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Information Diffusion Prediction with Graph Neural Ordinary
Differential Equation Network

ABSTRACT
Information diffusion prediction aims to forecast the path of infor-
mation spreading in social networks. Prior works generally consider
the diffusion process to be driven by user correlations or prefer-
ences. Recent works focus on characterizing the dynamicity of user
preferences and propose to capture users’ dynamic preferences by
discretizing the diffusion process into structure snapshots. Despite
their effectiveness, these works summarize user preferences from
partially observed structure snapshots, ignoring that users’ prefer-
ences are evolving constantly. Moreover, discretizing the diffusion
process makes these models overlook abundant structure infor-
mation across different periods, reducing their ability to discover
potential participants. To address the above issues, we propose
a novel Graph Neural Ordinary Differential Equation Network
(GODEN) for information diffusion prediction, which incorporates
neural ordinary differential equations (ODE) to model the continu-
ous dynamics of the diffusion process. Specifically, we design two
coupled ODE functions on nodes and edges to describe their co-
evolution dynamic and infer user dynamic preferences based on
the solution of ODEs. Besides, we extract user correlations from a
heterogeneous graph to complement user encoding for prediction.
Finally, to predict the future user infections of the observed cascade,
we represent its diffusion pattern in terms of user and temporal con-
texts and apply a multi-head attention module to attend to different
contexts. Experimental results confirm our approach’s effective-
ness on four real-world datasets, with our model outperforming
the state-of-the-art diffusion prediction models.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Social networks.

KEYWORDS
social network, information diffusion prediction, graph neural net-
work, ordinary differential equations
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Information diffusion cascades
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𝐂𝐂 𝐇𝐇𝐀𝐀 𝐅𝐅 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 #𝟓𝟓

𝐁𝐁 𝐃𝐃𝐀𝐀 𝐄𝐄 𝐆𝐆 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 #𝟐𝟐

𝐀𝐀 𝐂𝐂 𝐅𝐅𝐁𝐁 𝐄𝐄 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 #𝟑𝟑

Figure 1: A simple example of information diffusion cascades.
Icons on the left represent the topic of cascades. Suppose the
overall diffusion process is split into three diffusion periods
[𝑡0, 𝑡4), [𝑡4, 𝑡7), [𝑡7, 𝑡9).

1 INTRODUCTION
In recent years, multimedia social networks have become indis-
pensable ways to publish and distribute information. Massive users
interact with others online, facilitating the rapid dissemination of
information and forming information cascades [37]. Effective pre-
diction of future participants in information cascades has become a
challenging but critical task for numerous social applications, such
as social recommendation [13, 30] and disinformation control [29].

Information diffusion prediction problems have spurred signifi-
cant research interest for decades. Existing works can be principally
summarized into three categories. 1) Feature engineering-based mod-
els [1, 34] assume that the diffusion process abides by predefined
diffusion functions or models. They generally extract representative
features of users and cascades to compute the diffusion probabili-
ties and fit them with predefined diffusion functions or models at
the macro level. However, these models are hardly generalized to
different domains due to their restrictive assumptions. 2) Sequence-
based models [10, 26, 32] model cascades as sequence data and
exploit sequence models, e.g., RNN or attention layer, to extract
user correlations within diffusion paths. Despite their progress,
their emphasis on sequential data caused them to neglect the im-
pact of social relations, failing to extend user correlations beyond
sequences. 3) Graph-based models [22, 27] introduce various graph
structures to extend user correlation, such as social networks and
diffusion networks. Most recently, some researchers [19, 31, 35] find
that user preferences also have a crucial impact on the diffusion
process. Considering the dynamic nature of users’ preferences, they
construct structure snapshots to discretize the diffusion process
into multiple periods and introduce graph neural networks(GNNs)
to describe users’ preferences at each period, which achieves en-
couraging prediction performance.

However, current models with dynamic graphs focus on summa-
rizing users’ preferences at each period based on partially observed
structure snapshots, which brings two natural deficiencies. For one,
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current models ignore the fact that users’ preferences are changing
constantly. Users may participate in different cascades in the same
diffusion period and show their varying preferences, e.g., user A at
the period [𝑡0, 𝑡4) in Figure 1. Summarizing all user interactions
at certain diffusion periods to describe their preferences brings
more harm than good in prediction. For example, when we pre-
dict the subsequent users in Cascade #4, fusing users’ preferences
can hardly achieve prediction, since only users A participates in
relevant cascade in period [𝑡0, 𝑡4). For another, current models con-
centrate on partially observed structures in each period, making
them neglect abundant user correlation across different periods. As
shown in Figure 1, when predicting the future diffusion trends in
Cascade #6 after timestamp 𝑡7, if we only consider user interactions
within each diffusion period, we find User𝐺 interacts with nobody.
However, from a global perspective, we could observe diffusion
structure 𝐶 → 𝐷 → 𝐹 , 𝐶 → 𝐸 → 𝐹 , and 𝐶 → 𝐻 → 𝐹 from
Cascade #1, Cascade #3, and Cascade #5, indicating that user 𝐹 is a
potential participant.

To solve the above problems, we propose a novel Graph neural
Ordinary Differential Equation Network (short for GODEN) for
information diffusion prediction. The key idea of GODEN is to char-
acterize the evolutionary dynamics of the diffusion process based
on graph structures. To achieve this goal, we first leverage three
types of relations to comprehensively characterize the diffusion
process and apply GNN to obtain the initial state of users. Then,
we design two coupled ODEs on users and their relations to charac-
terize their co-evolution dynamics since they are deeply correlated
in the diffusion process. We apply a channel attention mechanism
to infer users’ dynamic preferences based on the solution of the
ODE function. Besides, we apply a graph neural network to capture
users’ static correlations from a global perspective to complement
the users’ dynamic preferences. To predict future user infections,
we first represent the diffusion pattern of the observed cascade
based on its user context and temporal context. Then, we apply a
multi-head self-attention mechanism to attend to different contexts
and solve the information diffusion prediction problem.

