A Step sizes and eigenvalues of the iterative matrix

The eigenvalues of the iterative matrices in the linear differences systems in and (4) play a
crucial role in analyzing the dynamic behavior of learning dynamics. In this section, we study how
the choice of step sizes in learning dynamics affects the eigenvalues of these iterative matrices.

We firstly present the following corollary of Schur’s theorem, which was also used in|Zhang and Yu
[2020] to demonstrate the convergence of learning dynamics in time-independent games.

Lemma A.1. (Corollary 2.1 in|Zhang and Yu| [2020]). The roots of a real quartic polynomial
M+ a)X® 4+ bAZ 4 ¢\ + d are within the (open) unit disk of the complex plane if and only if
lc—adl <1—d?*|a+c|<b+d+1landb< (1+d)+ (c—ad)(a—c)/(d—1)2

Lemma A.2. Let o be the maximum modulus of the singular value of payoff matrix A. Then if for
extra-gradient method with step size o = 7y < i, optimistic gradient descent ascent with step size
n < %, and negative momentum method with step size 1 < + and momentum parameters 1 = —%
and Py = 0, then for the iterative matrices A in and @, we have the following conclusion:

* If payoff matrix A is non-singular, then the modulus of eigenvalues of these iterative matrices
A are strictly less than 1.

o If payoff matrix A is singular, then 1 is an eigenvalue of the iterative matrix A, and other
eigenvalues of A have modulus strictly less than 1.

Proof. OGDA. We first write the characteristic polynomials of the iterative matrix A in (2)) when
payoff matrix is equal to A. Recall in this case, we have

[T —2pAT 0 nAT]
2nA I -nA 0
A= ®)
I 0 0 0
| 0 I 0 0
The characteristic polynomial equations are:
M =12+ 00?1 —20)* = 0,i € [m)] )

where o; is a singular value of A. And then according to Lemma it is easy to verify if
0 < no < 1, then the norm of roots of the above polynomial is always less than 1. When o; = 0, we
have the eigenvalues of .4 come from (9)) are equal to 1.

In all, if the payoff matrix A is non-singular, we have the modulus of eigenvalue of A is strictly
smaller than 1. And if there exists some singular value of A equals to 0, we can obtain that if o; = 0,
then A has eigenvalue equal to 1, otherwise, A only has eigenvalues whose norm is less than 1.

EG. We first write characteristic polynomial of iterative matrix A in (3)), with payoff matrix equals to
A. We have

I —ayAAT —aA
A =
aAT I—~yaATA

The characteristic polynomial equations are:
(A =12 +2ya0i(A — 1) + 0?7 + a*y%0} = 0,i € [m]

where o; is a singular value of A. And then by Lemma[A.T] the norm of roots of the above polynomial
is always less than 1 if the following holds for all ¢ € [m],

a’o} + (ayo] —1)* < 1. (10)

It is easy to verify that o« = v < % satisfies the above inequalities. Then we can use similar analysis
in the part of OGDA to prove the conclusion for EG.
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Negative Momentum Method. First we write characteristic polynomial of iterative matrix .4 defined
in (4) when payoff payoff equals to A, we have

(14 Bu)1 -nA —B11 0
N1+ B)AT (14 Bo)I —n?ATA —np AT —Bol
A= . (11)
I 0 0 0
0 I 0 0

The characteristic polynomial equations are:
A= 12N = B1)(A = B2) + 107N’ = 0,4 € [m]

when 5, = f%, B2 =0andn < % satisfies conditions in LemmaH We can also use a similar
analysis as in the OGDA part to prove the conclusion for negative momentum method. O

B Omitted Proofs from Theorem

Theorem 3.1. When two players use extra-gradient in a periodic games with period T, with step size
o =7 < L where 0 = max{c’|o’ is a singular value of A; for some i € [T]}. Then

A €O ((A*)W : Poly(t)) , Vi€ [T
where A, = max{ |A| | \is an eigenvalue of (HZ;I At) JAFE L} and N < 1.

In this section, we prove Theorem In the following, we use A to denote matrix Hz;l A;. As
shown by the Floquet theorem, the asymptotic behavior of a periodic linear system is determined by
the product of iterative matrices over one period. Therefore, the analysis can be reduced to that of an
autonomous system. We analyze the Jordan normal form of the product matrix for extra-gradient. We
prove that the product matrix has no eigenvalues with a modulus larger than 1. Moreover, the Jordan
blocks of 1 as an eigenvalue of the product matrix have size equals to 1. These facts are enough to
show the exponentially convergent behavior of extra-gradient. Before going through details of the
proof, we provide a road map for the proof in Figure 5]

- 4 Jordan blocks of Convergence of
Forany i€ [T],A; A corresponding to (A — I acts on the
is a normal matrix f—— eigenvalue 1 iterative process Lemma B.5
(Lemma B.1) have size 1 (in proof of Theorem

\_ (Corollary B.4) 3.1)

l

Convergence of

Kernel space of
A — I is the same as

Forany L € [T], the intersection of (dfll I) acts on the Convergence of 4;,
lleAill = 1. — iterative process g
kernel space A; — I . (Theorem 3.1)
(Lemma A.2) : (in proof of Theorem
fori € [T] 3.1)
(Lemma B.2) )

Figure 5: Road map for the proof of Theorem@

Recall that[EG|can be written in a single linear difference system as

l$t+1] I— chtA;r —OéAt

Tt
1 . (12)

aA] I —~yaA] A | Ly

Denote A; the iterative matrix in (12). The following lemma tells us that A; is a normal matrix.

Yt+1
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Lemma B.1. Foranyi € [T], A; is a normal matrix.

Proof. We have

(I —ayA;Al)? +a2AA] 0
T T ! !
AiA =A A =
0 (I —avA] 4;)* + a2 Al A,

Using above lemma, we can present several useful lemmas to describe Jordan form of matrix .A.

<1, and ker(A — I) = NL_ ker(A; — I).

LemmaB.2. Ifa =y < 1, then for anyi € [T,
Moreover, denote _
A = max{ |A| | Ais an eigenvalue of A, A # 1},

then we have \, < 1.

Proof. (<) :Ifv e N ker(A; — I), then forany i € {1,..., T}, A;v = v, thus
Av=ArAr_1.. Ajv = .

Then we have N2, ker(A; — I) C ker(A — I).

(=) : Letv € ker(A — I), then we have ||v||z= || Ar....A;v||2. Denote ||-||2 as 2-norm of matrices
and vectors. According to Lemma , ifa=7v< %, then the spectral radius p(A;) of A; is no
larger than 1. Combining with the fact that A; is normal, we have ||.A;||2= p(A;) < 1fori € [T]. We
claim that if ||v||2= || A7....A1v||2, then we have A;v = v for i € [T|. We prove it by contradiction.
Suppose the claim is not true. Let s be the minimum ¢ such that A;v # v. Since A, is normal and its
eigenvalues whose modulus equal to 1 can only be 1, we have || Asv||2< ||v]|2, then there holds
|vll2 = | AT-.. As... A1v]]2

= HAT'“ASU||2

< Az Aspal2]|v]l2

< [lvll2,

which leads to a contradiction. Therefore, for any € [T], we obtain that A,v = v, i.e., v €
ker(.A; — I). From the claim, we know that if v € ker(A — I) , then v € ker(A; — I) for i € [T].
Thus we have ker(A — I) € N7, ker(A; — I).

Next we prove that A\, < 1. By the definition of \,, we obtain
A < p(Ar-- Ay
< | Ar--- A2
< | Azll2 - [|AL]2< 1,

where the second inequality holds because the spectral radius p(A) < || Al| for any matrix A.

Now we prove that A, # 1, which means that A have no eigenvalue A satisfying A # 1 and
|A\|= 1. Assuming v is the eigenvector of A corresponding to X', where |\'|= 1, we can obtain
| A7...A1v]|2= || Nv]|2= ||v||2. Similar to the proof above, A;v = v for i € [T'], which implies that
A = 1. This completes the proof of A\, < 1.

O

Lemma B.3. Under a suitable orthogonal normal basis, A has form

lITXr 0
0 C

where Iy, € R¥¥Y, C € Rtm—n)x(mtm=—r) 4,4 — dimg (ker(A — I)).

) (13)
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Proof. Let {v1,...,v,} be an orthogonal normal basis of ker(A — I), i.e., (v;,v;) = 1if i = j,
(vi,v;), = 01if ¢ # j. First, we extend {vy,...,v,} to an orthonormal basis of R"*™ and
denote this basis by {v1,...,Vr, Ur41, sy Untm}. We also denote M the matrix consisting of
{V1, ey Upy Vr 1 oy Uptn } @s columns. With these settings, we have M "M = MM T = I.

