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Abstract

In the paper, we propose a class of efficient mirror descent ascent methods to
solve the nonsmooth nonconvex-strongly-concave minimax problems by using
dynamic mirror functions, and introduce a convergence analysis framework to
conduct rigorous theoretical analysis for our mirror descent ascent methods. For
our stochastic algorithms, we first prove that the mini-batch stochastic mirror
descent ascent (SMDA) method obtains a gradient complexity of O(κ3ε−4) for
finding an ε-stationary point, where κ denotes the condition number. Further, we
propose an accelerated stochastic mirror descent ascent (VR-SMDA) method based
on the variance reduced technique. We prove that our VR-SMDA method achieves
a lower gradient complexity of O(κ3ε−3). For our deterministic algorithm, we
prove that our deterministic mirror descent ascent (MDA) achieves a lower gradient
complexity of O(

√
κε−2) under mild conditions, which matches the best known

complexity in solving smooth nonconvex-strongly-concave minimax optimization.
We conduct the experiments on fair classifier and robust neural network training
tasks to demonstrate the efficiency of our new algorithms.

1 Introduction
Minimax optimization recently has attracted increased interest largely due to advance in many
machine learning applications such as generative adversarial networks (GANs) [14, 41], robust neural
networks training [32], fair learning [31], federated learning [10], and policy evaluation [43]. In the
paper, we study the following nonsmooth nonconvex-strongly-concave minimax problem:

min
x∈X

max
y∈Y

F (x, y) =
{
f(x, y) + g(x)− h(y)

}
, (1)

where the function f(x, y) : X ×Y → R is smooth and possibly nonconvex in x ∈ X and µ-strongly
concave in y ∈ Y , and the functions g(x) and h(y) are convex and possibly nonsmooth. Here
X ⊆ Rd and Y ⊆ Rp are compact and convex constraint sets, or X = Rd and Y = Rp. In many
machine learning problems, f(x, y) generally represents loss function and is a stochastic form, i.e.,
f(x, y) = Eξ[f(x, y; ξ)], where the random variable ξ follows an unknown data distribution. Here
both g(x) and h(y) frequently denote the nonsmooth regularization terms such as g(x) = ν1‖x‖1
and h(y) = ν2‖y‖1 with ν1, ν2 > 0. In fact, the above problem (1) comes from many machine
learning problems, such as fair classifier, robust training, nonlinear temporal-difference learning in
reinforcement learning [43] and robust federated learning [10].

When g(x) = 0 and h(y) = 0 in the problem (1), the classic gradient descent ascent (GDA) methods
[40, 27] can effectively solve this problem, which alternatively conducts a gradient descent update
on the variable x and a gradient ascent update on the variable y at each iteration. At the same time,
some stochastic GDA methods [40, 27, 30, 18, 46, 17] have been proposed to solve the stochastic
minimax problem (1), where f(x, y) = Eξ[f(x, y; ξ)]. More recently, some works [2, 4, 8] focus on
more general minimax problem (1), where both g(x) and h(y) are possibly nonsmooth. Meanwhile,
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Table 1: Gradient complexity of the representative first-order methods for obtaining an ε-stationary
point of the nonsmooth nonconvex minimax problem (1). Note that these comparison methods don’t
rely on some specific strong assumptions on the problem (1). Since the convergence properties of the
deterministic proximal gradient descent ascent (PGDA) [8] build on the Kurdyka-Lojasiewicz (KL)
geometry assumption, it be excluded. Here κ denotes condition number of objective function f(x, y)
in variable y. Since HiBSA algorithm [29] does not provide explicit dependence on κ, we use p(κ).

Type Algorithm Reference Loop(s) Gradient Complexity

Deterministic

HiBSA [29] Single O(p(κ)ε−2)
MAPGDA [2] Double O(κ3/2ε−2)

PAGDA [4] Single O(κ2ε−2)
MDA Ours Single O(

√
κε−2)

Stochastic
PASGDA [4] Single O(κ3ε−4)

SMDA Ours Single O(κ3ε−4)
VR-SMDA Ours Double O(κ3ε−3)

some (stochastic) proximal gradient descent ascent (PGDA) methods [2, 4, 8] have been presented to
solve the problem (1). However, they still suffer from the large sample complexities for finding an
stationary point of the minimax problem (1) without some specific strong assumptions such as KL
geometry (Please see Table 1).

In this paper, thus, we propose a class of efficient mirror descent ascent methods by using dynamic
mirror function (i.e., Bregman function). Specifically, our methods perform an adaptive mirror descent
update to variable x and an adaptive mirror ascent update to variable y alternatively at each iteration.
Our new algorithmic framework can generate many popular methods and their variants by adopting
different mirror functions. For example, by adopting the mirror functions ψ(x) = 1

2‖x‖
2 and

φ(y) = 1
2‖y‖

2, our methods will include the classic (proximal) gradient descent ascent algorithms.
Our main contributions are summarized as follows:

1) We propose a class of novel mirror descent ascent methods to solve the minimax problem (1)
by using dynamic mirror functions. Moreover, we provide a convergence analysis framework
for our mirror descent ascent methods.

2) We present a faster deterministic adaptive mirror descent ascent (MDA) method, which reaches
a lower gradient complexity of O(

√
κε−2) than the existing nonsmooth nonconvex minimax

methods. Meanwhile, we propose a fast stochastic mirror descent ascent (SMDA) method,
which requires O(κ3ε−4) stochastic gradient evaluations to obtain an ε-stationary point of the
problem (1).

3) We further propose an accelerated stochastic mirror descent ascent (VR-SMDA) method by
using the variance reduced technique of SARAH/SNVRG/SPIDER [37, 51, 12, 44]. Moreover,
we prove that our VR-SMDA reaches a lower gradient complexity of O(κ3ε−3).

In fact, when our methods solve the minimax problem (1) without nonsmooth regularization terms,
i.e., g(x) = 0 and h(y) = 0, our theoretical results also can apply these minimax problems without
nonsmooth regularization terms studied in [27, 28].

2 Related Works
In this section, we review some existing typical minimax optimization methods and stochastic mirror
descent methods, respectively.

2.1 Minimax Optimization Methods
Minimax optimization recently has been widely studied in machine learning community. The
convergence properties of (strongly) convex-(strongly) concave minimax optimization have been
studied in [42, 26, 35, 49]. Due to the popularity of nonconvex models in machine learning, many
recent studies focused on the nonconvex minimax problems such as robustly deep neural networks
training and GANs. For example, some effective gradient descent ascent (GDA) methods [40, 38,
27, 28, 46, 47, 17, 18, 19, 16] have been proposed for the nonconvex-(strongly) concave minimax
optimization. Specifically, Lin et al. [27] studied the convergence properties of both deterministic
and stochastic GDA methods. Subsequently, Luo et al. [30] proposed a class of faster stochastic
GDA methods based on variance reduced technique of SPIDER [12]. Huang et al. [18] proposed
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an accelerated single-loop stochastic GDA method based on momentum-based variance reduced
technique of STORM [9]. Recently, the nonconvex-nonconcave minimax optimization problems
with some specific structures also have been studied in [34, 48, 11, 33]. Specifically, Yang et al.
[48] and Diakonikolas et al. [11] have studied a class of specific nonconvex-nonconcave minimax
problems satisfying a so-called two-sided Polyak-Lojasiewicz inequality and stampacchia variational
inequality, respectively. More recently, Zhang et al. [50] and Li et al. [24] studied the lower bound of
sample complexity for nonconvex-strongly-concave minimax optimization. Xian et al. [45] studied
the decentralized nonconvex-strongly-concave minimax optimization. Meanwhile, some research
works [29, 2, 4, 8] began to study the nonsmooth nonconvex minimax problem (1).

2.2 Mirror Descent Methods

Mirror descent (a.k.a., Bregman gradient) method [7, 3] is a powerful optimization tool in machine
learning, since it can fit the geometry of optimization problems by choosing proper Bregman functions
[5, 6]. The mirror descent methods for convex optimization have been studied in [7, 3]. Subsequently,
Lei et al. [23] integrated the variance reduced technique to the mirror descent algorithm for stochastic
convex optimization. More recently, a variance-reduced adaptive stochastic mirror descent algorithm
[25] has been proposed to solve the nonsmooth nonconvex finite-sum mini optimization. Recently,
the mirror descent method also has been used to solve minimax optimization problems. For example,
Babanezhad et al. [1] presented a mirror-type algorithm for convex minimax optimization. Rafique
et al. [40] proposed a class of mirror descent methods for weakly convex minimax optimization.
Meanwhile, a new mirror descent-type method [34] has been proposed to solve a class of nonconvex-
nonconcave minimax problems with a non-monotone variational inequality structure. To the best of
our knowledge, recently few work focuses on explicitly using the mirror-decent-type method to solve
the nonsmooth nonconvex minimax problems.

3 Preliminaries
3.1 Notations

For two vectors x and y, 〈x, y〉 denotes their inner product. ‖ · ‖ denotes the `2 norm for vectors
and spectral norm for matrices, respectively. ∇xf(x, y) and ∇yf(x, y) denote the partial derivatives
w.r.t. variables x and y respectively, and let ∇f(x, y) =

(
∇xf(x, y),∇yf(x, y)

)
. ∂g(x) denotes

the subgradient set of function g(x). Given a convex closed set X , we define a projection operation
ProjX (α) = arg minx∈X ‖x− α‖2. Given the mini-batch samples B = {ξi}bi=1, we let∇fB(x) =
1
b

∑b
i=1∇f(x; ξi). Define an increasing σ-algebras Ft := {B1,B2, · · · ,Bt−1} for all t ≥ 2, then

let E[·] = E[·|Ft].

