
A Appendix

A.1 Latency prediction model

A.1.1 Hardware Latency

In order to build our latency prediction model, We test three types of hardware devices, NVIDIA
V100, NVIDIA GTX 2080, and NVIDIA GTX 1080. Their respective properties are presented
in Table 6. It shows that the server GPU V100 is the most powerful hardware device with the
most processing engines (#PE). Therefore, the computation with quadratic memory complexity,
e.g., self-attention, could easily fall into a memory-bounded operation on V100 because of its high
parallelism.

Table 6: Hardware properties.
NAME PE FP32 FREQUENCY(MHZ) BANDWIDTH (G)

NVIDIA V100 80 64 1390 690
NVIDIA GTX 2080 20 64 1710 325
NVIDIA GTX 1080 20 64 1710 325

A.1.2 Latency Prediction Modeling

Following Section 3.1.1, the inputs of the latency prediction model include: 1) the structure
configuration of a candidate block, 2) the spatial granularity G, 3) the channel dimension C, and 4)
the hardware properties are shown in Table 6. The latency of a candidate block is predicted according
to the following three steps.

Input/output shape definition. Calculating the input and output shapes is the first step in determining
an operation’s latency. Taking the MSA operation as an example, the input of this operation is the
activation with the shape of Cin⇥H⇥W , where Cin is the number of input channels, and H and
W are the resolutions of the feature map. The shape of the output tensor is H

G
⇥W

G
⇥Cout, where

H

G
⇥W

G
is the number of output patches, Cout is the number of output channels and G is the spatial

granularity.

Operation-to-hardware mapping. We map the operations to hardware. We have modeled a hardware
device as multiple processing engines (PEs). We first consecutively split the output feature map into
multiple tiles. Specifically, the shape of each tile is TP ⇥ TC ⇥ TS1 ⇥ TS2 (H

G
⇥W

G
)⇥TC⇥TG⇥TG.

These split tiles are assigned to multiple PEs. The computation of each tile is executed in a PE.

Latency estimation. We evaluate each tile’s latency, including the data movement latency and the
computation latency: l=ldata+lcompute.

1) Data movement latency ldata. We model the memory system of hardware as a three-level archi-
tecture [20]: off-chip memory, on-chip global memory, and local memory in PE. The input data
and weight data first move from the off-chip memory to the on-chip global memory. To simplify
the latency prediction model, we assume that the hardware can fully utilize the off-chip memory
bandwidth.

The data used to calculate the output tiles is moved from the on-chip global memory to each PE’s
local memory. The latency of data movement to local memory is estimated by its bandwidth and
efficiency. To make the prediction model simpler, we assume that each PE only moves the appropriate
input feature maps and weights once to compute an output tile. The time from off-chip memory
to on-chip global memory and the time from on-chip global memory to local memory are added
together to compute the input data movement latency lin: lin=loff2on+lglobal2local. The output data
are transferred from local memory to on-chip global memory and subsequently to off-chip memory,
in contrast to the input data: lout=llocal2global+lon2off . By combining the input and output data
movement latency, we can determine the overall data movement latency: ldata=lin+lout.

The granularity G impacts the latency of data movement because when it is small, more input data
will be transferred to numerous PEs to compute various output patches, dramatically increasing the
number of on-chip memory movements. This explains why a larger G will significantly increase the
practical efficiency, according to the experiment results in the paper.

14



2) Computation latency lcompute. The maximal FP32 computation throughput of the PE and the
FLOPs required to compute an output tile are used to estimate the computation latency of each
tile. The number of tiles and PEs can be used to determine the overall computation latency.

Figure 8: Latency prediction results
of ResNet-50. Results are tested on
NVIDIA V100 and GTX 1080 Ti.

