
Addressing Negative Transfer in Diffusion Models

Hyojun Go1∗ JinYoung Kim1∗ Yunsung Lee2∗ Seunghyun Lee3∗
Shinhyeok Oh3 Hyeongdon Moon4 Seungtaek Choi5†

Twelvelabs1 Wrtn Technologies2 Riiid3 EPFL4 Yanolja5
{gohyojun15, seago0828}@gmail.com1, sung@wrtn.io2 , {seunghyun.lee

shinhyeok.oh}@riiid.co3, hyeongdon.moon@epfl.ch4, seungtaek.choi@yanolja.com5

Abstract

Diffusion-based generative models have achieved remarkable success in various
domains. It trains a shared model on denoising tasks that encompass different noise
levels simultaneously, representing a form of multi-task learning (MTL). However,
analyzing and improving diffusion models from an MTL perspective remains under-
explored. In particular, MTL can sometimes lead to the well-known phenomenon
of negative transfer, which results in the performance degradation of certain tasks
due to conflicts between tasks. In this paper, we first aim to analyze diffusion
training from an MTL standpoint, presenting two key observations: (O1) the task
affinity between denoising tasks diminishes as the gap between noise levels widens,
and (O2) negative transfer can arise even in diffusion training. Building upon these
observations, we aim to enhance diffusion training by mitigating negative transfer.
To achieve this, we propose leveraging existing MTL methods, but the presence
of a huge number of denoising tasks makes this computationally expensive to
calculate the necessary per-task loss or gradient. To address this challenge, we
propose clustering the denoising tasks into small task clusters and applying MTL
methods to them. Specifically, based on (O2), we employ interval clustering to
enforce temporal proximity among denoising tasks within clusters. We show that
interval clustering can be solved using dynamic programming, utilizing signal-to-
noise ratio, timestep, and task affinity for clustering objectives. Through this, our
approach addresses the issue of negative transfer in diffusion models by allowing
for efficient computation of MTL methods. We validate the efficacy of proposed
clustering and its integration with MTL methods through various experiments,
demonstrating 1) improved generation quality and 2) faster training convergence of
diffusion models. Our project page is available at https://gohyojun15.github.
io/ANT_diffusion/.

1 Introduction

Diffusion-based generative models [20, 66, 71] have accomplished remarkable achievements in vari-
ous generative tasks, including image [8], video [21, 23], 3D shape [44, 54], and text generation [38].
In particular, they have shown excellent performance and flexibility in a wide range of image gener-
ation settings, including unconditional [28, 47], class-conditional [22], and text-conditional image
generation [1, 48, 55]. Consequently, improving diffusion models has garnered significant interest.

The framework of diffusion models [20, 66, 71] comprises gradually corrupting the data towards a
given noise distribution and its subsequent reverse process. A model is optimized by minimizing the
weighted sum of denoising score-matching losses across various noise levels [20, 69] for learning the
reverse process. This can be interpreted as diffusion training aiming to train a single shared model to

∗Co-first author 1,2,4,5Work done while at Riiid †Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://gohyojun15.github.io/ANT_diffusion/
https://gohyojun15.github.io/ANT_diffusion/

denoising its input across various noise levels. Therefore, diffusion training is inherently multi-task
learning (MTL) in nature, where each noise level represents a distinct denoising task.

However, analyzing and improving diffusion models from an MTL perspective remains under-
explored. In particular, sharing one model between tasks may lead to competition between conflicting
tasks, resulting in a phenomenon known as negative transfer [24, 25, 57, 78], leading to poorer
performance compared to learning individual tasks with separate models. Negative transfer has
been a critical issue in MTL research, and related works have demonstrated that the performance of
multi-task models can be improved by remediating negative transfer [24, 25, 57, 78, 83]. Considering
these, we argue that negative transfer should be investigated in diffusion models, and if present,
addressing it is a potential direction for improving diffusion models.

In this paper, we characterize how multi-task diffusion model is, and whether there exists negative
transfer in denoising tasks. In particular, (O1) we first observe that task affinity [12, 78] between two
denoising tasks is negatively correlated with the difference in noise levels, indicating that they may
be less conflict as the noise levels become more similar [78]. This suggests that adjacent denoising
tasks should be considered more harmonious tasks than non-adjacent tasks in terms of noise levels.

Next, (O2) we observe the presence of negative transfer from diffusion model training. During
sampling within a specific timestep interval, utilizing a model trained exclusively on denoising tasks
within that interval generates higher-quality samples compared to a model trained on all denoising
tasks simultaneously. This finding implies that simultaneously learning all denoising tasks can cause
degraded denoising within a specific time interval, indicating the occurrence of negative transfer.

Based on these observations, we focus on improving diffusion models by addressing negative transfer.
To achieve this, we first propose to leverage the existing multi-task learning techniques, such as
dealing with issues of conflicting gradients [5, 83], differences in gradient magnitudes [42, 46, 64],
and imbalanced loss scales [4, 16, 29]. However, unlike previous MTL studies that typically focused
on small sets of tasks, the presence of a large number of denoising tasks (≈ thousands) in diffusion
models makes it computationally expensive since MTL methods generally require calculating per-task
loss or gradient in each iteration [4, 5, 16, 24, 29, 42, 46, 64, 78, 83].

To address this, we propose a strategy that first clusters the entire denoising tasks and then applies
multi-task learning methods to the resulting clusters. Specifically, inspired by (O1), we formulate
the interval clustering problem which groups denoising tasks by pairwise disjoint timestep intervals.
Based on the interval clustering, we propose timesteps, signal-to-noise ratios, and task affinity score-
based interval clustering and show that these can be clustered by dynamic programming as [2, 76, 49].
Through our strategy, we can address the issue of negative transfer in diffusion models by allowing
for efficient computation of multi-task learning methods.

We evaluated our proposed methods through extensive experiments on widely-recognized datasets:
FFHQ [27], CelebA-HQ [26], and ImageNet [7]. For a comprehensive analysis, we employed various
models, including Ablated Diffusion Model (ADM) [8], Latent Diffusion Model (LDM) [56], and
Diffusion Transformer (DiT) [52]. These models represent diverse diffusion architectures spanning
pixel-space, latent-space, and transformer-based paradigms. Our results underscore a significant
enhancement in image generation quality, attributed to a marked reduction in negative transfer. This
affirms the merits of our clustering proposition and its synergistic integration with MTL techniques.