Under this basis, .4; is represented by matrix

II‘XI‘ 0
(14)

Cii1 GCio2

Moreover, as 4; is a normal matrix, its representation under an orthogonal normal basis is still a
normal matrix, thus we have

Lo 0 Lixe C;,rl- _Ir><r C;,rl Loxr 0

(15)

Ci1 G2l | 0 C/,) 0 c,

Ci1 Ci2

Note that (15)) is equivalent to

Ir><r ClTl _Irxr + Ci—,rlCLl Ci-l,—lci,2

T T T T
Cii GG +GCi2Ciy| | G2Cin C;2Ci2

As a consequence, we have CiT 1Ci1 = 0, and furthermore, this implies C; ;1 = 0. Thus has
form

)

|ﬁr><r 0
0 G

and under this basis, A can be represented by

II‘XI‘ 0
0 HiT:1 Ci72

Since HiTzl C;,2 is a matrix with size of (n + m — 1) X (n +m — r), we complete the proof. [J

Corollary B4. If A = 1 is an eigenvalue of A, then the Jordan blocks of A corresponding to
eigenvalue 1 has size 1.

Proof. From Lemma we have a decomposition R™*" = ker(A — I) @ V’, and both these

two spaces are invariant under the action of .A. Thus we can choose a basis of V' consisting of
Jordan chains and denote this basis by {w1, ..., Wy n—r}, then under the basis {w1, ..., Wimtn—r} U

{v1,...,v.}, Ais a block diagonal matrix. Moreover, there is no eigenvectors corresponding to
eigenvalue 1 in {wy, ..., Wy 4n—r}, because any w; is linearly independent with {v1, ..., v, } (since
they are basis), thus if some w; is an eigenvector of eigenvalue 1, then a contradiction is conducted
since it is assumed that dimg (ker(A — I)) = 7. O

Lemma B.5. Denote Xy = (x4, y:) be the strategies of players at round of t when they are playing
extra-gradient. For any i € [T), if ||(A; — I)X;||> converges to 0 with rate O ((A.)"/T - Poly(t)),
then A; ; converges to 0 with rate O ((A,)!/T - Poly(t)).

16



Proof. Writing (A; — I) X, in a matrix form:
—ayA; A —ad;

$t1] —CV’YAiA;rxtq — Ay

aA]l —ayAT A | Lye—1 aAlri 1 —ayA] Ay q
For the sake of readability, we denote g(t) = (\.)"/” - Poly(t). According to the assumption, there

is a constant ¢ such that ||(A; — I) X, ||2< cg(t), then we have

=y A Al 21 — Agyi—1]|2< o

||A;r$t71 - ’YA?AiytAHQS

Let ¢; = max{||4;|2,i € [T]}. Using these two inequalities to bound || A, z||2, we have

(AT Ai + DA 21 |2
=|1V2A] AA 2+ Al o
=||A o1 — AT Asye1 — VAT (—YAA] 21 — A1) |2
<A @1 = YA Aigema oA AT 2l =7 AiA] 201 — Agyel2
Pt Vcl)g(t).
- «

Since matrix y2 A, A; + I is invertible, then

[Aszello=(v?A] A + ) (VAT A + DA 241 |2
<NPAT A + D)7l (VP AT A+ DA 21|l
<N(PAT A+ 1Az

< c(147)g(t)

)

where the last inequality is due to ||(v2A] A; + I)71||2< 1. Similarly, we can obtain

c(1 +yer)g(t)
Ay |lo< D2
| Aiyell2< o

Thus by definition of A; ¢ = || A z¢[|2+|| Aiye |2, As,¢ converges to 0 with rate O ((A,)!/T - Poly(t)).
O

Now we are ready to prove Theorem 3.1}

Proof of Theorem We have proved A\, < 1in Lemma|B.2| now we prove the part of convergence
rate. Note that here we cannot directly apply the Floquet theorem in Proposition [2.4] as it requires all
iterative matrices within a period to be invertible. However, the proof here follows the same idea as
the Floquet theorem : the convergence behavior of a periodic linear difference system is determined
by the product of all iterative matrices of the system in a period. According to Corollary [B.4] we can

write Jordan form J of A in the following way:
I 0
7=l 3]
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where J consists of Jordan blocks corresponding to eigenvalues whose modulus not equal to 1.

According to Lemma|B.2, we have that the modulus of eigenvalues of J are less than 1. Moreover,
we assume

J=P AP

Denote Ji () as a Jordan block corresponding to eigenvalue A with size k, and |A|< 1. We can write
Ji(A) = AI + N, where N represents the nilpotent matrix whose superdiagonal contains 1’s and all
other entries are zero. Moreover, we have N¥ = 0 and || N ||o= 1.

For each Jordan block Ji (), without loss of generality, when s > 2k, by the binomial theorem:
S _ s __ . S S—T ATT
Ji(A) = (M +N) _Z;)(T))\ N".

Then
Rl (=0 (5 ) I

since || N||2= 1 and s > 2k. We know that < Z 1 > is a polynomial of s with degree & < n + m.

Since |A|< 1, ||JZ(A)]|2 goes to zero in rate O ((A.)® - Poly(s)). Since J;i(X) are blocks in block
diagnol matrix J°, then

17°]|2< > 1T M) l2,

)\eEigenvalue(A) JAFEL

and ||.J®||2 goes to zero in rate O ((\,)® - Poly(s)). For any ¢, without loss of generality, we assume
that t = sT + j, and j € [T is the remainder. Then we have

(A-DX; =(A—-1AX;
=(AT - ) X;

=P~ }(JT - J*)PX;

(o I 0 |
=r ({0 7 T o g )P

_p-1(10 0 ,
([0 ) e

Taking norm on both sides, we have
1A = DXell2< (15 2415 2) 1 X5 12< 2015 1211 2.

From definition of s, we know that s = |¢t/T'| > t/T — 1, leading to (A,)® < )\%()\*)t/T. Since
[|J$ |2 converges to zero with rate O ((\,)® - Poly(s)), then ||(A — I)X,||» converges to zero with
rate O ((\,)/T - Poly(t)). By Lemmalﬁé} for any i € [T, ||(A; — I)X¢||2 goes to zero in rate
O ((A)YT - Poly(t)).

According to Lemma we conclude for any ¢ € [T], A;, goes to zero with convergence rate
O ((A)¥/T - Poly(t)), this completes the proof. O
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C Omitted Proofs from Theorem
Theorem 3.2. Consider a periodic game with period T = 2, and described by the following payoff

matrix
[1,—1], t is odd
A =
K {[1,1], t is even ©

with x; € R, y; € R2. If two players use optimistic gradient descent ascent or negative momentum
method, then regardless of how they choose step sizes and momentum parameters, we have

sup A; s € Q(A'), where A > 1, i € {1,2}.
s€[t]
Here ) is determined by the largest modulus of the eigenvalues of the iterative matrix of optimistic
gradient descent ascent or negative momentum method.
C.1 On initialization
Before proving Theorem [3.2] we discuss a more detailed question :
Which initial points will make (OGDA) and (NM) diverge ?

In fact, it is obviously that not every initial point will make optimistic gradient descent ascent and
negative momentum method diverge. For example, if the initial point is chosen to be

(z0,90) € (ker A ker A,), (16)
then these point will be not diverge because they are stationary points of the game dynamics.

In the proof of Theorem 3.2 below, we explicitly construct initial points that diverge exponentially fast
under (OGDA) or (NM). In Figure[6] we present an example of an initial point that converges under
(NM) with the game defined by (33). In fact, we can see that these converge initial points of
or (NM) lie on a low dimension space, thus have measure zero. Note that this doesn’t conflict with
Theorem 3.2, since we are not claiming that optimistic gradient descent ascent or negative momentum
method will make every initial point diverge.

Converge initial point for Negative Momentum method

2.00 —— beta_1=-0.7, beta_2 = -0.7, step size = 0.014
1.75
1.50
1.25
1.00
075
0.50

0.25

0.00

Figure 6: A converge initial point for negative momentum method, with initial condition g = x_1 = 0, and
yo = (—0.4,1), y—1 = (1, —1). The curve is Ay +.

In the following sections[C.2]and[C.3] we will prove that both negative momentum method and OGDA
diverge with an exponential rate under certain initial conditions. The proof idea is the same for these
two learning dynamics : firstly, we prove that the product of iterative matrices in a period for these
learning dynamics have an eigenvalue with modulus larger than 1; then, we show that eigenvectors
corresponding to this eigenvalue as initial condition will diverge under the learning dynamics.

C.2 Negative Momentum Method

We first consider negative momentum method with step size 7, recall it can be written as:
Typ1 = T — NAgyr + Br(x — 24-1),
Yerr = Y + nA 1 + Bo(ye — yeo1),
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where 31, B2 < 0 are the momentum parameters. Writing negative momentum method in matrix
form, we have

Tig1 [ (1+ )T —nAy —B11 0 |71 2

Yer1 n(l+B)AL L+ B — Al A —nBiAL, =Bl | | we |
Tt N 1 0 0 0 Ti_1 4
Yt i 0 1 0 0 Yt—1

Denote the iterative matrix in (I7) as A; and X; = (=], vy, 2] 1,y 1) 7. Let Axar = Ars1 As,

by Floquet Theorem, A ~ . Will determine the dynamical behaviors of negative momentum method.
We have _
Xy = AnpXy_o, forany t > 2.

