
A.1 Appendix1

A.2 Discovery of Objects2

In contrast to other algorithms, DAF-Net learns to predict both a set of object properties yk of objects3

and a set of confidences ck for each object. This corresponds to the task of both predicting the number4

of objects in set of observations, as well as associated object properties. We evaluate the ability to5

regress object number in DAF-Net in scenarios where the number of objects is different than that of6

training. We evaluate on the Normal distribution with a variable number of component distributions,7

and measure inferred component through a threshold confidence. DAF-Net is trained on a dataset8

with 3 underlying components.9

We find in Figure A1 that DAF-Net is able to infer the presence of more component distributions (as10

they vary from 3 to 6), with improved performance when cluster centers are sharply separated (right11

figure of Figure A1).12

Components

In
fe

rr
ed

 C
om

po
ne

nt
s

Noisy Cluster Seperated Cluster

Components

In
fe

rr
ed

 C
om

po
ne

nt
s

Figure A1: Plots of inferred number of components using a confidence threshold in DAF-Net
compared to the ground truth number of clusters (DAF-Net is trained on only 3 clusters). We consider
two scenarios, a noisy scenario where cluster centers are randomly drawn from -1 to 1 (left) and a
scenario where all added cluster components are well seperated from each other (right). DAF-Net is
able to infer more clusters in both scenarios, with better performance when cluster centers are more
distinct from each other.

A.3 Qualitative Visualizations13

We provide an illustration of our results on the Normal clustering task in Figure A2. We plot the14

decoded values of hypothesis slots in red, with size scaled according to confidence, and ground-truth15

cluster locations in black. DAF-Net is able to selectively refine slot clusters to be close to ground16

truth cluster locations even with much longer observation sequences than it was trained on.17

We find that each component learned by DAF-Net is interpretable. We visualize attention weights of18

each hypothesis slot in Figure A3 and find that each hypothesis slot learns to attend to a local region19

next to the value it decodes to. We further visualize a plot of relevance weights in Figure A4 across20

increasing number of observations over different levels of noise in each distribution. We find that as21

Figure A2: Illustration of the clustering process. Decoded value of hypothesis (with size correspond-
ing to confidence) shown in red, with ground truth clusters in black. Observations are shown in
blue.

1



we see more observations, the relevance weight of new observations decreases over time, indicating22

that DAF-Net learns to pay the most attention towards the first set of observations it sees. In addition,23

we find that in distributions with higher variance, the relevance weight decreases more slowly, as later24

observations are now more informative in determining cluster centers.25

Figure A3: Plot of slots (left), and what slot each input assigns
the highest attention towards (right) (each slot is colored differently,
with assigned inputs colored in the same way). Note alignment of
regions on the right with point density on the left.

0 20 40 60 80 100
Observations

0.0

0.2

0.4

0.6

0.8

1.0

Up
da

te
 W

ei
gh

t

Update Magnitude over Updates
Noise 1.0
Noise 1.5
Noise 2.0

Figure A4: Plots of the magnitude of
relevance weights with increased obser-
vation number on different distributions
with higher standard deviation (noise).

A.4 Quantitative Results26

We report full performance of each different model across different distributions in Table 1. We find27

that DAF-Net is able to obtain better performance with increased number of observations across28

different distributions. In addition DAF-Net out-performs neural network baselines when evaluated29

on 30 observations across distributions except for rotation. For rotation we find that when training30

with 10,000 different distribution, DAF-Net exhibits better performance of 0.555 compared to Set31

Transformer Online performance of 0.647 and LSTM performance of 0.727.32

A.5 Distributions Details33

We provide detailed quantitative values for each distribution below. Gaussian centers are drawn34

uniformly from -1 to 1.35

1. Normal: Each 2D Gaussian has standard deviation 0.2.36

2. Mixed: Each distribution is a 2D Gaussian, with fixed identical variance across each individual37

dimension, but with the standard deviation of each distribution drawn from a uniform distribution38

from (0.04, 0.4).39

3. Elongated: Each distribution is a 2D Gaussian, where the standard deviation along each dimen-40

sion is drawn from a uniform distribution from (0.04, 0.4), but fixed across distributions.41

4. Angular: Each distribution is a 2D Gaussian with identical standard deviation across dimension42

and distribution, but points above π are wrapped around to −π and points below −π wrapped to43

