,q , q = 1, 2, 3, 4. That is because a quartic polynomial equation has
multiple roots if and only if its discriminant polynomial, a homogeneous polynomial with
degree 6 on the coefficients of the quartic polynomial equation, equals to 0. Since a degree
6 polynomial has at most 6 roots, thus if ⌘ is not a root of this discriminant polynomial,
(29) will not have multiple roots. In the following, we will choose ⌘ such that (29) has no
multiple roots. According to Lemma A.2, the modulus of these eigenvalues are less than 1.

Let
↵p,q =

⌘�p(1� 2�p,q)

�p,q
2
� �p,q

.

It can be verified that for 1  p  r and q = 1, 2, 3, 4,

up,q =

2

66666664

�p,q↵p,qe
n
p

�p,qe
m
p

↵p,qe
n
p

e
m
p

3

77777775

are the eigenvectors of Ā corresponding to eigenvalue �p,q .

Then we have constructed 2(n + m) eigenvectors, now we prove they are linearly independent.
Suppose there exists coefficients k1,i, k0,i, where i = r+1, · · · , n , g1,j , g0,j , where j = r+1, · · · ,m
and fp,q , where p = 1, · · · , r and q = 1, 2, 3, 4, such that

nX

i=r+1

k1,iv1,i +
mX

j=r+1

g1,jw1,j +
nX

i=r+1

k0,iv0,i +
mX

j=r+1

g0,jw0,j +
rX

p=1

4X

q=1

fp,qup,q = 0.

(30)

For r + 1  i  n, only v1,i has non-zero element at the i-th position of vector, so k1,i = 0.

For r + 1  j  m, only w1,j has non-zero element at the (j + n)-th position of vector, so g1,j = 0.

For r + 1  i  n, only v0,i has non-zero element at the (i + n + m)-th position of vector, so
k0,i = 0.

For r + 1  j  m, only w0,j has non-zero element at the (j + 2n+m)-th position of vector, so
g0,j = 0.

For 1  p  r, at the p-th position of vector, only up,q, where q = 1, 2, 3, 4 has non-zero element.
So we can yield

4X

q=1

fp,qup,q = 0.
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The above equation holds for p = 1, · · · , r. Because the eigenvectors of different eigenvalues are
linearly independent, we have fp,q = 0, where q = 1, 2, 3, 4 and p = 1, · · · , r. Now we have
concluded that all coefficients in (30) are zero, thus these eigenvectors are linearly independent.

Let P be the matrix whose columns are consisted by the eigenvectors of Ā constructed above, and D

be the diagonal matrix whose diagonal elements are eigenvalues of Ā. After an appropriate order
arrangement of columns on P and elements on D, we have

ĀP = PD.

Moreover, as we have shown above, the columns of P are linearly independent, therefore P is
invertible, which implies Ā is diagonalizable.

Part II, Diagonalization of (26): Now we consider the diagonalization of the matrix in (26) and
denote it as Ā. Similiarly, to prove this matrix is diagonalizable, we only need to find 2(n + m)
linearly independent eigenvectors of the matrix. Now we respectively construct the eigenvectors
corresponding to each eigenvalue, and prove these 2(n+m) vectors are linearly independent, forming
a basis of R2(n+m).

Case 1: Eigenvectors correspond to eigenvalue 1 :
It can be verified that for r + 1  i  n,

v1,i =

2

6666664

e
n

i

0m

e
n

i

0m

3

7777775

and for r + 1  j  m,

w1,j =

2

66666664

0n

e
m

j

0n

e
m

j

3

77777775

are eigenvectors of Ā belonging to eigenvalue 1.

Case 2: Eigenvectors correspond to eigenvalue �1.
It can be verified that for r + 1  i  n,

v�1,i =

2

6666664

�1e
n

i

0m

e
n

i

0m

3

7777775

are eigenvectors of Ā corresponding to eigenvalue �1.

Case 3: Eigenvectors correspond to eigenvalue �2.
It can be verified that for r + 1  j  m,

w�2,j =

2

66666664

0n

�2e
m

j

0n

e
m

j

3

77777775

are eigenvectors of Ā corresponding to eigenvalue �2.
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Case 4: Other eigenvectors.
For p = 1, · · · , r, consider four roots of polynomial

(�� 1)2(�� �1)(�� �2) + ⌘
2
�
2
p
�
3 = 0 (31)

where �p is the p-th diagonal element of ⌃A.

Now we consider the effect of different value of �1 and �2. If �1 = 0 and �2 = 0, the model
degenerates to gradient descent algorithm, we only consider when �1 and �2 are not both
zero. Similar to the situation in the Case 3 of diagonalization of (20), except for several
values for ⌘, equation (31) has four different roots, denote them as �p,q, q = 1, 2, 3, 4. If
�p,q 6= 0, for q = 1, 2, 3, 4, let

↵p,q =
��p,q

2 + (1 + �1)�p,q � �1

⌘�p�p,q

.

We can check that

up,q =

2

66666664

�p,qe
n
p

�p,q↵p,qe
m
p

e
n
p

↵p,qe
m
p

3

77777775

is the eigenvector of Ā corresponding to eigenvalue �p,q , that is Āup,q = �p,qup,q . Else if
�p,q = 0, that means either �1 = 0 or �2 = 0.

If �1 = 0,

up,q =

2

66666664

0n

0m

e
n
p

0m

3

77777775

is the eigenvector of Ā corresponding to eigenvalue 0.