3.2 Standard Mirror Descent Method

Given a ρ-strongly convex and continuously-differentiable function ψ(x), i.e., 〈x1 − x2,∇ψ(x1)−
∇ψ(x2)〉 ≥ ρ‖x1−x2‖2, we define a Bregman divergence (i.e., Bregman distance) for any x, z ∈ X :

Dψ(z, x) = ψ(z)− ψ(x)− 〈∇ψ(x), z − x〉. (2)

To solve the problem minx∈X f(x), the mirror descent method [7, 3] uses the following form to
update the variable x, for all t ≥ 1

xt+1 = arg min
x∈X

{
f(xt) + 〈∇f(xt), x− xt〉+

1

α
Dψ(x, xt)

}
, (3)

where α > 0 is stepsize. In the above subproblem (3), the first two terms of its objective function is a
linear function approximated the function f(x), and the last term is a Bregman distance between x
and xt. Note that the constant terms f(xt) and 〈∇f(xt), xt〉 can be omitted in the above subproblem
(3). When choosing ψ(x) = 1

2‖x‖
2, we have Dψ(x, xt) = 1

2‖x − xt‖
2. Then the mirror descent

method will reduce to the standard projected gradient descent method.

3.3 Some Mild Assumptions

In the subsection, we introduce some mild assumptions for the problem (1).
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Assumption 1. (Smoothness) For the deterministic and mini-batch stochastic algorithms (MDA and
SMDA), we assume that the function f(x, y) has an Lf -Lipschitz gradient, i.e., for all x1, x2 ∈ X
and y1, y2 ∈ Y , we have

‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ Lf‖(x1, y1)− (x2, y2)‖. (4)

For our variance-reduced stochastic algorithm (VR-SMDA), we assume that each component function
f(x, y; ξ) has an Lf -Lipschitz gradient, i.e., for all x1, x2 ∈ X and y1, y2 ∈ Y , we have

‖∇f(x1, y1; ξ)−∇f(x2, y2; ξ)‖ ≤ Lf‖(x1, y1)− (x2, y2)‖, ∀ξ. (5)

In Assumption 1, the inequality (4) is commonly used in the minimax optimization [27, 2, 4, 8].
While the inequality (5) is frequently used in the variance-reduced stochastic optimization [30, 18].
Assumption 2. Each component function f(x, y; ξ) has an unbiased stochastic gradient with
bounded variance σ2, i.e.,

E[∇f(x, y; ξ)] = ∇f(x, y), E‖∇f(x, y; ξ)−∇f(x, y)‖2 ≤ σ2. (6)

Assumption 3. The function f(x, y) is µ-strongly concave w.r.t y, i.e., for all x ∈ X and y1, y2 ∈ Y ,
we have ‖∇yf(x, y1)−∇yf(x, y2)‖ ≥ µ‖y1 − y2‖. Then the following inequality holds

f(x, y1) ≤ f(x, y2) + 〈∇yf(x, y2), y1 − y2〉 −
µ

2
‖y1 − y2‖2. (7)

Assumption 4. The functions g(x) and h(y) are convex but possibly nonsmooth.

Assumption 3 shows that the function f(x, y) is µ-strongly concave w.r.t y. Assumption 4 shows
that the function h(y) is convex. Thus, the function {f(x, y)− h(y)} is strongly concave in y ∈ Y ,
there exists a unique solution to the problem maxy∈Y{f(x, y) − h(y)} for any x. Let y∗(x) =
arg maxy∈Y{f(x, y)− h(y)}, and Φ(x) = f(x, y∗(x))− h(y∗(x)) = maxy∈Y{f(x, y)− h(y)}.
Assumption 5. For any α ∈ R, the sub-level set {x : Φ(x) + g(x) ≤ α} is compact. The function
Φ(x) + g(x) is bounded below in X , i.e., F ∗ = infx∈X {Φ(x) + g(x)} > −∞.

Assumption 5 is frequently used in nonsmooth minimax optimization [8]. In fact, when h(y) = c
where c is a constant, we can only assume the function Φ(x) + g(x) is bounded below in X instead
of Assumption 5.

4 Mirror Descent Ascent Methods
In the section, we propose a class of novel mirror descent ascent methods to solve the problem (1).
Specifically, we first propose a deterministic mirror descent ascent (MDA) method, and stochastic
mirror descent ascent (SMDA) method. Then we further present an accelerated stochastic mirror
descent ascent (VR-SMDA) using variance reduced technique of SPIDER [12, 44].

4.1 MDA and SMDA algorithms
When f(x, y) is a deterministic function, we propose a deterministic mirror descent ascent (MDA)
method to solve the deterministic problem (1). When f(x, y) = Eξ[f(x, y; ξ)] is a stochastic
function, we propose a stochastic mirror descent ascent (SMDA) to solve the stochastic problem (1).
Specifically, Algorithm 1 shows the algorithmic framework of the MDA and SMDA algorithms.

In Algorithm 1, we use (stochastic) mirror decent to update variable x, and simultaneously use
(stochastic) mirror ascent to update variable y. Specifically, at step 7 of Algorithm 1, we use the
mirror descent to update x,

xt+1 = arg min
x∈X

{
〈vt, x〉+

1

γt
Dψt(x, xt) + g(x)

}
(8)

= arg min
x∈X

{
f(xt, yt) + 〈vt, x− xt〉+

1

γt
Dψt(x, xt) + g(x)

}
. (9)

In fact, we omit the constant terms f(xt, yt) and 〈vt, xt〉 in the above subproblem (8). In the above
subproblem (9), the first two terms of its objective function is a linear function approximated the
function f(x, y) based on (stochastic) derivative estimator vt, and the third term is a Bregman distance
between x and xt based on Bregman function ψt. Since the function g(x) is possibly nonsmooth, we
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Algorithm 1 (Stochastic) Mirror Descent Ascent Algorithm

1: Input: T , stepsizes {γt > 0, λt > 0, ηt ∈ (0, 1]}Tt=1, mini-batch size b ;
2: initialize: x1 ∈ X and y1 ∈ Y;
3: for t = 1, 2, . . . , T do
4: MDA: Compute partial derivatives vt = ∇xf(xt, yt) and wt = ∇yf(xt, yt);
5: SMDA: Generate randomly mini-batch samples Bt = {ξit}bi=1 with |Bt| = b, and compute

stochastic partial derivatives vt = ∇xfBt(xt, yt) and wt = ∇yfBt(xt, yt);
6: Given the mirror functions ψt and φt;
7: xt+1 = arg minx∈X

{
〈vt, x〉+ 1

γt
Dψt(x, xt) + g(x)

}
;

8: yt+1 = yt + ηt(ỹt+1 − yt) where ỹt+1 = arg maxy∈Y
{
〈wt, y〉 − 1

λt
Dφt(y, yt)− h(y)

}
;

9: end for
10: Output: xζ and yζ chosen uniformly random from {xt, yt}Tt=1.
11: Output: (for theoretical) xζ and yζ chosen uniformly random from {xt, yt}Tt=1.
12: Output: (for practical) xT and yT .

keep it in the above subproblem (9) as the standard proximal descent algorithm [39]. Similarly, at
step 8 of Algorithm 1, we use the mirror ascent to update y,

ỹt+1 = arg max
y∈Y

{
〈wt, y〉 −

1

λt
Dφt(y, yt)− h(y)

}
(10)

= arg max
y∈Y

{
f(xt, yt) + 〈wt, y − yt〉 −

1

λt
Dφt(y, yt)− h(y)

}
. (11)

In the above subproblem (11), the first two terms of its objective function is a linear function
approximated the function f(x, y) based on (stochastic) derivative estimator wt, and the third term
is a Bregman distance between y and yt based on Bregman function φt. Moreover, at the step 8 of
Algorithm 1, we further use a momentum iteration to update y.

When Bregman functions ψt(x) = 1
2‖x‖

2 and φt(y) = 1
2‖y‖

2 for all t ≥ 1, we have Dψt(x, xt) =
1
2‖x − xt‖

2 and Dφt(y, yt) = 1
2‖y − yt‖

2. Under this case, Algorithm 1 will reduce the standard
(stochastic) proximal gradient descent ascent algorithm. When Bregman functions ψt(x) = 1

2x
THtx

and φt(y) = 1
2y
TGty for all t ≥ 1, we have Dψt(x, xt) = 1

2 (x−xt)THt(x−xt) and Dφt(y, yt) =
1
2 (y − yt)TGt(y − yt), where Ht � ρId and Gt � ρIp. For example, given α ∈ (0, 1) and ρ > 0,
we can generate the matrices Ht and Gt like as in Adam-type algorithms [21, 20], defined as

ṽ0 = 0, ṽt = αṽt−1 + (1− α)∇xf(xt, yt; ξt)
2, Ht = diag(

√
ṽt + ρ), t ≥ 1 (12)

w̃0 = 0, w̃t = αw̃t−1 + (1− α)∇yf(xt, yt; ξt)
2, Gt = diag(

√
w̃t + ρ), t ≥ 1 (13)

Under this case, our SMDA algorithm will reduce a novel adaptive gradient descent ascent algorithm.