Training-free theoretical model. The latency predic-
tion model is a training-free theoretical model suit-
able for general-purpose hardware, GPU. Unlike other
works [35, 36] that focus on computation amounts, we
directly optimize the on-device speed of the model be-
cause the speed depends on the memory access cost and
the degree of parallelism as well. At the same time, ours
are more efficient than the common method, hardware
profiling. Furthermore, this modeling can be generalized
in other networks as the latency prediction results on the
1st block in ResNet-50 in Figure 8. In specific, all net-
works are transformed into fixed matrix operations on
GPU platforms (General Matrix Multiply, GeMM). The
latency prediction model evaluates the speed of matrix
multiplication and the corresponding data movement, so it is applicable to general networks.

A.2 Convolutional Modulation

Following [37], we replace the self-attention inside the transformer layer with a convolutional
modulation layer. As shown in Figure 5(c), we modulate the value V with convolutional features.
Let X2RH⇥W⇥C be input tokens, and we use depthwise convolution with kernel size k ⇥ k and the
Hadamard product to calculate the output:

Z = A� V,

A = DConvk⇥k(W1X),

V = W2X,

(3)

where � is the Hadamard product, W1 and W2 are the weight matrics of two linear layers, and
DConvk⇥k denotes the depthwise convolution. The linear layers can be used to achieve the infor-
mation interaction between channels. The weighted sum of all the pixels in the square area is the
output for each spatial location. Our methods use convolution instead of self-attention to create asso-
ciations, which are more memory-efficient (linear memory complexity), especially when processing
high-resolution images. Due to the modulation operation, our method differs from traditional residual
blocks and can adapt to the input content.

A.3 BN-Based Swin-Transformer

We modify the basic structure of Swin-Transformer, WMSA/SWMSA, into WMSAbn/SWMSAbn

as shown in Figure 9. Compared to the original design with LN-Linear, a 13%⇠21% speedup is
harvested with negligible accuracy degradation (<0.3%) on small models. In this paper, we use
WMSAbn/SWMSAbn as our design candidates.

A.4 RepCNN for Branch Fusion

In Section 3.1.2, we apply RepCNN as a network component, fusing multiple branches into more
single-branch substructures during inference. The detailed structure of RepCNN is illustrated in
Figure 10.

A.5 The Hardware-Oriented Decoder Structure

In figure 11 we present our decoder module, which consists of six layers. To improve efficiency in
self-attention computation, we replace the channel-wise attention with convolution modulation in
the first three layers. This modification allows for more efficient processing while still capturing
important local dependencies. In the remaining three layers, we employ channel-wise attention, as

15



Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

WMSA

FFN

Linear TransformationLinear Transformation

Block

BatchNorm

LayerNorm

LayerNorm

WMSA

FFN

Block BatchNorm

Training

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

Linear Transformation

Inference

WMSAWMSA

Model-level comparison of WMAS and WMSA
with ImageNet-1K on RTX3090 Ti.

 

Figure 9: WMSAbn/SWMSAbn structure. 13%⇠21% speedup can be achieved with <0.3 accuracy
degradation on ImageNet-1K.

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

WMSA

FFN

Linear TransformationLinear Transformation

Block

BatchNorm

LayerNorm

LayerNorm

WMSA

FFN

Block BatchNorm

Training

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

Linear Transformation

Inference

WMSAWMSA

Model-level comparison of WMAS and WMSA
with ImageNet-1K on Tesla V100.

 

Training (3-branch) Inference (1-branch) Perspective of structure

Figure 10: RepCNN structure. We also show
the training status and the inference status of this
structure, respectively.

Figure 11: The Hardware-Oriented Decoder
Structure.

proposed in [38], as the global attention layer. This choice enables our model to effectively capture
and incorporate global information into the decoding process, enhancing its overall performance.

Following [8], to ease the convergence difficulty in 3D scenes, we initialize a set of learnable anchor
points in 3D world space with uniform distribution from 0 to 1. The coordinates of 3D anchor points
are input to the query generator to generate initial object queries. The query generator is composed
of two linear layers and one ReLU. The initial object queries will first go through the convolution
modulation layers and then interact with the 3D position-aware features in the channel-wise attention
layers. The updated object queries are further used to predict the object class and the 3D bounding
boxes. Specifically, 2D image features are the value of the global attention blocks to represent the
content of the image, and the 3D Position-aware Features are the key of the global attention blocks
for a feasible positioning.