In the following lemma, we show that the spectral radius of Anay is always larger than 1.

Lemma C.1. For any step size ) > 0, and momentum parameters 1, 2 < 0, the spectral radius of
An s is larger than 1.

Proof. We directly compute the characteristic polynomial Pz (M) of matrix Ans as follows:
Pi.,(A) =det(\] — Ayn)
=[A* — (4774 +4n?(B2 — B1) + BT + B3 + 2) A3

+ (42 (Ba — Br) + B2B2 + 282 + 263 +1) - A2

— (26763 + BT+ B2) - A+ B763] - (A= 1) - (A= B3).
Note that this is a polynomial on \ of degree 6, with two roots A = 1 and A = 32.
Thus, eigenvalues of matrix A consists of 1, 3% and roots of the quartic polynomial
g\) = M 4+ aX® + X2 +eh +d,
with coefficients
a=—(4n* + 47 (B2 — B1) + BT + B3 + 2),

b=4n*(B2 — B1) + B3 + 287 + 265 + 1,
c=—(26763 + B + 53),

d = Biss.

In order to prove the spectral radius of Ay s is larger than 1, we just need to verify that the maximal
modulus of the roots of g is larger than 1. According to Lemma the polynomial g(A) has a root
with modulus no less than 1 if |a + ¢| > b+ d + 1. Next we want to prove that [a +¢| > b+d + 1
holds for any step size > 0 and any momentum parameter 31, 52. Computing directly,

la+c—(b+d+1)= —(a+c)—(b+d+1)
=dnt + 407 (Ba — B1) + BT + B3 +2+ 28765 + BT + 53
— (4n*(B2 — B1) + BB + 267 + 265 + 1+ 5165 +1)
:4774>O7

*Symbolic computing software, such as Matlab, can be used to perform the computation of characteristic
polynomial.

20



where the first equality holds since
a+c=—(4n' +4n* (B2 — B1) + 267 + 265 + 2 + 26763)
< —(n* + 407 (B2 — Bu) + (B — B2)?)
< =20+ B2 — Hr)?
<0.

The inequality |a + ¢| > b+ d + 1 violates the second condition in Corollary which means the
maximal modulus of the roots of g is at least 1.

Next, we want to prove the maximal modulus of the roots of ¢ is strictly larger than 1. Assuming that
the maximal modulus of the roots of g is equal to 1, then for any given r > 1, the roots of

(rN)* 4 a(rA)? +b(rN)? +c¢(rA) +d =0

are within the (open) unit disk of the complex plane (the roots A satisfy |rA| < 1). Divide the quartic
polynomial by 74, we have \* + %)\3 + T%)P + 3+ r% = 0. By Corollary A.IL we have the second
condition for the polynomial above, that is,

(9+£)<3+£+1.
roor3 r2 ot
Notice that the inequality above holds for any r > 1. Let r — 17, we obtain,

la+cf<b+d+1

(<)

[4n* + 40° (B2 — B1) + 287 + 255 + 2+ 26753

< 4" (B2 — ) + 2% + 255 + 26765 + 2

(<)

n* <0.
which contradicts with the step size > 0. Therefore, our assumption that the maximal modulus of
the roots of g is equal to 1 cannot hold.

In conclusion, we have that the spectral radius of Anaris strictly greater than 1. O
Now we are ready to proof Theorem [3.2]for the part of negative momentum method.

proof of Theorem[3.2] (part I, Negative Momentum). As we have shown in Lemma 1 and 3
are two eigenvalues of An . We claim that if [0,a,a,0,b, b]T € RY is an eigenvector of Anur,
with condition @ and b not simultaneously equal to 0, then it can only be an eigenvector corresponds
to either 1 or 33. In the following,we prove the above claim.

Without loss of generality, we assume that b = 0 (the case a # 0 is similar), moreover, we can assume
that b = 1 by a normalization. Then, we have

0 0

a a(f3 + B2+1) — Bo(B2+ 1)
Anas - 8 a(Bs + B2 + 18 — B2(B2 + 1)

1 a(B2+1) — B

1 a(fa+1) — B2

Firstly, if a = 0 and [0,a,a,0,1,1]T = [0,0,0,0,1,1]" is an eigenvector of Ay, then either
Ba =0o0r By = —1.If B = 0, then [0,0,0,0,1,1] " is eigenvector corresponding to eigenvalue 33;
if B2 = —1, then [0,0,0,0, 1, 1]T is eigenvector corresponding to eigenvalue 1.

Secondly, if a # 0 and [0, a, a,0,1,1] " is eigenvector of Ay, then

a(B5 +Pa+1) = Ba(B2+1)  a(Ba+1)— o

a 1
=(a—p2)(a—1)(B2+1) =0.
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When 3 # —1,thena = 3y ora = 1, and [0,a,a,0,1,1]T is an eigenvector corresponding to
eigenvalue 33 or 1. When 5 = —1,[0,1,1,0,1,1]" and [0, 0,0,0,1,1]T are eigenvectors of Ay s
corresponding to eigenvalue 1. Thus we conclude for any a and b not simultaneously equal to 0,
[0,a,a,0,b,b]" can only be an eigenvector of An corresponding to eigenvalue 1 and /32, this
completes the proof of the claim.

Next we construct an initial condition that has exponential divergence rate under negative momentum
method. Let )\’ be the eigenvalue of A ~p Wwith largest modulus except ﬂ%, then by Lemma
|N|> 1. We also denote Xo = [20,%0.1,%0.2,T—1,Y—1.1,Y—1.2]" € RS as the corresponding
eigenvector of \'. Here y; = (yi1,¥:2), and x; for ¢ = 0, —1 are initial conditions. Then from
the claim proved above, one of xg, T_1, Yo,1 — Yo,2 and y_11 — y—1,2 not equals to 0. Let ¢ =
max{|zol, [T_1],[yo,1 — Yo,2|; [y—1,1 — Y—1,2|}, then ¢ > 0.

In the following, we construct the initial point by considering two cases : )\’ is a real number or
complex number.

Firstly, we consider the case that \’ is a real number. We can write the iterative process using AN
as follows:

Xop = Al Xo = (V) Xo.
which implies
22 = (N)'20,y20.1 = (V) 'y0,1, 20,2 = (V) 902,
Tot—1 = ()\/)tl'—layQt—l,l = ()\/)ty—l,l,y2t—l,2 = ()\/)ty—lz-

Since A; = [1, —1], then
AlTJUt :[QTt, —xt]T,Alyt =Yt,1 — Yt,2,
= Ay =[A] @ ]lo+ ] Aryell
V20 |y — o
N2 (V2|zo|+]y0,1 — yo.2]), if tis even

|X|%(\@|$71|+\y71,1 —y_1,2|), if tis odd.

Then, max{A; 1,A1,} > ¢|N|2. Let A = |X|2, we have Supgerg Ar,s > A € Q).
Similarly, then we have sup,c(; Az s € Q(A').

Secondly, we consider M as a complex number. Denote this eigenvalue by a + bi, then a — bi is also
an eigenvalue of Ax,s. Denote v the eigenvector of eigenvalue a + bi, then v is the eigenvector of
eigenvalue a — bi. Let Xg = v + . In the following, we prove Xy # 0 by contradiction. Assuming
X = 0 which means v = v'i, where v’ is a real vector. Then, Av = Av’'i = (a+bi)v'i = av'i —bv'.
Since A is a real matrix, then vector Av’i only consists of pure imaginary numbers, leading to b = 0.
Then the contradiction appears since \' = a + bi is a complex number. According to previous
analysis, one of xg, T_1, 0,1 — ¥o,2 and y_1,1 — y—_1,2 is not 0. Here we analyze the case when
¢ = |yo1 — Yo,2| is not equal to zero and omit other cases because these analyses are very similar.
According to the iterative process, we have
Xop =Aly 11 Xo
=Ay (v +70)
=(a+bi)v+ (a — bi)'v
=e"(a® + b?)20 + e (a® + %)%,
where § = sign(b)Z if a = 0, otherwise 6 = arctan(2). Since A; = [1, —1], then,
[Aryell2=lye,1 — 2]
:‘20(6”6 + efiw)(a? + b2)§ |
=|4c - cos(t0)|(a® + b?)>.
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For cos(t0), either cos(td) = 1 when 6 = 0, or lim;_,  , cos(t6) doesn’t exist, which means there
exists a constant 6 > 0 and {t;},;=1,2...., where {¢;};=1 2 is a sequence that goes to infinity, such

that |cos(t;0)|> 0. We know that | \'|= (a2 4 b%)7, then |X|> 1. Let A = |\'|2, leading to A > 1.
In addition to ¢ # 0, we have
Avyg, > [|Ary, 2> 6XF € Q(AY).

