
A Strongly log-concave distributions472

We also formally define the class of strongly log-concave distributions, which is the class that our473

target marginal D∗ is allowed to belong to, and collect some useful properties of such distributions.474

We will state the definition for isotropic D∗ (i.e. with mean 0 and covariance I) for simplicity.475

Definition A.1 (Strongly log-concave distribution, see e.g. [SW14, Def 2.8]). We say an isotropic476

distribution D∗ on Rd is strongly log-concave if the logarithm of its density q is a strongly concave477

function. Equivalently, q can be written as478

q(x) = r(x)γκ2I(x) (A.1)

for some log-concave function r and some constant κ > 0, where γκ2I denotes the density of the479

spherical Gaussian N (0, κ2I).480

Proposition A.2 (see e.g. [SW14]). Let D∗ be an isotropic strongly log-concave distribution on Rd481

with density q.482

(a) Any orthogonal projection of D∗ onto a subspace is also strongly log-concave.483

(b) There exist constants U,R such that q(x) ≤ U for all x, and q(x) ≥ 1/U for all ∥x∥ ≤ R.484

(c) There exist constants U ′ and κ such that q(x) ≤ U ′γκ2I(x) for all x.485

(d) There exist constants K1,K2 such that for any σ ∈ [0, 1] and any v ∈ Sd−1, P[|⟨v,x⟩| ≤486

σ] ∈ (K1σ,K2σ).487

(e) There exists a constant K3 such that for any k ∈ N, E[|⟨v,x⟩|k] ≤ (K3k)
k/2.488

(f) Let α = (α1, . . . , αd) ∈ Zd
≥0 be a multi-index with total degree |α| =

∑
i αi = k, and let489

xα =
∏

i x
αi
i . There exists a constant K4 such that for any such α, E[|xα|] ≤ (K4k)

k/2.490

For (a), see e.g. [SW14, Thm 3.7]. The other properties follow readily from Eq. (A.1), which allows491

us to treat the density as subgaussian.492

A key structural fact that we will need about strongly log-concave distributions is that approximately493

matching moments of degree at most Õ(1/τ2) with such a D∗ is sufficient to fool any function of a494

constant number of halfspaces up to an additive τ .495

Proposition A.3 (Variant of [GKK23, Thm 5.6]). Let p be a fixed constant, and let F be the class of496

all functions of p halfspaces mapping Rd to {±1} of the form497

f(x) = g
(
sign(⟨v1,x⟩+ θ1), . . . , sign(⟨vp,x⟩+ θp)

)
(A.2)

for some g : {±1}p → {±1} and weights vi ∈ Sd−1. Let D∗ be any target marginal such that498

for every i, the projection ⟨vi,x⟩ has subgaussian tails and is anticoncentrated: (a) P[|⟨vi,x⟩| >499

t] ≤ exp(−Θ(t2)), and (b) for any interval [a, b], P[⟨vi,x⟩ ∈ [a, b]] ≤ Θ(|b − a|). Let D be any500

distribution such that for all monomials xα =
∏

i x
αi of total degree |α| =

∑
i αi ≤ k,501 ∣∣∣ E

D∗
[xα]− E

D
[xα]

∣∣∣ ≤ ( c|α|
d
√
k

)|α|

for some sufficiently small constant c (in particular, it suffices to have d−Õ(k) moment closeness for502

every α). Then503

max
f∈F

∣∣∣ E
D∗

[f ]− E
D
[f ]
∣∣∣ ≤ Õ( 1√

k

)
.

Note that this is a variant of the original statement of [GKK23, Thm 5.6], which requires that the 1D504

projection of D∗ along any direction satisfy suitable concentration and anticoncentration. Indeed, an505

inspection of their proof reveals that it suffices to verify these properties for projections only along506

the directions {vi}i∈[p] as opposed to all directions. This is because to fool a function f of the form507

above, their proof only analyzes the projected distribution (⟨v1,x⟩, . . . , ⟨vp,x⟩) on Rp, and requires508

only concentration and anticoncentration for each individual projection ⟨vi,x⟩.509
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B Proofs for Section 3510

B.1 Proof of Proposition 3.1511

Our plan is to apply Proposition A.3. To do so, we must verify that D∗
|T satisfies the assumptions512

required. In particular, it suffices to verify that the 1D projection along any direction orthogonal to w513

has subgaussian tails and is anticoncentrated. Let v ∈ Sd−1 be any direction that is orthogonal to w.514

By Proposition A.2(d), we may assume that PD∗ [T ] ≥ Ω(σ).515

To verify subgaussian tails, we must show that for any t, PD∗
|T
[|⟨v,x⟩| > t] ≤ exp(−Ct2) for some516

constant C. The main fact we use is Proposition A.2(c), i.e. that any strongly log-concave density is517

pointwise upper bounded by a Gaussian density times a constant. Write518

P
D∗

|T

[|⟨v,x⟩| > t] =
PD∗ [⟨v,x⟩ > t and ⟨w,x⟩ ∈ [−σ, σ]]

PD∗ [⟨w,x⟩ ∈ [−σ, σ]]
.