2 Related Work

Diffusion Models Diffusion models [20, 66, 71] are a family of generative models that generate
samples from noise via a learned denoising process. Diffusion models beat other likelihood-based
models, such as autoregressive models [62, 75], flow models [9, 10], and variational autoencoders [32]
in terms of sample quality, and sometimes outperform GANs [14] in certain cases [8]. Moreover,
pre-trained diffusion models can be easily applied to downstream image synthesis tasks such as image
editing [30, 45] and plug-and-play generation [13, 15]. From these advantages, several works have
applied diffusion models for various domains [3, 23, 38, 44, 54] and large-scale models [48, 56, 58].

Several studies have focused on improving diffusion models in various aspects, such as architecture [1,
8, 28, 52, 82], sampling speed [33, 60, 67], and training objectives [6, 17, 31, 70, 74]. Among these,
the most closely related studies are improving training objectives, as we aim to enhance optimization
between denoising tasks from the perspective of multi-task learning (MTL). Several works [31, 70, 74]

2

redesign training objectives to improve likelihood estimation. However, these objectives may lead
to sample quality degradation and training instability and require additional techniques such as
importance sampling [70, 74] and sophisticated parameterization [31] to be successfully applied.
On the other hand, P2 [6] proposes a weighted training objective that prioritizes denoising tasks for
certain noise levels, where the model is expected to learn perceptually rich features. Similar to P2,
we aim to improve the sample quality of diffusion models from an MTL perspective, and we will
show that our method is also beneficial to P2.

As a concurrent work, MinSNR [17] shares a common insight with us that diffusion training is
essentially multi-task learning. However, their observation lacks a direct connection to negative
transfer in terms of sample quality. They address the instability and inefficiency of multi-task learning
optimization in diffusion models, mainly due to a large number of denoising tasks. In contrast, our
work delves deeper into exploring negative transfer and task affinity, and we propose the application
of MTL methods through task clustering to overcome the identified challenges in MinSNR.

Multi-Task Learning Multi-Task Learning (MTL) is an approach that trains a single model to
perform multiple tasks simultaneously [57]. Although sharing parameters between tasks can reduce
the overall number of parameters, it may also result in a negative transfer, causing performance
degradation because of conflicting tasks during training procedure [24, 25, 57, 78].

Prior works have tracked down three causes of negative transfer: (1) conflicting gradient, (2) the
difference in gradient magnitude, and (3) imbalanced loss scale. First, Conflicting gradients among
different tasks may negate each other, resulting in poorer updates for a subset of, or even for all
tasks. PCgrad [83] and Graddrop [5] mitigate this by projecting conflicting parts of gradients and
dropping elements of gradients based on the degree of conflict, respectively. Second, tasks with
larger gradients may dominate tasks with smaller gradients due to differences in gradient magnitude
across tasks. Different optimization schemes have been proposed to equalize gradient magnitudes,
including MGDA-UB [64], IMTL-G [42], and NashMTL [46]. Similarly, imbalanced loss scales
may cause tasks with smaller losses to be dominated by those with larger losses. To balance task
losses, uncertainty [29], task difficulty [16], and gradient norm [4] is exploited.

Adapting MTL methods and negative transfer formulation to diffusion models is challenging since
these techniques are typically designed for scenarios with a small number of tasks and easily
measurable individual task performance. Our goal is to address this challenge and demonstrate that
observing negative transfer in diffusion models and mitigating it can improve them.

3 Preliminaries and Observation

We first provide the necessary background information on diffusion models and their multi-task
nature. Next, we conduct analyses that yield two important observations: (O1) task affinity between
two tasks is negatively correlated with the difference in noise levels, and (O2) negative transfer indeed
exists in diffusion training, i.e., the model is overburdened with different, potentially conflicting tasks.

3.1 Preliminaries

Diffusion model [20, 66, 71] consists of two processes: a forward process and a reverse process. The
forward process q gradually injects noise into a datapoint x0 to obtain noisy latents {x1, . . . ,xT } as:
q(xt|x0) = N (xt|atx0, σ

2
t I), q(xt|xs) = N (xt|αt|sxs, (σ

2
t −α2

t|sσ
2
s)I), 1 ≤ s < t ≤ T (1)

where αt, σt characterize the signal-to-noise ratio SNR(t) = α2
t /σ

2
t , and αt|s = αt/αs. Here,

SNR(t) decreases in t, such that by the designated final timestep t = T , q(xT) ≈ N (0, I).

The reverse process is a parameterized model trained to restore the original data from data corrupted
during the forward process. The widely adopted training scheme uses a simple noise-prediction
objective [8, 20, 34, 56, 59] that trains the model to predict the noise component ϵ of the latent
xt = αtx0 + σϵ, ϵ ∼ N (0, I). More formally, the objective is as follows:

Lsimple = Et,x0,ϵ[Lt], where Lt = ||ϵ− ϵθ(xt, t)||22. (2)
Let us denote by Dt the denoising task at timestep t trained by minimizing the loss Lt (Eq. 2). Then,
since a diffusion model jointly learns multiple denoising tasks {Dt}t=1,...,T using a single shared
model ϵθ, it can be regarded as a multi-task learner. Also, we denote by D[t1,t2] the set of tasks
{Dt1 ,Dt1+1, . . . ,Dt2} henceforth.

3

1 200 400 600 800 1000
1

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(a) ADM (timestep t)

-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0
-9.0

-6.0

-3.0

0.0

3.0

6.0

9.0 0.0

0.2

0.4

0.6

0.8

1.0

(b) ADM (log-SNR)

1 200 400 600 800 1000
1

200

400

600

800

1000

0.2

0.4

0.6

0.8

1.0

(c) LDM (timestep t)

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

0.2

0.4

0.6

0.8

1.0

(d) LDM (log-SNR)

Figure 1: Task affinity scores plotted against timestep and log-SNR axes in ADM and LDM. As
the timestep and SNR differences decrease, task affinity increases, implying more aligned gradient
directions between denoising tasks and reduced negative impact on their joint training.

[1,200] [201,400] [401,600] [601,800][801,1000]
Denoising tasks D[· , ·]

8

4

0

4

N
T
G

(a) ADM

[1,200] [201,400] [401,600] [601,800][801,1000]
Denoising tasks D[· , ·]

0.75

0.50

0.25

0.00

0.25

N
T
G

(b) LDM

Figure 2: Negative transfer gap (NTG) with FID score of ADM and LDM for denoising tasks D[·,·].
If NTG is negative, D[·,·]-trained model outperforms the entire denoising tasks-trained model in
terms of denoising latent {xt}t∈[·,·], showing the occurrence of negative transfer. Negative transfer
occurs in both ADM and LDM.

