
A Approach Details

A.1 Information Gain Derivation

Information gain can be computed by calculating the change in entropy in a distribution X after
receiving the datapoint y:

IG(X, y) (14)
= H(X)�H(X|y) (15)
= �Ex|X logP (x) + Ex|X,ylogP (x|y) (16)

=
X

x2X

P (x|y) · logP (x|y)�
X

x2X

P (x) · logP (x) (17)

We adapt this generic formulation to use our definitions of interaction types, query space, and choice
space, and aim to solve for the optimal query:

max
q2Q

Ec|Ci(q) [IG(W, c)] (18)

We now solve for the expected information gain according to Eqs. 14- 17 and following the deriva-
tion presented in [3]:

Ec|Ci(q) [IG(W, c)] (19)
= H(W)� Ec|Ci(q) [H(W|c)] (20)
= �EW [logP (W)] + EW,c|Ci(q) [logP (W|c)] (21)
= EW,c|Ci(q) [logP (W|c)� logP (W)] (see proof in Sec. A.1.1) (22)

= EW,c|Ci(q)

log

P (W|c)
P (W)

�
(23)

= EW,c|Ci(q)

log

P (c|W)

P (c)

�
(by Bayes’ rule) (24)

=
X

c2Ci(q)

"
P (c)

X

w2W

P (w|c) · log

P (c|w)
P (c)

�#
(25)

=
X

c2Ci(q)

"
P (c)

X

w2W

P (w)P (c|w)

P (c)
· log

P (c|w)
P (c)

�#
(26)

=
X

c2Ci(q)

X

w2W

P (w) · P (c|w) · log

P (c|w)
P (c)

�
(27)

=
X

c2Ci(q)

X

w2W

P (w) · P (c|w) · log

P (c|w)P
w02W P (w0) · P (c|w0)

�
(28)

⇡ 1

M

X

c2Ci(q)

X

w2⌦

P (c|w) · log

M · P (c|w)P
w02⌦ P (c|w0)

�
(29)

Where ⌦ contains M samples of the distribution W .

11

A.1.1 Proof of Eq. 22

� EW [logP (W)] + EW,c|Ci(q) [logP (W|c)] (30)
= EW,c|Ci(q) [logP (W|c)]� EW [logP (W)] (31)

=

2

4
X

w2W
P (w)

X

c2Ci(q)

P (c|w) · logP (w|c)

3

5�
"
X

w2W
P (w) · logP (w)

#
(32)

=
X

w2W
P (w) ·

2

4

0

@
X

c2Ci(q)

P (c|w) · logP (w|c)

1

A� logP (w)

3

5 (33)

=
X

w2W
P (w) ·

2

4
X

c2Ci(q)

P (c|w) · logP (w|c)�
X

c2Ci(q)

P (c|w) · logP (w)

3

5 (34)

=
X

w2W
P (w) ·

X

c2Ci(q)

P (c|w) · [logP (w|c)� logP (w)] (35)

= EW,c|Ci(q) [logP (W|c)� logP (W)] (36)

A.2 KL Divergence Formulation

We now show that we can alternatively derive Eq. 29 from the standard KL divergence equation:

KL(P ||Q) =
X

x2X

P (x) · log

P (x)

Q(x)

�
(37)

Where P and Q represent the data distribution before and after receiving feedback, respectively. We
convert this formulation to our terminology as follows:

max
q2Q

Ec|Ci(q) [KL(P (W|c)||P (W))] (38)

We now solve for the optimal query:

Ec|Ci(q) [KL(P (W|c)||P (W))] (39)

= Ec|Ci(q)

"
X

w2W

P (w|c) · log

P (w|c)
P (w)

�#
(40)

= Ec|Ci(q)

"
X

w2W

P (w|c) · log

P (c|w)
P (c)

�#
(41)

=
X

c2Ci(q)

"
P (c)

X

w2W

P (w|c) · log

P (c|w)
P (c)

�#
(42)

Which is equivalent to Eq. 25, and thus results in Eq. 29.

12

A.3 Probability Tensor Derivations

See Table 1 for all definitions of q, c, c+, c� for each interaction type. In the demonstration case,
we define P as follows:

P(demo)
q,c,! =

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(43)

=
e
�·�(c+0)·!

P
t2T e�·�(t)·!