A.6 Overall Framework

As shown in Figure 12. Given images I={Ii 2 R3⇥H⇥W
, i = 1, ..., N} from N views, the images

are sent to the hardware-oriented backbone (HOB) to extract 2D multi-view features, F 2d={F 2d
i

2
RC⇥H⇥W

, i = 1, . . . , N}. The 3D coordinates are generated from camera frustum space and the
coordinates of the previous frame t� 1 are aligned into the coordinate system of the current frame
t through the temporal aligned module (TAM). Then the 2D features and the 3D coordinates of
the adjacent frames are concatenated together, respectively, and are forwarded to the 3D position

encoder to generate the 3D-aware features. After that, the 3D-aware features are employed as our
hardware-oriented decoder’s key and value components. Further, detection queries, initialized from
learnable 3D anchor points [39], are fed into the decoder and interact with the 3D-aware features.
Lastly, the updated queries are input to the detection head for final prediction. We also deploy a
latency-aware model slimming method strategy to generate efficient models for the target devices.
The coordinates generator and 3D position encoder are built on PETR [8].

16



Figure 12: The architecture of the proposed HotBEV paradigm. The multi-view images go
through our proposed hardware-oriented backbone to extract 2D features. The 3D coordinates first
go through a 3D position embedding layer and then add together with the 2D features to obtain the
3D position-aware features. The object query can directly perceive the 3D object information by
interacting with the 3D position-aware features in our proposed hardware-oriented decoder layer.
t� 1 time frame features along with a temporally aligned module are implemented to enhance the
model estimation of velocity and attitude as well as robustness improvement.

A.7 Implementation on Diverse General Vision Tasks

Generalization ability on image classification. To validate the generalization of our method beyond
the limited scope of Bird’s Eye View (BEV) modifications, we search for a new structure using NAS
specifically for image classification tasks, leveraging our proposed hardware design paradigm, vision
modeling logic, and efficiency-oriented operations such as convolution modulation and normalization
fusion. We obtained a novel structure called HOBformer. In Table 7, we compared the performance
of our new model with existing state-of-the-art classification models. This evaluation aimed to
demonstrate that our approach is not only effective for BEV-related tasks but also applicable and
competitive in the broader context of image classification. Specifically, our HOBformertiny model
outperforms EfficientNet-B0 by 2.0% in Top-1 accuracy, while simultaneously achieving a 4.3us
reduction in latency. In comparison to MobileNetV2×1.0, our model achieves an 8.3% improvement
in accuracy with a marginal increase of only 1.3us in latency.
Table 7: Comparison of different models on the ImageNet-1K. FPS is tested on V100 with FP32.
Model Params(M) GMACs Epochs Top-1(%) V100 Latency (us)
MobileNetV2×1.0 3.5 0.3 300 71.8 5.5
ResNet50 25.5 4.1 300 78.5 10
EfficientNet-B0 5.3 0.4 350 77.1 11.1
DeiT-T 5.9 1.2 300 74.5 7.8
Swin-T 29 4.5 300 81.3 24.2
MobileViT-XS 2.3 0.7 300 74.8 12.8
HOBformertiny 12.4 1.5 300 79.1 6.8
HOBformersmall 31 3.8 300 82.3 14.2

Fusing batch normalization and convolutional modulation on existing architectures. We integrate
our proposed techniques fusing batch normalization and convolutional modulation into existing
architectures. As shown in Table 8, for DETR-R50, the fusion of Batch Normalization (BN) in
its backbone results in a speed improvement of 1.6 FPS. However, when we attempt to replace
Layernorm with Batchnorm in the encoder and decoder sections and then fuse BN, the model’s speed
can be further increased by 0.3 and 0.5 FPS, respectively. Unfortunately, these modifications pose
challenges in achieving convergence during model training.