Our main contributions are summarized as follows:
• We propose two coupled ODEs to learn the evolution pattern
for users and relations in the diffusion process and infer
users’ dynamic preferences.

• We extract users’ static correlations to extend their dynamic
preferences and represent the specific diffusion pattern of
cascades by learning the user context and temporal context
information to promote the prediction.

• We conducted extensive experiments on four public datasets.
The results show that GODEN outperforms state-of-the-art
models on the information diffusion prediction task, demon-
strating its effectiveness.

2 RELATEDWORK
2.1 Information Diffusion Prediction
The information diffusion prediction task aims to predict future
user infections based on historical diffusion paths, which have been
widely studied over decades. Existing diffusion prediction models
are mainly categorized into three categories: (1) feature engineering
models, (2) sequence-based models, and (3) graph-based models.

Early feature-engineering models believed the diffusion process
adheres to specific diffusion models, such as the independent cas-
cade model [11] and epidemic models. However, their stringent
assumptions constrain their ability to characterize complex diffu-
sion patterns in the real world. Some embedding-based models
further improve these models. They encode users as embeddings by
maximizing specific diffusion functions and infer future diffusion
probability through vector calculations. Although effective, this
class of methods still hardly generalizes to different social scenarios.

Sequential-based models emerged along with the fast develop-
ment of deep learning. They [10, 23, 32] treat diffusion cascades as
sequences and regard the information diffusion prediction as a se-
quential prediction task. Various sequential models, e.g., LSTM [8]
or attention mechanisms [21], are applied to capture sequential
and temporal features in information diffusion. NDM [32] employs
multi-head attention mechanisms to model the diffusion sequence
and incorporated convolution neural networks (CNNs) to alleviate
long-term memory loss in sequential modelling. HiDAN [28] builds
a hierarchical attention network to jointly capture user dependency
and the time decay effect in the diffusion sequence. However, users’
social structures, as one of the critical channels of information
diffusion, are generally overlooked by sequential-based models.

Due to the recent success of graph neural networks (GNNs),
graph-based models have demonstrated their effectiveness in tasks
of diffusion prediction. Various graph structures, mostly social
graphs, are also widely exploited to extract non-sequential user
correlations. SNIDSA [27] builds a novel recurrent model to jointly
incorporate social information from users and sequential informa-
tion from cascades. FOREST [33] encodes historical information in
cascades with GRU and combines it with neighbour information
from the social structure. CEGCN [22] jointly models users and cas-
cades in the same heterogeneous graph and extracts collaborative
diffusion patterns via graph neural networks. Most recently, some
studies [24, 35] have found that users’ preferences play a critical
role in facilitating information diffusion. Since users’ preferences
change as time passes, they model the diffusion process as a series
of structure snapshots and employ graph neural networks to cap-
ture users’ dynamic preferences. DyHGCN [35] extracts neighbour
influence and diffusion preferences as users’ dynamic preferences
via a heterogeneous GCN. MS-HGAT [19] introduces a sequential
hypergraph to capture users’ interaction preferences and integrate
them with static social relations to predict information diffusion.

Despite effectiveness, models with dynamic graphs simply sum-
marize users’ preferences based on observed structure snapshots
from each diffusion period, which ignores the continuous evolution
of users’ preferences and the abundant structure information across
different periods.

2.2 Graph Neural Networks
GNN is a class of neural networks that operate directly on graph-
structured data and have shown remarkable performance in various
domains. Recently, some researchers have extended GNNs to dy-
namic domains to capture the chronological characteristics of graph
structures. These models are generally split into discrete-time dy-
namic GNNs (DTDGNNs) and continuous-time dynamic GNNs
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(CTDGNNs). DTDGNNs [4, 17] discretize dynamic graphs as mul-
tiple structure snapshots and apply static GNN to process each
snapshot for node representation. For CTDGNNs [20, 25], they rep-
resent dynamic graphs as a series of node interactions with precise
timestamps in chronological order. They design specific recurrent
modules to aggregate historical messages to update the node state.

For diffusion prediction, existing dynamic-graph-based works
rely on DTDGNNs to summarize the users’ preferences at different
periods, failing to consider the continuous evolution of user prefer-
ences. Unlike existing works, we consider modelling the continuous
evolution of users’ preferences with ODEs.

2.3 Ordinary Differential Equation
Neural ODEs [3] have been proposed as a new paradigm for gener-
alizing discrete deep neural networks to continuous-time scenarios.
They specify the dynamics of the hidden state using a neural net-
work 𝑓𝜃 with parameters 𝜃 . Given an initial state x(0) They define
a hidden state x(𝑡) as a solution to the ODE initial-value problem
(IVP):

x(𝑡) = x(0) +
∫ 𝑡

0

dx
d𝜏

d𝜏 = x(0) +
∫ 𝑡

0
𝑓𝜃 (x(𝜏), 𝜏)d𝜏 (1)

x(𝑡) can be evaluated at any desired time through a numerical ODE
solver without any internal operations [3], which allows Neural
ODE to be built as a block for the whole neural network. Due to
their superior performance and flexible capability, neural ODEs
have been widely adopted in various research fields, such as traf-
fic flow forecasting [6] and sequential recommendation [16]. Re-
cently, some advanced methods connect GNNs with neural ODEs.
GODE [14] generalizes the concept of continuous-depth models
to graphs and parameterizes the derivative of hidden node states
with GNNs. Inspired by the outstanding performance of ODEs in
dynamic systems, we introduce ODEs to model the continuous
dynamics in the diffusion process.

3 PRELIMINARY
3.1 Problem Formulation
Normally, an information diffusion process is recorded as a cascade
𝑐𝑚 = {(𝑢𝑚1 , 𝑡

𝑚
1 ), (𝑢𝑚2 , 𝑡

𝑚
2 ), ..., (𝑢𝑚

𝐿𝑚
, 𝑡𝑚
𝐿𝑚

)} in chronological order,
where element (𝑢𝑚

𝑖
, 𝑡𝑚
𝑖
) denotes that user 𝑢𝑚

𝑖
performs an action

to participation 𝑐𝑚 at time 𝑡𝑚
𝑖
, e.g., forwarding a Twitter message.