The claim now follows from the fact that the numerator is upper bounded by a constant times the519

corresponding probability under a Gaussian density, which is at most O(exp(−C ′t2)σ) for some520

constant C ′, and that the denominator is Ω(σ).521

To check anticoncentration, for any interval [a, b], write522

P
D∗

|T

[⟨v,x⟩ ∈ [a, b]] =
PD∗ [⟨v,x⟩ ∈ [a, b] and ⟨w,x⟩ ∈ [−σ, σ]]

PD∗ [⟨w,x⟩ ∈ [−σ, σ]]
.

After projecting onto span(v,w) (an operation that preserves logconcavity), the numerator is the523

probability mass under a rectangle with side lengths |b− a| and 2σ, which is at most O(σ|b− a|) as524

by Proposition A.2(b) the density is pointwise upper bounded by a constant. The claim follows since525

the denominator is Ω(σ).526

Now we are ready to apply Proposition A.3. We see that if D|T matches moments of degree at most k527

with D∗
|T up to an additive slack of d−O(k), then |ED∗ [f | T ]− ED[f | T ]| ≤ Õ(1/

√
k). Rewriting528

in terms of τ gives the theorem.529

B.2 Proof of Proposition 3.2530

The tester T1 does the following:531

1. For all α ∈ Zd
≥0 with |α| = k:532

(a) Compute the corresponding moment E(x,y)∼D xα := 1
|S|
∑

x∈S xα.533

(b) If
∣∣E(x,y)∼D[xα]− Ex∼D∗ [xα]

∣∣ > 1
dk then reject.534

2. If all the checks above passed, accept.535

First, we claim that for some absolute constant C1, if the tester above accepts, we have536

E(x,y)∼D[(⟨v,x⟩)k] ≤ (C1k)
k/2 for any v ∈ Sd−1. To show this, we first recall that by Proposi-537

tion A.2(e) it is the case that E(x,y)∼D∗ [(⟨v,x⟩)k] ≤ (K3k)
k/2. But we have538 ∣∣∣∣ E

(x,y)∼D
[(⟨v,x⟩)k]− E

(x,y)∼D∗
[(⟨v,x⟩)k]

∣∣∣∣ ≤ ∑
α:|α|=k

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣
≤ dk · max

α:|α|=k

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣ ≤ 1

Together with the bound E(x,y)∼D∗ [(⟨v,x⟩)k] ≤ (K3k)
k/2, the above implies that539

E(x,y)∼D[(⟨v,x⟩)k] ≤ (C1k)
k/2 for some constant C1.540

Now, we need to show that if the elements of S are chosen i.i.d. fromD∗, and |S| ≥
(
dk,
(
log 1

δ

)k)C1

541

then the tester above accepts with probability at least 1−δ. Consider any specific multi-index α ∈ Zd
≥0542
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with |α| = k. Now, by Proposition A.2(f) we have the following:543

E
x∼D∗

[(
xα − E

z∼D∗
[zα]

)2 log(1/δ)
]
≤

2 log(1/δ)∑
ℓ=0

(
E

x∼D∗
(xα)

ℓ
)
·
(

E
z∼D∗

[zα]
)2 log(1/δ)−ℓ

≤
2 log(1/δ)∑

ℓ=0

(K4ℓk)
ℓk/2(K4k)

k(2 log(1/δ)−ℓ)/2

≤ 2 log(1/δ)(2K4 log(1/δ)k)
log(1/δ)k

This, together with Markov’s inequality implies that544

P

[∣∣∣∣∣ 1|S|∑
x∈S

xα − E
x∼D∗

[xα]

∣∣∣∣∣ > 1

dk

]
≤
(
dk(3K4k log(1/δ))

k/2

|S|

)2 log(1/δ)

Since S is obtained by taking at least |S| ≥
(
dk,
(
log 1

δ

)k)C1

, for sufficiently large C1 we see that545

the above is upper-bounded by 1
dk δ. Taking a union bound over all α ∈ Zd

≥0 with |α| = k, we see546

that with probability at least 1− δ the tester T1 accepts, finishing the proof.547

B.3 Proof of Proposition 3.3548

Let K1 be as in part (d) of Proposition A.2. The tester T2 computes the fraction of elements in S549

that are in T . If this fraction is K1σ/2-close to Px∼D∗ [|⟨w,x⟩| ≤ σ], the algorithm accepts. The550

algorithm rejects otherwise.551

Now, from (d) of Proposition A.2 we have that Px∼D∗ [|⟨w,x⟩| ≤ σ] ∈ [K1σ,K2σ]. Therefore, if552

the fraction of elements in S that belong in T is K1σ/100-close to Px∼D∗ [|⟨w,x⟩| ≤ σ], then this553

quantity is in [K1σ/2, (K2 +K1/2)σ] as required.554

Finally, if |S| ≥ 100
K1σ2 log

(
1
δ

)
by standard Hoeffding bound, with probability at least 1−δ we indeed555

have that the fraction of elements in S that are in T is K1σ/2-close to Px∼D∗ [|⟨w,x⟩| ≤ σ].556