Similarly, in deformable DETR, the ResNet backbone already incorporates BN fusion, yet the model
fails to converge when the fusing technique is applied to its encoder and decoder. It becomes evident
that directly replacing Layernorm with Batchnorm in the original self-attention is difficult, as it
hampers model convergence. However, our design showcases one advantage of the window-based
self-attention in terms of efficient implementation compared to other transformer architectures: it

17



Table 8: Integrating the proposed techniques into the 2D detection baselines (on V100).
Method Fusing batch normalization Convolutional modulation AP(%) FPS
DETR-R50 N N 42 24
DETR-R50 Y (ResNet) N 42 25.6
DETR-R50 Y (ResNet + Encoder) N Not Converge 25.9
DETR-R50 Y (ResNet + Decoder) N Not Converge 26.1
DETR-R50 N Y 42.5 24.4
DETR-R50 Y (ResNet) Y 42.5 26
deformable Y (ResNet) N 43.9 19.1
deformable Y (ResNet + Encoder) N Not Converge 19.4
deformable Y (ResNet + Encoder) N Not Converge 19.6
deformable Y (ResNet) Y 44.3 19.6

allows for the replacement of Layernorm with Batchnorm and subsequent fusion with acceptable
accuracy, as shown in Figure 9. Additionally, by leveraging convolutional modulation to model
global attention, improvements in both speed and detection performance are observed. Specifically,
on DETR-R50, there is a 0.5% increase in Average Precision (AP) and a gain of 0.4 FPS. Similarly,
in deformable DETR, Convolutional Modulation leads to a 0.4% improvement in AP and an increase
of 0.5 FPS.

A.8 Additional Ablation Analysis

Backbone performance on image classification and 2D object detection. We have designed the
hardware-oriented detector backbone(HOB) as our image backbone (Figure 5). Table 9 lists its
results on the ImageNet classification and the computation complexity of the backbone. In Table 10,
we compare the performance with two existing backbones: ResNet-50 and Swin-T on object detection.
When integrated with ResNet-50 as the backbone, the model can speed up by 1.4 FPS but with 5.7
AP drops. With Swin-T as the backbone, the speed will decrease by 3.1 FPS with a 3.6 AP drop.

Table 9: Integrating the proposed techniques into the 2D detection baselines (on V100).
Model Top-1 Acc.(%) AP(%) GFLOPS of backbone Overall GFLOPS
HOTDETRtiny 81.5 44.5 47 67
HOTDETRsmall 82.1 45.3 50 69
HOTDETRmedium 82.7 46.4 56 73
HOTDETRlarge 83.2 46.8 92 108

Table 10: Integrating the proposed techniques into the 2D detection baselines (on V100).

Model Backbone AP(%) GFLOPS FPS
HOTDETRtiny ResNet-50 38.8 62 27.6
HOTDETRtiny Swin-T 40.9 71 23.1
HOTDETRtiny HOBtiny 44.5 67 26.2

Image embedding module. Our major conclusions and speed analysis can be found in Section 1
and Figure 3. Here we illustrate more ablation studies for different settings. All the experiments
are conducted on the HotBEV-nano. Compared to non-overlap large-kernel patch embedding, the
proposed Image Embedding Module in HotBEV-nano achieves significant inference latency reduction
by 44%⇠50% on multiple devices, while providing 2.8% higher accuracy on ImageNet-1K dataset
as shown in Table 11. We demonstrate that convolution stem [40] can enhance model convergence
and accuracy, and boost inference speed on multiple devices by a large margin as well, thus can be a
good choice for non-overlapping patch embedding implementations.

Study on the replacement of RepCNN in the HOB backbone. To analyze the trade-off between the
detection precision and the efficiency of the RepCNN utilization, we replace the WMSAbn/SWMSAbn

with the RepCNN in the 1st and 2nd stage. We experimentally find that detection performance is
improved by 0.3%⇠0.5% AP after replacing WMSA with RepCNN in S1 of our backbone (Table 12).
The precision is only improved by 0.1% AP after replacing with RepCNN layers in the whole S1, S2.
So a dedicated design is required here to extract the texture-level information effectively.

18



Table 11: The ablation analysis of Image Embedding Module (IEM) on ImageNet-1K. The speed
results are test on Latency1 for V100, Latency2 for RTX2080 Ti, Latency3 for GTX1080 Ti.