If �2 = 0,

up,q =

2

66666664

0n

0m

0n

e
m
p

3

77777775

is the eigenvector of Ā corresponding to eigenvalue 0.

Now we obtain 2(n+m) eigenvectors, in the following we will prove these 2(n+m) eigenvectors
are linearly independent. Suppose there exists coefficients k1,i, k�1,i, where i = r + 1, · · · , n ,
g1,j , g�2,j , where j = r + 1, · · · ,m and fp,q , where p = 1, · · · , r and q = 1, 2, 3, 4, such that

nX

i=r+1

k1,iv1,i +
mX

j=r+1

g1,jw1,j +
nX

i=r+1

k�1,iv�1,i +
mX

j=r+1

g�2,jv�2,j +
rX

p=1

4X

q=1

fp,qup,q = 0.

(32)

First we prove fp,q = 0 for p = 1, · · · , r and q = 1, 2, 3, 4. If �1 = 0, let l = 1, · · · , r, then at the
l + n +m-th position of vector, only ul,q, q = 1, 2, 3, 4 has non-zero element. Else if �1 6= 0, let
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l = 1, · · · , r, then at the l + 2n + m-th position of vector, only ul,q, q = 1, 2, 3, 4 has non-zero
element. For these two case we both have

4X

q=1

fp,qup,q = 0.

The above equation holds for p = 1, · · · , r. Because the eigenvectors of different eigenvalues are
linearly independent, we have fp,q = 0, where q = 1, 2, 3, 4 and p = 1, · · · , r.

For i = r + 1, · · · , n, at the i-th position of vector, only v1,i and v�1,i has non-zero element at this
position, so we obtain

k1,iv1,i + k�1,iv�1,i = 0.

Notice that �1 6= 1, this means k1,i = 0 and k�1,i = 0, where i = r + 1, · · · , n.

For j = r + 1, · · · ,m, at the j-th position of vector, only w1,j and w�2,j has non-zero element, so
we can yield

g1,jw1,j + g�2,jw�2,j = 0.

Similarly, because of �2 6= 1, this means g1,j = 0 and g�2,j = 0, where j = r + 1, · · · ,m.

We prove that if (32) holds, then all coefficients are zero, which illustrates that these eigenvectors are
linearly independent. Same as the argument in Part I of the proof, the existence of these 2(m+ n)
eigenvectors implies Ā is diagonalizable.

Remark E.3. For payoff matrix A, given its SVD decomposition A = U⌃AV
>, let

Q =

2

64

U

V

U

V

3

75 ,

then Q is a unitary matrix. Furthermore, it can be verified that
Q

>
AQ = Ā

for both OGDA and negative momentum method. That means

1. Ā in (20) is diagonalizable implies that A in (8) is diagonalizable.

2. Ā in (26) is diagonalizable implies that A in (11) is diagonalizable.

Lemma E.4 (Gronwall inequality, Colonius and Kliemann [2014]). Let for all t 2 N, the functions
u, p, q, f : N ! R satisfy

u(t)  p(t) + q(t)
t�1X

`=a

f(`)u(`).

Then, for all t 2 N

u(t)  p(t) + q(t)
t�1X

`=a

p(`)f(`)
k�1Y

⌧=`+1

(1 + q(⌧)f(⌧)). (Gronwall inequality)

Gronwall inequality is a useful tool to treat linear difference equations, it also has an analogy in
continuous time case. For more about Gronwall inequality, see Lemma 6.1.3 in Colonius and
Kliemann [2014].

Lemma E.5. If {Bt}t satisfy the BAP assumption, i.e.,
P1

t=1kBtk2 is bounded, then {B̄t}t defined
in (21), (24) and (27) also satisfy BAP assumption.

Proof. We claim there exists some constant c, such that for any t, kB̄t�1k2

c (kBtk2+kBtk2+kBt+1k2). With this property, we have
1X

t=0

kB̄tk2 3c
1X

t=0

kBtk2< +1,

then we prove the statement. In the following, we prove above claim for OGDA, EG, and negative
momentum method.
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Case of OGDA : We consider the matrix (21)

B̄t =

2

66666664

0 �2⌘U>
BtV 0 ⌘U

>
Bt�1V

2⌘V >
B

>
t
U 0 �⌘V

>
B

>
t�1U 0

0 0 0 0

0 0 0 0

3

77777775

= 2⌘

2

66666664

0 �U
>
BtV 0 0

V
>
B

>
t
U 0 0 0

0 0 0 0

0 0 0 0

3

77777775

+ ⌘

2

66666664

0 0 0 U
>
Bt�1V

0 0 �V
>
B

>
t�1U 0

0 0 0 0

0 0 0 0

3

77777775

.

Denote the first matrix in right side of the equation as H1, and the second one as H2. From the above
equation, we can obtain that kB̄tk2 kH1k2+kH2k2. Recall the definition of 2-norm of matrix,

kH1k2= max
q

Eigenvalue{H>
1 H1},

kH2k2= max
q

Eigenvalue{H>
2 H2},

then,

H
>
1 H1 = 4⌘2

2

66666664

U
>
BtB

>
t
U 0 0 0

0 V
>
B

>
t
BtV 0 0

0 0 0 0

0 0 0 0

3

77777775

and

H
>
2 H2 = ⌘

2

2

66666664

0 0 0 0

0 0 0 0

0 0 U
>
Bt�1B

>
t�1U 0

0 0 0 V
>
B

>
t�1Bt�1V

3

77777775

.