3.2 Observation

By considering diffusion training as a form of multi-task learning, we can analyze how the diffusion
model learns the denoising task. We experimentally analyze diffusion models with two concepts
in multi-task learning: 1) Task affinity [72, 12]: measuring which combinations of denoising tasks
may yield a more positive impact on performance. 2) Negative transfer [68, 24, 25, 57, 78, 83]:
degradation in denoising tasks caused by multi-task learning. We use a lightweight ADM [8] used
in [6] and LDM [56] with FFHQ 256×256 dataset [27] for analyze diffusion models trained on both
pixel and latent space.

(O1) Task Affinity Analysis We first analyze how the denoising tasks D[1,T] relate to each other by
measuring task affinities [72, 12]. In particular, we adopt the gradient direction-based task affinity
score [78]: for two given tasks Di and Dj , we calculate the pairwise cosine similarity between
gradients from each task loss, i.e., ∇θLi and ∇θLj , then average the similarities across training
iterations. Task affinity score assumes that cooperative (conflicting) tasks produce similar (conflicting)
gradient directions, and it has been to correlate with the MTL model’s overall performance [78].
Although there have been attempts to divide diffusion model phases using signal-to-noise ratio [6] and
a trace of covariance of training targets [81], we are the first to provide an explicit and fine-grained
analysis of task affinities among denoising tasks.

In Fig. 1, we visualize the task affinity scores among denoising tasks, for both ADM and LDM,
with both timestep and log-SNR as axes. As can be seen in Fig. 1, task affinity between two
tasks Di,Dj is high for neighboring tasks, i.e., i ≈ j, and decreases smoothly as the difference in
SNRs (or timesteps) increases. This suggests that tasks sharing temporal/noise-level proximity can
be cooperatively learned without significant conflict. Also, this result hints at the possibility that
denoising tasks for vastly different SNRs (distant in timesteps) may potentially be conflicting.

(O2) Negative Transfer Analysis Next, we show that there exist negative transfers among different
denoising tasks D[1,T]. Negative transfer refers to a multi-task learner’s performance degradation
due to task conflicts, and it can be identified by observing the performance gap between a multi-task
learner and specific-task learners. For ease of observation, we group up tasks by intervals, based on

4

the observation (O1) that more neighboring tasks in timesteps have higher task affinity. Specifically,
we investigate whether the task group D[t1,t2] suffers negative impacts from the remaining tasks.

To quantify the negative transfer, we follow the procedure: First, we generate samples {x̃0} using a
model trained on all denoising tasks D[1,T]. Next, we repeat the same sampling procedure, except we
replace the model with a model trained on D[t1,t2] for the latent {xt}t∈[t1,t2]; We denote the resulting
samples by {x̃[t1,t2]

0 }. If {x̃[t1,t2]
0 } exhibits superior quality compared to {x̃0}, it indicates that the

model trained solely on D[t1,t2] performs better in denoising the latent {xt}t∈[t1,t2] than the model
trained on the entire denoising task. This suggests that D[t1,t2] suffers from negative transfer by
learning other tasks. More formally, given a performance metric P , FID [18] in this paper, we define
the negative transfer gap:

NTG(D[t1,t2]) := P ({x̃[t1,t2]
0 })− P ({x̃0}), (3)

where NTG < 0 indicates that negative transfer occurs. The relationship between the negative
transfer gap in previous literature and our negative transfer gap is described in Appendix A.

We visualize the negative transfers among denoising tasks for both lightweight ADM [6, 8] and
LDM [56] in Fig. 2. The results indicate that negative transfer occurs in three out of the five considered
task groups for both models. Notably, negative transfers often have a significant impact, such as a
7.56 increase in FID for ADM in the worst case. Therefore, we hypothesize that there is room for
improving the performance of diffusion models by mitigating negative transfer, which motivates us
to leverage well-designed MTL methods for diffusion training.

4 Methodology

In Section 3.2, we make two observations: (O1) Denoising tasks with a larger difference in t and
SNR(t) exhibit lower task affinity, (O2) Negative transfer occurs in diffusion training. Inspired by
these observations, we aim to remediate the negative transfer in diffusion by leveraging MTL methods.
Although MTL methods are reported effective when there are only a few tasks, they are impractical
for diffusion models with a large number of denoising tasks since they require computing per-task
gradients or loss at each iteration. In this section, to deal with challenges, we propose a strategy that
first groups the denoising tasks as task clusters and then applies the multi-task learning methods by
regarding each task cluster as one distinct task.

4.1 Interval Clustering

Here, we first introduce a scheme that groups all denoising tasks D[1,T] into a small number of task
clusters. This is a necessary step for applying well-established MTL methods, for they usually involve
computationally expensive subroutines such as computing per-task gradients or loss in each training
iteration. Our key idea is to enforce temporal proximity of denoising tasks within task clusters, given
our observation (O1) that task affinity is higher for tasks closer in timesteps. Therefore, we assign
tasks in pairwise disjoint time intervals.

To obtain the disjoint time intervals, we leverage an interval clustering algorithm [2, 49] that op-
timizes for various clustering costs. In our case, interval clustering assigns diffusion timesteps
X = {1, . . . , T} to k contiguous intervals I1, . . . , Ik, with

∐k
i=1 Ii ∩ X = X , where

∐
denotes

disjoint union. Let Ii = [li, ri], li ≤ ri for i = 1, . . . , k, then we have l1 = 1, and ri = li+1 − 1
(i < k and rk = T). The interval clustering problem is defined as:

min
l1=1<l2<...<lk

k∑
i=1

Lcluster(Ii ∩ X), (4)

where Lcluster denotes the cluster cost.

Generally, it is known that an interval clustering problem of n data points with k intervals can be
solved via dynamic programming in O(n2kω(n)) [49], where ω(n) is the time required to calculate
the one-cluster cost for Lcluster(X). If the size of each cluster is too small, it is challenging to learn
the corresponding task cluster, so we add constraints on the cluster size for dynamic programming.
More details regarding the dynamic programming algorithm can be found in Appendix G.

It remains to design the clustering cost function Lcluster to optimize for. We present three clustering
cost functions: timestep-based, SNR-based, and gradient-based.

5

1. Timestep-based Clustering Cost Intuitively, one simple clustering cost is based on timesteps.
We use the absolute timestep difference for the clustering objective by setting Lcluster(Ii ∩ X) =∑ri

t=li
||ticenter − t||11 in Eq. 4 where ticenter denotes the center of interval Ii. The resulting intervals

divide up the timesteps into k uniform intervals.