𝐿𝑚 is the maximum cascade length. The cascade 𝑐𝑚 can be further
divided into user sequence 𝑐𝑢𝑚 = {𝑢𝑚1 , 𝑢

𝑚
2 , ..., 𝑢

𝑚
𝐿𝑚

} or timestamp
sequence 𝑐𝑡𝑚 = {𝑡𝑚1 , 𝑡

𝑚
2 , ..., 𝑡

𝑚
𝐿𝑚

}, if we focus only on the orders
of users or the temporal information in the cascade 𝑐𝑚 . We col-
lect all historical cascades and users in C = {𝑐1, 𝑐2, ..., 𝑐 | C | } and
U = {𝑢1, 𝑢2, ..., 𝑢 |U | }, respectively. Moreover, describing and quan-
tifying various user relations in the diffusion process is essential to
the information diffusion prediction task. We then introduce graph
structures used in the paper: social graph G𝑠 , diffusion graph G𝑑 ,
and bipartite graph G𝑏 . They are shown in the right of Figure 2. The
social graph G𝑠 = {V𝑠 , E𝑠 } is a directed graph that describes The
social connections among users.V𝑠 is the set of nodes represent-
ing social users. E𝑠 is the set representing users’ social relations.
If the following relation exists from user 𝑢𝑖 to user 𝑢 𝑗 , a directed
edge 𝑢𝑖 → 𝑢 𝑗 will be added to edge set E𝑠 . Similarly, the diffusion

graph G𝑑 = {V𝑑 , E𝑑 } is a directed graph formed by users’ diffusion
connections. V𝑑 is the node set representing users in the histori-
cal cascades. E𝑑 is the edge set representing diffusion actions. If
we observe user 𝑢𝑖 forward information from user 𝑢 𝑗 , there is a
directed edge 𝑢𝑖 → 𝑢 𝑗 in the diffusion graph. The bipartite graph
describes the connection between cascades and their corresponding
users.V𝑑 is the node set that contains both user and cascade nodes.
E𝑑 is the edge set representing the connection between users and
cascades. we add a directed edge between each cascade node and
its users, i.e., 𝑢𝑖 → 𝑐𝑖 , 𝑢𝑖 ∈ 𝑐𝑖 .

Based on the above introductions, we describe the task of in-
formation diffusion prediction as: given the set of user U,
the set of historical cascades C, and an observed cascade 𝑐𝑜 ={
(𝑢𝑜
𝑖
, 𝑡𝑜
𝑖
) |𝑢𝑜

𝑖
∈ U, 𝑖 < 𝐿𝑐𝑜

}
. 𝐿𝑐𝑜 refers to the maximum length of 𝑐𝑜 .

Our goal is to compute the conditional probability �̂� 𝑗 = 𝑝 (𝑢 𝑗 |𝑐𝑜 )
to show how likely user 𝑢 𝑗 will participate in this cascade at the
next timestamp.

4 METHOD
This section introduces our graph neural ordinary differential equa-
tion network (GODEN). The overall architecture of GODEN is
shown in Figure 2, which has three major components: 1) User
encoding module, which generates user embeddings by modeling
the dynamic evolution of the diffusion process and capturing users’
static correlations. 2) Cascade representation module, which repre-
sents the diffusion pattern based on the temporal and user contexts
in the observed cascade. 3) Prediction module, which applies a
multi-head attention module to calculate the infection probability
of candidates.

4.1 User Encoding
4.1.1 Dynamic Preference Encoding. The information diffusion
process is affected by different factors. To comprehensively de-
scribe the diffusion process, we first merge social graph G𝑠 , diffu-
sion graph G𝑑 , and bipartite graph G𝑏 into heterogeneous graph
Gℎ = {Vℎ, Eℎ,Wℎ}. Vℎ = {𝑣ℎ |𝑣ℎ ∈ V𝑢 ∪V𝑏 } is the set of nodes
constructed by both the user nodes and the cascade nodes. Eℎ =

{E𝑠 ∪ E𝑑 ∪ E𝑏 } is the edge set with three types of relations.Wℎ =

{𝑒ℎ |𝑒ℎ ∈ Eℎ} is the set of edge weights to differentiate edge effects.
We initialize the weight of all edges as 1.

To infer the users’ dynamic preferences, we first encode both
users and cascades into embeddings as their initial state in the
diffusion process. We apply a GNN layer for user encoding and
design different aggregation strategies for user and cascade nodes
since they share different neighbor contexts in heterogeneous graph
Gℎ .

Specifically, for user node 𝑢𝑖 at the (𝑙 + 1)th GNN layer, its neigh-
bor contexts contain both user and cascade nodes. Therefore, we
divide the neighbors by the edge types and separately aggregate
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Figure 2: The overview architecture of GODEN.

their contextual information, which is formulated as,

a𝑢𝑖 (𝑙+1)N𝑢
= 𝑓 (

𝑒
𝑖 𝑗

ℎ

|N𝑢 |
∑︁

𝑢 𝑗 ∈N𝑢

W𝑢 (𝑙+1)
𝑢 𝑗

x𝑢 𝑗 (𝑙 ) ),

a𝑢𝑖 (𝑙+1)N𝑐
= 𝑓 (

𝑒𝑖𝑘
ℎ

|N𝑐 |
∑︁
𝑐 𝑗 ∈N𝑐

W𝑢 (𝑙+1)
𝑐𝑘

x𝑐𝑘 (𝑙 ) ),

x𝑢𝑖 (𝑙+1) = MLP(
[
a𝑢𝑖 (𝑙+1)N𝑢

; a𝑢𝑖 (𝑙+1)N𝑐
; x𝑢𝑖 (𝑙 )

]
),

(2)

where x(𝑙 )𝑢 𝑗
and x(𝑙 )𝑐𝑘 are the user embedding and cascade embed-

ding from the last layer.W𝑢 (𝑙+1)
𝑢 𝑗

andW𝑢 (𝑙+1)
𝑐𝑘

are learnable weight
matrices to aggregate contextual features from different neighbors.
N𝑢 and N𝑐 are set of user node and cascade node neighbors that
shares edges with 𝑢𝑖 . 𝑒𝑖𝑘ℎ and 𝑒𝑖 𝑗

ℎ
is the corresponding edge weights.