In the problem (1), the functions g(x) and h(y) are generally nonsmooth, e.g., g(x) = ν1‖x‖1
and h(y) = ν2‖y‖1 with ν1 > 0, ν2 > 0. When Bregman functions ψt(x) = 1

2x
THtx and

φt(y) = 1
2y
TGty for all t ≥ 1, and the matrices Ht and Gt are diagonal, e.g., generated from the

above (12) and (13), we can use the soft thresholding operator S(a, λ) = sign(a) max(|a| − λ, 0) =
arg minz{ 12 (z − a)2 + λ|z|} to obtain the closed-form solutions of the following subproblems:

min
x∈X

{
〈vt, x〉+

1

2γt
(x− xt)THt(x− xt) + ν1‖x‖1

}
, (14)

max
y∈Y

{
〈wt, y〉 −

1

2λt
(y − yt)TGt(y − yt)− ν2‖y‖1

}
, (15)

where Ht = diag(h1,t, · · · , hd,t) with hi,t > 0 for i ∈ [d], and Gt = diag(g1,t, · · · , gp,t) with
gj,t > 0 for j ∈ [p]. Without loss of generality, let X = Rd and Y = Rp, we have

S
(
xi,t −

γt
hi,t

vi,t,
γtν1
hi,t

)
= arg min

xi∈R

{
〈vi,t, xi〉+

hi,t
2γt

(xi − xi,t)2 + ν1|xi|
}
, i ∈ [d] (16)

S
(
yj,t +

λt
gj,t

wj,t,
λtν2
gj,t

)
= arg max

yj∈R

{
〈wj,t, yj〉 −

gj,t
2λt

(yj − yj,t)2 − ν2|yj |
}
, j ∈ [p]. (17)
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Algorithm 2 Accelerated Stochastic Mirror Descent Ascent (VR-SMDA) Algorithm

1: Input: T , q, stepsizes {γt > 0, λt > 0, ηt ∈ (0, 1]}Tt=1, mini-batch sizes b and b1;
2: initialize: x1 ∈ X and y1 ∈ Y;
3: for t = 1, 2, . . . , T do
4: if mod (t, q) = 0 then
5: Randomly generate mini-batch samples Bt = {ξit}bi=1 with |Bt| = b;
6: Compute stochastic partial derivatives vt = ∇xfBt(xt, yt) and wt = ∇yfBt(xt, yt);
7: else
8: Randomly generate mini-batch samples It = {ξit}

b1
i=1 with |It| = b1;

9: Compute stochastic partial derivatives

vt = ∇xfIt(xt, yt)−∇xfIt(xt−1, yt−1) + vt−1, (18)
wt = ∇yfIt(xt, yt)−∇yfIt(xt−1, yt−1) + wt−1; (19)

10: end if
11: Given the mirror functions ψt and φt;
12: xt+1 = arg minx∈X

{
〈vt, x〉+ 1

γt
Dψt(x, xt) + g(x)

}
;

13: yt+1 = yt + ηt(ỹt+1 − yt) where ỹt+1 = arg maxy∈Y
{
〈wt, y〉 − 1

λt
Dφt(y, yt)− h(y)

}
;

14: end for
15: Output: (for theoretical) xζ and yζ chosen uniformly random from {xt, yt}Tt=1.
16: Output: (for practical) xT and yT .

4.2 VR-SMDA Algorithm
In this subsection, we propose an accelerated stochastic mirror descent ascent (VR-SMDA) algorithm
to solve the stochastic problem (1). Algorithm 2 describes the detailed algorithmic framework of the
VR-SMDA method.

In Algorithm 1, we only draw a mini-batch samples Bt = {ξit}bi=1 at each iteration. Clearly, the
mini-batch samples will take large variances in our SMDA algorithm. Thus, we use the variance
reduced technique of SPIDER in our VR-SMDA algorithm to accelerate it. Specifically, when
mod (t, q) = 0, we draw a relative large batch samples Bt = {ξit}bi=1 to estimate our stochastic
partial derivatives vt and wt; when mod (t, q) 6= 0, we only draw a mini-batch samples It =

{ξit}
b1
i=1 (b > b1) to estimate vt and wt in (18) and (19). Since samples It are independent to

variables {xt, xt−1, yt, yt−1, vt−1}, by using Assumption 2, we have

EIt [vt] = ∇xf(xt, yt)−∇xf(xt−1, yt−1) + vt−1 6= ∇xf(xt, yt), (20)
EIt [wt] = ∇yf(xt, yt)−∇yf(xt−1, yt−1) + wt−1 6= ∇yf(xt, yt). (21)

Thus, the partial derivative estimators vt and wt are biased. As in Algorithm 1, we also use the mirror
descent iteration to update x, and use both the mirror ascent and momentum iterations to update y in
Algorithm 2.

5 Convergence Analysis
In this section, we study the convergence properties of our algorithms (i.e., MDA, SMDA and VR-
SMDA) under some mild conditions. All related proofs are provided in the supplementary materials.
We first introduce a useful convergence metric ‖Gt‖ (or E‖Gt‖) as in [13, 25] to measure convergence
properties of our algorithms. Given the parameters xt at t-th iteration by our algorithms, we define a
gradient mapping [36, 13] as

Gt =
1

γt
(xt − x+t+1), (22)

x+t+1 = arg min
x∈X

{
〈∇Φ(xt), x〉+

1

γt
Dψt(x, xt) + g(x)

}
, (23)

where Φ(x) = f(x, y∗(x)) − h(y∗(x)) = maxy∈Y{f(x, y) − h(y)}. When X = Rd and g(x) is
a constant, and ψt(x) = 1

2‖x‖
2, we have Gt = ∇Φ(xt) = ∇xf(xt, y

∗(xt)). Under this case, our
convergence metric E‖Gt‖ = E‖∇xf(xt, y

∗(xt))‖ is a common convergence metric used in [27].
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Since the objective function f(x, y) is µ-strongly concave over y, the standard (stochastic) proximal
gradient ascent can easily obtain the global solution of the subproblem maxy∈Y{f(x, y) − h(y)}.
Without loss of generalization, in our theoretical analysis, we give the mirror functions φt(y) = 1

2‖y‖
2

for all t ≥ 1, and all mirror functions {ψt(x)}Tt=1 are ρ-strong convex. Here, the constant ρ can be
seen as a lower bound of the strong convexity of all functions {ψt(x)}Tt=1 as in [25].

5.1 Convergence Analysis of the SMDA and MDA Algorithms
In the subsection, we provide the convergence properties of our SMDA and MDA algorithms.

Theorem 1. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1 using stochastic partial
derivatives (i.e., SMDA algorithm). Let 0 < η = ηt ≤ 1, 0 < γ = γt ≤ min( 3ρ

4L ,
9ηρµλ
800κ2 ,

2ηµρλ
25L2

f
) and

0 < λ = λt ≤ 1
6Lf

, we have

1

T

T∑
t=1

E‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
10σ√
3bρ

+
20σ
√
ηλ

3
√
γρµb

, (24)

where κ = Lf/µ, L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.
Remark 1. Without loss of generality, let Lf ≥ 1

µ . Given 0 < η ≤ 1, λ = O( 1
Lf

),

γ = min( 3ρ
4L ,

9ηρµλ
800κ2 ,

2ηµρλ
25L2

f
) and ρ = O(Lνf ) (ν ≥ 0), we have γ = O(κν−3) and γρ = O(κ2ν−3).

Thus, our SMDA algorithm has a convergence rate of O
(√

κ3−2ν

T +
√

κ−2ν

b +
√

κ3−2ν

b

)
. When let

ν = 1
2 , b = T/κ and

√
κ2

T = ε/3, we have T = O(κ2ε−2) and b = O(κε−2). Since our SMDA
algorithm requires 2b stochastic gradient evaluations to estimate the stochastic partial directives vt
and wt at each iteration, and needs T iterations, it has a gradient complexity of 2bT = O(κ3ε−4)
for finding an ε-stationary point, the same complexity in [4]. When let ν = 4/3, b = T/κ1/3 and√

κ1/3

T = ε/3, we have T = O(κ1/3ε−2) and b = O(ε−2). Thus, our SMDA algorithm has a near

optimal gradient complexity of 2bT = O(κ1/3ε−4), which matches a gradient complexity lower
bound given in [24] for solving the problem (1) without the nonsmooth regularization terms.

Theorem 2. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1 using the deter-
ministic partial derivatives (i.e., MDA algorithm). Let 0 < η = ηt ≤ 1, 0 < γ = γt ≤
min( 3ρ

4L ,
9ηρµλ
800κ2 ,

2ηµρλ
25L2

f
) and 0 < λ = λt ≤ 1

6Lf
, we have

1

T

T∑
t=1

‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

, (25)

where κ = Lf/µ, L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.
Remark 2. Without loss of generality, let Lf ≥ 1

µ . Given 0 < η ≤ 1, λ = O( 1
Lf

),

γ = min( 3ρ
4L ,

9ηρµλ
800κ2 ,

2ηµρλ
25L2

f
) and ρ = O(L

( 1
2+ν)

f ) (ν ≥ 0), we have 1
γρ = O

(
κ(2−2ν)

)
. Since

our MDA algorithm requires 2 gradient evaluations at each iteration, and needs T iterations, it has
a gradient complexity of 2T = O

(
κ(2−2ν)ε−2

)
for finding an ε-stationary point. When let ν = 0,

our MDA algorithm has a gradient complexity of 2T = O(κ2ε−2), the same complexity in [4].
When let ν = 1/2, our MDA algorithm has a lower gradient complexity of T = O(κε−2) than the
complexity in [4, 2]. When let ν = 3/4, our MDA algorithm has a near optimal gradient complexity
of T = O(

√
κε−2), which is the same complexity in [28] for solving the problem (1) without the

nonsmooth regularization terms.