Because U and V are unitary matrices, we have

kH1k2= max
q

Eigenvalue{H>
1 H1} = 4⌘2 max

q
Eigenvalue{B>

t
Bt} = 4⌘2kBtk2

and

kH2k2= max
q

Eigenvalue{H>
2 H2} = ⌘

2 max
q

Eigenvalue{B>
t�1Bt�1} = ⌘

2
kBt�1k2.

Let c = 4⌘2, then

kB̄tk2 c · (kBtk2+kBt�1k2),

we have completed the proof for OGDA.
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Case of EG : We consider the matrix (24)

B̄t =

2

4
�↵�U

>(AB
>
t
+BtA

> +BtB
>
t
)U �↵U

>
BtV

↵V
>
B

>
t
U ↵�V

>(A>
Bt +B

>
t
A+B

>
t
Bt)V

3

5

=

2

4
�↵�U

>(AB
>
t
+BtA

> +BtB
>
t
)U 0

0 0

3

5

+

2

4
0 0

0 ↵�V
>(A>

Bt +B
>
t
A+B

>
t
Bt)V

3

5

+

2

4
0 �↵U

>
BtV

0 0

3

5+

2

4
0 0

↵V
>
B

>
t
U 0

3

5 .

We separate B1 into four matrices and denote these matrices in right side of the equation as H1, H2,
H3 and H4, respectively. Then

kB̄tk2 kH1k2+kH2k2+kH3k2+kH4k2.

Since
P1

t=1kBtk2 c, then kBtk2 c for any t. We also assume that c2 = kAk2.

Then we have,

kH1k2=↵�kU
>(AB

>
t
+BtA

> +BtB
>
t
)Uk2

=↵�
�
kAB

>
t
+BtA

> +BtB
>
t
k2

�

↵� (kAk2kBtk2+kAk2kBtk2+kBtk2kBtk2)

↵�(2c2 + c)kBtk2,

where the second equality is due to U is unitary matrix. Similarly, kH2k2 ↵�(2c2 + c)kBtk2. In
addition, kH3k2= kH4k2= ↵kBtk2.

Thus for any t, we have the inequality between kB̄tk2 and kBtk2:

kB̄tk2 kH1k2+kH2k2+kH3k2+kH4k2 ↵ ((4c2 + c)� + 2) kBtk2.

Let c1 = c(4c2 + c)� + 2c, summing the above inequality over t, we have

1X

t=1

kB̄tk2 ((4c2 + c)� + 2)
1X

t=1

kBtk2 c ((4c2 + c)� + 2) = c1.

33



Case of Negative Momentum Method : We consider the matrix (27) ,

B̄t =

2

66666664

0 �⌘U
>
BtV 0 0

⌘(1 + �1)V >
B

>
t+1U �⌘

2
V

>(A>
Bt +B

>
t+1A+B

>
t+1Bt)V �⌘�1V

>
B

>
t+1U 0

0 0 0 0

0 0 0 0

3

77777775

=

2

66666664

0 0 0 0

⌘(1 + �1)V >
B

>
t
U 0 0 0

0 0 0 0

0 0 0 0

3

77777775

+

2

66666664

0 �⌘U
>
BtV 0 0

0 0 �⌘�1V
>
B

>
t+1U 0

0 0 0 0

0 0 0 0

3

77777775

+

2

66666664

0 0 0 0

0 �⌘
2
V

>(A>
Bt +B

>
t+1A+B

>
t+1Bt)V 0 0

0 0 0 0

0 0 0 0

3

77777775

.

Denote the first matrix at the right side of equation as H1, the second one as H2 and the third as H3.
Then we have kB̄tk2 kH1k2+kH2k2+kH3k2.

By definition,

kH1k2= max
q

Eigenvalue{H>
1 H1},

kH2k2= max
q

Eigenvalue{H>
2 H2}.

Because U and V are unitary matrices,

H
>
1 H1 = ⌘

2(1 + �1)
2

2

64

U
>
BtB

>
t
U 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

3

75

)max
q

Eigenvalue{H>
1 H1} = ⌘

2(1 + �1)
2 max

q
Eigenvalue{B>

t
Bt}

)kH1k2= ⌘
2(1 + �1)

2
kBtk2

and

H
>
2 H2 = ⌘

2

2

64

0 0 0 0
0 V

>
B

>
t
BtV 0 0

0 0 �
2
1U

>
Bt+1B

>
t+1U 0

0 0 0 0

3

75

)max
q

Eigenvalue{H>
2 H2} = ⌘

2(max
q

Eigenvalue{B>
t
Bt}+ �

2
1 max

q
Eigenvalue{B>

t+1Bt+1})

)kH2k2= ⌘
2(kBtk2+�

2
1kBt+1k2)
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and
kH3k2  ⌘

2
�
kA

>
Btk2+kB

>
t
Ak2+kB

>
t
Btk2

�

 ⌘
2 (kAk2kBtk2+kAk2kBtk2+kBtk2kBtk2)

 ckBtk2,

where c = 2kAk2+c
0, c0 = maxt�0kBtk2. From

P1
t=0kBtk2< +1 and kBtk2� 0, we know c

0 is
a bounded constant. By combining the bounds for H1, H2 and H3, we have completed the proof for
negative momentum method.