𝑓 (·) means the activation and norm operations.
Similarly, we perform context aggregation operations for cas-

cade nodes. We aggregate the user neighbors to construct cascade
embeddings. For the cascade node 𝑐𝑖 , the process is formulated as,

a𝑐𝑖 (𝑙+1)N𝑢
= 𝑓 (

𝑒
𝑖 𝑗

ℎ

|N𝑢 |
∑︁

𝑢 𝑗 ∈N𝑢

W𝑐 (𝑙+1)
𝑢 𝑗

x𝑢 𝑗 (𝑙 ) ),

x𝑐𝑖 (𝑙+1) = MLP(
[
a𝑐𝑖 (𝑙+1)N𝑢

; x𝑐𝑖 (𝑙 )
]
),

(3)

where x(𝑙 )𝑢 𝑗
is the user node embedding from the last layer.W(𝑙+1)

𝑢 𝑗
is

a learnable weightmatrix to aggregate contextual features from user
neighbors. N𝑢 is a set of user nodes that share bipartite relations
with cascade node 𝑐𝑖 .

As our model leverages the same GNN layer at different modules
to aggregate structural contexts, we denote the above GNN layer
as function 𝚿(G,X), where graph G and node embeddings X is
the input of GNN layers. Thus, the GNN layer to get node initial
state is 𝚿𝑑0 (Gℎ,X𝑑 (0) ), where the input node embedding matrix

X𝑑 (0) ∈ R( |U |+| C | )×𝑑 is generated from a normal distribution [7].
The embedding matrix to represent the initial state of nodes is X𝑑0 .

After obtaining the initial states for nodes, we characterize the
continuous dynamics of the diffusion process with ODE functions.
In diffusion processes, the states of users and their relations are
deeply correlated and could affect each other. For example, if a
user is interested in a piece of information and forwards it to his
social friends, the relationship between these users will be closer.
Similarly, if a user shares tight relationships with others, he is more
likely to be influenced by them and obtain information from them,
which will affect his preferences. Therefore, we propose to infer the
future state of users and their relations with different but coupled
ODE functions.

Typically, the state of edges is determined by the user it connects
and their initial attributes. We concatenate the node’s initial state to
represent the initial attributes of the edges and leverage the current
node state to infer edge states. Based on the current state of edges,
we could further update the graph structures to obtain future states
of users. Thus, the ODE for edges is defined as,

x𝑖→𝑗

0 = [x𝑢𝑖 ,𝑑0 ; x𝑢 𝑗 ,𝑑

0 ],

𝑑x𝑖→𝑗
𝑡

𝑑𝑡
= MLP𝑒

( [
x𝑡𝑖 ∥x

𝑡
𝑗

] )
+MLPinit

(
x𝑖→𝑗

0

)
,

𝑒
𝑖 𝑗
𝑡 = MLPweight

(
x𝑖→𝑗
𝑡

)
,

(4)

where x𝑖→𝑗

0 is the initial edge attributes. [; ] means concatenation
operation. x𝑖→𝑗

𝑡 represents the edge states at timestamp 𝑡 . 𝑒𝑖 𝑗𝑡 is the
new edge weights at timestamp 𝑡 . The graph structure at timestamp
𝑡 is G𝑡

ℎ
=

{
Uℎ, Eℎ,W𝑡

ℎ

}
.

Intuitively, the state of users is determined by their neighbors
and diffusion preference bias at the current timestamp. Moreover,
their preference bias at the initial state also deeply affects their
preferences in the future. Thus, we define the ODE function for
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nodes as follows,

𝑑X𝑑𝑡
𝑑𝑡

= Ψ𝑑

(
G𝑡
ℎ
,X𝑑𝑡

)
− X𝑑𝑡 + X𝑑0 (5)

where X𝑑𝑡 ∈ R( |U |+| C | )×𝑑 denotes the matrix representing all node
states at timestamp 𝑡 . G𝑡

ℎ
is the hetero generous graph with new

edge weights at timestamp 𝑡 .
Since we have modeled the dynamics of nodes and edges in the

diffusion process with Eq. 4 and Eq. 5. Given a continuous time 𝑡 ,
the value of nodes and edges can then be solved by a designated
ODE solver:

X𝑑𝑡 = ODESolver

(
dX𝑑𝑡
d𝑡

,X𝑑0 , 𝑡

)
𝑥
𝑖→𝑗
𝑡 = ODESolver

(
dx𝑖→𝑗
𝑡

d𝑡
, x𝑖→𝑗

0 , 𝑡

) (6)

To accurately and comprehensively describe users’ dynamic pref-
erences, we take 𝑁 solving steps for the ODE solver and obtain
user hidden states

{
X𝑑1 ,X

𝑑
2 , . . . ,X

𝑑
𝑁

}
at different timestamps. We

develop a channel attention mechanism to integrate users’ hid-
den state to infer users’ dynamic preferences. Formally, the users’
dynamic preference embedding can be computed as,

𝛼𝑖 =

exp
(
𝒂 ·W𝑎X𝑑𝑖

)
∑
𝑗∈𝑁 exp

(
𝒂 ·W𝑎X𝑑𝑗

) ,X𝑑 =
∑︁
𝑖∈𝑁

𝛼𝑖X𝑑𝑖 , (7)

where 𝒂 ∈ R𝑑 and W𝑎 ∈ R𝑑×𝑑 are trainable parameters. User
dynamic preference embedding matrix is denoted as X𝑑 ∈ R |U |×𝑑 .