B.4 Proof of Proposition 3.4557

The tester T3 does the following:558

1. Runs the tester T2 from Proposition 3.3. If T2 rejects, T3 rejects as well.559

2. Let S|T be the set of elements in S for which x ∈ T .560

3. Let k = Õ(1/τ2) be chosen as in Proposition 3.1.561

4. For all α ∈ Zd
≥0 with |α| = k:562

(a) Compute the corresponding moment E(x,y)∼D[xα | x ∈ T ] := 1
|S|T |

∑
x∈S|T

xα.563

(b) If
∣∣E(x,y)∼D[xα | x ∈ T ]− Ex∼D∗ [xα | x ∈ T ]

∣∣ > τ
dk · d−Õ(k) then reject, where564

the polylogarithmic in d−Õ(k) is chosen to satisfy the additive slack condition in565

Proposition 3.1.566

5. If all the checks above passed, accept.567

First, we argue that if the checks above pass, then Equations 3.3 and 3.4 will hold. If the tester passes,568

Equation 3.3 follows immediately from the guarantees in step (4b) of T3 together with Proposition569

3.1. Equation 3.4, in turn, is proven as follows:570 ∣∣∣∣ E
(x,y)∼D

[(⟨v,x⟩)2]− E
(x,y)∼D∗

[(⟨v,x⟩)2]
∣∣∣∣ ≤ ∑

α:|α|=2

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣
≤ d2 · max

α:|α|=2

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣ ≤ τ
14



Now, we need to show that if the elements of S are chosen i.i.d. from D∗, and |S| ≥ ... then the571

tester above accepts with probability at least 1− δ. Consider any specific mult-index α ∈ Zd
≥0 with572

|α| = k. Now, by Proposition A.2(f) we have for any positive integer ℓ the following:573

E
x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣] ≤ (K4ℓk)

k/2

But by Proposition A.2(d) we have that Px∼D∗ [x ∈ T ] = Px∼D∗ [|⟨x,w⟩| ≤ σ] ≥ K1σ. Therefore,574

the density of the distribution D∗
|T (which is defined as the distribution one obtains by taking D∗ and575

conditioning on x ∈ T ) is upper bounded by the product of the density of the distribution D∗ and576
1

K1σ
. This allows us to bound577

E
x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣ | x ∈ T] ≤ 1

K1σ
E

x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣] ≤ (K4ℓk)

k/2

K1σ

This implies that578

E
x∼D∗

[(
xα − E

z∼D∗
[zα | z ∈ T ]

)2 log(1/δ)

| x ∈ T
]

≤
2 log(1/δ)∑

ℓ=0

(
E

x∼D∗

[
(xα)

ℓ | x ∈ T
])
·
(

E
x∼D∗

[(xα | x ∈ T ])
)2 log(1/δ)−ℓ

≤ 1

(K1σ)2 log(1/δ)

2 log(1/δ)∑
ℓ=0

(K4ℓk)
ℓk/2(K4k)

k(2 log(1/δ)−ℓ)/2

≤ 1

(K1σ)2 log(1/δ)
2 log(1/δ)(2K4 log(1/δ)k)

log(1/δ)k

This, together with Markov’s inequality implies that579

P

[∣∣∣∣∣ 1|S|∑
x∈S

xα − E
x∼D∗

[xα]

∣∣∣∣∣ > τ

dk
· d−Õ(k)

]
≤

(
dÕ(k)(3K4k log(1/δ))

k/2

K1σ|S|T |τ

)2 log(1/δ)

Now, recall that the tester T2 in step (1) accepted, we have |S|T | ≥ 1
C2σ
|S|. Since S is obtained by580

taking at least |S| ≥
(

1
τ ·

1
σ · d

1
τ2 logC5( 1

τ ) ·
(
log 1

δ

) 1
τ2 logC5( 1

τ )
)C5

, for sufficiently large C5 we see581

that the expression above is upper-bounded by 1
dk δ. Taking a union bound over all α ∈ Zd

≥0 with582

|α| = k, we see that with probability at least 1− δ the tester T3 accepts, finishing the proof.583

C Proofs from Section 4584

We first present the following Proposition, which ensures that we can form a loss function with certain585

desired properties.586

Proposition C.1. There are constants c, c′ > 0, such that for any σ > 0, there exists a continuously587

differentiable function ℓσ : R→ [0, 1] with the following properties.588

1. For any t ∈ [−σ/6, σ/6], ℓσ(t) = 1
2 + t

σ .589

2. For any t > σ/2, ℓσ(t) = 1 and for any t < −σ/2, ℓσ(t) = 0.590

3. For any t ∈ R, ℓ′σ(t) ∈ [0, c/σ], ℓ′σ(t) = ℓ′σ(−t) and |ℓ′′σ(t)| ≤ c′/σ2.591

Proof. We define ℓσ as follows.592

ℓσ(t) =



t
σ + 1

2 , if |t| ≤ σ
6

1, if t > σ
2

0, if t < −σ
2

ℓ+(t), t ∈ (σ6 ,
σ
2 ]