2. SNR-based Clustering Cost Another useful metric to characterize a denoising task is its
signal-to-noise ratio (SNR). Indeed, it has been previously observed that a denoising task encounters
perceptually different noisy inputs depending on its SNR [6]. Also, we already observed that
denoising tasks with similar SNRs show high task affinity scores (see Section 3.2). Based on
this, we use the absolute log-SNR difference for clustering cost. We define the clustering cost as
Lcluster(Ii ∩ X) =

∑ri
t=li

|| log SNR(ticenter)− log SNR(t)||11.

3. Gradient-based Clustering Cost Finally, we consider the gradient direction-based task affinity
scores (see Section 3.2 for a definition) for clustering cost. Task affinity scores have been used as
a metric to group cooperative tasks [78]. Based on a similar intuition, we design a clustering cost
as follows: Lcluster(Ii ∩ X) = −

∑ri
t=li

TAS(ticenter, t) where TAS(·) is the gradient-based task
affinity score. While leveraging more fine-grained information regarding task affinities, this cost
function requires computing and storing gradients throughout training.

4.2 Incorporating MTL Methods into Diffusion Model Training

After dividing the denoising tasks into task clusters via interval clustering, we apply multi-task
learning methods to the resulting task clusters. As mentioned in Section 2, previous multi-task
learning works have tracked down the following causes for negative transfer: (1) conflicting gradient,
(2) difference in gradient magnitude, and (3) imbalanced loss scale. In this work, we leverage one
representative method that tackles each of the causes mentioned above, namely, (1) PCgrad [83], (2)
NashMTL [46], and (3) Uncertainty Weighting [29].

For each training step in diffusion modeling, we compute the noise prediction loss Ll for the l-th
data within the minibatch. As shown in Eq 2, calculating Ll involves sampling the timestep tl, in
which case Ll is a loss incurred on the denoising task Dtl . We may then assign Li to the appropriate
task cluster by considering the corresponding timestep. Subsequently, we may group up the losses as
{LIi}i=1,...,k, where LIi is the loss for the i-th task cluster. (More details in Appendix C)

1. PCgrad [83] In each iteration, PCgrad projects the gradient of a task onto the normal plane of the
gradient of another task when there is a conflict between their gradients. Specifically, PCgrad first
calculates the per-interval gradient ∇θLIi . Then, if the other interval gradient ∇θLIj for i ̸= j has
negative cosine similarity with ∇θLIi , it projects ∇θLIi onto the normal plane of ∇θLIj . PCgrad
repeats this process with all of the other interval gradients for all interval gradients, resulting in
a projected gradient per interval. Finally, model parameters are updated with the summation of
projected gradients.

2. NashMTL [46] In NashMTL, the aggregation of per-task gradients is treated as a bargaining
game. It aims to update model parameters with weighted summed gradients ∆θ =

∑k
i=i αi∇θLIi by

obtaining the Nash bargaining solution to determine αi, where ∆θ is in the ball of radius ϵ centered
zero, Bϵ. They define the utility function for each player as ui = ⟨∇θLIi ,∆θ⟩, then the unique Nash
bargaining solution can be obtained by argmax∆θ∈Bϵ

∑
i log(ui). By denoting G as matrix whose

columns contain the gradients ∇θLIi , α ∈ Rk
+ is the solution to G⊺Gα = 1/α where 1/α is the

element-wise reciprocal. To avoid the optimization to obtain α for each iteration, they update α once
every few iterations.

3. Uncertainty Weighting (UW) [29] UW uses task-dependent (homoscedastic) uncertainty to
weight task cluster losses. By utilizing observation noise parameter σi for i-th task clusters, the
total loss function is

∑
i LIi/σ

2
i + log(σi). As the noise parameter for the i-th task clusters loss σi

increases, the weight of LIi decreases, and vice versa. The σi is discouraged from increasing too
much by regularizing with log(σi).

5 Experiments

In this section, we demonstrate the efficacy of our proposed method by addressing the negative
transfer issue in diffusion training. First, we provide the comparative evaluation in Section 5.1, where

6

Table 1: Quantitative comparison to vanilla training (Vanilla) on the unconditional generation.
Integration of MTL methods using interval clustering consistently improves FID scores and generally
enhances precision compared to vanilla training.

Model Clustering Method
Dataset

FFHQ [27] CelebA-HQ [26]
FID (↓) Precision (↑) Recall (↑) FID (↓) Precision (↑) Recall (↑)

ADM [8, 6]

Vanilla 24.95 0.5427 0.3996 22.27 0.5651 0.4328

Timestep
PCgrad [83] 22.29 0.5566 0.4027 21.31 0.5610 0.4238
NashMTL [46] 21.45 0.5510 0.4193 20.58 0.5724 0.4303
UW [29] 20.78 0.5995 0.3881 17.74 0.6323 0.4023

SNR
PCgrad [83] 20.60 0.5743 0.4026 20.47 0.5608 0.4298
NashMTL [46] 23.09 0.5581 0.3971 20.11 0.5733 0.4388
UW [29] 20.19 0.6297 0.3635 18.54 0.6060 0.4092

Gradient
PCgrad [83] 23.07 0.5526 0.3962 20.43 0.5777 0.4348
NashMTL [46] 22.36 0.5507 0.4126 21.18 0.5682 0.4369
UW [29] 21.38 0.5961 0.3685 18.23 0.6011 0.4130

LDM [56]

Vanila 10.56 0.7198 0.4766 10.61 0.7049 0.4732

Timestep
PCgrad [83] 9.599 0.7349 0.4845 9.817 0.7076 0.4951
NashMTL [46] 9.400 0.7296 0.4877 9.247 0.7119 0.4945
UW [29] 9.386 0.7489 0.4811 9.220 0.7181 0.4939

SNR
PCgrad [83] 9.715 0.7262 0.4889 9.498 0.7071 0.5024
NashMTL [46] 10.33 0.7242 0.4710 9.429 0.7062 0.4883
UW [29] 9.734 0.7494 0.4797 9.030 0.7202 0.4938

Gradient
PCgrad [83] 9.189 0.7359 0.4904 10.31 0.6954 0.4927
NashMTL [46] 9.294 0.7234 0.4962 9.740 0.7051 0.5067
UW [29] 9.439 0.7499 0.4855 9.414 0.7199 0.4952

our method can boost the quality of generated samples significantly. Next, we compare previous loss
weighting methods for diffusion models to UW with interval clustering in Section 5.2, verifying our
superior effectiveness to existing methods. Then, we analyze the behavior of adopted MTL methods,
which serve to explain the effectiveness of our method in Section 5.3. Finally, we demonstrate that
our method can be readily combined with more sophisticated training objectives to boost performance
even further in Section 5.4. Extensive information on all our experiments can be found in Appendix E.