(since |c+| = 1 and c+ [c� = T for demonstrations) (44)

=
ET

0,c+0 ,!P
t2T ET

0,t,!
(45)

=

"
ET

0 ↵
X

t2T

Et

#

c,!

(since there is a 1-1 correlation between c and c+ in demos) (46)

where ↵ represents an element-wise division of two matrices (i.e., (A↵B)ij = Aij/Bij).

In the preference case:

P(pref)
q,c,! =

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(47)

=
e
�·�(c+0)·!

e�·�(q0)·! + e�·�(q1)·!
(since |c+| = 1 and c� = q \ c+ in preferences) (48)

Since c0 =) c+ = {q0} and c1 =) c+ = {q1}: (49)

=

e
�·�(q0)·!

e�·�(q0)·! + e�·�(q1)·!
,

e
�·�(q1)·!

e�·�(q0)·! + e�·�(q1)·!

�

c

(where c 2 {0, 1}) (50)

=

"
ET

q0,q1,!

[E+ET]q0,q1,!
,

Eq0,q1,!

[E+ET]q0,q1,!

#

c

(51)

=
h�
E↵ (E+ET)

�T
,E↵ (E+ET)

i

c,q0,q1,!
(52)

In the corrections case:

P(corr)
q,c,! =

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(53)

=
e
�·�(c+0)·!

e�·�(c
+
0)·! + e�·�(c

�
0)·!

(since |c+| = 1 and |c�| = 1) (54)

=
ET

q,c,!

[E+ET]q,c,!
(due to 1-1 correlation between q and c� and between c and c+ in corrections)

(55)

=
⇥
ET ↵ (E+ET)

⇤
q,c,!

(56)

13

In the binary reward case, we compare the likelihood of the teacher demonstrating q to the average
likelihood of demonstrating any other trajectory in T :

P(bnry)
q,c,! =

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(57)

Since c0 =) c
+ = T \ q, c

� = q (58)
and c1 =) c

+ = q, c
� = T \ q: (59)

=
1

↵

"
1

|T \ q| ·
P

t2T\q e
�·�(t)·!

P
t2T e�·�(t)·!

,
e
�·�(q)·!

P
t2T e�·�(t)·!

#

c

(since c 2 {0, 1} in binary rewards)

(60)

=

"
1�P(demo)

0,q,!

↵ (|T |� 1)
,
P(demo)

0,q,!

↵

#

c

(where ↵ is a normalization factor s.t.
X

c

P(bnry)
q,c,! = 1) (61)

=

"
1�

P(demo)
0,q,!

↵
,
P(demo)

0,q,!

↵

#

c

(since
X

c

P(bnry)
q,c,! = 1) (62)

=

"
1�

ET

0 ↵ ↵

X

t2T

Et

!
,ET

0 ↵ ↵

X

t2T

Et

#

c,q,!

(63)

where ↵ =
1�P(demo)

0,q,!

|T |�1 +P(demo)
0,q,!

A.4 Gradient Derivation

Our goal is to update the weight estimate such that it maximizes the likelihood of all feedback in F:

!
⇤ = argmax

!

Y

c2F

P (c|!) (64)

= argmax
!

Y

c2F

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(65)

We calculate the gradient over ! by differentiating over its log-likelihood given F:

`(!) = log
Y

c2F

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!
(66)

=
X

c2F

"
log

P
t2c+ e

�·�(t)·!
P

t2c+[c� e�·�(t)·!

#
(67)

=
X

c2F

"
log

X

t2c+

e
�·�(t)·!

!
� log

X

t2c+[c�

e
�·�(t)·!

!#
(68)

@`(!)

@!j
=
X

c2F

"P
t2c+ � · �j(t) · e�·�(t)·!P

t2c+ e�·�(t)·!
�
P

t2c+[c� � · �j(t) · e�·�(t)·!P
t2c+[c� e�·�(t)·!

#
(69)

Note that when c
+ contains a single trajectory (i.e., in all interaction types except for binary reward),

this gradient simplifies to:

@`(!)

@!j
=
X

c2F

"
� · �j(c

+
0)�

P
t2c+[c� � · �j(t) · e�·�(t)·!P

t2c+[c� e�·�(t)·!

#
(70)

14

A.5 Training Parameters

We enforce 8! 2 W, ||!|| = 1. We set a high convergence threshold (10�3) when updating each
weight sample in order to maintain sparsity within ⌦ (which becomes less sparse as F grows with
more queries), and then fully converge (convergence threshold of 10�6) for reporting the distance
between !