π. Gaussian means are selected between (−π,−2π/3) and between (2π/3, π). The standard44

deviation of distributions is 0.3 ∗ π.45

5. Noise: Each distribution has 2 dimensions parameterized by Gaussian distributions with standard46

deviation 0.5, but with the values of the remaining 30 dimensions drawn from a uniform47

distribution from (−1, 1).48

2



Type Model Online Observations

10 30 50 100

Normal

DAF-Net + 0.235 (0.001) 0.162 (0.001) 0.146 (0.001) 0.128 (0.001
Set Transformer + 0.390 (0.002) 0.388 (0.002) 0.388 (0.002) 0.389 (0.001)

LSTM + 0.288 (0.001) 0.260 (0.001) 0.269 (0.001) 0.288 (0.001)
VQ + 0.246 (0.001) 0.172 (0.001) 0.147 (0.001) 0.122 (0.001)

Set Transformer + 0.295 (0.003) 0.261 (0.001) 0.253 (0.001) 0.247 (0.001)
K-means++ - 0.183 (0.002) 0.107 (0.001) 0.086 (0.001) 0.066 (0.001)

GMM - 0.189 (0.002) 0.118 (0.001) 0.087 (0.001) 0.067 (0.001)

Mixed

DAF-Net + 0.255 (0.002) 0.184 (0.001) 0.164 (0.001) 0.147 (0.001)
LSTM + 0.306 (0.002) 0.274 (0.001) 0.284 (0.001) 0.290 (0.001)

Set Transformer + 0.415 (0.002) 0.405 (0.001) 0.407 (0.001) 0.408 (0.001)
VQ + 0.262 (0.002) 0.192 (0.001) 0.169 (0.001) 0.145 (0.001)

Set Transformer - 0.309 (0.002) 0.274 (0.001) 0.266 (0.001) 0.261 (0.001)
K-means++ - 0.206 (0.003) 0.135 (0.001) 0.105 (0.001) 0.088 (0.001)

GMM - 0.212 (0.003) 0.136 (0.001) 0.105 (0.001) 0.079 (0.001)

Enlongated
DAF-Net + 0.258 (0.002) 0.192 (0.001) 0.173 (0.001) 0.161 (0.001)

LSTM + 0.314 (0.003) 0.274 (0.002) 0.288 (0.001) 0.300 (0.001)
Set Transformer + 0.394 (0.003) 0.391 (0.003) 0.394 (0.003) 0.394 (0.003)

VQ + 0.265 (0.003) 0.194 (0.002) 0.172 (0.001) 0.149 (0.001)
Set Transformer - 0.309 (0.002) 0.244 (0.002) 0.240 (0.001) 0.232 (0.001)

K-means++ - 0.213 (0.002) 0.139 (0.001) 0.113 (0.001) 0.092 (0.001)
GMM - 0.214 (0.002) 0.141 (0.001) 0.112 (0.001) 0.086 (0.001)

Rotation
DAF-Net + 0.892 (0.001) 0.794 (0.001) 0.749 (0.002) 0.736 (0.001)

LSTM + 0.799 (0.003) 0.796 (0.002) 0.795 (0.002) 0.794 (0.002)
Set Transformer + 0.793 (0.003) 0.794 (0.002) 0.782 (0.002) 0.782 (0.002)

VQ + 0.956 (0.003) 1.00 (0.003) 1.00 (0.003) 0.984 (0.003)
Set Transformer - 0.815 (0.003) 0.784 (0.002) 0.779 (0.002 0.772 (0.002)

K-means++ - 0.827 (0.004) 0.834 (0.003) 0.823 (0.002) 0.802 (0.001)
GMM - 0.842 (0.004) 0.875 (0.001) 0.867 (0.003) 0.848 (0.002)

Noise
DAF-Net + 0.375 (0.001) 0.343 (0.001) 0.338 (0.001) 0.334 (0.001)

LSTM + 0.419 (0.001) 0.406 (0.001) 0.405 (0.001) 0.407 (0.001)
Set Transformer + 0.434 (0.001) 0.424 (0.001) 0.425 (0.001) 0.424 (0.001)

VQ + 1.479 (0.002) 0.948 (0.002) 0.826 (0.001) 0.720 (0.001)
Set Transformer - 0.436 (0.001) 0.407 (0.002) 0.398 (0.001) 0.394 (0.001)

K-means++ - 1.836 (0.002) 1.271 (0.002) 1.091 (0.002) 0.913 (0.002)
GMM - 1.731 (0.002) 1.215 (0.002) 1.056 (0.002) 0.856 (0.002)

Table 1: Comparison of performance under different settings after training on different distribution
for a thousand iterations. We use a total of 3 components, and train models with 30 observations. We
report standard error in parentheses.