5.1 Comparative Evaluation

Experimental Setup Here, we demonstrate that incorporating MTL methods into diffusion training
improves the performance of diffusion models. For comparison, we consider unconditional and
class-conditional image generation. For unconditional image generation, we used FFHQ [27] and
CelebA-HQ [26] datasets, where all images were resized to 256× 256. For class-conditional image
generation experiments, we employed the ImageNet dataset [7], also resized to 256× 256 resolution.

For architecture, we adopt widely recognized architectures for image generation. Specifically, we
use the lightweight ADM [6, 8] and LDM [56] for unconditional image generation, while employing
DiT-S/2 [52] with classifier-free guidance [19] for class-conditional image generation. We train the
model using our method: We consider every possible pair of (1) interval clustering (timestep-, SNR-,
and gradient-based) and (2) MTL method (PCgrad, NashMTL, and Uncertainty Weighting (UW)),
and report the results. We used k = 5 in interval clustering throughout experiments.

For evaluation metrics, we use FID [18] and precision [36] for measuring sample quality, and
recall [36] for assessing sample diversity and distribution coverage. IS [61] is additionally used for
the evaluation metric in the class-conditional image generation setting. Finally, for sample generation,
we use DDIM [67] sampler with 50 steps for unconditional generation and DDPM 250 steps for class
conditional generation, and all evaluation metrics are calculated using 10k generated samples.

Comparison in Unconditional Generation As seen in Table 1 our method significantly improves
performance upon conventionally trained diffusion models (denoted vanilla in the table). In particular,
there is an improvement in FID in all cases, and an improvement in precision scores in all but two
cases, which highlights the efficacy of our method. Also, given strong results for both pixel- and
latent-space models, we can reasonably infer that our method is generally applicable.

We also observe the distinct characteristics of each multi-task learning method considered. Uncertainty
Weighting tends to achieve higher improvements in sample quality compared to PCgrad and NashMTL.
Indeed, UW achieves superior FID and Precision for ADM, while excelling in Precision for LDM.

7

1.5 2.0 2.5 3.0
Guidance scale

30

40

50

60

70

80

FI
D

1.5 2.0 2.5 3.0
Guidance scale

20

30

40

50

60

IS

1.5 2.0 2.5 3.0
Guidance scale

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pr
ec

isi
on

1.5 2.0 2.5 3.0
Guidance scale

0.44

0.46

0.48

0.50

0.52

0.54

Re
ca

ll

Vanilla
UW-Time

UW-Grad
UW-SNR

Nash-Time
Nash-Grad

Nash-SNR
PCgrad-Time

PCgrad-Grad
PCgrad-SNR

Figure 3: Quantitative comparison to vanilla training (Vanilla) on ImageNet 256×256 dataset
with DiT-S/2 architecture and classifier-free guidance. Integration of MTL methods using interval
clustering consistently improves FID, IS, and Precision compared to vanilla training.

Table 2: Comparison between MinSNR and
ANT-UW. DiT-L/2 is trained on ImageNet.

Method FID IS Precision Recall
Vanilla 12.59 134.60 0.73 0.49
MinSNR 9.58 179.98 0.78 0.47
ANT-UW 6.17 203.45 0.82 0.47

Table 3: GPU memory usage and runtime com-
parison on FFHQ dataset in LDM architecture.

Method GPU memory usage (GB) # Iterations / Sec
Vanilla 34.126 2.108
PCgrad 28.160 1.523
NashMTL 38.914 2.011
UW 34.350 2.103

However, UW sacrifices distribution coverage in exchange for sample quality, resulting in lower
Recall compared to other methods. Meanwhile, NashMTL scores higher in recall and lower in
precision compared to other methods, suggesting it has better distribution coverage while sacrificing
sample quality. Finally, PCgrad tends to show a balanced performance in terms of precision and
recall. We further look into behaviors of different MTL methods in Section 5.3.

Due to space constraints, we provide a comprehensive collection of generated samples in Appendix F.
In summary, diffusion models trained with our method produce more realistic and high-fidelity
images compared to conventionally trained diffusion models.

Comparison in Class-Conditional Generation We illustrate the results of quantitative comparison
on class-conditional generation in Fig. 3. The results show that our methods outperform vanilla
training in FID, IS, and Precision. In particular, UW and Nash-MTL significantly boost these
metrics, showing superior improvement in generation quality. These results further support the
generalizability of MTL methods through the interval clustering on class-conditional generation and
the transformer-based diffusion model.

5.2 Comparison to Loss Weighting Methods

Since UW is a loss weighting method, validating the superiority of UW with interval clustering
compared to previous loss weighting methods such as P2 [6] and MinSNR [17] highlights the
effectiveness of our method. We name UW by incorporating interval clustering as Addressing
Negative Transfer (ANT)-UW. We trained DiT-L/2 with MinSNR and UW with k = 5 on the
ImageNet across 400K iterations, using a batch size of 240. All methods are trained by AdamW
optimizer [43] with a learning rate of 1e− 4. Table 2 shows that ANT-UW dramatically outperforms
MinSNR, emphasizing the effectiveness of our method. An essential note is that the computational
cost of ANT-UW remains remarkably similar to vanilla training as shown in Section 5.3, ensuring that
our enhanced performance does not come at the expense of computational efficiency. Additionally,
we refer to the results in [50], showing that our ANT-UW outperforms P2 and MinSNR when DIT-L/2
is trained on the FFHQ dataset.

5.3 Analysis

To provide a better understanding of our method, we present various analysis results here. Specifically,
we compare the memory and runtime of MTL methods, analyze the behavior of MTL methods
adopted, provide a convergence analysis, and assess the extent to which negative transfer has been
addressed.