Thus sup,e( A1,s € Q(A), and supge(y Az,s € Q(A') can be proven in the same way. O

C.3 Optimistic Gradient Descent Ascent

In this subsection, we consider optimistic gradient descent ascent with step size 7. Recall that the
linear difference form of OGDA can be written as following:

4 [T —2nA;_1 0 nAi—2| [ri-1

Yt 27]A;';1 I —nA;';Q 0 Yt—1
= . (18)

Ti—1 I 0 0 0 )

Yt—1 L 0 I 0 0 ] Yt—2

We denote the matrix in as A; and let X; = (2}, v, , 2/ 1,9, 1) T. Since payoff matrix has

period of 2, by Floquet Theorem, we only have to analyze matrix A;;1.4;. Let floc DA = A1 A,
then, we have ~
Xi = AogpaXi—o, forany t > 2.

Lemma C.2. For any step size 1 > 0, the spectral radius of Aocpa is larger than 1.

Proof. Directly compute the characteristic polynomial Pz (M) of matrix Aoapa gives
P; A) = det(/\I—AOGDA)

OGDA (

1

1\ 2
=A-(A=-1)- </\—<4772—2 64n4+8n2+1+2>>

1 1N\’
.(A<4n2+2 64n4+8n2+1+2)> .

Then, Aocpa has an eigenvalue N = 42 + 14/64n* +8n% + 1 + 1. It is easy to verify that X’
is strictly monotonically increasing with 7) € [0, +00), and A" equals to 1 iff 7 = 0. Since step size
7 > 0, thus the spectral radius of matrix Apgp 4 is larger than 1. O

Now we are ready to prove Theorem [3.2]for the part of optimistic gradient descent ascent method.
proof of Theorem[3.2} (part I, OGDA). Let X = [x0, Y0,1,Y0.2,T—1,Y—1,1,Y—1,2] be the eigen-

vector corresponding to the eigenvalue )’ defined above. Then, it is directly to verify zq, z_1 # 0.
In the iterative process, we have
Xor = AbapaXo = (N)! X0, o = (N)a.
Since A; = [1,—1], then
Airﬂft =[xy, *xt]—r, A1yt = Y1 — Yr,2-
= A =[ A zillo+ ] Aryella

=V2[ai|+ye1 — yr2

>V2X'F min{zo,z_4}.
By Theorem|C.2, \ > 1. Let A = (X)2, then A > 1. According to the inequality above, we have

sup Ay s > Aqy > ﬁmin{xmx,l})\t e ()\t) )
s€(t]

Similarly, we have sup,c( Az s € Q(AY). O
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D Proof for convergent perturbed games with invertible payoff matrix

In this section, we provide a proof of a special case of Theorem [3.3]under the assumption that the
payoff matrix is an invertible square matrix. Furthermore, we can demonstrate that this assumption
leads to an exponential convergence rate.

Proposition D.1. When the payoff matrix A of the stable game is an invertible square matrix and
limy 00 By = 0, we have lim;_, . (2¢,y:) = (0,0) € R?" in (OGDA), (EG), and (NM) with an
exponential rate.

Proof. According to Perron Theorem we only need to prove maximum modulus of eigenvalues
of iterative matrix A is less than 1. Lemma[A.2]indicates that if the parameter condition on step
sizes is satisfied, we have maximum modulus of eigenvalues of iterative matrix A4 is less than 1. This
complete the proof. O

The above proof cannot be generalized to non-invertible matrices, as we have shown in Lemma
[A.2]that when the payoff matrix is non-invertible, then iterative matrices of the difference system
associated with the game dynamics must have an eigenvalue equals to 1.

In the following, we prove Theorem [3.3]for the general case.

E Omitted Proofs from Theorem 3.3
Theorem 3.3. Assume that the (BAP assumption)) holds, i.e., Y, || Bt||2 is bounded, and let o be

the maximum modulus of the singular value of payoff matrix A, then with parameters choice:
* for extra-gradient with step size a = n < %
* for optimistic gradient descent ascent with step size n < %,

* for negative momentum method with step size n < % and momentum parameters 31 = —%
and B3 =0,

we have A; converge to 0 with rate O(f(t)). Here

F(t) = max{', Y || By2},

i=t/2

and X € (0,1) is determined by the eigenvalues of the iterative matrix of corresponding learning
dynamics and the payoff matrix A of the stable game.

We separate the proof into several lemmas. Before going into details, we present a road map of the
proof in Figure (7).

Singular Value Diagonalization of
D position of iterative matrix A Lemma E.7
payoff matrix (Lemma E.2)
. .Mo(lulns of Convergence of
BAP assumption eigenvalues of = y
and step si; i . . (A-I) acts on the Convergence of
p size iterative matrix N .
. iterative process A (Theorem 3.3)
constraints are no more than 1 E.6
(Lemma A.2) (Lemma E.6) -

BAP assumption
holds for the
iterative process

(Lemma E.5)

Figure 7: Road map for the prove of Theorem@
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As a first step, we demonstrate that the iterative matrices of learning dynamics can be diagonalized
using singular value decomposition (SVD), as shown in Lemma[E.2] This phenomenon was also
shown in|Gidel et al. [2019] for a general class of first order method. By singular value decomposition,
we can write A = UX AV ", where U, V are unitary matrices, and X 4 is rectangular diagonal matrix
with its diagonal entries being singular values of A. We denote this by

Orxr Orx(m—r)
Ya= e R™*™,
Om-r)xr Om-r)x(m-r)
and
01
Orxr = € Rrxr)

oy

where o; > 0 are the singular values of A, i € [r]. Let Z; = U x4, 4 = V 'y, then we can
transform the iterative process of three algorithms in convergent perturbed game into the equivalent
form as followings :

SVD formulation for OGDA in convergent perturbed game:
Tep1 =Tt — 2024 + U ' BV)Ge +0(Sa + U Bi1V)Gi1,
Jr1 =G +20(Sa + VI B U)zy — (4 + VI B U)zy1.
We represent the above in the form of a linear difference system:
Xio1 = (A+B)Xy, (19)
where X, = (2,5, 21,9, 1) ",
I -2nX4 0 nX4]

o mzy I ) 0
A= € R2(mtn) (20)

and
i 0 U B,V 0 nU T By_1V]
) 2V T B U 0 —nV'B/ U 0
B, = e R2mH) 21
0 0 0 0
0 0 0 0 |

SVD formulation for EG in convergent perturbed game:
o1 =T —ay(ZaX ) + U (AB, + BiAT + BB/ \U)Z; — (X4 + U BV,
Gi1 =T —ay(Z48a+ VT (A"B, + B A+ B BOV)y, + a(X ) + V' B/ U)z;.
We represent the above in the form of a linear difference system:
Xt = (A+ By) Xy, (22)
where X; = (z],9,),

I — a’yEAE;'; —aXig

b
I

c R™t" (23)
ax} I—ayX)Xa
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and

—ayUT(AB] + B;AT + BB/ U —aU "BV
B, = (24)
aV'BIU ayVT(A"By + B A+ B B,)V
SVD formulation for NM in convergent perturbed game:
Tip1= (L+B81)T — 0 (Sa+U'BV) G — fi%1,
Jir1= (I—n*(EAZa+VT(ATB,+ B/ A+ B/ \B)V)) %
+0 (S +VIBLLU) (L+ )% — f1Zi—1) — Bobi—1.
We represent the above in the form of a linear difference system:
Xip1 = (A+By)Xy, (25)
where X; = (2,5, 21, 511) ",
[ (1481 —NXA -/l 0
_ n+B)ZH T = ?SE%a —nbiE) Bl
A= € R2(mHn), (26)
1 0 0 0
i 0 I 0 0 |
and
r 0 —nUT B,V 0 0]
B nl+B)V' B, U —n*VT(A"B,+ B/ A+ B/ B)V -V B, U 0
Bt ==
0 0 0 0
i 0 0 0 0]
27

Lemma E.1. The iterative matrix of SVD formulation for EG in convergent perturbed game in (23)
is a normal matrix.

Proof. Directly calculate shows
[ = ayZaBh)? + a’EaT) 0
AAT = AT A= . (28)
0 (I—ayZiXa)? +a’T) XA

O

Lemma E.2. For a fixed payoff matrix A, the corresponding iterative matrices in for OGDA,
for EG, and for negative momentum method are diagonalizable.

Note that the claim is true for EG since the iterative matrix is normal as we have shown in lemma
Therefore, we will only consider the cases of OGDA and negative momentum method below.
The idea behind proving these two claims is the same, we construct a set of linearly independent
eigenvectors of or that form a basis of R2("+™)and under this basis, or can be
represented by a diagonal matrix.