4.1.2 Static Correlation Encoding. In the diffusion process, user
behaviors do not strictly abide by their preferences. Instead, they
may also follow specific interaction patterns. For example, although
social advertisers may show preferences for different products at
different times, they tend only to forward information to potential
buyers and reject sharing other information. Therefore, we extract
static user correlations from a global perspective to complement
users’ dynamic preferences.

Since heterogeneous graph Gℎ contains all historical user inter-
actions and social relations, we directly apply two layers of GNN to
extract users’ correlation from the heterogeneous graph, which is,

X𝑠 (2) = 𝚿
𝑠
2

(
Gℎ,𝚿𝑠1

(
Gℎ,X𝑠 (0)

))
, (8)

where input node embedding matrix X𝑠 (0) ∈ R( |U |+| C | )×𝑑 is
randomly initialize with normal distribution [7]. As cascade em-
beddings hardly provide help for prediction, we only collect the
user embedding from X𝑠 (2) as static correlation embedding matrix
X𝑠 ∈ R |U |×𝑑 .

We introduce a gated fusion strategy to integrate users’ dynamic
preferences with static correlations. For user 𝑢 𝑗 , his embeddings
x𝑢 𝑗

is derived from the following procedure,

𝑔 𝑗 = 𝜎

(
x𝑢 𝑗 ,𝑑W𝑑 + x𝑢 𝑗 ,𝑠W𝑠

)
,

x𝑢 𝑗 = 𝑔 𝑗x𝑢 𝑗 ,𝑑 + (1 − 𝑔 𝑗 )x𝑢 𝑗 ,𝑠 ,

(9)

where W𝑠 and W𝑑 are trainable parameters. We perform the same
operation for each user and obtain the user embedding matrix X𝑢 .

4.2 Cascade Representation
The future diffusion path of a cascade is affected by its diffusion
pattern, which can be reflected through the order of previously
infected users and infected timestamps in the cascade, i.e., user
context and temporal context. In this section, we represent the
diffusion pattern in the observed cascade according to its user and
temporal contexts to assist prediction.

4.2.1 Temporal Context Representation. Empirical studies [2, 10]
have shown that the influence of diffusion cascades decreases over
time, which is known as the time-decay effect. They consider the
diffusion process as a temporal point process and estimate the
activation timestamp through the time difference between each user
interaction. Inspired by them, we propose to capture the temporal
context by mapping the time difference into vector space with a
neural function.

For timestamp sequence 𝑐𝑡𝑜 = {𝑡𝑜1 , 𝑡
𝑜
2 , ..., 𝑡

𝑜
𝐿𝑜
} of observed cascade

𝑐𝑜 , we characterize its temporal context by the time difference
between each diffusion behavior, which is represented as Δ𝑡𝑜

𝑗
=

𝑡𝑖+1 − 𝑡𝑖 , 1 < 𝑖 < 𝐿𝑐𝑜 . We map each time difference Δ𝑡𝑜
𝑖
into a new

time label based on the constructed time intervals. The time label
is calculated by following the function,

𝝀𝑜
𝑖 =

⌊
Δ𝑡𝑜

𝑖
− 𝑡𝑚𝑖𝑛

⌈ (𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 ) /𝑙𝑡 ⌉

⌋
, (10)

where 𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛 are predefined maximum and minimum time dif-
ferences. 𝑙𝑡 is the number of time slots used to discretize the time
difference in the observed cascade. We transform 𝝀𝑜𝑖 into one-hot
embedding 𝒕𝑜

𝑖
∈ R𝑙𝑡 . Each element in 𝒕𝑜

𝑖
is set to 0, except for the

element in position 𝝀𝑜𝑖 is set to 1. Finally, we generate temporal
context encoding by capturing the time-decay pattern via an MLP
layer,

z𝑜,𝑡
𝑖

= tanh
(
W𝑡 𝒕

𝑜
𝑖 + b𝑡

)
, (11)

whereW𝑡 ∈ R𝑙𝑡×𝑑 and b𝑡 ∈ R𝑑 are learnable parameters. tanh(·)
is the activation function.

4.2.2 User Context Representation. Although we have encoded
users into embeddings, these embeddings contain massive con-
textual information from different relations and structures, which
hardly reflects the specific diffusion pattern in the observed cascade.
Thus, we incorporate a heuristic self-attention mechanism to filter
out relevant information among participants and aggregate them
to represent specific user contexts.

For the user sequence 𝑐𝑢𝑜 = {𝑢𝑜1 , 𝑢
𝑜
2 , ..., 𝑢

𝑜
𝐿𝑜
} of the observed cas-

cade, we first look up the user embedding matrix X𝑢 to transform
it into the user embedding sequence z𝑢𝑜 =

[
x𝑜1 , x

𝑜
2 , . . . , x

𝑜
𝐿𝑐𝑜

]
. Then,

we compute relevant scores between each user 𝑢 𝑗 ∈ 𝑐𝑢𝑜 and his
context user 𝑢𝑘 ∈ {𝑢1, ..., 𝑢 𝑗−1} and apply the weighted attention
score sum to aggregate the relevant information. Specifically, the
context-enhanced embedding x̂𝑜

𝑗
for 𝑢 𝑗 , is calculated as,

𝛽𝑘 𝑗 =

exp
(
𝜎 (W𝑘x𝑜𝑘 ) ⊙ 𝜎 (W𝑗x𝑜𝑗 )

)
∑𝑗−1
𝑟=1 exp

(
𝜎 (W𝑟x𝑜𝑟 ) ⊙ 𝜎 (W𝑗x𝑜𝑗 )

) ,
x̂𝑜𝑗 =

𝑗−1∑︁
𝑘=1

𝛽𝑘 𝑗x
𝑜
𝑗 ,

(12)
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where 𝛽𝑘 𝑗 denotes the relevance score between user 𝑢 𝑗 and 𝑢𝑘 .
W𝑑
𝑘
,W𝑑

𝑗
∈ R𝑑×𝑑 are transformation matrices to map the user em-

beddings into the different linear spaces tomeasure their correlation.
𝜎 (·) is the activation function. ⊙ denotes the Hadamard product
operation for user embeddings.