8

I1 I2 I3 I4 I5

I1

I2

I3

I4

I5

0.00 0.42 0.64 0.74 0.80

0.42 0.00 0.54 0.66 0.72

0.64 0.54 0.00 0.53 0.61

0.74 0.66 0.53 0.00 0.35

0.80 0.72 0.61 0.35 0.00

(a) Average conflict in PCgrad

0 1 2 3 4
Iteration ×105

10 1

100

101

102

weight I1
weight I2
weight I3
weight I4
weight I5

(b) Gradient weights of NashMTL

0 1 2 3 4
Iteration ×105

100

101

102

weight I1
weight I2
weight I3
weight I4
weight I5

(c) Loss weight of UW

Figure 4: Behavior of multi-task learning methods across training iterations. (a): With increasing
timestep difference, gradient conflicts between task clusters become more frequent in PCgrad. (b)
and (c): Both UW and NashMTL allocate higher weights to task clusters that handle noisier inputs.

0.2 0.4 0.6 0.8 1.0
Iterations ×106

20

30

40

50

FI
D

ADM

1 2 3 4
Iterations ×105

10

12

14

16

FI
D

Vannila
UW-Time
UW-Grad
UW-SNR
Nash-Time
Nash-Grad
Nash-SNR
PCgrad-Time
PCgrad-Grad
PCgrad-SNR

LDM

Figure 5: Convergence analysis on FFHQ dataset. Compared to baselines, all methods exhibit fast
convergence and achieve good final performance.

Memory and Runtime Comparison We first compared the memory usage and runtime between
MTL methods and vanilla training for a deeper understanding of their cost. We conducted measure-
ments of memory usage and runtime with k = 5 on the FFHQ dataset using the LDM architecture
and timestep-based clustering, and the results are shown in Table 3. PCgrad has a slower speed of
1.523 iterations/second compared to vanilla training, but its GPU memory usage is lower due to the
partitioning of minibatch samples. Meanwhile, NashMTL has a runtime of 2.011 iterations/second.
Even though NashMTL uses more GPU memory, it has a better runtime than PCgrad because it com-
putes per-interval gradients occasionally. Concurrently, UW shows similar runtime and GPU memory
usage as vanilla training, which is attributed to its use of weighted loss and a single backpropagation
process.

Behavior of MTL Methods We analyze the behavior of different multi-task learning methods
during training. For PCgrad, we calculate the average number of gradient conflicts between task
clusters per iteration. For UW, we visualize the weights allocated to the task cluster losses over
training iterations. Finally, for NashMTL, we visualize the weights allocated to per-task-cluster
gradients over training iterations. We used LDM trained on FFHQ for our experiments. Although
we only report results for time-based interval clustering for conciseness, we note that MTL methods
exhibit similar behavior across different clustering methods. Results obtained using other clustering
methods can be found in Appendix D.1.

The resulting visualizations are provided in Fig. 4. As depicted in Fig. 4a, the task pair that shows
the most gradient conflicts is I1 and I5, namely, task clusters apart in timesteps. This result supports
our hypothesis that temporally distant denoising tasks may be conflicting, and as seen in Section 5.1,
PCgrad seems to mitigate this issue. Also, as depicted in Fig. 4b and 4b, both UW and NashMTL
tend to allocate higher weights to task clusters that handle noisier inputs, namely, I4, I5. This result
suggests that handling noisier inputs may be a difficult task that is underrepresented in conventional
diffusion training.

Faster Convergence In Fig. 5, we plot the trajectory of the FID score over training iterations, as
observed while training on FFHQ. We can observe that all our methods enjoy faster convergence
and better final performance compared to the conventionally trained model. Notably, for pixel space

9

[1, 200] [201, 400] [401, 600] [601, 800] [801, 1000]
-7.94

-4.40

-0.85

2.70

6.24

A
D

M
 N
T
G

 (
FI

D
)

Vanilla PCgrad-Time
PCgrad-SNR
PCgrad-Grad

Nash-Time
Nash-SNR
Nash-Grad

UW-Time
UW-SNR
UW-Grad

[1, 200] [201, 400] [401, 600] [601, 800] [801, 1000]
-0.90

-0.53

-0.15

0.22

0.60

LD
M

 N
T
G

 (F
ID

)

Figure 6: Negative transfer gap (NTG) comparison on the FFHQ dataset. Integration of MTL methods
tends to improve the negative transfer gap. Methods that fail to improve NTG in areas where the
baseline records low NTG tend to achieve lesser improvements in the baseline.

diffusion (ADM), UW converges extremely rapidly, while beating the vanilla method by a large
margin. Overall, these results show that our method may not only make diffusion training more
effective but also more efficient.

Reduced Negative Transfer Gap We now demonstrate that our proposed method indeed mitigates
the negative transfer gap we observed in Section 3.2. We used the same procedure introduced in
Section 3.2 to calculate the negative transfer gap for all methods considered, for the FFHQ dataset.

As shown in Fig. 6 our methods improve upon negative transfer gaps. Specifically, for tasks that
exhibit severe negative transfer gaps in the baseline (e.g., [601, 800], [801, 1000] for ADM, and
[401, 600], [601, 800] for LDM), our methods mitigate the negative transfer gap for most cases, even
practically removing it in certain cases. Another interesting result to note is that models less effective
in reducing negative transfer (NashMTL-SNR for LDM and PCgrad-Grad for ADM) indeed show
worse FID scores, which supports our hypothesis that resolving negative transfer leads to performance
gain. We also note that even the worst-performing methods still beat the vanilla model.

5.4 Combining MTL Methods with Sophisticated Training Objectives

Table 4: Combining our method
with P2 on the FFHQ dataset.
DDIM 200-step sampler is used.

Type Method FID-50k
GAN PGan [63] 3.39

AR VQGAN [11] 9.6

Diffusion
(LDM)

D2C [65] 13.04

Vanilla 9.1
P2 7.21
P2 + Ours 5.84

Finally, we show that our method is readily applicable on top of
more sophisticated training objectives proposed in the literature.
Specifically, we train an LDM by applying both UW and PCgrad
on top of the P2 objective [6] and evaluate the performance on the
FFHQ dataset. We chose UW and PCgrad based on a previous
finding that combining the two methods leads to performance
gain [41]. Also, we chose the gradient-based clustering method
due to its effectiveness for LDM on FFHQ. As seen in Table 4,
when combined with P2, our method improves the FID from
7.21 to 5.84.

6 Conclusion

In this work, we studied the problem of better training diffusion models, with the distinction of
reducing negative transfer between denoising tasks in a multi-task learning perspective. Our key
contribution is to enable the application of existing multi-task learning techniques, such as PCgrad
and NashMTL, that were challenging to implement due to the increasing computation costs associated
with the number of tasks, by clustering the denoising tasks based on their various task affinity scores.
Our experiments validated that the proposed method effectively mitigated negative transfer and
improved image generation quality. Overall, our findings contribute to advancing diffusion models.
Starting from our work, we believe that addressing and overcoming negative transfer can be the future
direction to improve diffusion models.