A.6 Model/Baseline Architectures49

Dense→ h

Dense→ h

LSTM(h)

Dense→ h

Dense→ output

(a) The model architecture of
the LSTM baseline. The hid-
den dimension h used is 96
for synthetic Gaussian distri-
butions and 128 for Image
datasets. For image experi-
ments, the first 2 and last 2
fully connected layers are re-
placed with image encoders
and decoders.

Dense→ h

Dense→ h

Set Transformer Encoder

Set Transformer Decoder

(b) The model architecture of
the Set Transformer baseline.
The hidden dimension h is 48
for the synthetic Gaussian dis-
tributions. We use the encoder
and decoder defined in [Lee
et al., 2018] with 4 heads and
hidden dimension h.

Dense→ h

Dense→ h

DAF-Net Memory

Dense→ h

Dense→ output

(c) The model architecture of DAF-Net.
The hidden dimension h is 64 is for syn-
thetic Gaussian distributions and 128
for the image experiments. We detail in
component of the memory of DAF-Net
memory below. For image experiments,
the first 2 and last 2 fully connected lay-
ers are replaced with image encoders
and decoders.

Figure A5: Architecture of different models.

3



5x5 Conv2d, 32, stride 2, padding 2

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 128, stride 2, padding 1

Flatten

Dense→ h

(a) The model architecture of the convolutional
encoder for image experiments.

Dense→ 4096

Reshape (256, 4, 4)

4x4 Conv2dTranspose, 128, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

3x3 Conv2d, 3, stride 1, padding 1

(b) The model architecture of the convolutional
decoder for image experiments.

Figure A6: Architectures of encoder and decoder models on image experiments.

We provide overall architecture details for LSTM in Figure A5a, for the set-transformer in Figure A5b50

and DAF-Net in Figure A5c. For image experiments, we provide the architecture of the encoder in51

Figure A6a and decoder in Figure A6b. Both LSTM, DAF-Net, and autoencoding baselines use the52

same image encoder and decoder.53

In DAF-Net memory, the function update(sk, nk, e) is implemented by applying a 2 layer MLP54

with hidden units h which concatenates the vectors sk, nk, e as input and outputs a new state uk of55

dimension h. The value nk is encoded using the function 1
1+nk

, to normalize the range of input to56

be between 0 and 1. The function attend(sk, nk, e) is implemented in an analogous way to update,57

using a 2 layer MLP that outputs a single real value for each hypothesis slot.58

For the function relevance(sk, nk, e), we apply NN1 per hypothesis slot, which is implemented as59

a 2 layer MLP with hidden units h that outputs a intermediate state of dimension h. (sk, nk, e)60

are fed into NN1 in an analogous manner to update. NN2 is applied to average of the intermediate61

representations of each hypothesis slot and is also implemented as a 2 layer MLP with hidden unit62

size h, followed by a sigmoid activation. We use the ReLU activation for all MLPs.63

A.7 Baseline Details64

All baseline models are trained using prediction slots equal to the ground truth of components. To65

modify the set transformer to act in an online manner, we follow the approach in [Santoro et al.,66

2018] and we apply the Set Transformer sequentially on the concatenation of an input observation67

with hypothesis slots. Hypothesis slots are updated based off new values of the slots after applying68

self-attention (Set Transformer Encoder). We use the Chamfer loss to train baseline models, with69

confidence set to 1.70

A.8 Ablation71

We investigate ablations of our model in Table 2. We ablate the components of sparsity loss, learned72

memory update, suppression of attention weights and relevance weights. We find that each component73

of our model contributes to improved performance.74

4



Sparsity Learned Supression Relevance Observations
Memory

10 30 50 100

– – – – 0.382 (0.003) 0.452 (0.003) 0.474 (0.003) 0.487 (0.003)
+ – – – 0.384 (0.001) 0.412 (0.001) 0.423 (0.001) 0.430 (0.003)
+ + – – 0.335 (0.002) 0.357 (0.002) 0.366 (0.003) 0.387 (0.001)
+ + + – 0.279 (0.001) 0.274 (0.001) 0.278 (0.001) 0.282 (0.001)
+ + + + 0.238 (0.001) 0.157 (0.001) 0.137 (0.001) 0.131 (0.001)

Table 2: We ablate each components of DAF-Net on the Normal distribution . When learned memory
is ablated, DAF-Net updates states based on observed values (appropriate in the Normal Distribution
dataset). We report Lcluster of predictions and report standard error in parentheses. We find that each
proposed component of our model is important for improved performance.

References75

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:76

A framework for attention-based permutation-invariant neural networks. arXiv preprint arXiv:1810.00825,77

2018.78

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane Weber, Daan Wierstra,79

Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational recurrent neural networks. In Advances in80

neural information processing systems, pages 7299–7310, 2018.81

5