IEM Top-1 Latency1 Latency2 Latency3

- 79.6 0.059ms 0.074ms 0.64ms
3 82.4 0.033ms 0.041ms 0.032ms

Table 12: The ablation studies of replacement of RepCNN in the backbone. Note that S11 indicates
the 1st block of the S1, and 3means we use the RepCNN block. The speed results are tested on one
V100.

S11 S12 S21 S22 NDS" mAP" FPS"
- - - - 0.372 0.320 11.8
3 - - - 0.376 0.323 12.8
3 3 - - 0.381 0.325 13.7
3 3 3 - 0.379 0.324 14.5
3 3 3 3 0.373 0.321 14.7

Temporal modeling. We analyze the effect of temporal modeling, which consists of two parts: 3D
coordinates alignment (CA) and data-aware strategy (DA). As shown in Table 13, the performance is
improved by 2.8% NDS and 1.2% mAP with CA. The mAVE metric is 0.94 m/s, which shows an 8%
improvement to the baseline. The mATE, mASE, and mAOE, which describe the form and attitude
of the object, are improved 0.3%⇠2.1%. After assembling with DA, the NDS metric is increased by
1%, and mAP is increased by 0.5%. It illustrates that DA can further enhance the temporal alignment
by adding prior information, e.g., depth information, or reducing the perturbation of the external
parameter.

Table 13: Ablation studies of two components in the TAM.
CA DA NDS" mAP" mATE# mASE# mAOE# mAVE# mAAE#

- - 0.350 0.309 0.780 0.278 0.570 1.12 0.215
3 - 0.378 0.324 0.759 0.275 0.550 0.940 0.213
3 3 0.388 0.329 0.748 0.273 0.545 0.930 0.208

A.9 Robustness Analysis

In realistic scenarios, various unexpected situations are encountered. Therefore, it is particularly
important to improve the robustness of the camera system. Some works have explored this direction.
LSS considers extraneous noise and camera dropouts during testing. BEVFormer shows temporal
information can improve the system’s robustness. Considering three potential error encounters, 1)
Camera shake/offset caused by external forces. 2) Miss-capturing information/scene caused by camera
dysfunction. 3) Camera time delay caused by long exposure time. Robustness can be evaluated
with mATE, mASE, and mAOE scores. The temporal aligned module (Figure 12) introduces the 2D
feature to the 3D feature. This data-aware approach can help improve the robustness. We evaluate the
robustness in two ways:

Add extrinsic noises. We compare the performance of three models: No 3D coordinates alignment
(CA) and data-aware strategy (DA) module, CA only module, CA, and DA module. Figure 13 shows
the mAP and NDS score of each model under different degrees of extrinsic noises. Our temporal
aligned module can improve the 3D detection of the model. Specifically, when Rmax=8, the accuracy
drops between w. DA and w/o. DA is 3.9% vs. 4.4%. This shows that DA helps improve robustness
as it can slow down the performance degradation when noise increases.

Remove one of the six cameras. As shown in Table 14, we can observe that removing the back
(-12.5% NDS, -10.5% mAP) or front (-3.3% NDS, -3% mAP) camera has the greatest impact on
accuracy. Our temporal-aligned module can also improve the robustness of the camera dysfunction
scenario (e.g., 9.9% vs. 10.5% accuracy drop between w. DA and w/o. DA).

Comparison with randomly searched models. Besides the proposed basic hardware-efficient design,
it is still important to determine appropriate model configurations, e.g., depth and width, to achieve
promising performance. To illustrate the benefits of our Latency-aware Model Slimming Strategy,

19



CenterNet (	<	0.5,	32.8)
PETR-Tiny	(	<	0.5,	43.1)

CenterNet (	<	0.5,	32.8)
PGD	(	<	0.5,	40.9)
PETR-Tiny	(	<	0.5,	43.1)
BEVFormer (	<	0.5,	51.7)
FCOS3D	(	<	0.5,	37.2)
DETR3D	(	<	0.5,	37.4)
BEVDet (	<	0.5,	47.2)
HeatPETR-base	(	<	0.5,	50)

Extrinsic noise level

Figure 13: Left: Results on the nuScenes val set with extrinsic noises Rmax. Middle and right: The
trade-off between performance (NDS) and hardware efficiency (FPS) for different detection methods
on the nuScenes val set with different GPUs.