Moreover, information diffusion is a stochastic process driven by
multiple factors [36], which does not always abide by the diffusion
patterns learned from previously infected users. To comprehen-
sively characterize the user context in the observed cascade, we
apply a recursive residual connection layer to fuse the context-
enhanced embedding sequence with the user embedding sequence
to extend the contextual information for each user. Specifically,
for user 𝑢 𝑗 , the user context representation is derived from the
following procedure,

z𝑜,𝑢
𝑗

= LN(x𝑜𝑗 + LN(x𝑜𝑗 + x̂𝑜𝑗 )) (13)

where LN(·) means the layer normalization.
Finally, we concatenate temporal and user contexts to represent

the observed cascade. For user𝑢 𝑗 , his representation z𝑜𝑗 is computed
as,

z𝑜𝑗 = [z𝑜,𝑢
𝑗

; z𝑜,𝑡
𝑗
], (14)

where [; ] is the concatenate operation. The observed cascade 𝑐𝑜 is
represented as Z𝑜 =

[
z𝑜1 , z

𝑜
2 , . . . , z

𝑜
𝐿𝑐𝑜

]
∈ R𝐿𝑐𝑜 ×𝑑 .

4.3 Prediction
Althoughwe have represented the observed cascade asZ𝑜 by jointly
exploring its user and temporal contexts, the context-dependence
between each user is still unclear to achieve the prediction. There-
fore, we apply a multi-head decoding layer to attend to different
contextual information in the observed cascade efficiently. The
process could be formulated as follows:

Attention(Q,K,V) = softmax

(
QK𝑇
√
𝑑ℎ

+M

)
V,

o𝑑𝑖 = Attention
(
Z𝑜W𝑄

𝑖
,Z𝑜W𝐾

𝑖 ,Z
𝑜W𝑉

𝑖

)
,

Zℎ = [o𝑑1 ; o
𝑑
2 ; . . . ; o

𝑑
𝐻 ]W

𝑂 ,

(15)

where W𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
∈ R𝑑×𝑑ℎ , and W𝑂 ∈ R𝐻×𝑑ℎ×𝑑 are learn-

able parameters. 𝐻 is the number of heads in the multi-head self-
attention module. 𝑑ℎ is the scaling factor.M ∈ R𝐿𝑐𝑜 ×𝐿𝑐𝑜 is a matrix
to mask out future users to avoid label leakage, which is denoted
as,

M𝑖 𝑗 =

{
0 otherwise,
−∞ 𝑖 ≥ 𝑗 .

(16)

Then, we apply two layers of fully connected neural networks to
obtain attentive cascade representation Z𝑝 :

Z𝑝 = 𝜎 (ZℎWℎ
1 + b1)Wℎ

1 + b2 (17)

where Wℎ
1 ,W

ℎ
2 are all learnable transformation matrices. b1, b2 are

bias parameters.
Finally, we use the predicted cascade representations Z𝑝 to cal-

culate infected probabilities �̂�𝑖 𝑗 ∈ R𝐿𝑐𝑜 ×|U | for all users, i.e.,

�̂�𝑖 𝑗 = softmax(W𝑝Z𝑝 +Mask) (18)

whereW𝑝 ∈ R𝑑×𝑑 is a learnable parameter to calculate the infect
probability for each user. We utilize Mask ∈ R |U |×𝐿𝑐𝑜 matrix to
mask users who have already been activated in the observed cascade
sequence. We adopt cross-entropy loss as the objective to optimize
the information diffusion prediction task:

L(𝜃 ) = −
|𝑐𝑜 |∑︁
𝑖=2

|U |∑︁
𝑗=1

𝒚𝑖 𝑗 log(�̂�𝑖 𝑗 ), (19)

where 𝜃 represents all parameters that need to be learned in the
model 𝒚𝑖 𝑗 = 1 denotes that the predicted user 𝑢 𝑗 is infected at
timestamp 𝑡𝑜

𝑖
, otherwise 𝒚𝑖 𝑗 = 0.

5 EXPERIMENT
5.1 Experimental Setups
5.1.1 Datasets. We incorporate four publicly available real-world
datasets to evaluate the performance of our model. The detailed
statistics of the datasets are presented in Table 2. (1) Twitter [9]
records the tweets with URLs during October 2010 on Twitter and
its diffusion paths. The social relations are pre-defined by the fol-
lowing relation on Twitter. (2) Douban [19] is collected from a
Chinese social website named Douban, where people can share
their book reading statuses. The co-occurrence connection of users
is interpreted as their social relations. (3) Android [18] is collected
from Stack-Exchanges, a community Q&A website. Cascade refers
to a series of chronologically ordered posts associated with the
tag "Android". The social relation is pre-defined by user interac-
tions, e.g., answering or commenting on the same post. (4) Meme-
tracker1 [12] tracks the migration of frequent quotes and phrases,
i.e. memes. Each URL is treated as a user in the dataset.

5.1.2 Baselines. To evaluate the performance of GODEN, we select
eight information diffusion prediction models as baselines for com-
parison. We preserve the original parameter settings for each model.
The baseline models are (1) NDM [32] utilizes the self-attention
mechanism and convolution modules to attend to long-term user
correlation in cascade sequences. (3) FOREST [33] is a recurrent
model that employs GRU to learn sequential features and extracts
network structure information via GCN. (4) CEGCN [22] utilizes
GNNs to exploit collaborative patterns from other cascades for pre-
diction. (5) DyHGCN [35] applies GCN to learn users’ dynamic
preferences by discretising the diffusion process into heterogeneous
subgraphs (6)MS-HGAT [19] constructs a series of hyper-graphs
to model user interactions and integrate them with static social
relations to depict interaction dependencies among users. (7) Dis-
enIDP [5] leverages two hyper GCN to learn users’ intents in the
diffusion process and designs a self-supervised disentanglement
task to assist the procedure. (8) RotDiff [15] maps the users into
the hyperbolic representation space based on the social relations
and diffusion paths, which achieves state-of-the-art performances.