ℓ−(t), t ∈ [−σ
2 ,−

σ
6 )
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Figure 2: The function ℓσ used to smoothly approximate the ramp.

for some appropriate functions ℓ+, ℓ−. It is sufficient that we pick ℓ+ satisfying the following593

conditions (then ℓ− would be defined symmetrically, i.e., ℓ−(t) = 1− ℓ+(−t)).594

• ℓ+(σ/2) = 1 and ℓ+′(σ/2) = 0.595

• ℓ+(σ/6) = 2/3 and ℓ+′(σ/6) = 1/σ.596

• ℓ+′′ is defined and bounded, except, possibly on σ/6 and/or σ/2.597

We therefore need to satisfy four equations for ℓ+. So we set ℓ+ to be a degree 3 polynomial: ℓ+(t) =598

a1t
3 + a2t

2 + a3t+ a4. Whenever σ > 0, the system has a unique solution that satisfies the desired599

inequalities. In particular, we may solve the equation to get a1 = −9/σ3, a2 = 15/(2σ2), a3 =600

−3/(4σ) and a4 = 5/8. For the resulting function (see Figure 2 below and Figure 4 in the appendix)601

we have that there are constants c, c′ > 0 such that ℓ+′(t) ∈ [0, c/σ] and |ℓ+′′(t)| ≤ c′/σ2 for any602

t ∈ [σ/6, σ/2].603

C.1 Proof of Lemma 4.3604

We will prove the contrapositive of the claim, namely, that there are constants c1, c2, c3 > 0 such that605

if ∡(w,w∗),∡(−w,w∗) > c3√
1−2η

· σ, and τ ≤ c2, then ∥∇wLσ(w)∥2 ≥ c1(1− 2η).606

Consider the case where ∡(w,w∗) < π/2 (otherwise, perform the same argument for −w). Let607

v be a unit vector orthogonal to w that can be expressed as a linear combination of w and w∗608

and for which ⟨v,w∗⟩ = 0. Then {v,w} is an orthonormal basis for V = span(w,w∗). For any609

vector x ∈ Rd, we will use the following notation: xw = ⟨w,x⟩, xv = ⟨v,x⟩. It follows that610

projV (x) = xww + xvv, where projV is the operator that orthogonally projects vectors on V .611

Using the fact that ∇w(⟨w,x⟩/∥w∥2) = x − ⟨w,x⟩w = x − xww for any w ∈ Sd−1, the612

interchangeability of the gradient and expectation operators and the fact that ℓ′σ is an even function613

we get that614

∇wLσ(w) = E
[
− ℓ′σ(|⟨w,x⟩|) · y · (x− xww)

]
Since the projection operator projV is a contraction, we have ∥∇wLσ(w)∥2 ≥ ∥projV ∇wLσ(w)∥2,615

and we can therefore restrict our attention to a simpler, two dimensional problem. In particular, since616
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Figure 3: Critical regions in the proofs of main structural lemmas (Lemmas 4.3, 5.2). We analyze the
contributions of the regions labeled A1, A2 to the quantities A1, A2 in the proofs. Specifically, the
regions A1 (which have height σ/3 so that the value of ℓ′σ(xw) for any x in these regions is exactly
1/σ, by Proposition C.1) form a subset of the region G, and their probability mass under DX is (up to
a multiplicative factor) a lower bound on the quantity A1 (see Eq (C.3)). Similarly, the region A2 is a
subset of the intersection of Gc with the band of height σ, and has probability mass that is (up to a
multiplicative factor) an upper bound on the quantity A2 (see Eq (C.4)).

projV (x) = xww + xvv, we get617

∥projV ∇wLσ(w)∥2 =
∥∥∥E[− ℓ′σ(|xw|) · y · xvv

]∥∥∥
2

=
∣∣∣E[− ℓ′σ(|xw|) · y · xv

]∣∣∣
=
∣∣∣E[− ℓ′σ(|xw|) · sign(⟨w∗,x⟩) · (1− 21{y ̸= sign(⟨w∗,x⟩)}) · xv

]∣∣∣
Let F (y,x) denote 1−21{y ̸= sign(⟨w∗,x⟩)}. We may write xv as |xv| · sign(xv) and let G ⊆ R2618

such that sign(xv) · sign(⟨w∗,x⟩) = −1 iff x ∈ G. Then, sign(xv) · sign(⟨w∗,x⟩) = 1{x ̸∈619