CA DA All Front Front Right Front Left Back Back Right Back Left
NDS

7 7 35.0 31.7 33.7 33.7 22.5 32.6 33.1
7 3 37.0 33.6 35.6 35.6 24.9 35.1 35.8
3 3 38.8 33.8 35.8 35.7 25.5 35.6 36.1

mAP

7 7 30.9 27.9 29.1 29.2 20.4 27.6 28.3
7 3 32.2 29.8 30.9 31.0 23.3 30.6 31.0
3 3 32.9 29.9 31.1 31.1 23.5 30.7 31.2

Table 14: Results on the nuScenes val set when removing one camera each time.

we randomly sample networks from our search space that have the same mapping latency, i.e., 14.5
FPS, as our model HotBEV-nano. The sampled networks are denoted as Random1⇠Random4, which
are either deeper and narrower or shallower and wider than HotBEV-nano. We train the sampled
models on nuScenes with the same training recipe as HotBEV-nano. The comparison results of these
models are shown in Table 15. Our searched HotBEV-nano has better latency or higher NDS/mAP
on nuScenes than the randomly sampled networks.

Table 15: Analysis of Latency-aware Model Slimming. The FPS is obtained on V100.
Model FPS" NDS" mAP"

HotBEV-nano 14.5 0.388 0.329
Random1 14.5 0.380 0.312
Random2 14.4 0.374 0.305
Random3 14.4 0.383 0.315
Random4 14.6 0.372 0.295

A.10 Latency-aware Model Slimming

We provide the details of the proposed fast latency-aware model slimming strategy in Algorithm 1.
Relative formulations can be found in Section 3.3. The proposed latency-aware model slimming
strategy is speed-oriented for the target device, which does not need retraining for each sub-network.
The importance score for each device-design choice is estimated based on the trainable architecture
parameter r.

20



Algorithm 1: Latency-aware Model Slimming
1 Given: speed look up table F = {RepCNN,WMSAbn, SWMSAbn}dim=32⇥,
2 {RepCNN,WMSAbn, SWMSAbn, Channel � wise, Self � atten}dim=32⇥;
3 Requirement: Final throughput budget:

P
F ⇡ >;

4 Super-net Pretraining:

5 foreach epoch do
6 foreach iteration do
7 foreach HPi,j do
8 i+1 =

P
n

e
(rn

i
+"

n

i
)/⌧

P
n

e
(rn

i
+"

n

i
)/⌧ ·HPi,j(i);

9 end
10 £ = criterion_loss_function(output, label);
11 backpropagate (£);
12 update parameters;
13 end
14 end
15 � Obtain the Supernet.
16 Speed-Driven Model thinning:

17 E 2 {Layer Reduction (LR), Width Reduction (WR), I Reduction (IR), WMSA Reduction (WMR),
SWMSA Reduction (SR)};

18 Calculate the importance of HPi,j through Mi,j = r
RepCNN

i
+r

WMSA

i
+r

SWMSA

i

r
I

i

or r
WMSA

i
+r

SWMSA

i

r
I

i

;
19 while

P
F > > do

20 LR argminMi,j
(HPi,j);

21 IR argmin
P

j
Mi,j

(HPi,j);
22 SR argmin

P
j
Mi,j

;
23 (HPi,j),WMR argmin

P
j
Mi,j

(HPi,j);
24 WR argmin

P
j
Mi,j

(HPi,j);
25 Conduct Evolution = argminAP

drop

Fi,j

(E);

26 end
27 � Obtain the Subnet with the target FPS.
28 Train the searched architecture from scratch:

29 SDG-Training method.
30 � Obtain the final model.

A.11 Visualization of Feature Map

We further visualize the feature maps from each backbone stage of HOB-nano in Figure 14. In the
first and second stages, our HOB-nano can capture sufficient low-level semantic information to detect
small objects. The third stage then focuses on medium and large objects. The last stage only responds
to large objects. The observations demonstrate that our HOB can boost semantic information in
low-level features and thus enhance detection precision.