5.2 Convergence Analysis of the VR-SMDA Algorithm
In the subsection, we provide the convergence properties of the VR-SMDA algorithm.

Theorem 3. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. Let b1 = q, 0 < η =

ηt ≤ 1, 0 < γ = γt ≤ min( 3ρ
4L ,

ηµλρ
38L2

f
, 3ρ
19L2

fη
, ρη8 ,

9ρηµλ
400κ2 ) and 0 < λ = λt ≤ min( 1

6Lf
, 9µ
100η2L2

f
),
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we have

1

T

T∑
t=1

E‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
2
√

2σ√
γρηbLf

, (26)

where κ = Lf/µ, L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.
Remark 3. Without loss of generality, let Lf ≥ 1

µ . Given 0 < η ≤ 1, λ = O( 1
κLf

), γ =

min( 3ρ
4L ,

ηµλρ
38L2

f
, 3ρ
19L2

fη
, ρη8 ,

9ρηµλ
400κ2 ) and ρ = O(L1+ν

f ) (ν ≥ 0), we have 1
γρ = O(κ2−2ν). Thus, our

VR-SMDA algorithm has a convergence rate of O(
√

κ(2−2ν)

T +
√

κ(1−2ν)

b ). When let ν = 0, b = T/κ

and
√

κ2

T = ε/2, we have T = O(κ2ε−2). Further let b1 = q = O(κε−1) and b = O(κε−2).
Since our VR-SMDA algorithm requires 2b stochastic gradient evaluations to estimate the stochastic
directives vt and wt at each iteration when mod (t, q) = 0, otherwise needs 4b1 stochastic gradient
evaluations, and need T iterations, it has a gradient complexity of 4b1T + 2bT/q = O(κ3ε−3) for
finding an ε-stationary point of the problem (1), which is the same complexity in [30] for solving the
problem (1) without the nonsmooth regularization terms.

Remark 4. The above optimal gradient complexities are obtained when given ρ = O(Lν
′

f ) (ν′ > 0),
where Lf is the smooth parameter of objective function f(x, y). Although in the objective function
f(x, y), Lf may be large, we can easily change the original objective function f(x, y) to a new
function f̂(x, y) = τf(x, y), 0 < τ < 1. Since ∇f̂(x, y) = τ∇f(x, y), the gradient of function
f̂(x, y) is L̂-Lipschitz continuous (L̂ = τLf ). Thus, we can choose a suitable hyper-parameter τ to
let this new objective function f̂(x, y) satisfy the condition ρ = O(L̂).

6 Numerical Experiments
In this section, we perform two tasks (i.e., fair classifier and robust neural network training) to
validate efficiency of our algorithms. Specifically, we conduct these tasks on the Fashion-MNIST
dataset as in [38] as well MNIST dataset and CIFAR-10 dataset. Fashion-MNIST dataset and MNIST
dataset consist of 28× 28 arrays of grayscale pixel images classified into 10 categories, and includes
60, 000 training images and 10, 000 testing images. CIFAR-10 dataset includes 60, 000 32 × 32
colour images (50, 000 training images and 10, 000 testing images). In the experiment, we compare
our algorithms (MDA, SMDA and VR-SMDA) with the existing proximal gradient descent ascent
algorithms (MAPGDA [2], PAGDA [4] and PASGDA[4] ) for solving these nonsmooth nonconvex
minimax problems. Note that both HiBSA algorithm of [29] and Proximal-GDA algorithm of [8]
only are a non-accelerated version of MAPGDA algorithm [2], so we omit them in the comparison
methods. The experiments are run on CPU machines with 2.3 GHz Intel Core i9 as well as NVIDIA
Tesla P40 GPU.

(a) Fashion-MNIST (b) MNIST (c) CIFAR-10

Figure 1: Results of different deterministic methods on the fair classifier task.

6.1 Fair Classifier

The first task is to train a fair classifier to minimize the maximum loss over categories. Here, we use
a nonconvex Convolutional Neural Network (CNN) model as classifier. Similar to [38], we limit our
experiment to the three categories. To be precise, the Fashion-MNIST dataset is limited to T-shirt/top,
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(a) Fashion-MNIST (b) MNIST (c) CIFAR-10

Figure 2: Results of different stochastic methods on the fair classifier task.

Coat and Shirt categories. The MNIST dataset is limited to digital numbers {0, 2, 3}, and CIFAR10
dataset is limited to airplane, automobile and bird. Specifically, we will solve the minimax problem:

min
w

max
y∈Y

{ 3∑
i=1

yiLi(w) + g(w)− h(y)

}
, s.t. Y =

{
y ∈ R3 | yi ≥ 0,

3∑
i=1

yi = 1
}
, (27)

where w denotes the parameters in CNN model, and L1, L2 and L3 are the loss functions correspond-
ing to the samples in three different categories. Here we let g(w) = ν1‖w‖1 and h(y) = ν2‖y‖22,
where ν1 > 0 and ν2 > 0. Clearly the inner maximization problem is strongly concave, and the outer
minimization problem is nonconvex nonsmooth. Thus our theory can be applied.

In the experiment, we let ν1 = 0.001 and ν2 = 0.1 in the above problem (27). For fair comparison,
we use the same step size for all methods. Specifically, step-size for w is 0.001 and step-size for
y is 0.00001. We apply xavier normal initialization to CNN layer. In our algorithms, we choose
the mirror functions ψt(w) = 1

2w
THtw and φt(y) = 1

2y
TGty for all t ≥ 1, where Ht and Gt are

generated from (12) and (13) respectively, given α = 0.1 and ρ = 0.00005. We set η = ηt = 1 in
our algorithms. We run all deterministic algorithms for 1000 seconds and all stochastic algorithms
for 50 epochs. Then we record the loss value. For stochastic methods, batch sizes of PASGDA and
SMDA are 3000. For our VR-SMDA, we set the large batch size b = 60000 and the mini-batch size
b1 = q = 3000.

Figure 1 shows the loss vs time of different deterministic methods. Figure 2 plots the loss vs epoch
of different stochastic methods. From these results, we can find that our algorithms consistently
outperform the other algorithms with a great margin. The main reason is that our algorithms use the
preconditioned (adaptive) matrices Ht and Gt in updating x and y, respectively.

6.2 Robust Neural Network Training
The second task is to train robust Neural Networks (NNs). Although the NNs have been widely used
in many applications such as image classification, they are vulnerable to adversarial attacks such as
Fast Gradient Sign Method (FGSM) [15] and Projected Gradient Descent (PGD) attack [22]. In other
word, a small perturbation in the input of NN can significantly change its output. Thus, we try to
train a robust NN against these adversarial attacks, which generally reformulate this robust training
into the following minimax problem:

min
w

n∑
i=1

max
yi∈Y

L
(
f(ai + yi;w), bi

)
, Y =

{
yi ∈ Rd | ‖yi‖∞ ≤ ε, i ∈ [n]

}
(28)

where (ai, bi) denotes the i-th data point, and w is the parameter of NN, and yi ∈ Rd denotes is the
perturbation added to the i-th data point. Following [38], we approximate the inner maximization
problem of the above minimax problem (28) with the following finite max problem

min
w

n∑
i=1

max

{
L
(
f(âi,0(w);w), bi

)
, · · · ,L

(
f(âi,9(w);w), bi

)}
, (29)

where âi,j(w) is the result of a targeted attack on data point ai that is changed the output of NN to
label j. Following [38], we can obtain âi,j(w) by using the following procedure: In the last layer of
the NN architecture for learning classification on MNIST (Fashion-MNIST) we have 10 different
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neurons, each corresponding with one category of classification. For any sample (ai, bi) in the dataset
and starting from a0i,j = ai for any j = 0, 1, · · · , 9, we run projected gradient ascent to obtain the
following chain of points:

ak+1
i,j = ProjY

[
aki,j + µ∇a

(
Zj(a

k
i,j , w)− Zbi(aki,j , w)

)]
, k = 0, 1, · · · ,K − 1 (30)

where µ > 0 is a stepsize, and Zj is the network logit before softmax corresponding to label j.
Finally, we can set âi,j(w) = aKi,j in the above minimax problem (29).

(a) Fashion-MNIST (b) MNIST
Figure 3: Results of different stochastic methods on the robust NN training task at Fashion-MNIST
and MNIST datasets.
Next, we can replace the above problem (29) with the following nonconvex nonsmooth problem:

min
w

n∑
i=1

max
u∈U

{ 9∑
j=0

uj L
(
f(aKi,j ;w), bi

)
+ ν1‖w‖1 − ν2‖u‖22

}
, (31)

s.t. U =
{
u ∈ R10 | uj ≥ 0,

9∑
j=0

uj = 1
}
,

where ν1 > 0 and ν2 > 0. Clearly, the inner maximization problem in (31) is strongly-concave, and
its outer minimization problem is nonconvex and nonsmooth.