G} − 1{x ∈ G}. We get620

∥ projV ∇wLσ(w)∥2 =

=
∣∣∣E[ℓ′σ(|xw|) · (1{x ∈ G} − 1{x ̸∈ G}) · F (y,x) · |xv|·

]∣∣∣ ≥
≥ E

[
ℓ′σ(|xw|) · 1{x ∈ G} · F (y,x) · |xv|

]
− E

[
ℓ′σ(|xw|) · 1{x ̸∈ G} · F (y,x) · |xv|

]
Let A1 = E[ℓ′σ(|xw|) ·1{x ∈ G} ·F (y,x) · |xv|] and A2 = E[ℓ′σ(|xw|) ·1{x ̸∈ G} ·F (y,x) · |xv|].621

(See Figure 3.) Note that Ey|x[F (y,x)] = 1− 2η(x) ∈ [1− 2η, 1], where 1− 2η > 0. Therefore, we622

have that A1 ≥ (1− 2η) · E[ℓ′σ(|xw|) · 1{x ∈ G} · |xv|] and A2 ≤ E[ℓ′σ(|xw|) · 1{x ̸∈ G} · |xv|].623

Note that due to Proposition C.1, ℓ′σ(|xw|) ≤ c/σ for some constant c and ℓ′σ(|xw|) = 0 whenever624

|xw| > σ/2. Therefore, if U2 is the band Bw(σ/2) = {x : |xw| ≤ σ/2} we have625

A2 ≤
c

σ
· E[1{x ̸∈ G} · 1{x ∈ U2} · |xv|] (C.1)

Moreover, for each individual x, we have ℓ′σ(|xw|) · 1{x ∈ G} · |xv| ≥ 0, due to the properties of ℓ′σ626

(Proposition C.1). Hence, for any set U1 ⊆ Rd we have that627

A1 ≥ (1− 2η) · E[ℓ′σ(|xw|) · 1{x ∈ G} · 1{x ∈ U1} · |xv|]
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Setting U1 = Bw(σ/6) = {x : |xw| ≤ σ/6}, by Proposition C.1, we get ℓ′σ(|xw|) · 1{x ∈ U1} =628
1
σ · 1{x ∈ U1}.629

A1 ≥
1− 2η

σ
· E[1{x ∈ G} · 1{x ∈ U1} · |xv|] (C.2)

We now observe that by the definitions of G,U1,U2, for any constant R > 0, there exist some630

constants c′, c′′ > 0 such that if σ/ tan θ < c′R (the points in R2 where ∂G intersects either ∂U1 or631

∂U2 have projections on v that are Θ(σ/ tan θ)) we have that632

1{x ∈ G} · 1{x ∈ U1} ≥ 1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1} and

1{x ∈ G} · 1{x ∈ U2} ≤ 1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}

By equations (C.1) and (C.2), we get the following bounds whose graphical representations can be633

found in Figure 3.634

A1 ≥
c′R(1− 2η)

σ
· E[1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1}] (C.3)

A2 ≤
c · c′′

tan θ
· E[1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}] (C.4)

So far, we have used no distributional assumptions. Now, consider the corresponding expectations635

under the target marginal D∗ (which we assumed to be strongly log-concave).636

I1 = E
D∗

[1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1}]

I2 = E
D∗

[1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}]

Any strongly log-concave distribution enjoys the “well-behaved" properties defined by [DKTZ20a],637

and therefore, if R is picked to be small enough, then I1 and I2 are of order Θ(σ) (due to upper and638

lower bounds on the two dimensional marginal density over V within constant radius balls – aka639

anti-anticoncentration and anticoncentration). Moreover, by Proposition A.2, we have P[x ∈ U1] and640

P[x ∈ U2] are both of order Θ(σ). Hence we have that there exist constants c′1, c
′
2 > 0 such that for641

the conditional expectations we have642

E
D∗

[
1{|xv| ∈ [c′R, 2c′R]}

∣∣ 1{x ∈ U1}] ≥ c′1
E
D∗

[
1{|xv| ≤ c′′σ/ tan θ}

∣∣ 1{x ∈ U2}] ≤ c′2
By assumption, Property (3.3) holds and, therefore, if τ ≤ c′1/2, c′2/2 =: c2, we get that643

E
DX

[
1{|xv| ∈ [c′R, 2c′R]}

∣∣ 1{x ∈ U1}] ≥ c′1/2
E
DX

[
1{|xv| ≤ c′′σ/ tan θ}

∣∣ 1{x ∈ U2}] ≤ c′2/2
Moreover, by Property (3.2), we have that (under the true marginal) P[x ∈ U1] and P[x ∈ U2] are644

both Θ(σ). Hence, in total, we get that for some constants c̃1, c̃2, we have645

A1 ≥ c̃1 · (1− 2η)

A2 ≤ c̃2 ·
σ

tan θ

Hence, if we pick σ = Θ((1− 2η) tan θ), we get the desired result.646

C.2 Proof of Proposition 4.4647

For the following all the probabilities and expectations are over DXY . First we observe that648

P[y ̸= sign(⟨w,x⟩)] ≤ P[y ̸= sign(⟨w,x⟩) ∩ y = sign(⟨w∗,x⟩)] + P[y ̸= sign(⟨w∗,x⟩)] ≤
≤ P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] + opt .