A.12 Model Configuration of HotBEV

The detailed network architectures for the backbone of HotBEV-nano, HotBEV-tiny, and HotBEV-
base on multiple GPUs are provided in Table 16, Table 17, and Table 18. We report the resolution
and number of blocks for each stage. In addition, the width of HotBEV is specified as the embedding
dimension (Embed., Dim.). As for the MHSA block, the dimension of Query and Key is provided.

21



Input Images Stage 1 Stage 2 Stage 3 Stage 4

Figure 14: Visualization of the feature map obtained by each HOB stage.

Table 16: Detailed Architectures of the HOB backbone of HotBEV on V100. DQK is the dimension
of Queries and Keys. Exp refers to the expansion ratio of the MLP block.

Stage Resolution Type Config HotBEV
Nano Tiny Base

Image
Embed.

H

2 ⇥
W

2

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 48 64 64

H

4 ⇥
W

4

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 96 128 128

1 H

4 ⇥
W

4

Local
Attention

RepCNN=

Embed. Kernel

Stride Exp

�
[96, 3, 1, 4]⇥1 [128, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1

SWMSAbn=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128, 128, 4, 4] ⇥1 [128, 128, 4, 4] ⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128,128, 4, 4] ⇥1 [128, 128, 4, 4]⇥1

2 H

8 ⇥
W

8

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 96 128 128

Local
Attention

RepCNN=

Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3,1,4] ⇥1

SWMSAbn=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3,1,4] ⇥1 [128, 3,1,4] ⇥1 128, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

3 H

16 ⇥
W

16

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 192 256 224

Local
Attention

{RepCNN=

Embed. Kernel

Stride Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[192, 3,1,4] , [192, 192, 6, 4]}⇥2 {[256, 3,1,4] , [256, 256, 8, 4]}⇥2 {[224, 3,1,4] , [224, 224, 7, 4]}⇥5

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[192, 192, 6, 4], [192, 192, 6, 4]}⇥1 {[256, 256, 8, 4], [256, 256, 8, 4]}⇥1 {[224, 224, 7, 4], [224, 224, 7, 4]}⇥4

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[192, 3,1,4] ⇥1 [256, 3,1,4] ⇥1 [224, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

4 H

32 ⇥
W

32

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 288 384 384

Local
Attention

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[288, 288, 9, 4], [288, 288, 9, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[288, 3,1,4] ⇥1 [384, 3,1,4] ⇥ 1 [384, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[288, 288, 9, 4]⇥1 [384, 384, 12, 4]⇥1 [384, 384, 12, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

22



Table 17: Detailed Architectures of the HOB backbone of HotBEV on GTX 2080 ti. DQK is the
dimension of Queries and Keys. Exp refers to the expansion ratio of the MLP block.

Stage Resolution Type Config HotBEV
Nano Tiny Base

Image
Embed.

H

2 ⇥
W

2

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 48 64 64

H

4 ⇥
W

4

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 96 128 128

1 H

4 ⇥
W

4

Local
Attention

{RepCNN=

Embed. Kernel

Stride Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[96, 3, 1, 4] , [96, 96, 3, 4]}⇥2 {[128, 3,1,4] , [128, 128, 4, 4]}⇥2 {[128, 3,1,4] , [128, 128, 4, 4]}⇥5

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[96, 96, 3, 4], [96, 96, 3, 4]}⇥1 {[128, 128, 4, 4], [128, 128, 4, 4]}⇥1 {[128, 128, 4, 4], [128, 128, 4, 4]}⇥4

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128,128, 4, 4] ⇥1 [128, 128, 4, 4]⇥1

2 H

8 ⇥
W

8

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 96 128 128

Local
Attention

RepCNN=

Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3,1,4] ⇥1

SWMSAbn=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3,1,4] ⇥1 [128, 3,1,4] ⇥1 128, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