5.1.3 Implementation Details. We implement ourmodel in PyTorch
and conduct our experiments on an Ubuntu server equipped with
two 32 GB Nvidia V100 GPUs. GODEN is trained based on the
Adam optimizer with parameters 𝛽1 and 𝛽2 set to 0.90 and 0.99,
respectively. The learning rate is set as 0.001. The batch size in
1http://memetracker.org/
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Table 1: Experimental results on HITS score over four datasets (%).

Models Android Memetracker Twitter Douban

H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100
NDM 0.0339 0.0953 0.1572 0.2083 0.3663 0.4583 0.1934 0.2941 0.3573 0.1013 0.2123 0.3125
FOREST 0.0700 0.1514 0.2237 0.2963 0.4780 0.5786 0.2552 0.3850 0.4607 0.1868 0.3084 0.3857
CEGCN 0.1075 0.2109 0.2842 0.2951 0.5021 0.6112 0.3381 0.5140 0.5987 0.2078 0.3483 0.4267
DyHGCN 0.0842 0.1915 0.2679 0.2952 0.4864 0.5848 0.2901 0.4688 0.5719 0.1987 0.3289 0.3942
MS-HGAT 0.1049 0.1987 0.2781 0.2843 0.4966 0.6047 0.2996 0.4654 0.5735 0.2065 0.3504 0.4136
DisenIDP 0.0946 0.1916 0.2684 0.3074 0.5199 0.6280 0.3273 0.4799 0.5540 0.2059 0.3545 0.4284
RotDiff 0.1144 0.2304 0.3130 0.3066 0.5170 0.6206 0.3590 0.5246 0.6121 0.2216 0.3823 0.4637
GODEN 0.1201 0.2401 0.3269 0.3379 0.5430 0.6399 0.3811 0.5578 0.6475 0.2490 0.3926 0.4729
Improve.(%) 4.98 4.21 4.44 10.21 5.03 3.11 6.16 6.33 5.78 12.36 2.69 1.98

Table 2: Statistics of the datasets.

Datasets Twitter Douban Android Memetracker
# Users 12,627 12,232 9,958 4,709
# Social Links 309,631 348,280 48,573 -
# Cascades 3,442 3,475 679 12,661
Avg. Repost 10.74 6.18 2.27 44.00
Avg. Length 32.60 21.76 33.3 16.24

the training set is 16. The dimension of user embeddings is all set
to 𝑑 = 64. For user dynamic preference embeddings, we set the
hidden dimensions of GNN Ψ𝑑0 (·) as 128. The hidden state of edge
and nodes in ODEs are 256 and 128, respectively. We use Runge-
Kutta-4(RK-4) as the solver of our coupled ODE. For user static
correlation embeddings, we set the hidden dimensions of GNN
Ψ𝑠1 (·) and Ψ𝑠1 (·) as 128 and 64, respectively. The time interval 𝑙𝑡 to
map the time difference in the observed cascades into vector space
is set to 5000. The dimensionality of temporal context encoding 𝑑𝑡
is set to 8. The number of heads𝐻 in a multi-head attention module
is chosen from {8, 10, 12, 16} and set to 8 after comparison. For all
four datasets, we randomly sample 80% of cascades for training
and split the remaining 20% evenly for validation and testing. The
maximum cascade length is set to 200 for all datasets. Since infor-
mation diffusion prediction aims to predict user participation by
ranking all uninfected users according to their infection probabili-
ties, Following the evaluation protocol of previous works [19, 35],
we consider the task as an information retrieval task and evaluate
the performance of information diffusion prediction models with
two ranking metrics, i.e., Mean Average Precision on top 𝐾 and
HITS scores on top 𝐾 , with 𝐾 = [10, 50, 100]. We abbreviate them
as MAP@K (M@K) and Hits@K (H@K), respectively.

5.2 Experimental Results
The experimental results of the information diffusion prediction
task are shown in Table 1 and Table 3. Numbers in bold denote the
best results among all models and the underlined ones denote the
second best results. Improvements in GODEN are statistically sig-
nificant with 𝑝 < 0.01 on paired 𝑡-test. With the result, we have the
following observations, (O1) GODEN consistently and significantly
outperforms all state-of-the-art baselines on all four datasets under

different evaluation metrics. The relative improvements over the
best-performing baseline are at least 6.18% (O2) Generally, methods
applying graph data to explore user correlations beyond cascade
sequence perform well. Instead, NDM focuses on learning user
correlation in the sequence with attention mechanism gets limited
performance. FOREST, CEGCN, and DisenIDP extend user relations
with graph structure to improve prediction performance. DyHGCN
and MS-HGAT achieve relatively high performance by creating a
series of graph snapshots to describe the diffusion process. RotDiff
represents users in hyperbolic space to predict infection probability,
which achieves better performance than most methods based on
Euclidean space. (O3) GODEN achieves significant improvements
compared to all baselines. We attribute the improvement to two
reasons. For one, we leverage coupled ODE to model the continu-
ous dynamics of users and relations in the diffusion process, which
allows GODEN to infer users’ preferences accurately. For another,
we represent the diffusion pattern based on user and temporal
context in the observed cascade. This specific context information
could assist GODEN in retrieving users with similar preferences
and filtering out irrelevant users.