10

References
[1] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala,

Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with an ensemble
of expert denoisers. arXiv preprint arXiv:2211.01324, 2022. 1, 2, 17

[2] Richard Bellman. A note on cluster analysis and dynamic programming. Mathematical Biosciences, 18
(3-4):311–312, 1973. 2, 5, 22

[3] Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and J Zico
Kolter. (certified!!) adversarial robustness for free! arXiv preprint arXiv:2206.10550, 2022. 2

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks. In International conference on machine
learning, pages 794–803. PMLR, 2018. 2, 3

[5] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and Dragomir
Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign dropout. Advances in
Neural Information Processing Systems, 33:2039–2050, 2020. 2, 3

[6] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11472–11481, 2022. 2, 3, 4, 5, 6, 7, 8, 10, 17, 21

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009. 2, 7, 21

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34:8780–8794, 2021. 1, 2, 3, 4, 5, 7, 17, 21

[9] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014. 2

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 2

[11] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12873–12883, 2021. 10

[12] Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying task
groupings for multi-task learning. Advances in Neural Information Processing Systems, 34:27503–27516,
2021. 2, 4, 20

[13] Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee, Myeongho Jeong, Hyun Seung Lee, and
Seungtaek Choi. Towards practical plug-and-play diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1962–1971, 2023. 2, 17

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020. 2

[15] Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as plug-and-
play priors. Advances in Neural Information Processing Systems, 35:14715–14728, 2022. 2

[16] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioritization
for multitask learning. In Proceedings of the European conference on computer vision (ECCV), pages
270–287, 2018. 2, 3

[17] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining Guo.
Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7441–7451, October 2023. 2, 3, 8

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017. 5, 7, 17, 19, 21

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021. 7, 21

11

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020. 1, 2, 3

[21] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022. 1

[22] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning Research, 23
(47):1–33, 2022. 1

[23] Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J. Fleet.
Video diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. 1, 2

[24] Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. In Interna-
tional Conference on Learning Representations, 2022. 2, 3, 4

[25] Junguang Jiang, Baixu Chen, Junwei Pan, Ximei Wang, Liu Dapeng, Jie Jiang, and Mingsheng Long.
Forkmerge: Overcoming negative transfer in multi-task learning. arXiv preprint arXiv:2301.12618, 2023.
2, 3, 4, 17

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. In International Conference on Learning Representations, 2018. 2, 7, 21

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
4401–4410, 2019. 2, 4, 7, 17, 20, 21

[28] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. 1, 2

[29] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7482–7491, 2018. 2, 3, 6, 7, 19, 20, 21

[30] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for
robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2426–2435, 2022. 2

[31] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances in
neural information processing systems, 34:21696–21707, 2021. 2, 3

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013. 2

[33] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. In ICML Workshop on
Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. 2

[34] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. In International Conference on Learning Representations, 2021. 3

[35] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In defense
of the unitary scalarization for deep multi-task learning. Advances in Neural Information Processing
Systems, 35:12169–12183, 2022. 18, 20

[36] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision
and recall metric for assessing generative models. Advances in Neural Information Processing Systems, 32,
2019. 7, 21

[37] Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi. Multi-
architecture multi-expert diffusion models. arXiv preprint arXiv:2306.04990, 2023. 17

[38] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. Advances in Neural Information Processing Systems, 35:4328–4343,
2022. 1, 2

12

[39] Baijiong Lin and Yu Zhang. Libmtl: A python library for deep multi-task learning. Journal of Machine
Learning Research, 24:1–7, 2023. 18

[40] Baijiong Lin, Feiyang YE, and Yu Zhang. A closer look at loss weighting in multi-task learning, 2022.
URL https://openreview.net/forum?id=OdnNBNIdFul. 18, 20

[41] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021. 10

[42] Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang.
Towards impartial multi-task learning. International Conference on Learning Representations, 2021. 2, 3

[43] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7. 8, 21

[44] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2837–2845, 2021. 1, 2

[45] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2022. 2

[46] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan
Fetaya. Multi-task learning as a bargaining game. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 16428–16446.
PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/navon22a.html. 2, 3, 6, 7,
18, 21

[47] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages 8162–8171. PMLR, 2021. 1, 21

[48] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. In International Conference on Machine Learning, pages 16784–16804.
PMLR, 2022. 1, 2

[49] Frank Nielsen and Richard Nock. Optimal interval clustering: Application to bregman clustering and
statistical mixture learning. IEEE Signal Processing Letters, 21(10):1289–1292, 2014. 2, 5, 22

[50] Byeongjun Park, Sangmin Woo, Hyojun Go, Jin-Young Kim, and Changick Kim. Denoising task routing
for diffusion models. arXiv preprint arXiv:2310.07138, 2023. 8

[51] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in gan
evaluation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11410–11420, 2022. 18, 19, 21

[52] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023. 2, 7, 21

[53] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. Sdxl: improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023. 21

[54] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
In The Eleventh International Conference on Learning Representations, 2022. 1, 2

[55] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022. 1

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022. 2, 3, 4, 5, 7, 17, 20, 21

[57] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017. 2, 3, 4

[58] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022. 2

13

https://openreview.net/forum?id=OdnNBNIdFul
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v162/navon22a.html

[59] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 3

[60] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2021. 2

[61] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016. 7

[62] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn
with discretized logistic mixture likelihood and other modifications. In International Conference on
Learning Representations, 2016. 2

[63] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster. Advances in
Neural Information Processing Systems, 34:17480–17492, 2021. 10

[64] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in neural
information processing systems, 31, 2018. 2, 3

[65] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-decoding models for
few-shot conditional generation. Advances in Neural Information Processing Systems, 34:12533–12548,
2021. 10

[66] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR, 2015. 1, 2, 3

[67] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020. 2, 7, 18, 19

[68] Xiaozhuang Song, Shun Zheng, Wei Cao, James Yu, and Jiang Bian. Efficient and effective multi-task
grouping via meta learning on task combinations. In Advances in Neural Information Processing Systems,
2022. 4, 20

[69] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019. 1

[70] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428, 2021. 2, 3

[71] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021. 1, 2, 3

[72] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese. Which
tasks should be learned together in multi-task learning? In International Conference on Machine Learning,
pages 9120–9132. PMLR, 2020. 4, 20