Then, we observe that by assumption that DXY satisfies Property (3.2), we have649

P[|⟨w,x⟩| ≤ σ] ≤ C3σ
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and that650

P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩) ∩ |⟨w,x⟩| > σ] ≤ P
[
|⟨v,x⟩| ≥ σ

tan θ

]
,

where v is some vector perpendicular to w. Using Markov’s inequality, we get651

P
[
|⟨v,x⟩| ≥ σ

tan θ

]
≤ (tan θ)k

σk
· E[|⟨v,x⟩|k] .

But, by assumption that DXY satisfies Property (3.1), there is some constant C1 > 0 such that652

E[|⟨v,x⟩|k] ≤ (C1k)
k/2. Thus653

P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] ≤ P[|⟨w,x⟩| ≤ σ]
+ P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩) ∩ |⟨w,x⟩| > σ]

≤ C3σ +
(C1k)

k/2(tan θ)k

σk
.

By picking σ appropriately in order to balance the two terms (note that this is a different σ than the654

one in Lemma 4.3), we get the desired result.655

D Proofs from Section 5656

D.1 Proof of Theorem 5.1657

We will follow the same steps as for proving Theorem 4.1. Once more, we draw a sufficiently large658

sample so that our testers are ensured to accept with high probability when the true marginal is indeed659

the target marginal D∗ and so that we have generalization, i.e. the guarantee that any approximate660

minimizer of the empirical error (error on the uniform empirical distribution over the sample drawn)661

is also an approximate minimizer of the true error. The algorithm we use is once more Algorithm662

1, but this time we make multiple calls for different parameters σ (and we run T1 with higher k, as663

we will see shortly) and reject if any of these calls rejects. If we accept, we output the output of the664

execution of Algorithm 1 with the minimum empirical error.665

The main difference between the Massart noise case and the agnostic case is that in the former we666

were able to pick σ arbitrarily small, while in the latter we face a more delicate tradeoff. To balance667

competing contributions to the gradient norm, we must ensure that σ is at least Θ(opt) while also668

ensuring that it is not too large. And since we do not know the value of opt, we will need to search669

over a space of possible values for σ that is only polynomially large in relevant parameters (similar to670

the approach of [DKTZ20b]). In our case, we may sparsify the space (0, 1] of possible values for σ671

up to accuracy Θ(( ϵ√
k
)1+1/k) and form a list of poly(k/ϵ) possible values for σ, one of which will672

satisfy c1σ −Θ(( ϵ√
k
)1+1/k) ≤ opt ≤ c1σ. hence, we perform the same (testing-learning) process673

for each of the possible values of σ and get a list of candidate vectors which is still of polynomial674

size.675

The final step is, again, to use Proposition 4.4, after running tester T1 with parameter k (Proposition676

3.2) and tester T2 with appropriate parameters for each of the candidate weight vectors. We get that677

our list contains a vector w with678

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c · k1/2 · θ1−1/(k+1),

where ∡(w,w∗) ≤ θ := c2σ for σ such that c1σ −Θ(( ϵ√
k
)1+1/k) ≤ opt ≤ c1σ.679

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c
√
k·
(c2
c1

opt+Θ
(( ϵ√

k

)1+ 1
k
))1− 1

k+1 ≤ O(
√
k ·opt1−

1
k+1 )+ ϵ .

However, we do not know which of the weight vectors in our list is the one guaranteed to achieve680

small error. In order to discover this vector, we estimate the probability of error of each of the681

corresponding halfspaces (which can be done efficiently, due to Hoeffding’s bound) and pick the one682

with the smallest error. This final step does not require any distributional assumptions and we do not683

need to perform any further tests.684
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In order to obtain our Õ(opt) quasipolynomial time guarantee, observe first that we may assume685

without loss of generality that opt ≥ 1/dC for some C; if instead opt = o(1/d2), say, then a686

sample of O(d) points will with high probability be noiseless, and so simple linear programming687

will recover a consistent halfspace that will generalize. Moreover, we may assume that opt ≤ 1/10,688

since otherwise achieving O(opt) is trivial (we may output an arbitrary halfspace). Let us adapt our689

algorithm so that we run tester T1 (see Proposition 3.2) multiple times for all k = 1, 2, . . . , ⌈log2 d⌉690

(this only changes our time and sample complexity by a polylog(d) factor). Then Proposition 4.4691

holds for some k∗ such that k∗ ∈ [log(1/opt), 2 log(1/opt)], since the interval has length at least 1692

(and therefore it contains some integer) and 2 log(1/opt) ≤ 2C log d ≤ log2 d (for large enough d).693

Therefore, by picking the best candidate we get a guarantee of order694

√
k∗ · opt1−1/k∗

=
√
k∗ · opt−1/k∗

opt

=
√
k∗ · 2

1
k∗ log 1

opt · opt

≤
√
2 log(1/opt) · 2 · opt (since log(1/opt) ≤ k∗ ≤ 2 log(1/opt))

= Õ(opt) .