⇤ and the weight estimate !̃ after each query. During gradient descent, we use a step size
of 5x10�4 for all tasks except for the Pizza domain, where we use a step size of 10�4.

B Evaluation Details

B.1 Domain Implementations

Domain #1: Parameter Estimation This task involves directly estimating a randomly-initialized,
ground truth weight vector !⇤ containing 8 parameters. This formulation represents a generic learn-
ing problem relevant to many robotics tasks, such as learning the relative importance between task
outcomes according to a user’s preference. There is no “state” in this domain, and each “trajectory”
consists of a single sample of the weight vector. As a result, we do not enable demonstration queries
in this domain since the resulting feedback would be akin to directly providing !

⇤ to the algorithm.
The feature representation � of a sample returns the sample itself. Since ||!|| = ||!⇤|| = 1, the re-
ward of any sampled weight vector directly reflects the cosine similarity between it and the ground
truth vector (r(!) = ! · !⇤ = cos(✓)).

Figure 4: In the Parameter Estimation domain, the robot is tasked with estimating a high-
dimensional ground truth weight vector w

⇤ with its own set of learned weights w. To visualize
this concept, a simpler case is illustrated above in three dimensions. All weight vectors (ground
truth and learned weights) are unit vectors, and therefore lie on a unit sphere. Over time, the robot
updates w by interacting with a teacher to gain a better estimate of w⇤.

Domain #2: Linear Dynamical System We consider a simple Linear Dynamical System repre-
senting a robot that optimizes its controls according to a learned task objective. We represent the
dynamics of the robot’s state s as ds/dt = As(t) + Bu(t) by using dynamics matrix A, input
matrix B, and random controls u. An optimal control vector is one that results in a trajectory of
states maximizing 1

|T |
P

s2T �(s) · !⇤. We define the feature representation �(s) of a state s as
the concatenation of the element-wise, absolute difference between the robot’s pose at time t and
the goal pose, and the controls u(t). We experiment with an 8-dimensional feature-space (4 pose
elements and 4 corresponding controls).

In a demonstration query, the oracle provides a trajectory (produced by simulating a series of con-
trols) from the initial state that maximizes the total reward. In a preference query, the algorithm
proposes two trajectories and the oracle selects the option which yields higher reward. In a correc-
tions query, the algorithm proposes a trajectory and the oracle returns a trajectory that maximizes
the reward-to-similarity ratio. In a binary reward query, the algorithm proposes a trajectory and the
oracle indicates whether that trajectory results in reward that exceeds the agent’s internal threshold.

15

Figure 5: An example of a preference query in the Linear Dynamical System domain. At time = t,
the learned reward function yields the red “trajectory.” After posing a preference query (which con-
sists of options A and B), the corresponding belief update yields the approximated reward function
at time = t+ 1.

Domain #3: Lunar Lander We define a !
⇤ that results in the agent efficiently moving from its

start state to an upright pose on the landing pad. We use the same feature representation as in [9],
consisting of four features: the lander’s angle, velocity, distance from the landing pad, and final
position with respect to the landing pad. We implement each query type in the same manner as in
the Linear Dynamical System.

Figure 6: The Lunar Lander domain involves having the robot pilot a lunar lander to safely descend
and arrive at a landing pad. The depicted preference query illustrates two different trajectories that
may be taken by the lander to reach the destination.

Domain #4: Pizza Arrangement We approximate a preference-learning task in which the robot
learns to place toppings on only the left side of a pizza and with uniform spacing between them.
We define each “trajectory” as the next action the robot should take from the current pizza state;
thus, the trajectory is defined as the (x, y)-coordinate of the next topping to be placed. The feature
representation consists of four features: the x and y position of the topping, its distance to its nearest-
neighboring topping, and the difference between that distance and 4cm.

Figure 7: The task in the Pizza Arrangement domain is to learn how to place toppings according to a
human’s reward over topping positions. In the depicted preference query, a human’s choice indicates
their preference for the “next” topping’s position (choices represented in blue).

16

B.2 Oracle Implementation

When responding to a query, the oracle requires its own set of trajectory samples. Similar to IN-
QUIRE, we derive this set by uniformly sampling N trajectories; however, the two sample sets are
kept separate, and so we distinguish the oracle’s trajectory set as T 0 (resampled for each query state).