Lemma E.6. Assume that there exists a constant c such that
P1

t=1kB̄tk2 c, and Ā is as defined in
(20), (23), or (26), then k(Ā� I)X̄tk2 converges to 0 with rate O(f(t)), where

f(t) = max{�t
,

1X

i=t/2

kBik2}.

Here � 2 (0, 1) is determined by the eigenvalues of the iterative matrix Ā of corresponding learning
dynamics and the payoff matrix A of the stable game.

Proof. Recall that we denote the SVD formulation of iterative process in (19) (22) and (25) as
follows:

X̄t+1 = (Ā+ B̄t)X̄t,

Since Ā is a diagonalizable matrix from Lemma E.2, thus, there exists an invertible matrix P such
that P ĀP

�1 = D, where D is a diagonal matrix with the eigenvalues of Ā as its entries. Since
maximum modulus of eigenvalues of iterative matrix Ā is no more than 1, then kDk2 1. Let

X̂t = PX̄t, and B̂t = P B̄tP
�1

,

then the iterative process becomes X̂t+1 = (D + B̂t)X̂t.

By induction, we have

X̂t = (D + B̂t�1)X̂t�1 = D
t
X̂0 +

tX

l=1

D
t�l

B̂l�1X̂l�1 (33)

=)B̂tX̂t = B̂tD
t
X̂0 + B̂t

tX

l=1

D
t�l

B̂l�1X̂l�1.

Since kD
l
k2 kDk

l
2 1 for any l 2 [t], taking norm on both sides, we have

kB̂tX̂tk2 kB̂tk2kX̂0k2+kB̂tk2

tX

l=1

kB̂l�1X̂l�1k2,

Now we apply Gronwall inequality, let ut = kB̂tX̂tk2, pt = kB̂tk2kX̂0k2, qt = kB̂tk2 and ft ⌘ 1
in Gronwall inequality, see Lemma E.4, then we have

kB̂tX̂tk2 kB̂tk2kX̂0k2+kB̂tk2(
tX

l=1

kB̂lk2

t�lY

k=l�1

(1 + kB̂lk2))kX̂0k2.

Let c1 = kPk2kP
�1

k2. According to the assumption, there exists a constant c such thatP1
t=1kB̄tk2 c, then

1X

t=1

kB̂tk2 =
1X

t=1

kP B̄tP
�1

k2



1X

t=1

kPk2kB̄tk2kP
�1

k2

 c1c.
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Note that B̂t = P B̄tP
�1, so kB̂tk2 kPk2kB̄tk2kP

�1
k2 c1kB̄tk2. Since e

x
� 1 + x for x 2 R,

we obtain
1Y

t=1

(1 + kB̂tk2) 
1Y

t=1

e
kB̂tk2

= e

P1
t=1kB̂tk2

 e
c1c.

Let c2 = (1 + c1c · e
c1c)kX̂0k2, then

kB̂tX̂tk2  kB̂tk2kX̂0k2(1 +
tX

l=1

kB̂lk2

t�lY

k=l�1

(1 + kB̂lk2))

 kB̂tk2kX̂0k2(1 + e
c1c

tX

l=1

kB̂lk2)

 kB̂tk2kX̂0k2(1 + c1c · e
c1c)

 c2kB̂tk2.

Multiplying (D � I) on the equality (33)of both sides, we have

(D � I)X̂t = (D � I)Dt
X̂0 +

tX

l=1

(D � I)Dt�l
B̂l�1X̂l�1.

Let c3 = max{c2, c2
P 1

2 t

l=1kB̂lk2}, taking the norm on both sides, we have

k(D � I)X̂tk2  �
t
kX̂0k2+

tX

l=1

�
t�l

kB̂l�1X̂l�1k2 �
t
kX̂0k2+

tX

l=1

c2�
t�l

kB̂lk2

 �
1
2 t(kX̂0k2+c2

1
2 tX

l=1

kB̂lk2) + c2

tX

l= 1
2 t

kB̂lk2

 c3f(t).

Let � = �
1
2 , recall that f(t) = max{�t

,
P1

i=t/2kBik2}. The last inequality is due to Lemma
E.5, we can see that there is constant c4 such that

P1
i=t/2kB̂ik2 c4

P1
i=t/2kBik2. Recall that

f(t) = max{�t
,
P1

i=t/2kBik2}. Then, there exists a constant c5 such that

k(Ā� I)X̄tk2 kP
�1

k2k(D � I)X̂tk2 c5f(t).

Lemma E.7. If k(Ā� I)X̄tk2 converges to 0 with rate O(f(t)) as t tends to infinity, then for OGD,
EG and negative momentum method, kA>

xtk2+kAytk2 converges to 0 with rate O(f(t)) when t

tends to infinity .

Proof of Lemma E.7. We break the proof into three parts. Recall that A = U⌃AV
>, and h =

k⌃Ak2.