Proof. We firstly define some notation. In the following, we denote e}’ as an n-dimensional unit
vector with 1 in the 7-th position and 0 in other positions and denote o), as the p-th singular value of
the payoff matrix A of the stable game, and denote r as the rank of A. Thus for p € [r], op >0, and
otherwise o, = 0. We will also denote the n-dimensional (m-dimensional) zero vector as 0™ (0™).
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Part I, Diagonalization of (20): Now we consider the diagonalization of matrix in (20). Recall that

Orxr Orx(mfr)
Y4 = c }Rnxm7
O(nfr)xr 0(n7r)><(m7r)
and
01
Opsey = c REXT,

Or

To prove A is diagonalizable, we only need to find 2(n + m) linearly independent eigenvectors of
the matrix.

Then we can check the equations below

Yaey =opey, forl<p<r,

Yae =0", forr+1<j<m,
and

Sher = opert, forl<p<r,

Yher =0m, forr+1<i<n.
Now we respectively construct the eigenvectors corresponding to each eigenvalue, and prove these
2(n 4 m) vectors are linearly independent, forming a basis of R2("+™),

Case 1 Eigenvectors correspond to eigenvalue 1 :
It can be verified thatforr 4+ 1 <7 <n

.

Om

V1, =

Om
andforr+1<757<m
0]
e

Wi,j =

OTL

Om

are eigenvectors of A belonging to eigenvalue 1.

Case 2 Eigenvectors correspond to eigenvalue O :
It can be verified that forr +1 < ¢ < n,

OTL

Om
V0,i =

-

Om
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andforr+1<j5<m,

On
OTYL
Wo,j =
071,
€7
are eigenvectors of A belonging to eigenvalue 0.
Case 3 Other eigenvectors :
Forp =1,--- ,r, consider the roots of the following polynomial :
NA=1)?+n%0(1-20)>=0 (29)

where o), is the_p-th diagonal element of X 4, and the solution of these polynomials are
eigenvalues of A.

We first claim that except for finite choices of 7, equation has four different non-zero
roots, denote them as A, 4, ¢ = 1,2, 3, 4. That is because a quartic polynomial equation has
multiple roots if and only if its discriminant polynomial, a homogeneous polynomial with
degree 6 on the coefficients of the quartic polynomial equation, equals to 0. Since a degree
6 polynomial has at most 6 roots, thus if 7 is not a root of this discriminant polynomial,
(29) will not have multiple roots. In the following, we will choose 7 such that has no
multiple roots. According to Lemmal[A.2} the modulus of these eigenvalues are less than 1.

Let
o 77%(1 - 2/\1),(1)
Qp,q = N2y .
p.a T \pyg
It can be verified that for 1 <p <randq = 1,2, 3,4,
_)‘p»qap,qez-
)\p,qeg1
Up,qg =
ap,qeg
L & ]

are the eigenvectors of A corresponding to eigenvalue A, ;.

Then we have constructed 2(n + m) eigenvectors, now we prove they are linearly independent.
Suppose there exists coefficients k1 ;, ko ;, where ¢ = r+1,--- ,n, g1 5, go,;» Where j = r+1,--- ,m
and fp, 4, where p=1,--- ,rand ¢ = 1,2, 3,4, such that

n m n m r 4
Z k14v1 + Z g1,jW1,5 + Z ko,ivo,i + Z go,jWo,j +Zpr,qu,q = 0.

1=r+1 j=r+1 i=r+1 j=r+1 p=1qg=1
(30)

For r +1 <4 < n, only v; ; has non-zero element at the i-th position of vector, so k; ; = 0.
For r +1 < j < m, only wy ; has non-zero element at the (j 4 n)-th position of vector, so g1,; = 0.

For r + 1 < i < n, only v ; has non-zero element at the (i + n + m)-th position of vector, so
k'()i =0.

For r + 1 < j < m, only wg ; has non-zero element at the (j + 2n + m)-th position of vector, so
go,j =0.

For 1 < p < r, at the p-th position of vector, only u,, ,, where ¢ = 1, 2, 3, 4 has non-zero element.
So we can yield

4
E :fp,qupyq =0.
q=1
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The above equation holds for p = 1, --- | r. Because the eigenvectors of different eigenvalues are
linearly independent, we have f, , = 0, where ¢ = 1,2,3,4and p = 1,--- ,7. Now we have
concluded that all coefficients in are zero, thus these eigenvectors are linearly independent.

Let P be the matrix whose columns are consisted by the eigenvectors of .A constructed above, and D
be the diagonal matrix whose diagonal elements are eigenvalues of 4. After an appropriate order
arrangement of columns on P and elements on D, we have

AP = PD.

Moreover, as we have shown above, the columns of P are linearly independent, therefore P is
invertible, which implies A is diagonalizable.

Part II, Diagonalization of 26): Now we consider the diagonalization of the matrix in ([26) and
denote it as .A. Similiarly, to prove this matrix is diagonalizable, we only need to find 2(n + m)
linearly independent eigenvectors of the matrix. Now we respectively construct the eigenvectors
corresponding to each eigenvalue, and prove these 2(n+m) vectors are linearly independent, forming
a basis of R2(+m),

Case 1: Eigenvectors correspond to eigenvalue 1 :
It can be verified that forr +1 < ¢ < n,

andforr+1<7<m,

Wi,5 =
on

m
L€ ]

are eigenvectors of .4 belonging to eigenvalue 1.

Case 2: Eigenvectors correspond to eigenvalue (1.
It can be verified that forr +1 <1 < n,

Bie}

Om

VB1,i =

Om
are eigenvectors of A corresponding to eigenvalue 3.

Case 3: Eigenvectors correspond to eigenvalue (5.
It can be verified that forr +1 < 7 < m,

On
Baej

On

Wey,j =

m
L & |

are eigenvectors of A corresponding to eigenvalue S5.
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Case 4: Other eigenvectors.
Forp =1,---,r, consider four roots of polynomial

A=1*A=B1)(A=B2) +n’o2A* =0 (31)
where o, is the p-th diagonal element of X 4.

Now we consider the effect of different value of 31 and 5. If 81 = 0 and 35 = 0, the model
degenerates to gradient descent algorithm, we only consider when 31 and /35 are not both
zero. Similar to the situation in the Case 3 of diagonalization of (20), except for several
values for 7, equation @) has four different roots, denote them as A\, 4, ¢ = 1,2,3,4. If
Apq #0,forg=1,2,3,4, let

_)‘p,q2 + (1 + Bl)Ap,q -5
N0pAp,q

Qp,q =

We can check that

n
Apq€p

m

Ap,qap,q@p
Up,qg =
n

€p

pqp'
is the eigenvector of A corresponding to eigenvalue \,, 4, that is Au, , = A, 4up 4. Else if
Ap,q = 0, that means either 3, = 0 or 82 = 0.

If 5, =0,

0™
Om

n

€p

_Om_
is the eigenvector of A corresponding to eigenvalue 0.
If B, =0,

F0n
om
on

(&

m
P |

is the eigenvector of A corresponding to eigenvalue 0.

Now we obtain 2(n + m) eigenvectors, in the following we will prove these 2(n + m) eigenvectors
are linearly independent. Suppose there exists coefficients k1 ;, kg, ;, where ¢ = r +1,--- ,n,
91,5, 985.5» Where j =r+1,--- /mand f, ,, wherep=1,--- ,rand ¢ = 1, 2, 3,4, such that

m T

n m n 4
ST kvt Y griwii+ Y ksivpit Y 985085+ D foqtipg =0.

i=r+1 j=r+1 1=r+1 j=r+1 p=1q=1
(32)

First we prove f, , =0forp=1,--- ,rand¢=1,2,3,4. If 5; =0,let! =1,--- ,r, then at the
[ + n + m-th position of vector, only u; 4, ¢ = 1,2, 3,4 has non-zero element. Else if 3; # 0, let
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l=1,---,r, then at the [ + 2n + m-th position of vector, only u; 4, ¢ = 1,2, 3,4 has non-zero
element. For these two case we both have

4
E Ip.qtp,q = 0.
q=1

The above equation holds for p = 1,--- ,r. Because the eigenvectors of different eigenvalues are
linearly independent, we have f, ;, =0, where ¢ = 1,2,3,4andp =1,--- ,7.

Fori =1 +1,---,n, at the i-th position of vector, only vy ; and vg, ; has non-zero element at this
position, so we obtain
k1iv1i + kg, ivg, i = 0.

Notice that 5, # 1, this means k1 ; = 0 and kg, ; = 0, wherei =r+1,--- ,n.
For j = r+41,--- ,m, at the j-th position of vector, only w; ; and wg, ; has non-zero element, so
we can yield

91,jW1,5 + 9Ba,jWs 5 = 0
Similarly, because of 35 # 1, this means ¢g; ; = 0 and gg, ; = 0, where j =r +1,--- ,m.

We prove that if holds, then all coefficients are zero, which illustrates that these eigenvectors are
linearly independent. Same as the argument in Part I of the proof, the existence of these 2(m + n)
eigenvectors implies A is diagonalizable.