In the experiment, we set ν1 = 0.0001 and ν2 = 0.1 in the above problem (31). In the above problem
(30), we set K = 5. For fair comparison, we use the same step size for all methods. Specifically,
step-size for w is 0.0005 and step-size for u is 0.00001. We set η = ηt = 1 in our algorithms. For our
algorithms, we choose the mirror functions ψt(w) = 1

2w
THtw and φt(u) = 1

2u
TGtu for all t ≥ 1,

where Ht and Gt are generated from (12) and (13) respectively, given α = 0.1 and ρ = 0.0005. Here
we only conduct experiments with stochastic methods, and batch-sizes of PASGDA and SMDA are
600. For our VR-SMDA, we set b = 1200 and b1 = q = 600. Following [38], we set ε = 0.4 in
the above problem (28). Figure 3 shows the loss vs epoch of different stochastic methods. From
these results, we can find that our algorithms outperform the other algorithms, and the VR-SMDA
consistently outperforms the SMDA.

7 Conclusions

In the paper, we proposed a class of novel adaptive mirror descent ascent methods to solve the
nonconvex-strongly-concave minimax optimization problems with nonsmooth regularization terms.
Moreover, we provided a useful convergence analysis framework for our methods. Some experimental
results on fair classifier and robust neural network training tasks verify that our new algorithms
consistently outperform the related algorithms.
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A Supplementary Materials

In this section, we provide the detailed convergence analysis of our algorithms. We first gives some useful
lemmas.
Lemma 1. ( Proposition 1 of [8] ) Let y∗(x) = arg maxy∈Y{f(x, y)−h(y)} and Φ(x) = maxy∈Y{f(x, y)−
h(y)}. Under the above assumptions, the mapping y∗(x) and the function Φ(x) satisfy

1) Mapping y∗(x) is κ-Lipschitz continuous;

2) Function Φ(x) is Lf (1 + κ)-smooth with∇Φ(x) = ∇xf(x, y∗(x)),

where κ = Lf/µ denotes the condition number of function f(x, y).
Lemma 2. [36] Let f(x) is a convex function and X is a convex set. x∗ ∈ X is the solution of the constrained
problem minx∈X f(x), if

〈∇f(x∗), x− x∗〉 > 0, ∀x ∈ X . (32)

where∇f(x) denote gradient of the function f(x).
Lemma 3. For independent random variables {ξi}ni=1 with zero mean, we have E‖ 1

n

∑n
i=1 ξi‖

2 = 1
n
E‖ξi‖2

for any i ∈ [n].

A.1 Convergence Analysis of the SMDA and MDA Algorithms

In the subsection, we study the convergence properties of the SMDA and MDA algorithms for solving the
minimax problem (1). We first provide some useful lemmas.

Lemma 4. (Lemma 1 in [13]) Let xt+1 = arg minx∈X
{
〈vt, x〉+ 1

γt
Dψt(x, xt) + g(x)

}
and G̃t = 1

γt
(xt −

xt+1), we have, for all t ≥ 1

〈vt, G̃t〉 ≥ ρ‖G̃t‖2 +
1

γt

(
g(xt+1)− g(xt)

)
, (33)

where ρ > 0 depends on ρ-strongly convex function ψt(x).

Lemma 5. Let xt+1 be generated from Algorithm 1 or 2, and define x+t+1 = arg minx∈X{〈∇Φ(xt), x〉 +
1
γt
Dψt(x, xt) + g(x)}, and let Gt = 1

γt
(xt − x+t+1), G̃t = 1

γt
(xt − xt+1), we have

‖Gt − G̃t‖ ≤
1

ρ
‖∇Φ(xt)− vt‖, (34)

where Φ(xt) = maxy∈Y{f(xt, y)− h(y)} and ρ > 0 depends on ρ-strongly convex function ψt(x).

Proof. Since xt+1 = arg minx∈X
{
〈vt, x〉+ 1

γt
Dψt(x, xt)+g(x)

}
and x+t+1 = arg minx∈X

{
〈∇Φ(xt), x〉+

1
γt
Dψt(x, xt) + g(x)

}
, by Lemma 2, we have, for all x ∈ X

〈vt +∇g(xt+1) +
1

γt
(∇ψt(xt+1)−∇ψt(xt)), x− xt+1〉 ≥ 0, (35)

〈∇Φ(xt) +∇g(x+t+1) +
1

γt
(∇ψt(x+t+1)−∇ψt(xt)), x− x+t+1〉 ≥ 0, (36)

where∇g(xt+1) ∈ ∂g(xt+1). Taking x = x+t+1 in the inequality (35) and x = xt+1 in the inequality (36), by
the convexity of g(x), we have

〈vt, x+t+1 − xt+1〉 ≥ 〈∇g(xt+1), xt+1 − x+t+1〉+
1

γt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − x+t+1〉, (37)

≥ g(xt+1)− g(x+t+1) +
1

γt
〈∇ψt(xt+1)−∇ψt(xt), xt+1 − x+t+1〉

〈∇Φ(xt), xt+1 − x+t+1〉 ≥ 〈∇g(x+t+1), x+t+1 − xt+1〉+
1

γt
〈∇ψt(x+t+1)−∇ψt(xt), x+t+1 − xt+1〉, (38)

≥ g(x+t+1)− g(xt+1) +
1

γt
〈∇ψt(x+t+1)−∇ψt(xt), x+t+1 − xt+1〉

Summing up the above inequalities (37) and (38), we obtain

〈∇Φ(xt)− vt, xt+1 − x+t+1〉 ≥
1

γt
〈∇ψt(x+t+1)−∇ψt(xt+1), x+t+1 − xt+1〉

≥ ρ

γt
‖x+t+1 − xt+1‖2, (39)
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where the last inequality is due to the ρ-strongly convex function ψt(x).

Since ‖∇Φ(xt) − vt‖‖xt+1 − x+t+1‖ ≥ 〈∇Φ(xt) − vt, xt+1 − x+t+1〉 and ‖Gt − G̃t‖ = ‖ 1
γt

(xt − x+t+1) −
1
γt

(xt − xt+1)‖ = 1
γt
‖x+t+1 − xt+1‖, we have

‖∇Φ(xt)− vt‖ ≥ ρ‖Gt − G̃t‖. (40)

Lemma 6. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1 or 2. Under the above assumptions,
and let 0 < ηt ≤ 1, λ = λt and 0 < λ ≤ 1

6Lf
, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2 ≤ −
ηtµλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2

6ηtµλ
‖xt − xt+1‖2, (41)

where κ = Lf/µ.

Proof. This proof mainly follows the proof of Lemma 28 in [18]. According to Assumption 3, i.e., the function
f(x, y) is µ-strongly concave w.r.t y, we have

f(xt, y) ≤ f(xt, yt) + 〈∇yf(xt, yt), y − yt〉 −
µ

2
‖y − yt‖2

= f(xt, yt) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

+ 〈∇yf(xt, yt), ỹt+1 − yt〉 −
µ

2
‖y − yt‖2. (42)

According to Assumption 1, i.e., the function f(x, y) is Lf -smooth, we have

−Lf
2
‖ỹt+1 − yt‖2 ≤ f(xt, ỹt+1)− f(xt, yt)− 〈∇yf(xt, yt), ỹt+1 − yt〉. (43)

Summing up the about inequalities (42) with (43), we have

f(xt, y) ≤ f(xt, ỹt+1) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− µ

2
‖y − yt‖2 +

Lf
2
‖ỹt+1 − yt‖2. (44)

Given the mirror function φt(y) = 1
2
‖y‖ and λ = λt for all t ≥ 1, at the step 8 of Algorithm 1 ( at step 13 of

Algorithm 2 ), we have

ỹt+1 = arg max
y∈Y

{
〈wt, y〉 −

1

2λ
‖y − yt‖2 − h(y)

}
. (45)

By using Lemma 2, we have

〈−wt +∇h(ỹt+1) +
1

λ
(ỹt+1 − yt), y − ỹt+1〉 ≥ 0, ∀y ∈ Y (46)

where∇h(ỹt+1) ∈ ∂h(ỹt+1). Then we obtain

〈wt, y − ỹt+1〉 ≤
1

λ
〈ỹt+1 − yt, y − ỹt+1〉+ 〈∇h(ỹt+1), y − ỹt+1〉

≤ 1

λ
〈ỹt+1 − yt, y − ỹt+1〉+ h(y)− h(ỹt+1)

= − 1

λ
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, y − yt〉+ h(y)− h(ỹt+1). (47)

where the second inequality holds by the convexity of function h(y).