Firstly we prove the lemma for OGDA.
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OGDA Writing (Ā� I)X̄t into matrix form:
2

66666664

0 �2⌘⌃A 0 ⌘⌃A

2⌘⌃>
A

0 �⌘⌃>
A

0

I 0 �I 0

0 I 0 �I

3

77777775

2

66666664

U
>
xt�1

V
>
yt�1

U
>
xt�2

V
>
yt�2

3

77777775

=

2

66666664

�2⌘⌃AV
>
yt�1 + ⌘⌃AV

>
yt�2

2⌘⌃AU
>
xt�1 � ⌘⌃AU

>
xt�2

U
>
xt�1 � U

>
xt�2

V
>
yt�1 � V

>
yt�2

3

77777775

Since there is a constant c such thatk(Ā� I)X̄tk2 cf(t), then

k2⌘⌃AU
>
xt�1 � ⌘⌃AU

>
xt�2k2 cf(t),

kU
>
xt�1 � U

>
xt�2k2 cf(t).

Using these two inequalities to bound kA
>
xtk2, we have

k⌘⌃AU
>
xt�1k2

=k2⌘⌃AU
>
xt�1 � ⌘⌃AU

>
xt�2 � ⌘⌃A(U

>
xt�1 � U

>
xt�2)k2

k2⌘⌃AU
>
xt�1 � ⌘⌃AU

>
xt�2k2+k⌘⌃A(U

>
xt�1 � U

>
xt�2)k2

cf(t) + ⌘cf(t).

Since A
>
xt = V ⌃AU

>
xt, then

kA
>
xtk2 = kV ⌃AU

>
xtk2

 kV k2k⌃AU
>
xtk2


ch(1 + ⌘)f(t)

⌘
,

where the last inequality is due to k⌃Ak2= h and V , U are unitary matrices. Similarly, we can obtain
kAytk2

(1+⌘)chf(t)
⌘

.

Next, we prove the lemma for extra-gradient.

EG Writing (Ā� I)X̄t into matrix form:
2

4
�↵�⌃A⌃>

A
�↵⌃A

↵⌃>
A

�↵�⌃>
A
⌃A

3

5

2

4
U

>
xt�1

V
>
yt�1

3

5 =

2

4
�↵�⌃A⌃>

A
U

>
xt�1 � ↵⌃AV

>
yt�1

↵⌃>
A
U

>
xt�1 � ↵�⌃>

A
⌃AV

>
yt�1.

3

5

Since there is a constant c such that k(Ā� I)X̄tk2 cf(t), then

k��⌃A⌃
>
A
U

>
xt�1 � ⌃AV

>
yt�1k2

cf(t)

↵
,

k⌃>
A
U

>
xt�1 � �⌃>

A
⌃AV

>
yt�1k2

cf(t)

↵
.
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Using these two inequalities to bound kA
>
xtk2, we have

k(�2⌃>
A
⌃A + I)⌃>

A
U

>
xt�1k2

=k⌃>
A
U

>
xt�1 � �⌃>

A
⌃AV

>
yt�1 � �⌃>

A

�
��⌃A⌃

>
A
U

>
xt�1 � ⌃AV

>
yt�1

�
k2

k⌃>
A
U

>
xt�1 � �⌃>

A
⌃AV

>
yt�1k2+�k⌃>

A
k2k��⌃A⌃

>
A
U

>
xt�1 � ⌃AV

>
yt�1k2


(1 + �h)cf(t)

↵
.

Since matrix �
2⌃>

A
⌃A + I is invertible, then

k⌃AU
>
xtk2=k(�2⌃>

A
⌃A + I)�1(�2⌃>

A
⌃A + I)⌃>

A
U

>
xt�1k2

k(�2⌃>
A
⌃A + I)�1

k2k(�
2⌃>

A
⌃A + I)⌃>

A
U

>
xt�1k2

k(�2⌃>
A
⌃A + I)⌃>

A
U

>
xt�1k2


(1 + �h)cf(t)

↵
,

where the last inequality is due to k(�2⌃>
A
⌃A + I)�1

k2 1. Since A
>
xt = V ⌃AU

>
xt, then

kA
>
xtk2 = kV ⌃AU

>
xtk2 kV k2k⌃AU

>
xtk2

(1 + �h)cf(t)

↵
,

where the last inequality is due to V is unitary matrices. Similarly, we can obtain

kAytk2
(1 + �h)

↵
f(t)c.

Finally, we prove the lemma for negative momentum method.

Negative Momentum Method Writing (Ā� I)X̄t into matrix form:
2

66666664

�1I �⌘⌃A ��1I 0

⌘(1 + �1)⌃>
A

�⌘
2⌃>

A
⌃A �⌘�1⌃>

A
��2I

I 0 �I 0

0 I 0 �I

3

77777775

2

66666664

U
>
xt�1

V
>
yt�1

U
>
xt�2

V
>
yt�2

3

77777775

=

2

66666664

�1U
>
xt�1 � ⌘⌃AV

>
yt�1 � �1U

>
xt�2

⌘(1 + �1)⌃>
A
U

>
xt�1 � ⌘

2⌃>
A
⌃AV

>
yt�1 � ⌘�1⌃>

A
U

>
xt�2 � �2V

>
yt�2

U
>
xt�1 � U

>
xt�2

V
>
yt�1 � V

>
yt�2

3

77777775

Since there is a constant c such that k(Ā� I)ȳtk2 cf(t), then

k�1U
>
xt�1 � ⌘⌃AV

>
yt�1 � �1U

>
xt�2k2 cf(t),

kU
>
xt�1 � U

>
xt�2k2 cf(t).
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Using these two inequalities to bound kAytk2, we have

k⌘⌃AV
>
yt�1k2

=k�1

�
U

>
xt�1 � U

>
xt�2

�
�

�
�1U

>
xt�1 � ⌘⌃AV

>
yt�1 � �1U

>
xt�2

�
k2

k�1

�
U

>
xt�1 � U

>
xt�2

�
k2+k�1U

>
xt�1 � ⌘⌃AV

>
yt�1 � �1U

>
xt�2k2

�1cf(t) + cf(t).