3 H

16 ⇥
W

16

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 192 256 224

Local
Attention

{RepCNN=

Embed. Kernel

Stride Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[192, 3,1,4] , [192, 192, 6, 4]}⇥2 {[256, 3,1,4] , [256, 256, 8, 4]}⇥2 {[224, 3,1,4] , [224, 224, 7, 4]}⇥5

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[192, 192, 6, 4], [192, 192, 6, 4]}⇥1 {[256, 256, 8, 4], [256, 256, 8, 4]}⇥1 {[224, 224, 7, 4], [224, 224, 7, 4]}⇥4

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[192, 3,1,4] ⇥1 [256, 3,1,4] ⇥1 [224, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

4 H

32 ⇥
W

32

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 288 384 384

Local
Attention

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[288, 288, 9, 4], [288, 288, 9, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[288, 3,1,4] ⇥1 [384, 3,1,4] ⇥ 1 [384, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[288, 288, 9, 4]⇥1 [384, 384, 12, 4]⇥1 [384, 384, 12, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

Table 18: Detailed Architectures of the HOB backbone of HotBEV on GTX 1080 ti. DQK is the
dimension of Queries and Keys. Exp refers to the expansion ratio of the MLP block.

Stage Resolution Type Config HotBEV
Nano Tiny Base

Image
Embed.

H

2 ⇥
W

2

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 48 64 64

H

4 ⇥
W

4

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 96 128 128

1 H

4 ⇥
W

4

Local
Attention

RepCNN=

Embed. Kernel

Stride Exp

�
[96, 3, 1, 4]⇥1 [128, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1

SWMSAbn=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128, 128, 4, 4] ⇥1 [128, 128, 4, 4] ⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128,128, 4, 4] ⇥1 [128, 128, 4, 4]⇥1

2 H

8 ⇥
W

8

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 96 128 128

Local
Attention

RepCNN=

Embed. Kernel

Stride Exp

�
[96, 3, 1, 4] ⇥1 [128, 3, 1, 4] ⇥1 [128, 3,1,4] ⇥1

SWMSAbn=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[96, 3,1,4] ⇥1 [128, 3,1,4] ⇥1 128, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4] ⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

3 H

16 ⇥
W

16

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 192 256 224

Local
Attention

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[192, 3,1,4], [192, 192,6,4]}⇥1 {[256, 256, 8, 4], [256, 256, 8, 4]}⇥1 {[256, 256, 8, 4], [256, 256, 8, 4]}⇥1

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[192, 3,1,4] ⇥1 [256, 3,1,4] ⇥1 [224, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[96, 96, 3, 4]⇥1 [128, 128, 4, 4]⇥1 [128, 128, 4, 4]⇥1

4 H

32 ⇥
W

32

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 288 384 384

Local
Attention

{RepCNN=

Embed. Kernel

Stride Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[288, 3,1,4] , [288, 288, 9, 4]}⇥2 {[384, 3,1,4] , [384, 384, 12, 4]}⇥2 {[384, 3,1,4] , [384, 384, 12, 4]}⇥5

{WMSAbn=

Embed. DQK

Heads Exp

�
,

SWMSAbn=

Embed. DQK

Heads Exp

�
}

{[288, 288, 9, 4], [288, 288, 9, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥1 {[384, 384, 12, 4], [384, 384, 12, 4]}⇥4

Global Position
Generator DWConv=


Embed. Kernel

Stride Exp

�
[288, 3,1,4] ⇥1 [384, 3,1,4] ⇥ 1 [384, 3,1,4] ⇥1

Global
Attention Convolutional Modulation=


Embed. DQK

Heads Exp

�
[288, 288, 9, 4]⇥1 [384, 384, 12, 4]⇥1 [384, 384, 12, 4]⇥1

SAM Convolutional Modulation=

Embed. DQK

Heads Exp

�
[192, 192, 6, 4]⇥1 [256, 256, 8, 4]⇥1 [224, 224, 7, 4]⇥1

23