By pugging the inequalities (47) into (44), we have

f(xt, y)− h(y) ≤ f(xt, ỹt+1)− h(ỹt+1) +
1

λ
〈ỹt+1 − yt, y − yt〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− 1

λ
‖ỹt+1 − yt‖2 −

µ

2
‖y − yt‖2 +

Lf
2
‖ỹt+1 − yt‖2. (48)

Let y = y∗(xt) and we obtain

f(xt, y
∗(xt))− h(y∗(xt)) ≤ f(xt, ỹt+1)− h(ỹt+1) +

1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉 − (

1

λ
− Lf

2
)‖ỹt+1 − yt‖2

+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉 −
µ

2
‖y∗(xt)− yt‖2. (49)
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Due to the concavity of f(·, y)−h(y) and y∗(xt) = arg maxy∈Y{f(xt, y)−h(y)}, we have f(xt, y
∗(xt))−

h(y∗(xt)) ≥ f(xt, ỹt+1)− h(ỹt+1). Thus, we obtain

0 ≤ 1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉

− (
1

λ
− Lf

2
)‖ỹt+1 − yt‖2 −

µ

2
‖y∗(xt)− yt‖2. (50)

By yt+1 = yt + ηt(ỹt+1 − yt), we have

‖yt+1 − y∗(xt)‖2 = ‖yt + ηt(ỹt+1 − yt)− y∗(xt)‖2

= ‖yt − y∗(xt)‖2 + 2ηt〈ỹt+1 − yt, yt − y∗(xt)〉+ η2t ‖ỹt+1 − yt‖2. (51)

Then we obtain

〈ỹt+1 − yt, y∗(xt)− yt〉 ≤
1

2ηt
‖yt − y∗(xt)‖2 +

ηt
2
‖ỹt+1 − yt‖2 −

1

2ηt
‖yt+1 − y∗(xt)‖2. (52)

Consider the upper bound of the term 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉, we have

〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉
= 〈∇yf(xt, yt)− wt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, yt − ỹt+1〉

≤ 1

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖y∗(xt)− yt‖2 +

1

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖yt − ỹt+1‖2

=
2

µ
‖∇yf(xt, yt)− wt‖2 +

µ

4
‖y∗(xt)− yt‖2 +

µ

4
‖yt − ỹt+1‖2. (53)

By plugging the inequalities (52) and (53) into (50), we obtain

1

2ηtλ
‖yt+1 − y∗(xt)‖2

≤ (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 + (

ηt
2λ

+
µ

4
+
Lf
2
− 1

λ
)‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 + (

3Lf
4
− 1

2λ
)‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2

= (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 −

( 3

8λ
+

1

8λ
− 3Lf

4

)
‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− µ

4
)‖yt − y∗(xt)‖2 −

3

8λ
‖ỹt+1 − yt‖2 +

2

µ
‖∇yf(xt, yt)− wt‖2, (54)

where the second inequality holds by Lf ≥ µ and 0 < ηt ≤ 1, and the last inequality is due to 0 < λ ≤ 1
6Lf

. It
implies that

‖yt+1 − y∗(xt)‖2 ≤ (1− ηtµλ

2
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

4ηtλ

µ
‖∇yf(xt, yt)− wt‖2. (55)

Next, we decompose the term ‖yt+1 − y∗(xt+1)‖2 as follows:

‖yt+1 − y∗(xt+1)‖2 = ‖yt+1 − y∗(xt) + y∗(xt)− y∗(xt+1)‖2

= ‖yt+1 − y∗(xt)‖2 + 2〈yt+1 − y∗(xt), y∗(xt)− y∗(xt+1)〉+ ‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtµλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtµλ
)‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtµλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtµλ
)κ2‖xt − xt+1‖2, (56)

where the first inequality holds by Cauchy-Schwarz inequality and Young’s inequality, and the last inequality is
due to Lemma 1.

By combining the above inequalities (55) and (56), we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1 +
ηtµλ

4
)(1− ηtµλ

2
)‖yt − y∗(xt)‖2 − (1 +

ηtµλ

4
)
3ηt
4
‖ỹt+1 − yt‖2

+ (1 +
ηtµλ

4
)
4ηtλ

µ
‖∇yf(xt, yt)− wt‖2 + (1 +

4

ηtµλ
)κ2‖xt − xt+1‖2. (57)
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Since 0 < ηt ≤ 1, 0 < λ ≤ 1
6Lf

and Lf ≥ µ, we have λ ≤ 1
6Lf
≤ 1

6µ
and ηt ≤ 1 ≤ 1

6µλ
. Then we obtain

(1 +
ηtµλ

4
)(1− ηtµλ

2
) = 1− ηtµλ

2
+
ηtµλ

4
− η2tµ

2λ2

8
≤ 1− ηtµλ

4
,

−(1 +
ηtµλ

4
)
3ηt
4
≤ −3ηt

4
,

(1 +
ηtµλ

4
)
4ηtλ

µ
≤ (1 +

1

24
)
4ηtλ

µ
=

25ηtλ

6µ
,

(1 +
4

ηtµλ
)κ2 = κ2 +

4κ2

ηtµλ
≤ κ2

6ηtµλ
+

4κ2

ηtµλ
=

25κ2

6ηtµλ
. (58)

Thus we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2

6ηtµλ
‖xt − xt+1‖2. (59)

Theorem 4. (Restatement of Theorem 1) Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm
1 using stochastic partial gradients (i.e., SMDA algorithm). Let 0 < η = ηt ≤ 1, 0 < γ = γt ≤
min( 3ρ

4L
, 9ηρµλ
800κ2 ,

2ηµρλ

25L2
f

) and 0 < λ ≤ 1
6Lf

, we have

1

T

T∑
t=1

E‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
10σ√
3bρ

+
20σ
√
ηλ

3
√
γρµb

, (60)

where L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.

Proof. According to the above Lemma 1, the function Φ(x) has L-Lipschitz continuous gradient. Let G̃t =
1
γt

(xt − xt+1), we have

Φ(xt+1) ≤ Φ(xt) + 〈∇Φ(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= Φ(xt)− γt〈∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

= Φ(xt)− γt〈vt, G̃t〉+ γt〈vt −∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

≤ Φ(xt)− γtρ‖G̃t‖2 − g(xt+1) + g(xt) + γt〈vt −∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

≤ Φ(xt) + (
γ2
tL

2
− 3γtρ

4
)‖G̃t‖2 − g(xt+1) + g(xt) +

γt
ρ
‖vt −∇Φ(xt)‖2, (61)

where the second last inequality holds by the above Lemma 4, and the last inequality holds by the following
inequality

〈vt −∇Φ(xt), G̃t〉 ≤ ‖vt −∇Φ(xt)‖‖G̃t‖

≤ 1

ρ
‖vt −∇Φ(xt)‖2 +

ρ

4
‖G̃t‖2. (62)

According to the above Lemma 1 and Assumption 1, we have

‖vt −∇Φ(xt)‖2 = ‖vt −∇f(xt, y
∗(xt))‖2

= ‖vt −∇xf(xt, yt) +∇xf(xt, yt)−∇xf(xt, y
∗(xt))‖2

≤ 2‖vt −∇xf(xt, yt)‖2 + 2‖∇xf(xt, yt)−∇xf(xt, y
∗(xt))‖2

≤ 2‖vt −∇xf(xt, yt)‖2 + 2L2
f‖yt − y∗(xt)‖2. (63)

Let F̃ (x) = Φ(x) + g(x), plugging (63) into (61), we have

F̃ (xt+1) ≤ F̃ (xt) + (
γ2
tL

2
− 3γtρ

4
)‖G̃t‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2

≤ F̃ (xt)−
3γtρ

8
‖G̃t‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2, (64)
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where the last inequality is due to 0 < γt ≤ 3ρ
4L

. According to Lemma 5, the difference between G̃t and Gt are
bounded, we have

‖Gt‖2 ≤ 2‖G̃t‖2 + 2‖G̃t − Gt‖2

≤ 2‖G̃t‖2 +
2

ρ2
‖vt −∇Φ(xt)‖2

≤ 2‖G̃t‖2 +
4

ρ2
‖vt −∇xf(xt, yt)‖2 +

4L2
f

ρ2
‖yt − y∗(xt)‖2. (65)

Thus we have

−‖G̃t‖2 ≤ −
1

2
‖Gt‖2 +

2

ρ2
‖vt −∇xf(xt, yt)‖2 +

2L2
f

ρ2
‖yt − y∗(xt)‖2. (66)

By plugging (66) into (61), we have

F̃ (xt+1) ≤ F̃ (xt)−
3γtρ

16
‖Gt‖2 +

3γtρ

8

( 2

ρ2
‖vt −∇xf(xt, yt)‖2 +

2L2
f

ρ2
‖yt − y∗(xt)‖2

)
+

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2

= F̃ (xt)−
3γtρ

16
‖Gt‖2 +

11γt
4ρ
‖vt −∇xf(xt, yt)‖2 +

11L2
fγt

4ρ
‖yt − y∗(xt)‖2. (67)

Next, we define a useful Lyapunov function, for any t ≥ 1

Ωt = F̃ (xt) + ‖yt − y∗(xt)‖2. (68)

According to Lemma 6, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2 ≤ −
ηtµλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2

6ηtµλ
‖xt − xt+1‖2. (69)

Similarly, we have

‖G̃t‖2 ≤ 2‖Gt‖2 + 2‖G̃t − Gt‖2

≤ 2‖Gt‖2 +
2

ρ2
‖vt −∇Φ(xt)‖2

≤ 2‖Gt‖2 +
4

ρ2
‖vt −∇xf(xt, yt)‖2 +

4L2
f

ρ2
‖yt − y∗(xt)‖2. (70)

Then we have

Ωt+1 − Ωt = F̃ (xt+1)− F̃ (xt) + ‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