Demonstration/Preferences The oracle returns the highest-reward trajectory (according to !
⇤)

from a uniformly-sampled trajectory set T 0 (for demonstrations) or from the pair of queried tra-
jectories C(q) (for preferences):

Oracledemo(q) = argmax
t2T 0

(�(t) · !⇤) Oraclepref(q) = argmax
t2C(q)

(�(t) · !⇤) (71)

Corrections The oracle produces T 0 by performing rejection sampling; it uniformly samples trajec-
tories and accepts only those with a reward greater than or equal to the queried trajectory q until T 0

contains N trajectories:
8t 2 T

0
,�(t) · !⇤ � �(q) · !⇤ (72)

After producing this trajectory set, the oracle selects the trajectory with the highest ratio of reward-
to-distance from the queried trajectory:

Oraclecorr(q) = argmax
t2T 0

�r(q, t)

�d(q, t)
(73)

�r(q, t) = min
t02T 0

�(t) · !⇤ � �(q) · !⇤

�(t0) · !⇤ � �(q) · !⇤ �d(q, t) = min
t02T 0

e
�(t,q)

e�(t
0,q)

(74)

The distance metric � between two trajectories is domain-specific. In the Parameter Estimation
domain, we define this as the angular distance between the two parameter vectors. In the Linear
Dynamical System and Lunar Lander domains, we define � as the normalized distance between
the two trajectories’ aligned x and y poses over time. We use the DTW-Python package [24] to
align trajectories via Dynamic Time Warping and return their normalized distances. In the Pizza
Arrangement domain, we define � as the Euclidean distance between two toppings.

Binary Reward The oracle produces T 0 by uniformly sampling N trajectories and produces a cu-
mulative distribution R over ground-truth rewards for T 0. It then selects a positive or negative reward
indicating whether the agent’s query q meets or exceeds a threshold percentile ↵:

R = {!⇤ · �(t), 8t 2 T
0} Oraclebnry(q) =

⇢
+ R(!⇤ · �(q)) � ↵

� otherwise
(75)

We set ↵ = 0.75 in our experiments.

B.3 Evaluation Procedure

Algorithm 3 Evaluation Procedure
Input: generate query and update weights methods according to algorithm being tested

1: Generate ground truth reward function !
⇤

2: Generate 10 test states
3: Compute optimal trajectory tmax for each test case using !

⇤

4: Compute least-optimal trajectory tmin for each test case using !
⇤

5: for each of 10 runs do
6: Generate 20 query states (if testing in the static condition, repeat the same state 20 times)
7: for each of 20 queries do
8: s next query state
9: q

⇤ generate query(s, I,⌦)
10: F F+ query oracle(q⇤)
11: ⌦ update weights(F)
12: !̃ mean(⌦)
13: Record distance: arcccos(!̃·!⇤)

⇡
14: for each of 10 test states do
15: Compute optimal trajectory t from the test state according to !̃

16: Record performance: �(t)·!⇤��(tmin)·!⇤

�(tmax)·!⇤��(tmin)·!⇤

17

C AUC Figures

Figure 8: AUC values for the distance plots in Figs 2-3. Darker cells indicate lower (better) values.

Figure 9: Visualizing Fig. 8, with statistical significance noted. (*: p < 0.05, **: p < 0.01, ***:
p < 0.001)

Figure 10: AUC values for the performance plots in Figs 2-3. Darker cells indicate higher (better)
values.

18

Figure 11: Visualizing Fig. 10, with statistical significance noted. (*: p < 0.05, **: p < 0.01, ***:
p < 0.001)

Figure 12: AUC values for the cost plots in Figs 2-3. Darker cells indicate lower (better) values.

Figure 13: Visualizing Fig 12, with statistical significance noted. (*: p < 0.05, **: p < 0.01, ***:
p < 0.001)

19

	Introduction
	Related Works
	Approach
	Query Optimization
	Update Weights from Feedback

	Results
	INQUIRE Query Selection
	Learning Performance

	Discussion
	Limitations
	Conclusion
	Approach Details
	Information Gain Derivation
	Proof of Eq. 22

	KL Divergence Formulation
	Probability Tensor Derivations
	Gradient Derivation
	Training Parameters

	Evaluation Details
	Domain Implementations
	Oracle Implementation
	Evaluation Procedure

	AUC Figures