This concludes the proof of Theorem 5.1.695

D.2 Proof of Lemma 5.2696

In the agnostic case, the proof is analogous to the proof of Lemma 4.3. However, in this case,697

the difference is that the random variable F (y,x) = 1 − 21{y ̸= sign(⟨w∗,x⟩)} does not have698

conditional expectation on x that is lower bounded by a constant. Instead, we need to consider an699

additional term A3 correcponding to the part 21{y ̸= sign(⟨w∗,x⟩)} and the term A1 will not be700

scaled by the factor (1− 2η) as in Lemma 4.3. Hence, with similar arguments we have that701

∥∇wLσ(w)∥2 ≥ A1 −A2 −A3 ,

where A1 ≥ c̃1, A2 ≤ c̃2 · σ
tan θ and (using properties of ℓ′σ as in Lemma 4.3 and the Cauchy-Schwarz702

inequality)703

A3 = 2E[ℓ′σ(|xw|) · 1{x ∈ G} · 1{y ̸= sign(⟨w,x⟩)} · |xv|] ≤

≤ 2c

σ
· E[1{x ∈ U2} · 1{y ̸= sign(⟨w,x⟩)} · |xv|] ≤

≤ 2c

σ
·
√
E[1{x ∈ U2} · (xv)2] ·

√
E[1{y ̸= sign(⟨w,x⟩)}] =

=
2c
√
opt

σ
·
√
E[⟨v,x⟩2 | x ∈ U2] · P[x ∈ U2] .

Similarly to our approach in the proof of Lemma 4.3, we can use the assumed properties (3.2) and704

(3.4) to get that705

A3 ≤ c̃3
√
opt√
σ
,

which gives that in order for the gradient loss to be small, we require opt ≤ Θ(σ).706

D.3 Proof of Theorem 5.3707

Before presenting the proof of Theorem 5.3, we prove the following Proposition, which is, essentially,708

a stronger version of Proposition 4.4 for the specific case when the target marginal distribution D∗709

is the standard multivariate Gaussian distribution. Proposition D.1 is important to get an O(opt)710

guarantee for the case where the target distribution is the standard Gaussian.711

Proposition D.1. Let DXY be a distribution over Rd × {±1}, w∗ ∈ argminw∈Sd−1 PDXY [y ̸=712

sign(⟨w,x⟩)] and w ∈ Sd−1. Let θ ≥ ∡(w,w∗) and suppose that θ ∈ [0, π/4]. Then, for a713

sufficiently large constant C, there is a tester that given δ ∈ (0, 1), θ, w and a set S of samples from714

DX with size at least
(
d
θ log

1
δ

)C
, runs in time poly

(
1
θ , d, log

1
δ

)
and with probability 1− δ satisfies715

the following specifications:716

• If the distribution DX is N (0, Id), the tester accepts.717
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• If the tester accepts, then we have:718

Pr
x∼S

[sign(⟨w∗,x⟩) ̸= sign(⟨w,x⟩)] ≤ O(θ)

Proof. The testing algorithm does the following:719

1. Given: Integer d, set S ⊂ Rd, w ∈ Sd−1, θ ∈ (0, π/4] and δ ∈ (0, 1).720

2. Let proj⊥w : Rd → Rd−1 denote the operator that projects a vector x ∈ Rd to it’s projection721

into the (d− 1)-dimensional subspace of Rd that is orthogonal to w.722

3. For i in
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
723

(a) Si ← {x ∈ S : ⟨w,x⟩ ∈ [iθ, (i+ 1)θ]}724

(b) If |Si|
|S| > 2θ, then reject.725

(c) If
∥∥∥ 1
|Si|
∑

x∈Si
(proj⊥w(x))(proj⊥w(x))T − I(d−1)

∥∥∥
op
> 0.1, reject.726

4. If 1
|S|
∑

x∈S 1|⟨w,x⟩|>
√

2 log 1
θ

> 5θ, then reject.727

5. If reached this step, accept.728

If the tester accepts, then we have the following properties for some sufficiently large constant C ′ > 0.729