Since Ayt = U⌃AV
>
yt, then

kAytk2 = kU⌃AV
>
ytk2 kU

>
k2k⌃AV

>
ytk2

c(1 + �1)f(t)

⌘
,

where the last inequality is due to kUk2= 1.

We also have

k⌘(1 + �1)⌃
>
A
U

>
xt�1 � ⌘

2⌃>
A
⌃AV

>
yt�1 � ⌘�1⌃

>
A
U

>
xt�2 � �2V

>
yt�2k2 cf(t)

and

kV
>
yt�1 � V

>
yt�2k2 cf(t).

Then,

k⌘⌃A⌃
>
A
U

>
xt�1k2

=k⌃A · ([⌘(1 + �1)⌃
>
A
U

>
xt�1 � ⌘

2⌃>
A
⌃AV

>
yt�1 � ⌘�1⌃

>
A
U

>
xt�2 � �2V

>
yt�2]

� ⌘⌃>
A

�
�1U

>
xt�1 � ⌘⌃AV

>
yt�1 � �1U

>
xt�2

�
+ �2⌃

>
A
V

>
yt�2)k2

k⌃Ak2cf(t) + k⌃Ak2cf(t) +
�2(1 + �1)

⌘
cf(t)



✓
2h+

�2(1 + �1)

⌘

◆
cf(t)

Since k⌃Ak2= h, then k⌃>
A
U

>
xtk2

2⌘h+�2(1+�1)
⌘2h

cf(t). Since A
>
xt = V ⌃AU

>
xt, then

kA
>
xtk2 = kV ⌃AU

>
xtk2

 kV k2k⌃AU
>
xtk2


2⌘h+ �2(1 + �1)

⌘2h
cf(t).

Now we are ready to prove Theorem 3.3.

proof of Theorem 3.3. According to Lemma E.5, assumptions of Lemma E.6 have been satisfied by
the difference equations associated to our learning dynamics, thus we have k(Ā� I)X̄tk2 converges
to 0 with rate f(t). Moreover, by Lemma E.7 , �t converges to 0 with rate f(t) in OGD, EG and
negative momentum method. We complete the proof.
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F Omitted Proofs from Theorem 3.4
Theorem 3.4. In a convergent perturbed game, if two players use Extra-gradient, there holds
limt!1 �t = 0 with step size ↵ = ⌘ <

1
2� where � is the maximum modulus of the singular value

of payoff matrix A.

Recall that Extra Gradient satisfies the linear difference equation (3), denote the iterative matrix in
equation (3) with payoff matrix At as At. According to the convergence of payoff matrix, we have
limt!1 At = A. Let Bt = At �A, then we have limt!1 Bt = 0. Denote A as the iterative matrix
when payoff matrix is time invariant and equal to A. Let

Bt = At �A.

To prove the theorem, we first establish several necessary lemmas.

Lemma F.1. Given limt!1 Bt = 0, we have limt!1 Bt = 0.

Proof. Recall that

At =

2

4
I � ↵�AtA

>
t

�↵At

↵A
>
t

I � �↵A
>
t
At

3

5

and

A =

2

4
I � ↵�AA

>
�↵A

↵A
>

I � �↵A
>
A

3

5 ,

we can obtain that

Bt =

2

64

�↵�(AB
>
t
+BtA

> +BtB
>
t
) �↵Bt

↵B
>
t

↵�(A>
Bt +B

>
t
A+B

>
t
Bt)

3

75

=

2

64

�↵�(AB
>
t
+BtA

> +BtB
>
t
) 0

0 0

3

75+

2

64

0 0

0 ↵�(A>
Bt +B

>
t
A+B

>
t
Bt)

3

75

+

2

64

0 �↵Bt

0 0

3

75+

2

64

0 0

↵B
>
t

0

3

75 .

We separate Bt into four matrices and denote these matrices in right side of the equation as H1, H2 ,
H3 and H4, respectively. Then

kBtk2 kH1k2+kH2k2+kH3k2+kH4k2.

Since limt!1 Bt = 0 , then limt!1kBtk2= 0, so we can yield that there exists c such that
kBtk2 c for any t. We also assume that c1 = kAk2.

Then we have

kH1k2 = ↵�kAB
>
t
+BtA

> +BtB
>
t
k2

 ↵� (kAk2kBtk2+kAk2kBtk2+kBtk2kBtk2)

 ↵�(2c1 + c)kBtk2,

Similarly, kH2k2 ↵�(2c1 + c)kBtk2. In addition, kH3k2= kH4k2= ↵kBtk2.

Then we can obtain that there exists a constant c2, such that kBtk2 c2kBtk2, which implies that
limt!1 Bt = 0.
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With the lemma above, we directly utilize limt!1 Bt = 0 in proving Theorem 3.4.

Lemma F.2. Let Xt = (x>
t
, y

>
t
)>, then there exists t0 > 0, such that when t > t0, kXtk2 is

monotonically non-increasing. Moreover, 9c0 � 0, limt!1 kXtk2 = c0.