≤ −3γtρ

16
‖Gt‖2 +

11γt
4ρ
‖vt −∇xf(xt, yt)‖2 +

11L2
fγt

4ρ
‖yt − y∗(xt)‖2 −

ηtµλ

4
‖yt − y∗(xt)‖2

− 3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2

6ηtµλ
‖xt − xt+1‖2

= −3γtρ

16
‖Gt‖2 +

11γt
4ρ
‖vt −∇xf(xt, yt)‖2 +

11L2
fγt

4ρ
‖yt − y∗(xt)‖2 −

ηtµλ

4
‖yt − y∗(xt)‖2

− 3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2γ2
t

6ηtµλ
‖G̃t‖2

≤ −(
3γtρ

16
− 25κ2γ2

t

3ηtµλ
)‖Gt‖2 + (

11γt
4ρ

+
50κ2γ2

t

3ηtµλρ2
)‖vt −∇xf(xt, yt)‖2

+ (
11L2

fγt

4ρ
+

50κ2γ2
tL

2
f

3ηtµλρ2
− ηtµλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2, (71)

where the last inequality holds by the inequality (70).
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Let γ = γt and η = ηt for all t ≥ 1. By using 0 < γ ≤ 9ηρµλ
800κ2 , we have

3γρ

32
≥ 50κ2γ2

6ηλµ
,

3L2
fγ

8ρ
≥

50κ2γ2L2
f

3ηtµλρ2
,

3γ

8ρ
≥ 50κ2γ2

3ηtµλρ2
. (72)

Let ηµλ
4
≥ 25L2

fγ

8ρ
, we have 0 < γ ≤ 2ηµρλ

25L2
f

. Given 0 < γ ≤ min( 9ηρµλ
800κ2 ,

2ηµρλ

25L2
f

), we have

Ωt+1 − Ωt ≤ −
3γρ

32
‖Gt‖2 +

25γ

8ρ
‖vt −∇xf(xt, yt)‖2 +

25ηλ

6µ
‖wt −∇yf(xt, yt)‖2. (73)

Thus we have

E‖Gt‖2 ≤
32E(Ωt − Ωt+1)

3γρ
+

100

3ρ2
E‖vt −∇xf(xt, yt)‖2 +

400ηλ

9γρµ
E‖∇yf(xt, yt)− wt‖2

≤ 32E(Ωt − Ωt+1)

3γρ
+

100σ2

3ρ2b
+

400ηλσ2

9γρµb
, (74)

where the last inequality holds by Assumption 2 and vt = ∇xfBt(xt, yt) = 1
b

∑
i∈Bt ∇xf(xt, yt, ξ

i
t), wt =

∇yfBt(xt, yt) = 1
b

∑
i∈Bt ∇yf(xt, yt, ξ

i
t).

Taking average over t = 1, 2, · · · , T on both sides of the above inequality (74), we have

1

T

T∑
t=1

E‖Gt‖2 ≤
32E(Ω1 − ΩT+1)

3Tγρ
+

100σ2

3ρ2b
+

400ηλσ2

9γρµb

=
32(F̃ (x1) + ‖y1 − y∗(x1)‖2)

3Tγρ
− 32E(F̃ (xT+1) + ‖yT+1 − y∗(xT+1)‖2)

3Tγρ

+
100σ2

3ρ2b
+

400ηλσ2

9γρµb

≤ 32(F̃ (x1)− F ∗)
3Tγρ

+
32∆2

1

3Tγρ
+

100σ2

3ρ2b
+

400ηλσ2

9γρµb
, (75)

where the last inequality holds by Assumption 5 and ∆1 = ‖y1 − y∗(x1)‖. By using Jensen’s inequality, we
have

1

T

T∑
t=1

E‖Gt‖ ≤
( 1

T

T∑
t=1

E‖Gt‖2
) 1

2

≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
10σ√
3bρ

+
20σ
√
ηλ

3
√
γρµb

, (76)

where the last inequality is due to the inequality (
∑4
i=1 ai)

1
2 ≤

∑4
i=1 a

1
2
i for all ai ≥ 0, i = 1, 2, 3, 4.

Theorem 5. (Restatement of Theorem 2) Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm
1 using deterministic partial gradients (i.e., MDA algorithm). Let 0 < η = ηt ≤ 1, 0 < γ = γt ≤
min( 3ρ

4L
, 9ηρµλ
800κ2 ,

2ηµρλ

25L2
f

) and 0 < λ ≤ 1
6Lf

, we have

1

T

T∑
t=1

‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

, (77)

where L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.

Proof. This proof can follow the proof of Theorem 1. Since the MDA algorithm uses the deterministic partial
gradients vt = ∇xf(xt, yt) and wt = ∇yf(xt, yt), we have σ = 0.

A.2 Convergence Analysis of the VR-SMDA Algorithm

In the subsection, we provide the convergence analysis of the VR-SMDA algorithm.
Lemma 7. Suppose the stochastic gradients vt and wt be generated from Algorithm 2, we have

E‖∇xf(xt, yt)− vt‖2 ≤
L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+
σ2

b
, (78)
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E‖∇yf(xt, yt)− wt‖2 ≤
L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+
σ2

b
. (79)

Proof. We first prove the inequality (78). According to the definition of vt−1 in Algorithm 2, we have

vt − vt−1 = ∇xfIt(xt, yt)−∇xfIt(xt−1, yt−1). (80)

Then we have

E‖∇xf(xt, yt)− vt‖2

= E‖∇xf(xt, yt)− vt−1 − (vt − vt−1)‖2

= E‖∇xf(xt, yt)− vt−1 −∇xfIt(xt, yt) +∇xfIt(xt−1, yt−1)‖2

= E‖∇xf(xt−1, yt−1)− vt−1 +∇xf(xt, yt)−∇xf(xt−1, yt−1)−∇xfIt(xt, yt) +∇xfIt(xt−1, yt−1)‖2

= E‖∇xf(xt−1, yt−1)− vt−1‖2 + E‖∇xf(xt, yt)−∇xf(xt−1, yt−1)

−
(
∇xfIt(xt, yt)−∇xfIt(xt−1, yt−1)

)
‖2

= E‖∇xf(xt−1, yt−1)− vt−1‖2 +
1

b1
E‖∇xf(xt, yt)−∇xf(xt−1, yt−1)

−
(
∇xf(xt, yt; ξ

1
t )−∇xf(xt−1, yt−1; ξ1t )

)
‖2

≤ E‖∇xf(xt−1, yt−1)− vt−1‖2 +
1

b1
E‖∇xf(xt, yt; ξ

1
t )−∇xf(xt−1, yt−1; ξ1t )‖2

≤ E‖∇xf(xt−1, yt−1)− vt−1‖2 +
L2
f

b1

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
, (81)

where the fourth equality follows by EIt
[
∇xf(xt, yt) − ∇xf(xt−1, yt−1) −

(
∇xfIt(xt, yt) −

∇xfIt(xt−1, yt−1)
)]

= 0; the fifth equality holds by Lemma 3 and ∇xfIt(xt, yt) =
1
b1

∑
i∈It ∇xf(xt, yt, ξ

i
t), ∇xfIt(xt−1, yt−1) = 1

b1

∑
i∈It ∇xf(xt−1, yt−1, ξ

i
t); the second last inequal-

ity holds by the inequality E‖ζ − E[ζ]‖2 ≤ E‖ζ‖2; the last inequality is due to Assumption 1.

Throughout the paper, let nt = [t/q] such that (nt − 1)q ≤ t ≤ ntq − 1. Telescoping (81) over t from
(nt − 1)q + 1 to t, we have

E‖∇xf(xt, yt)− vt‖2 ≤
L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+ E‖∇xf(x(nt−1)q, y(nt−1)q)− v(nt−1)q‖2

≤
L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+
σ2

b
, (82)

where the last inequality is due to Assumption 2 and v(nt−1)q =
1
b

∑
i∈B(nt−1)q

∇xf(x(nt−1)q, y(nt−1)q, ξ
i
(nt−1)q). Similarly, we can obtain

E‖∇yf(xt, yt)− wt‖2 ≤
L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+
σ2

b
. (83)

Theorem 6. (Restatement of Theorem 3) Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm
2. Let b1 = q, 0 < η = ηt ≤ 1, 0 < γ = γt ≤ min( 3ρ

4L
, ηµλρ
38L2

f
, 3ρ

19L2
f
η
, ρη

8
, 9ρηµλ
400κ2 ) and 0 < λ ≤

min( 1
6Lf

, 9µ

100η2L2
f

), we have

1

T

T∑
t=1

E‖Gt‖ ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
2
√

2σ√
γρηbLf

, (84)

where L = Lf (1 + κ), F̃ (x) = Φ(x) + g(x) and ∆1 = ‖y1 − y∗(x1)‖.
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Proof. This proof is similar to the proof of Theorem 1. According to the above Lemma 1, the function Φ(x) has
L-Lipschitz continuous gradient. Let G̃t = 1

γt
(xt − xt+1), we have

Φ(xt+1) ≤ Φ(xt) + 〈∇Φ(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= Φ(xt)− γt〈∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

= Φ(xt)− γt〈vt, G̃t〉+ γt〈vt −∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

≤ Φ(xt)− γtρ‖G̃t‖2 − g(xt+1) + g(xt) + γt〈vt −∇Φ(xt), G̃t〉+
γ2
tL

2
‖G̃t‖2

≤ Φ(xt) + (
γ2
tL

2
− 3γtρ

4
)‖G̃t‖2 − g(xt+1) + g(xt) +

γt
ρ
‖vt −∇Φ(xt)‖2, (85)

where the second last inequality holds by the above Lemma 4, and the last inequality holds by the following
inequality

〈vt −∇Φ(xt), G̃t〉 ≤ ‖vt −∇Φ(xt)‖‖G̃t‖

≤ 1

ρ
‖vt −∇Φ(xt)‖2 +

ρ

4
‖G̃t‖2. (86)