For the following, consider the vector v ∈ Rd to be the vector that is perpendicular to w, lies within730

the plane defined by w and w∗ and ⟨v,w∗⟩ ≤ 0.731

1. Px∼S [|⟨w,x⟩| ∈ [θi, θ(i+ 1)]] ≤ C ′θ, for any i ∈
{
0,±1, . . . ,± 1

θ

√
2 log 1

θ

}
.732

2. Px∼Si

[
|⟨v,x⟩| > θ

tan θ · i
]
≤ C ′/i2, for any i ∈

{
0,±1, . . . ,± 1

θ

√
2 log 1

θ

}
.733

3. Px∼S

[
|⟨w,x⟩| ≥

√
2 log 1

θ

]
≤ C ′θ.734

Then, for k = 1
θ

√
2 log 1

θ and Stripi = {x ∈ Rd : ⟨w,x⟩| ∈ [θi, θ(i+ 1)]}, we have that735

Pr
x∼S

[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] ≤

k∑
i=−k

P
x∼S

[x ∈ Stripi] · P
x∼S

[
|⟨v,x⟩| > θ

tan θ
· i
∣∣∣ x ∈ Stripi

]
+ P

x∼S

[
|⟨w,x⟩| ≥

√
2 log

1

θ

]
≤

k∑
i=−k

|Si|
|S|
· P
x∼Si

[
|⟨v,x⟩| > θ

tan θ
· i
]
+ C ′θ ≤ (C ′)2θ ·

1 +
∑
i ̸=0

2

i2

+ C ′θ = O(θ)

Now, suppose the distribution DX is indeed the standard Gaussian N (0, Id). We would like to show736

that our tester accepts with probability at least 1− δ. Since D = N (0, Id), we see that for x ∼ D737

we have that x ·w is distributed as N (0, 1). This implies that738

• For all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
we have739

– Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ 1√
2π
θ740

– Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥ θ·min
x∈

[
−
√

2 log 1
θ−θ,
√

2 log 1
θ+θ

] 1√
2π
e−

x2

2 ≥741

θ2

10742
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• Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ 1√
2π
θ743

• Prx∼N (0,Id)

[
⟨w,x⟩ > 2

√
log 1

θ

]
=
∫∞
2
√

log 1
θ

1√
2π
e−

x2

2 dx ≤ θ
∫∞
0

1√
2π
e−

x2

2 dx = θ
2744

Therefore, via the standard Hoeffding bound, we see that for sufficiently large absolute constant C745

we have with probability at least 1− δ
4 over the choice of S that746

• For all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
we have747

– Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ θ748

– Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥ θ2

20749

• Prx∼S

[
⟨w,x⟩ > 2

√
log 1

θ

]
≤ θ750

• Prx∼S

[
⟨w,x⟩ < −2

√
log 1

θ

]
≤ θ751

Finally, we would like to show that conditioned on the above, the probability of rejection in step (3b)752

is small.753

Fact D.2. Given a set S ⊂ Rd−1 of i.i.d. samples from N (0, Id), with probability at least 1 −754

poly
(

|S|
d

)
we have755 ∥∥∥∥∥ 1

|S|
∑
x∈S

1⟨w,x⟩∈[iθ,(i+1)θ]xx
T − I(d−1)

∥∥∥∥∥
op

≤ 0.1

Now, since each sample xi is drawn i.i.d. from N (0, Id), we have that ⟨w,xi⟩ and proj⊥w(xi) are756

all independent from each other for all i. Since all the events we conditioned on depend on {⟨w,xi⟩}757

we see that {proj⊥w(xi)} are still distributed as i.i.d. samples from N (0, I(d−1)).758

Recall that one of the events we have already conditioned on is that Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥759

θ2

20 for all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
. This allows us to lower bound by θ2/20 the ratio |Si|/|S|.760

And since, as we described, for all these elements xi the vectors proj⊥w(xi) are distributed as i.i.d.761

samples from N (0, I(d−1)), we can use Fact D.2 to conclude that for sufficiently large absolute con-762

stant C, when |S| =
(
d
θ log

1
δ

)C
we have with probability 1− δ

4 for all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
763

that764 ∥∥∥∥∥ 1

|Si|
∑
x∈Si

(proj⊥w(x))(proj⊥w(x))T − I(d−1)

∥∥∥∥∥
op

≤ 0.1

Overall, this allows us to conclude that with probability at least 1− δ the tester accepts.765

We now present the proof of Theorem 5.3.766

In the proof of Theorem 5.1, when the target distribution is the standard Gaussian in d dimensions,767

we may apply Proposition D.1 (and run the corresponding tester), instead of Proposition 4.4, in order768

to ensure that our list will contain a vector w with769

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ P
DXY

[y ̸= sign(⟨w∗,x⟩)] + P
DXY

[sign(⟨w∗,x⟩) ̸= sign(⟨w,x⟩)]

≤ opt+O(θ)

where ∡(w,w∗) ≤ θ := c2σ and σ is such that c1σ −Θ(ϵ) ≤ opt ≤ c1σ, which gives the desired770

O(opt) + ϵ bound. To get the value of σ with the desired property, we once again sparsified the space771

(0, 1] of possible values for σ, this time up to accuracy Θ(ϵ).772
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Figure 4: Figure illustrating the (normalized) first two derivatives of the function ℓσ used to define the
non convex surrogate loss Lσ . The normalization is appropriate since ℓ′σ and ℓ′′σ are homogeneous in
1/σ and 1/σ2 respectively. In particular, we see that ℓ′σ ≤ Θ(1/σ) and |ℓ′′σ| ≤ Θ(1/σ2) everywhere.
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