O

Remark E.3. For payoff matrix A, given its SVD decomposition A = US AV T, let
U
V
Q - U )
1%
then Q) is a unitary matrix. Furthermore, it can be verified that
QTAQ=A

for both OGDA and negative momentum method. That means

1. Ain (@l) is diagonalizable implies that A in (I§l) is diagonalizable.

2. Ain (26) is diagonalizable implies that A in (1) is diagonalizable.

Lemma E.4 (Gronwall inequality, (Colonius and Kliemann| [2014)). Let for all t € N, the functions
u,p,q, f : N — R satisfy

u(t) < plt) +a(t) 3" F(Ou(o)
Then, for allt € N -
t—1 k—1
u(t) < p(t) + q(t) Zp(é)f(ﬁ) H (T+q(r)f(7)). (Gronwall inequality)
{=a T=0+1

Gronwall inequality is a useful tool to treat linear difference equations, it also has an analogy in
continuous time case. For more about Gronwall inequality, see Lemma 6.1.3 in |Colonius and
Kliemann|[2014].

Lemma E.5. If { B}, satisfy the BAP assumption, i.e., > ., || Bt||2 is bounded, then {B;}; defined
in 21)), and also satisfy BAP assumption.

Proof. We claim there exists some constant ¢, such that for any ¢, |[B;_1]2<
¢ (|| Bell2+||Btll2+]| Be+112)- With this property, we have

Y IBill2< 3¢ ) lIBilla< 400,
t=0

t=0
then we prove the statement. In the following, we prove above claim for OGDA, EG, and negative
momentum method.
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Case of OGDA :  We consider the matrix

[ 0 —oU "B,V 0 nU T B;_1 V]
B 29V T B U 0 -V TB U 0
B, =
0 0 0 0
.0 0 0 |
[0 ~U'B,V 0 0] [0 0 UTBy V]
VIBU 0 0 0 0 0 —-VIB',U 0
=21 +n
0 0 0 0 0 0 0 0
| 0 0 0 0] 0o 0 0 0 |

Denote the first matrix in right side of the equation as /1, and the second one as H». From the above
equation, we can obtain that || B¢||2< || H1||2+]|| Hz]|2. Recall the definition of 2-norm of matrix,

| H1|l2= max \/Eigenvalue{HlTHl},

| Hz||2= max \/Eigenvalue{HzTHg},

then,
(U BB U 0 0 0]
0 VBBV 0 0
H| H, = 41°
0 0 0 0
|0 0 0 0]
and
0 0 0 0 ]
0 0 0 0
Hj Hy = n?
0 0 U'BB' U 0
0 0 0 VB BV

Because U and V' are unitary matrices, we have

| H1|l2= max \/Eigenvalue{HlTHl} = 4n® max \/Eigenvalue{BtTBt} = 4n?|| B¢ |2

and

| Ha||2= max \/Eigenvalue{HQTHg} = 7” max \/Eigenvalue{BllBt,l} =% Bi_1||2-
Letc = 4772, then

I1Bell2< ¢ (IBell2+ Be-1]2),

we have completed the proof for OGDA.
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Case of EG: We consider the matrix (24)

[—ayUT(AB,” + B;A" + BB, )U —aU" B,V

I aVTBJU ayVT(A"B, + B/ A+ B/ B,)V
[—ayUT(AB,” + B;AT + B,B])U 0

I 0 0
[0 0
_|_
0 ayVT(ATB; + B] A+ B B,)V
[0 —aUT B,V 0 0
+ +
0 0 aVTBJU 0

We separate B; into four matrices and denote these matrices in right side of the equation as Hy, Ho,
Hj and Hg, respectively. Then

1Bello< || Hillo+ 1 Hall2+ | Hsll2+ | Hal2-

Since Y2, || Bi]|2< ¢, then || B;||2< ¢ for any ¢. We also assume that co = ||A]|2.
Then we have,
|Hll2=a|UT(AB," + B;A" + BB )U ||,
=avy (|AB] + B;A" + BB/ ||)
<ay (| All2l| Bella+ I All2l| Bell2 41 Bell2 | Bell2)
<ay(2c2 + )| B2,

where the second equality is due to U is unitary matrix. Similarly, || Hz||2< a7y(2¢c2 + ¢)||Bt||2- In
addition, ||H3||2: ||H4||2: a||Bt||2.

Thus for any ¢, we have the inequality between ||B;||2 and || B¢ ||2:
I1Bello< [ Hilla+[ Halla+ ([ Hs 2+ Hall2< o ((dez + €)y + 2) || Bel2.

Let ¢; = ¢(4ca + ¢)y + 2¢, summing the above inequality over ¢, we have

Y IBill2< ((4ez + )y +2) Y _IIBill2< e ((dez + )y +2) = ex.
t=1 t=1
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Case of Negative Momentum Method :  We consider the matrix ,

i 0 —nU "B,V 0 0]
B n(l+B)V' B, U —n*VT(A"B,+ B/ A+ B/ \B)V —-n/V B, U 0
b= 0 0 0 0
i 0 0 0 0]
i 0 0 0 0] f[o —U'BV 0 0]
n1+B)V'BJ/U 0 0 0 0 0 —npVIB LU 0
- 0 000 ’ 0 0 0 0
i 0 00 0] |0 0 0 0]
[0 0 0 0]
0 —n*VI(A"B,+ B/ A+B/,B)V 0 0
i 0 0 0 0
0 0 0 0

Denote the first matrix at the right side of equation as H, the second one as H» and the third as H3.
Then we have || Bt [2< || H1 |2+ Hal2+[| H3 2.

By definition,

| H1|l2= max \/Eigenvalue{HlTHl},

| Hall2= max \/Eigenvalue{HzTHg}.

Because U and V' are unitary matrices,

UTBBJU 0 0 0

0 0 0 O

H;—Hl = 772(1 +51)2 0 0 0 0
0 0 0 O

= max \/Eigenvalue{HlTHl} =n*(1 4 B1)? max \/Eigenvalue{BtTBt}

=||Hill2= n*(1+ B1)°|| Bel2

and
0 0 0 0
0 VT'B'B,V 0 0
HTH — 2 t t
2 M2 =0 0 B2UTB, 1Bl U 0
0 0 0 0

= max \/Eigenvalue{HzTHg} = n*(max \/Eigenvalue{BtTBt} + 87 max \/Eigenvalue{Btz_lBtH})
= || Hall2= n*(|| Bell2+B7 | Bes1l2)
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and
|Hsll2 < n* (|[AT Bello+I| B, All2+[| B Byll2)

<7 (1All21 Bl Alla || Be [l Be 2 Bell2)

< cl[Btllz,

where ¢ = 2||A||2+¢/, ¢ = max;>o|| B||2. From Yo || Bt|l2< 400 and || By||2> 0, we know ¢’ is
a bounded constant. By combining the bounds for H;, Hs and H3, we have completed the proof for
negative momentum method. O

Lemma E.6. Assume that there exists a constant c such that >_ oo ||| B¢||2< ¢, and A is as defined in

[20), @3), or (26), then ||(A — I)X;||2 converges to 0 with rate O(f(t)), where

F(t) = max{", Y || Bi2}.

i=t/2

Here )\ € (0, 1) is determined by the eigenvalues of the iterative matrix A of corresponding learning
dynamics and the payoff matrix A of the stable game.

Proof. Recall that we denote the SVD formulation of iterative process in and as
follows:

Xt-‘,—l - (./Zl + Bt))_(t;
Since A is a diagonalizable matrix from Lemma thus, there exists an invertible matrix P such

that PAP~! = D, where D is a diagonal matrix with the eigenvalues of A as its entries. Since
maximum modulus of eigenvalues of iterative matrix .4 is no more than 1, then || D||2< 1. Let

Xt = PXt, and Bt = Pgtp_l,
then the iterative process becomes X 1= (D+ [;’t)f( ‘.

By induction, we have

t
Xy =(D+Bi_1)X;-1 =D'Xo+ Y _D'"'Bi_1 X, (33)
=1
t
=B, X; = BtDtXO + B; Z DtilBl_le_l.
=1

Since || D!||2< || D||4< 1 for any I € [t], taking norm on both sides, we have

t
1B X ll2< 1|Bell2l| Xolla+1Bell2 D 1Bi-1 X112,
=1

Now we apply Gronwall inequality, let u; = || B X, |2, pe = ||Bell2| Xoll2> ¢ = ||Bell2 and f; = 1
in Gronwall inequality, see Lemma [E.4] then we have
£

t
[1B: X¢|2< ||Bt||2||XO||2+HBt”2(ZHBZHZ H (1 + [1Bill2))][ Xoll2-

=1 k=Il—-1

Let ¢; = lP||2| p*le, According to the assumption, there exists a constant c¢ such that
ZZ1||BtH2§ ¢, then

S Bl =Y IPB.P7Y2
t=1 t=1

< D IPllIBell2 1P 2
t=1

< cic.
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Note that B; = PB, P, 50 ||Bt||2< || Pll2)|Bell2]| P~ |l2< c1|Be |- Since e > 1+ x for z € R,
we obtain

[T+ 1Bell2) < T "1

t=1 t=1
B SN -1
S 6(;1(;.
Let ¢ = (1 + c¢- e“19)|| Xo||2, then
t t—1
[1BeXll2 < [[Bell2l| Xoll2(1 + ZHBsz H (1+Bil2))
=1 k=l—1

t
< 1Billz | Xoll2(1 + =Y [1Bill2)
=1

< 1Bill2l Xoll2(1 + cre - e€)

< c2]| B2

Multiplying (D — I) on the equality (33)of both sides, we have

¢
(D-DX,=(D-I)D'Xo+ Y (D—-1)D"'B_1 X;_1.
=1
Let ¢3 = max{cz, c2 Zléztl |1B;]|2}, taking the norm on both sides, we have

t t
(D = D)Xyll2 < 6" Xolla+ Y 6" Bioa Xia[l2< 6% Xolla+ > 26" [|Bi]l2
=1 =1

3t t
l A~ ~ A
< 62" (|| Xollatc2 Y _IIBill2) + 2 Y _ lIBill2
=1

=%t

<3 f(t).