According to the above Lemma 1 and Assumption 1, we have

‖vt −∇Φ(xt)‖2 = ‖vt −∇f(xt, y
∗(xt))‖2

= ‖vt −∇xf(xt, yt) +∇xf(xt, yt)−∇xf(xt, y
∗(xt))‖2

≤ 2‖vt −∇xf(xt, yt)‖2 + 2‖∇xf(xt, yt)−∇xf(xt, y
∗(xt))‖2

≤ 2‖vt −∇xf(xt, yt)‖2 + 2L2
f‖yt − y∗(xt)‖2. (87)

Let F̃ (x) = Φ(x) + g(x), plugging (87) into (85), we have

F̃ (xt+1) ≤ F̃ (xt) + (
γ2
tL

2
− 3γtρ

4
)‖G̃t‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2

≤ F̃ (xt)−
3γtρ

8
‖G̃t‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2

= F̃ (xt)−
3γtρ

16
‖G̃t‖2 −

3ρ

16γt
‖xt+1 − xt‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2,

(88)

where the second inequality is due to 0 < γt ≤ 3ρ
4L

and the last equality holds by G̃t = 1
γt

(xt+1 − xt). By
using Lemma 5, the difference between G̃t and Gt are bounded, we have

‖Gt‖2 ≤ 2‖G̃t‖2 + 2‖G̃t − Gt‖2

≤ 2‖G̃t‖2 +
2

ρ2
‖vt −∇Φ(xt)‖2

≤ 2‖G̃t‖2 +
4

ρ2
‖vt −∇xf(xt, yt)‖2 +

4L2
f

ρ2
‖yt − y∗(xt)‖2. (89)

Thus we have

−‖G̃t‖2 ≤ −
1

2
‖Gt‖2 +

2

ρ2
‖vt −∇xf(xt, yt)‖2 +

2L2
f

ρ2
‖yt − y∗(xt)‖2. (90)

By plugging (90) into (85), we have

F̃ (xt+1) ≤ F̃ (xt)−
3γtρ

32
‖Gt‖2 +

3γtρ

16

( 2

ρ2
‖vt −∇xf(xt, yt)‖2 +

2L2
f

ρ2
‖yt − y∗(xt)‖2

)
− 3ρ

16γt
‖xt+1 − xt‖2 +

2γt
ρ
‖vt −∇xf(xt, yt)‖2 +

2L2
fγt

ρ
‖yt − y∗(xt)‖2

= F̃ (xt)−
3γtρ

32
‖Gt‖2 −

3ρ

16γt
‖xt+1 − xt‖2 +

19γt
8ρ
‖vt −∇xf(xt, yt)‖2 +

19L2
fγt

8ρ
‖yt − y∗(xt)‖2.

(91)
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Next, we define a useful Lyapunov function, for any t ≥ 1

Ωt = F̃ (xt) + ‖yt − y∗(xt)‖2. (92)

According to Lemma 6, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2 ≤ −
ηtµλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2 +

25κ2

6ηtµλ
‖xt − xt+1‖2. (93)

Then we have

Ωt+1 − Ωt = F̃ (xt+1)− F̃ (xt) + ‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

≤ −3γtρ

32
‖Gt‖2 −

3ρ

16γt
‖xt+1 − xt‖2 +

19γt
8ρ
‖vt −∇xf(xt, yt)‖2 +

19L2
fγt

8ρ
‖yt − y∗(xt)‖2

− ηtµλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2+

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2+

25κ2

6ηtµλ
‖xt − xt+1‖2

= −3γtρ

32
‖Gt‖2 −

( 3ρ

16γt
− 25κ2

6ηtµλ

)
‖xt+1 − xt‖2 +

19γt
8ρ
‖vt −∇xf(xt, yt)‖2

−
(ηtµλ

4
−

19L2
fγt

8ρ

)
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2

≤ −3γtρ

32
‖Gt‖2 −

( 3ρ

16γt
− 25κ2

6ηtµλ

)
‖xt+1 − xt‖2 +

19γt
8ρ
‖vt −∇xf(xt, yt)‖2

− 3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6µ
‖∇yf(xt, yt)− wt‖2, (94)

where the last inequality is due to 0 < γ ≤ ηtµλρ

38L2
f

.

Let γ = γt and η = ηt for all t ≥ 1. Thus, we have

3γρ

32
E‖Gt‖2 ≤ E

[
Ωt − Ωt+1

]
−
( 3ρ

16γ
− 25κ2

6ηµλ

)
E‖xt+1 − xt‖2 +

19γ

8ρ
E‖vt −∇xf(xt, yt)‖2

− 3η

4
E‖ỹt+1 − yt‖2 +

25ηλ

6µ
E‖∇yf(xt, yt)− wt‖2. (95)

Summing over t = 1, 2, · · · , T on both sides of (95), by Lemma 7, we have

3γρ

32

T∑
t=1

E‖Gt‖2 ≤ E
[
Ω1 − ΩT+1

]
−
( 3ρ

16γ
− 25κ2

6ηµλ

) T∑
t=1

E‖xt+1 − xt‖2 −
3η

4

T∑
t=1

E‖ỹt+1 − yt‖2

+ (
19γ

8ρ
+

25ηλ

6µ
)

T∑
t=1

(L2
f

b1

t−1∑
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
+
σ2

b

)
≤ E

[
Ω1 − ΩT+1

]
−
( 3ρ

16γ
− 25κ2

6ηµλ

) T∑
t=1

E‖xt+1 − xt‖2 −
3η

4

T∑
t=1

E‖ỹt+1 − yt‖2

+ (
19γ

8ρ
+

25ηλ

6µ
)
T∑
t=1

(L2
fq

b1
(E‖xt+1 − xt‖2 + E‖yt+1 − yt‖2) +

σ2

b

)
= E

[
Ω1 − ΩT+1

]
−
( 3ρ

16γ
− 25κ2

6ηµλ
−

19γL2
fq

8ρb1
−

25ηλL2
fq

6µb1

) T∑
t=1

E‖xt+1 − xt‖2

−
(3η

4
−

19γL2
fqη

2

8ρb1
−

25λL2
fqη

3

6µb1

) T∑
t=1

E‖ỹt+1 − yt‖2 + (
19γ

8ρ
+

25ηλ

6µ
)
Tσ2

b

≤ E
[
Ω1 − ΩT+1

]
+

3

4ηL2
f

Tσ2

b
, (96)

where the second inequality holds by
∑T
t=1

∑t−1
i=(nt−1)q

(
E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2

)
≤

q
∑T
t=1

(
E‖xt+1 − xt‖2 + E‖yt+1 − yt‖2

)
; the third equality is due to yt+1 = yt + ηt(ỹt+1 − yt); the

last inequality is due to b1 = q, 0 < λ ≤ 9η2L2
f

100µ
and 0 < γ ≤ min( 19

3L2
f
η
, ρη

8
, 9ρηµλ
400κ2 ), i.e., it easily be obtained

from the following inequalities (97) and (98).
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Since b1 = q, 0 < γ ≤ 3ρ

19L2
f
η

and 0 < λ ≤ 9µ

100η2L2
f

, we have 3η
8
≥ 19γL2

f qη
2

8ρb1
and 3η

8
≥ 25λL2

f qη
3

6µb1
, i.e., we

obtain

3η

4
≥ (

19γL2
fqη

2

8ρb1
+

25λL2
fqη

3

6µb1
). (97)

Thus, we also obtain 3
4ηL2

f
≥ ( 19γ

8ρ
+ 25ηλ

6µ
) and 3

4η
≥ 19γL2

f q

8ρb1
+

25ηλL2
f q

6µb1
. Since 0 < γ ≤

min( 3ρ

19L2
f
η
, ρη

8
, 9ρηµλ
400κ2 ), we have 3ρ

32γ
≥ 25κ2

6ηµλ
and 3ρ

32γ
≥ 3

4η
. Thus, we have

3ρ

16γ
≥ 25κ2

6ηµλ
+

3

4η
≥ 25κ2

6ηµλ
+

19γL2
fq

8ρb1
+

25ηλL2
fq

6µb1
. (98)

By using the above inequality (96), we have

1

T

T∑
t=1

E‖Gt‖2 ≤
32E(Ω1 − ΩT+1)

3γρT
+

8

γρηL2
f

σ2

b

=
32(F̃ (x1) + ‖y1 − y∗(x1)‖2)

3Tγρ
− 32E(F̃ (xT+1) + ‖yT+1 − y∗(xT+1)‖2)

3Tγρ
+

8

γρηL2
f

σ2

b

≤ 32(F̃ (x1)− F ∗)
3Tγρ

+
32∆2

1

3Tγρ
+

8

γρηL2
f

σ2

b
, (99)

where the last inequality holds by Assumption 5 and ∆1 = ‖y1 − y∗(x1)‖. According to Jensen’s inequality,
we have

1

T

T∑
t=1

E‖Gt‖ ≤
( 1

T

T∑
t=1

E‖Gt‖2
) 1

2 ≤
4
√

2(F̃ (x1)− F ∗)
√

3Tγρ
+

4
√

2∆1√
3Tγρ

+
2
√

2σ√
γρηbLf

, (100)

where the last inequality is due to the inequality (a+ b+ c)
1
2 ≤ a

1
2 + b

1
2 + c

1
2 for all a, b, c ≥ 0.
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