Proof. First we prove that there exists t0 such that when t > t0, kAtk2 1.

From the proof of Lemma A.2, we know that if ↵ = � 
1
�t

, where �t is the maximal singular
value of payoff matrix At, then the discriminant in equation (10) is satisfied, i.e., kAtk2 1. Here
we choose ↵ = � 

1
2� , where � is the maximal singular value of payoff matrix A. Because At

converges to A, we can conclude that there exists t0, such that when t � t0, �t < 2�. This implies
that ↵ = � 

1
2� <

1
�t

, which means kAtk2 1. Therefore we prove that here exists t0 such that
when t > t0, kXtk2 kXt�1k2. For any t > t0, we have

kXtk2 = kAt�1Xt�1k2

 kAt�1k2kXt�1k2

 kXt�1k2.

Therefore, we have that when t > t0, kXtk2 is monotonically non-increasing.

From the fact that kXtk2 is monotonically non-increasing and no smaller than 0, we obtain 9c0 �

0, limt!1 kXtk2 = c0.

In fact, the property that kXtk2 is monotonically non-increasing is closely related to the iterative
matrix of EG is normal, which causes part of the difference between EG and OGDA or negative
momentum method.

Lemma F.3. Decompose Rn+m = V1 � V2 where V1 is the eigenspace of eigenvalue 1 of matrix
A, V1 and V2 are mutually perpendicular. Define � = maxs 6=1,s2EigenvalueA |s|. Then if v 2 V2,
kAvk2  � kvk2.

Proof. Let Ws = {v 2 Rn+m
| Av = sv}, that is Ws is the eigenspace of eigenvalue s of A. Let

V1 = W1 and V2 = �s 6=1Ws. By A is normal, we have Rn+m = V1 � V2. V1 and V2 are mutually
perpendicular.

Then we only need to prove if v 2 V2, kAvk2  � kvk2. From Lemma A.2, we know that � < 1.
Because

V2 = �s 6=1,s2EigenvalueAWs,

v can be decomposed as v =
P

s 6=1,s2EigenvalueA ksws, where ws 2 Ws, ks is the coefficient and for
different s1 and s2 which are eigenvalues of A, ws1 and ws2 are perpendicular.

Therefore kvk
2
2 =

P
s 6=1,s2EigenvalueA k

2
s
kwsk

2
2. Then Av =

P
s 6=1,s2EigenvalueA ksAws, therefore

we have

kAvk
2
2 =

X

s 6=1,s2EigenvalueA
k
2
s
kAwsk

2
2

=
X

s 6=1,s2EigenvalueA
|s|

2
k
2
s
kwsk

2
2

 �
2

X

s 6=1,s2EigenvalueA
k
2
s
kwsk

2
2

= �
2
kvk

2
2

which means that kAvk2  � kvk2, this complete the proof.

Now we can decompose Xt = v
1
t
+ v

2
t

where v
1
t
2 V1 and v

2
t
2 V2. Similarly, we also decompose

BtXt = w
1
t
+ w

2
t

where w
1
t
2 V1 and w

2
t
2 V2.

Lemma F.4. If limt!1
��v2

t

��
2

= 0, then limt!1(A>
xt, Ayt) = (0,0), which implies that

limt!1 �t = 0.
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Proof. Let v1
t
=

✓
x
1
t

y
1
t

◆
, v2

t
=

✓
x
2
t

y
2
t

◆
, then by Xt =

✓
xt

yt

◆
= v

1
t
+ v

2
t
, we have xt = x

1
t
+x

2
t

and yt = y
1
t
+ y

2
t
. First, we prove A

>
x
1
t
= 0 and Ay

1
t
= 0. By v

1
t
2 V1, we have

2

4
I � ↵�AA

>
�↵A

↵A
>

I � ↵�A
>
A

3

5

2

4
x
1
t

y
1
t

3

5 =

2

4
x
1
t

y
1
t

3

5

that is
2

4
x
1
t
� ↵�AA

>
x
1
t
� ↵Ay

1
t

↵A
>
x
1
t
+ y

1
t
� ↵�A

>
Ay

1
t

3

5 =

2

4
x
1
t

y
1
t

3

5

=)

⇢
��AA

>
x
1
t
�Ay

1
t
= 0,

A
>
x
1
t
� �A

>
Ay

1
t
= 0,

=)

⇢
A

>
x
1
t
= 0,

Ay
1
t
= 0,

where the second double arrow symbols is due to �
2
AA

> + I is invertible.

According to A
>
x
1
t
= 0 and Ay

1
t
= 0, we have


A

>
xt

Ayt

�
=


A

>

A

�
Xt =


A

>

A

�
(v1

t
+ v

2
t
)

=


A

>

A

� 
x
1
t

y
1
t

�
+


A

>

A

�
v
2
t

=


A

>
x
1
t

Ay
1
t

�
+


A

>

A

�
v
2
t

=


A

>

A

�
v
2
t
.

We can see that if limt!1
��v2

t

��
2
= 0, then limt!1(A>

xt, Ayt) = (0, 0) .

Now we are ready to prove Theorem 3.4.

proof of Theorem 3.4. According to Lemma F.4, we directly obtain limt!1 �t = 0 if
limt!1

��v2
t

��
2
= 0. In the following We prove limt!1

��v2
t

��
2
= 0 by contradiction. Assum-

ing that {
��v2

t

��
2
}t doesn’t converge to 0, i.e.,

9� > 0, 9t1, t2, · · · , s.t.
��v2

ti

��
2
> � (34)

where ti tends to +1 as i ! 1.