Let A = 62, recall that f(t) = max{\’, Z;’it/QHBng}. The last inequality is due to Lemma
we can see that there is constant ¢4 such that 3777, o[|B;l[2< ca 2772, ]| Bill2- Recall that
f(t) = max{\", 372, »|| Bill2}. Then, there exists a constant c5 such that

I(A = DX llo< [P 2ll(D = DXiflo< s f (1),
O]

Lemma E.7. If||(A — ) X;||2 converges to 0 with rate O(f(t)) as t tends to infinity, then for OGD,
EG and negative momentum method, || AT x;||2+|| Ay ||2 converges to 0 with rate O(f(t)) when t
tends to infinity .

Proof of Lemmal|E.7| We break the proof into three parts. Recall that A = U4V ', and h =
[Zall2-

Firstly we prove the lemma for OGDA.
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OGDA Writing (A — I) X, into matrix form:

[0 —2n34 0 n8A] [UT21] (=208 AV Ty 1+ 084V Ty o]
T T T T _ T
3, 0 —nX, 0 Vg 204U " 241 — XU "2y _o

I 0 —I 0 UTzi o Ulaiy1 —UTai_o
L 0 I 0 1] [VTy o] L Vg1 =V o

Since there is a constant ¢ such that||(A — 1) X;||2< cf(t), then

120240 T2i—1 — 02 AU "4_o2< cf (1),

U 21 — UTa_s2< cf (1)
Using these two inequalities to bound || A" z;|2, we have

||772AUTIt—1H2
=202AU "1 — AU "2 — X a(U 241 — U 24-0) |2
<|2024U Tai—1 — n2AU "y allo+ 024 (U T wp—1 — UTay-2)])2

<cf(t) +nef(t).

Since ATz, = VI AU T 24, then

[AT 2|2 = |[VEAU 242

IN

V2l SaU 2|2

_ ch(L+n)f (1)
n

)

where the last inequality is due to ||X 4]|2= h and V, U are unitary matrices. Similarly, we can obtain
(| Age||2< (A+n)chf(t)
= "

Next, we prove the lemma for extra-gradient.
EG Writing (A — I)X; into matrix form:
fa'yEAEjl —adig Ulziq foz'yEAEI‘UTxt_l — aEAVTyt_l
a¥) —ayXiSa| |V Ty aS Uz 1 — a2 SaV Ty 1.
Since there is a constant ¢ such that || (A — I) X;||2< cf(t), then
I=78aBAU T2y = AV g o< Cfoft),
cf(t)

ISAU T2 1 =848 AV a2 o
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Using these two inequalities to bound || AT z;|2, we have

I(V2EA24 + DZLU T2 1|2
:HZXUTIt—l - ’YEXEAVT?Jt—l - ’YE,I (*’YEAE,IUTIt—l - EAVT?Jt—l) ll2
<IZAU T @0 = yEiZaV Ty lla | Z A2 -AZaS U T = ZaV Ty
Lt yh)ef (1)

(67

Since matrix 722}2 4 + I is invertible, then

IZaU T |lo=[(?SAZa + D) (PEATa + DELU "2
<OPEAZA + D)7 M| (PEASA + DILU T2 2
<N(PEAZA + DEAU T

S(1 +vh)ef(t)

?

where the last inequality is due to ||(v2X X4 + I)71||2< 1. Since ATz = VAU "y, then

1+~h)ef(t
ATzl = [[VEAU T2 o< |V 2| B AU T 242 %

where the last inequality is due to V' is unitary matrices. Similarly, we can obtain

(1++h)

[Ayel2< ft)e.

Finally, we prove the lemma for negative momentum method.

Negative Momentum Method Writing (A — I) X, into matrix form:
[ Bl —n¥a —pI 0 7 [U 4]
N1+ )%} =S %4 —nphS) =Bl | |V iy

I 0 —I 0 UTays

0 I 0 —I _VTytiz_

BU Tz —nZaV y1 — U a9

n(1+ ﬁl)ZZUTxt,l - UQEZEAVT%A - UﬁlEZUTxtfz — BV T yo

UT:Et,1 — UTl’t,Q

Vg1 =V o

Since there is a constant ¢ such that || (A — I);||2< cf(t), then

181U "1 — nZaV Typy — B1U T wp_s||2< cf (1),

U i1 — UTasl2< cf (2).
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Using these two inequalities to bound || Ay;||2, we have

4V Ty ll2
=181 (UTaio1 —UTwpa) — (BiU 241 = 08aV g1 — BiU T 2y2) |2

<181 (UT 21 = UTag—a) o810 Twem1 — n2aV Tye1 — B1U T24—o]|2

<Bicf(t) + cf(t).
Since Ay, = US4V Ty, then
c(1+ t
4l = US4V w0754 T LA,

where the last inequality is due to ||U||s= 1.

We also have

In(1+ B)S U 21 — S84V Ty — B2 U o — BoV Ty o< cf (1)

and

||VTZl/t71 - VTyt72H2§ cf(t).

Then,
InSaS AU T @12

=[1Z4 - (L + B)SAU "2y = *Sh8aV g1 — 0B SAU  wy—y — BoV Ty
— 024 (B1U w1 = nEaV g1 — B1U T wi—s) + BoeE 4V T yia) |2

52(1+51)C

<[Zallzef (t) + 1B all2ef(£) + ”

ft)

< (2h+ BZ(I:[%)) cf (1)

Since || al|2= A, then [S1U T ay||o< 2B o £ (1), Since ATy = VS AU @y, then

[AT2e]l2 = [VEAU 242
[VI2|EaU T2

2nh + B2(1 4 B1)
n*h

IN

IN

cf(t).

Now we are ready to prove Theorem 3.3]

proof of Theorem According to Lemma [E3] assumptions of Lemma[E.6|have been satisfied by
the difference equations associated to our learning dynamics, thus we have ||(A — I)X}||2 converges
to 0 with rate f(t). Moreover, by Lemmal[E.7], A, converges to 0 with rate f(t) in OGD, EG and

negative momentum method. We complete the proof.
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F Omitted Proofs from Theorem 3.4]

Theorem 3.4. In a convergent perturbed game, if two players use Extra-gradient, there holds
limy_y oo Ay = 0 with step size a =1 < % where o is the maximum modulus of the singular value
of payoff matrix A.

Recall that Extra Gradient satisfies the linear difference equation , denote the iterative matrix in
equation (3) with payoff matrix A; as A;. According to the convergence of payoff matrix, we have
limg_yoo Ay = A. Let B, = A; — A, then we have lim;_, . B; = 0. Denote A as the iterative matrix
when payoff matrix is time invariant and equal to A. Let

By = A — A
To prove the theorem, we first establish several necessary lemmas.

Lemma F.1. Given lim;_, .. B; = 0, we have lim;_, . B; = 0.

Proof. Recall that

[T —ayAA] —a Ay
Ay =
i aAl I —~yaAl A
and
[ T —ayAAT —aA
A= )
i aAT I—~vaATA
we can obtain that
[—ay(AB, + B;AT + B,B,") —aB;
B, =
L aB/ ay(ATB, + B/ A+ B/ By)
[—ay(AB, + B:AT + B;B,’) 0 0 0
= +
L 0 0 0 ay(A"B,+ B/ A+ B/B)
0 —aB; 0 O
- +
0 0 aB 0

We separate B; into four matrices and denote these matrices in right side of the equation as H;, Hs ,
Hj and Hy, respectively. Then

1Bell2< (| Hill2+ | H 24| Hsll2+] Hall2-

Since lim; oo By = 0, then lim;_, || Bt||2= 0, so we can yield that there exists ¢ such that
| Bt||2< ¢ for any t. We also assume that ¢; = || A|2.