5.3 Ablation Study Results
To validate the contribution of each component in GODEN, we
design six variants for our model, which are 1) GODEN-DP removes
user dynamic preference embedding, which only utilizes the user
static correlation embedding for prediction. 2) GODEN-SC removes
the static correlation embedding of the user, which only utilizes
the dynamic preference embedding of the user for prediction. 3)
GODEN-CA removes channel attention to fuse multiple user pref-
erences embeddings and only solves coupled ODEs in one step. 4)
GODEN-ODE removes the ODE solver and leverages 3 layers of
GNN and MLP layer to model the dynamics of nodes and edges.
5) GODEN-EdgeODE removes edge ODE function and solves Eq. 5
with fixed graph structure. 6) GODEN-UC removes the user context
embedding in the cascade representation module and directly fuses
user embedding and temporal context for prediction.

The results of these variants are shown in Table 4. By analyzing
the results, we have the following observations: (1) All variants suf-
fer performance drops compared with GODEN, which shows that
each component is essential for prediction. Moreover, GODEN-UC
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Table 3: Experimental results on MAP score over four datasets.

Models Android Memetracker Twitter Douban

M@10 M@50 M@100 M@10 M@50 M@100 M@10 M@50 M@100 M@10 M@50 M@100
NDM 0.0160 0.0202 0.0210 0.0931 0.1031 0.1048 0.1169 0.1243 0.1256 0.0581 0.0651 0.0663
FOREST 0.0381 0.0416 0.0426 0.1553 0.1637 0.1751 0.1733 0.1790 0.1801 0.1086 0.1146 0.1183
CEGCN 0.0706 0.0750 0.0760 0.1654 0.1749 0.1765 0.2107 0.2189 0.2202 0.1202 0.1267 0.1278
DyHGCN 0.0633 0.0675 0.0685 0.1542 0.1641 0.1657 0.1880 0.1951 0.1965 0.1122 0.1187 0.1198
MS-HGAT 0.0458 0.0503 0.0514 0.1611 0.1623 0.1725 0.1751 0.1832 0.1847 0.1048 0.1114 0.1148
DisenIDP 0.0582 0.0623 0.0634 0.1624 0.1722 0.1737 0.2159 0.2228 0.2239 0.1041 0.1110 0.1121
RotDiff 0.0696 0.0745 0.0756 0.1653 0.1691 0.1766 0.2406 0.2482 0.2495 0.1170 0.1254 0.1266
GODEN 0.0739 0.0792 0.0804 0.1939 0.2036 0.2050 0.2480 0.2562 0.2575 0.1486 0.1553 0.1564
Improve.(%) 6.18 6.31 6.35 17.3 20.4 16.08 3.08 3.22 3.21 27.01 23.84 23.54

Table 4: Ablation study on three datasets.

Models
Twitter Douban Android

H@50 H@100 M@50 M@100 H@50 H@100 M@50 M@100 H@50 H@100 M@50 M@100
GODEN 0.5578 0.6475 0.2480 0.2562 0.3926 0.4729 0.1553 0.1564 0.2401 0.3269 0.0739 0.0792
GODEN-DP 0.5328 0.6275 0.2327 0.2340 0.3822 0.4575 0.1467 0.1478 0.2042 0.2873 0.0708 0.0719
GODEN-SC 0.5161 0.6202 0.2209 0.2224 0.3545 0.4340 0.1393 0.1404 0.1957 0.2911 0.0716 0.0730
GODEN-CA 0.5254 0.6403 0.1822 0.1839 0.3921 0.4712 0.1600 0.1612 0.2352 0.3137 0.0752 0.0764
GODEN-ODE 0.5176 0.6280 0.2001 0.2016 0.3434 0.4206 0.1211 0.1222 0.2089 0.2849 0.0689 0.070
GODEN-EdgeODE 0.5305 0.6244 0.2480 0.2494 0.3755 0.4527 0.1480 0.1491 0.2112 0.2888 0.0728 0.0749
GODEN-UC 0.5366 0.6139 0.2405 0.2506 0.3440 0.4234 0.1195 0.1206 0.2065 0.2888 0.0703 0.0715

suffers a significant performance drop in HIT scores, which sug-
gests that it is important to consider specific diffusion patterns in
the cascade to retrieve potential users. (2) Compared with GODEN,
the performance of variants GODEN-DP and GODEN-SC shows
that removing any type of user encoding mechanism would lead
to performance degradation. These results indicate that users’ dy-
namic preferences and static correlations are both key factors affect-
ing the diffusion process. (3) When we remove the ODE function
on edges(GODEN-EdgeODE), the model suffers from certain drops.
This result verifies that the hidden dynamic of users in the dif-
fusion process is influenced by their relations. When we remove
the ODE solver and estimate diffusion dynamics with only neu-
ral networks(GODEN-ODE), the model shows worse performance,
highlighting the importance of estimating hidden dynamics with
ODE functions instead of discrete neural networks.

5.4 Parameter Analyze Results
In this subsection, we conduct comparative experiments on the
Douban and Android datasets and further analyze the effect of
maximum cascade length. The result in Figure 3 shows that our
model could outperform other models in any cascade length, illus-
trating its stability and effectiveness. We contribute its remarkable
performance to our coupled ODE module, which could model the
hidden dynamics of the diffusion process and infer users’ dynamic
preferences accurately regardless of cascade length and duration.

6 CONCLUSION
In this work, we propose a novel graph ordinary differential equa-
tion network (GODEN) for information diffusion prediction, which

(a) Android

(b) Douban

Figure 3: Impact of maximum cascade length.

models the continuous dynamics of the diffusion process. With the
coupled ODEs to characterize the co-evolution dynamics of users
and their relations, GODEN could accurately infer users’ dynamic
preferences. Moreover, we extract static user correlation from the
heterogeneous graph to complement users’ dynamic preferences.
To predict the future infection probability, we first represent the
diffusion pattern in the observed cascade based on its temporal and
user contexts. Then, we leverage a multi-head attention mechanism
to attend to different contexts. The experimental results demon-
strate the effectiveness of GODEN.
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