Let ✏ = 1
8�(1 � �

2), then we can find such tj that for any t > tj , kXtk
2
2 � kXt+1k

2
2  ✏ by

Lemma F.2 , latter we will prove that under the assumption (34), there exists t > tj such that
kXtk

2
2 � kXt+1k

2
2 > ✏ which contradicts to Lemma F.2. Then we can also find a tk � tj such that

for any t > tk,

kBtk2  min{
�(1� �

2)

8 kX0k2

,
�(1� �

2)

8 kX0k
2
2

}

by limt!1 Bt = 0, and for any ts � tk,
��v2

ts

��
2
> �. We choose such a ts and denote it as t.
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Now we give the bound for kBtXtk2,
��w1

t

��
2

and
��w2

t

��
2
,

kBtXtk2  kBtk2 · kXtk2

 min{
�(1� �

2)

8 kX0k2

,
�(1� �

2)

8 kX0k
2
2

} · kX0k2

= min{
�(1� �

2)

8
,
�(1� �

2)

8 kX0k2

}


�(1� �

2)

8
,

where the second inequality comes from Lemma F.2 . Together with
��w1

t

��
2

and
��w2

t

��
2

are perpen-
dicular, which implies kBtXtk

2
2 =

��w1
t

��2
2
+
��w2

t

��2
2
, for i = 1, 2, we have

��wi

t

��
2
 kBtXtk2 

�(1� �
2)

8 kX0k2

.

Now we try to determine the relationship between Xt+1 and Xt,
Xt+1 = (A+ Bt)Xt

= AXt + BtXt

= A(v1
t
+ v

2
t
) + w

1
t
+ w

2
t

= (v1
t
+ w

1
t
) + (Av

2
t
+ w

2
t
),

where v
1
t
+ w

1
t
2 V1 and Av

2
t
+ w

2
t
2 V2, so v

1
t
+ w

1
t

and Av
2
t
+ w

2
t

are perpendicular, and

kXt+1k
2
2 =

��v1
t
+ w

1
t

��2
2
+
��Av

2
t
+ w

2
t

��2
2


��v1

t

��2
2
+
��w1

t

��2
2
+ 2

��v1
t

��
2

��w1
t

��
2
+
��Av

2
t

��2
2
+
��w2

t

��2
2
+ 2

��Av
2
t

��
2

��w2
t

��
2


��v1

t

��2
2
+ �

2
��v2

t

��2
2
+

��w1
t

��2
2
+
��w2

t

��2
2
+ 2

��v1
t

��
2

��w1
t

��
2
+ 2�

��v2
t

��
2

��w2
t

��
2


��v1

t

��2
2
+ �

2
��v2

t

��2
2
+ kBtXtk

2
2 + 2 kX0k2

�(1� �
2)

8 kX0k2

+ 2� kX0k2

�(1� �
2)

8 kX0k2


��v1

t

��2
2
+ �

2
��v2

t

��2
2
+

�(1� �
2)

8
+ 2

�(1� �
2)

8
+ 2�

�(1� �
2)

8


��v1

t

��2
2
+ �

2
��v2

t

��2
2
+

5

8
�(1� �

2).

The second inequality comes from Lemma F.3, while the third inequality comes from kBtXtk
2
2 =��w1

t

��2
2
+
��w2

t

��2
2

and the upper bound for
��w1

t

��2
2

and
��w2

t

��2
2
. Then we conclude that

kXtk
2
2 � kXt+1k

2
2 � (

��v1
t

��2
2
+
��v2

t

��2
2
)� (

��v1
t

��2
2
+ �

2
��v2

t

��2
2
+

5

8
�(1� �

2))

� �(1� �
2)�

5

8
�(1� �

2)

=
3

8
�(1� �

2) >
1

8
�(1� �

2) = ✏,

where a contradiction appears.

This completes the proof.
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G More Experiments
We provide additional experiments to demonstrate the behaviors of the optimistic gradient and
negative momentum methods in convergent perturbed games that do not satisfy the BAP assumption.
The numerical results reveal cases where optimistic gradient/momentum method converge and cases
where they do not converge.

In the same setting as the experiments on Theorem 3.4, we find that both optimistic gradient descent
ascent and negative momentum method converge as shown in Figure (8).

However, there are other cases in which these two algorithms do not converge. In Figure (9), we
present one such example. Here the payoff matrix is chosen as A = [[1, 0], [0, 0]], B = [[0, 8], [0, 0]]
and

At =

⇢
A, t is odd
A+ (1/t0.1) ⇤B, t is even

. (35)

In Figure (9), the numerical results show when using a step size of 0.015, optimistic gradient and
negative momentum algorithms will diverge, but extra gradient will converge. Based on these
numerical results, we believe that beyond the setting that satisfies the BAP assumption, there exists a
more complex dynamical behaviors of optimistic gradient and negative momentum methods, which
presents an interesting question for future exploration.

Figure 8: Function curves of �t for one game presented in experiment of Theorem 3.4. in the paper. All these
three algorithms converge.

Figure 9: Function curves of �t. When using step size = 0.015, extra-gradient converges, while both optimistic
gradient descent ascent and negative momentum method diverge.
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