Then we have

IH1]l2 = oy AB] + B:AT + BBy |2
< ay ([|All2| Bella+ | All2l| Bt llo+| Bt 2| Bell2)

< ay(2e1 + )| Bill2;
Similarly, ||Hz||2< ay(2¢1 + ¢)|| Bt||2. In addition, | Hs||2= || H4| 2= || B¢l|2-

Then we can obtain that there exists a constant cg, such that ||B;||2< ¢2| Bt||2, which implies that
hmt_,oo Bt =0. O

40



With the lemma above, we directly utilize lim;_,, B; = 0 in proving Theorem 3.4}

Lemma F.2. Let X; = (z/,y, )", then there exists ty > 0, such that when t > to,
monotonically non-increasing. Moreover, 3co > 0, lim;_, o || X¢||5, = co.

| X[, is

Proof. First we prove that there exists o such that when t > g, || A¢l[2< 1.

From the proof of Lemma we know that if o = v < Ui, where o0, is the maximal singular

value of payoff matrix A;, then the discriminant in equation (10) is satisfied, i.e., ||A¢||2< 1. Here
we choose a = v < 5, where o is the maximal singular value of payoff matrix A. Because A;
converges to A, we can conclude that there exists ¢, such that when ¢t > ¢, 0; < 20. This implies
thata =~ < o= < U%, which means ||.A:||2< 1. Therefore we prove that here exists ¢y such that

when t > tg, || X¢]|2< || X¢—1]|2. For any ¢ > to, we have

||Xt||2 = H-At—lXt—1||2
< A= |l21 X =112
< ([ Xi—1lf2-

Therefore, we have that when ¢ > t¢, || X¢||2 is monotonically non-increasing.

From the fact that || X¢||2 is monotonically non-increasing and no smaller than 0, we obtain 3¢y >
O, limt_>oo ||Xt||2 = Cp. 0

In fact, the property that || X;||2 is monotonically non-increasing is closely related to the iterative
matrix of EG is normal, which causes part of the difference between EG and OGDA or negative
momentum method.

Lemma F.3. Decompose R"™™ = V| @ V, where V1 is the eigenspace of eigenvalue 1 of matrix
A, Vi and V3 are mutually perpendicular. Define X = maxs21 scrigenvaiueA |S|. Then if v € V5,
[Avlly < Avlly.

Proof. Let W, = {v € R"™™ | Av = sv}, that is W, is the eigenspace of eigenvalue s of A. Let
Vi=W;and Vo = @421 W,. By A is normal, we have R"*™ = V| ® V. V; and V, are mutually
perpendicular.

Then we only need to prove if v € V5, || Av|l, < A||v],. From Lemma|A.2] we know that A < 1.
Because

Vo = @s;él,seEigenvalue.A Wi )

v can be decomposed as v =) £1,sCEigenvalue A ksws, where wg € Wi, k is the coefficient and for
different s; and so which are eigenvalues of A, w,, and ws, are perpendicular.

Therefore [|v]; = 3 k2 ||wsl|5. Then Av = 3"
we have

ks Aw,, therefore

s#1,s€Eigenvalue A s#1,s€Eigenvalue A

S K Aw;

s#1,s€Eigenvalue A

2 2
= > [sI°k2 [lwsll3

s#1,s€Eigenvalue. A

<Y R w3

s#1,s€Eigenvalue A

2
=M lvl

2
[ Av[[5

which means that || Av||, < A||v]],, this complete the proof. O

Now we can decompose X; = v} + v7 where v} € V; and v € Va. Similarly, we also decompose
B:X; = w} + w? where w} € Vi and w? € Vs.

Lemma Fd4. If lim;_, o va”2 = 0, then limy_, (A" x¢, Ay;) = (0,0), which implies that
hII’lt*}OO At = 0.
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Ye
and y; = yi + y2. First, we prove ATz} = 0 and Ay} = 0. By v} € V;, we have

1 2
Proof. Letv} = ( Z{ ),vf = ( ;5 ),thenbet = ( Tt ) = v} +v?, we have z; = x] + 27
t t

I —ayAAT —aA x} x}
aAT I—ayATA| |yl B 0
that is
r} —ayAATz} — aAy! o
aATx}l +y}l —ayAT Ay} B Yy}

_’YAAT:E% - Aytl = 07
ATmtl - ryATAytl = 07

where the second double arrow symbols is due to Y2 AAT + I is invertible.

According to ATz} = 0and Ay} = 0, we have

AT AT (AT ]
(5117 s e

| Ay}

_[AT A_ V2
We can see that if lim;_, o, ||vt2||2 =0, then lim;_, oo (A " 24, Ay;) = (0,0) . O
Now we are ready to prove Theorem 3.4]
proof of Theorem According to Lemma we directly obtain lim; ,,,A; = 0 if

limg o0 va H2 = 0. In the following We prove lim;_, o, Hvt2||2 = 0 by contradiction. Assum-

ing that {||v} ||2}t doesn’t converge to 0, i.e.,

36 >0, 3ty,ta,---, st |[of ], >0 (34)
where t; tends to +00 as 7 — 0o.

Let e = 25(1 — A2), then we can find such t; that for any t > t;, || X:||3 — | X;s1]l5 < € by
Lemma , latter we will prove that under the assumption (34), there exists ¢ > ¢, such that

1 X ||§ — | X4 ||§ > € which contradicts to Lemma Then we can also find a t;, > t; such that
for any t > ty,

S(1—A2) 5(1— A2
811 Xolls ™ 811 X0

1B¢l, < min{

by lim;_, o, By = 0, and for any ¢, > t,

Ut25 ||2 > . We choose such a ¢, and denote it as .
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Now we give the bound for || B; X¢|,. ||w} ||, and ||w?]],.

1B Xilly < 1Belly - 1 Xell
5(1—X%) 4(1-X%)
811 Xoll, ™ 81X
51— 22) (1)

}- 11 Xoll,

< min{

N P
5(1—\?%)
< 3 )
where the second inequality comes from Lemma . Together with Hwt H2 and Hwt H , are perpen-
dicular, which implies ||BtXt||§ = ||wt1H§ + ||wt2||2, fori = 1,2, we have
5(1— )%

Hwt||2 < HBtXt”Q =8 HX ||2

Now we try to determine the relationship between X, ; and X,
Xt_;,_] - (.A + Bt)Xt

- .AXt + BtXt
A(Ut +'Ut) +wt +wt

= (v +wy) + (Av +wy),
where v} + w} € V7 and Av} + w? € Vo, so v} + w} and Av? + w? are perpendicular, and

1Xesa 5 = [Jor +w! Hz + || AV} + w Hz
<ot lls + llwd|ls +2|[vi |l [lwh |, + [ A2 [l5 + w?; + 2 [ A2l |w?],
< It

2
5+ X2 o2 5 + et 15 + o 5 + 2 o]y od I + 2 o2 1,

— a2 A2
< [lod 15+ A o2 + 1B: X3 +2 1 Xoll, E§|X ¥ L 2ol 8(||X i :
2
1112 21,.2(|2 o(1— )\2) 6(1 — >‘2) 6(1 — )‘2>
< ||Ut||2+>‘ Hvt||2+ ] +2 8 +2X 8

5
< b2+ 32 o212+ 2001 22),

The second inequality comes from Lemma while the third inequality comes from || B; X ||§ =
||wf1}|§ + ||w,?”§ and the upper bound for ||w} H; and waH; Then we conclude that

5
X015 = 1Xeeals = ((lof 5 + 02115 = (ot [l; + 2 [[o2 5 + g1 = X))
> 5(1— %) — 25(1 —%)

where a contradiction appears.

This completes the proof. O
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G More Experiments

We provide additional experiments to demonstrate the behaviors of the optimistic gradient and
negative momentum methods in convergent perturbed games that do not satisfy the BAP assumption.
The numerical results reveal cases where optimistic gradient/momentum method converge and cases
where they do not converge.

In the same setting as the experiments on Theorem 3.4, we find that both optimistic gradient descent
ascent and negative momentum method converge as shown in Figure (8).

However, there are other cases in which these two algorithms do not converge. In Figure (9), we
present one such example. Here the payoff matrix is chosen as A = [[1, 0], [0, 0]], B = [[0, 8], [0, 0]]
and

A, = A, t %s odd . (35)
A+ (1/t9Y) % B, t is even

In Figure (9), the numerical results show when using a step size of 0.015, optimistic gradient and
negative momentum algorithms will diverge, but extra gradient will converge. Based on these
numerical results, we believe that beyond the setting that satisfies the BAP assumption, there exists a
more complex dynamical behaviors of optimistic gradient and negative momentum methods, which
presents an interesting question for future exploration.

convergent curve of Delta_t

800 —— optimistic dradient descent ascent
—— extra-gradient
—— negative momentum method

400

Figure 8: Function curves of A, for one game presented in experiment of Theorem 3.4. in the paper. All these
three algorithms converge.

convergent curve of Delta_t, eta=0.015

201 —— optimistic dradient descent ascent
—— extra-gradient
—— negative momentum method

0 2000 4000 6000 8000 10000

Figure 9: Function curves of A;. When using step size = 0.015, extra-gradient converges, while both optimistic
gradient descent ascent and negative momentum method diverge.
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