[73] Guolei Sun, Thomas Probst, Danda Pani Paudel, Nikola Popović, Menelaos Kanakis, Jagruti Patel, Dengxin
Dai, and Luc Van Gool. Task switching network for multi-task learning. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 8291–8300, 2021. 24

[74] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. Advances
in Neural Information Processing Systems, 34:11287–11302, 2021. 2, 3

[75] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29, 2016. 2

[76] Haizhou Wang and Mingzhou Song. Ckmeans. 1d. dp: optimal k-means clustering in one dimension by
dynamic programming. The R journal, 3(2):29, 2011. 2, 22

[77] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding negative
transfer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11293–11302, 2019. 17

[78] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and improving
multi-task optimization in massively multilingual models. In International Conference on Learning
Representations, 2021. 2, 3, 4, 6

14

[79] Sen Wu, Hongyang R Zhang, and Christopher Ré. Understanding and improving information transfer in
multi-task learning. In International Conference on Learning Representations, 2019. 17

[80] Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task
optimization methods in deep learning even help? Advances in Neural Information Processing Systems,
35:13597–13609, 2022. 18, 20

[81] Yilun Xu, Shangyuan Tong, and Tommi S. Jaakkola. Stable target field for reduced variance score
estimation in diffusion models. In The Eleventh International Conference on Learning Representations,
2023. 4

[82] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made slim.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22552–
22562, 2023. 2

[83] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:5824–5836, 2020.
2, 3, 4, 6, 7, 19, 20, 21

15

Appendix
Contents

A Relation to Negative Transfer Gap in Previous Literature 17

B Detailed Experimental Settings for Observational Study 17

C Implementation Details for MTL methods 18

D Additional Experimental Results 18

D.1 Visualization for the Behavior of MTL Methods with Other Clustering Methods . . 19

D.2 Analysis: The Number of Interval Clusters . 19

D.3 Comparison Interval Clustering with Task Grouping Method 20

D.4 Comparison to Random Loss Weighting and Linear Scalarization 20

E Detailed Experimental Settings in Section 5 21

E.1 Detailed Settings of Comparative Evaluation and Analysis (Section 5.1 and 5.3) . . 21

E.2 Detailed Settings of Comparison to Loss Weighting Methods (Section 5.2) 21

E.3 Detailed Settings of Combining MTL Methods with Sophisticated Training Objec-
tives (Section 5.4) . 21

F Qualitative Results 21

G Dynamic Programming Algorithm for Interval Clustering 22

H Broader Impacts 23

I Limitations 24

16

A Relation to Negative Transfer Gap in Previous Literature

Previous works on transfer and multi-task learning have explored measuring the negative transfer [25,
79, 77]. For the source task Tsrc and the target task Ttgt, the negative transfer can be defined as the
phenomenon that the source task negatively transfer to the target task. Denote the model trained on
both source and target task as Θ(Ttgt, Tsrc) and the model only trained on the target task as Θ(Ttgt).
With performance measure P for the model on Ttgt, negative transfer can be quantified by utilizing
negative transfer gap (NTG):

NTG(Ttgt, Tsrc) = P (Θ(Ttgt))− P (Θ(Ttgt, Tsrc)). (5)

For P , higher is better, NTG > 0 indicates that negative transfer occurs, showing that additionally
training on Tsrc negatively affects the learning of Ttgt.
In our study of negative transfer in diffusion models, the target task involves denoising tasks within a
specific timestep interval as Ttgt = D[t1,t2], while the source task comprises the remaining denoising
tasks as Tsrc = D[1,T] \ D[t1,t2].

However, since a model trained only a subset of entire denoising tasks cannot generate samples
properly, we cannot utilize the sample quality metrics (e.g. FID [18]) for P to measure P (Θ(Ttgt))
in Eq. 5 for arbitrary timestep intervals. This is a different point from a typical MTL setting, where
the performance of each task can be measured.

Alternatively, we redefine NTG with the difference in sample quality resulting from denoising by
different models, Θ(Ttgt) and Θ(Ttgt, Tsrc), in the [t1, t2] interval. During the sampling procedure
with a model trained on entire denoising tasks, we use Θ(Ttgt) or Θ(Ttgt, Tsrc) in [t1, t2]. Denote
the resulting samples with Θ(Ttgt, Tsrc) as {x̃0} and the resulting samples with Θ(Ttgt) as {x̃[t1,t2]

0 }.
Then, by comparing the quality of these samples as Eq. 3, we can measure how much the denoising
of [t1, t2] degrades in terms of sampling quality.

Furthermore, the success of multi-expert denoisers in prior studies [37, 13, 1] suggests the potential
existence of negative transfer. By distinctly separating parameters for denoising tasks, they might
mitigate this negative transfer, leading to enhanced performance in their generation.

B Detailed Experimental Settings for Observational Study

In this section, we provide the details on experimental settings in Section 3. The training details and
the architectures used are the same as those in Section 5. All experiments are conducted with a single
A100 GPU and with FFHQ dataset [27].

For the pixel-space diffusion model, we use the lightweight ADM as same in [6]. It inherits the
architecture of ADM [8], but it uses fewer base channels, fewer residual blocks, and a self-attention
with a single resolution. Specifically, the model uses one residual block per resolution with 128 base
channels and 16×16 self-attention with 64 head channels. A linear schedule with T = 1000 is used
for diffusion scheduling. We referenced the training scripts in the official code2 for implementation.

For the latent-space diffusion model, we use the LDM architecture as the same settings for FFHQ
experiments in [56]. Specifically, an LDM-4-VQ encoder and decoder are used, in which the
resolution of latent vectors is reduced by four times compared to the original images and has a vector
quantization layer with 8092 codewords. The denoising model has 224 base channels with multipliers
for each resolution as 1, 2, 3, 4 and has two residual blocks per resolution. Self-attention with 32
head channels is used for 32, 16, and 8 resolutions. For diffusion scheduling, the linear schedule
with T = 1000 is used. We conducted experiments with the official code3. In general, we utilized
the pre-trained weights provided by LDM. However, if our retraining results demonstrated superior
performance, we reported them.

Task Affinity Analysis To measure the task affinity score between denoising tasks, we first calculate
∇θLt for t = 1, . . . , T every 10K iterations during training. The gradient is calculated with 1000
samples in the training dataset. Then, the pairwise cosine similarity of the gradient is computed and

2https://github.com/jychoi118/P2-weighting
3https://github.com/CompVis/latent-diffusion

17

https://github.com/jychoi118/P2-weighting
https://github.com/CompVis/latent-diffusion

I1 I2 I3 I4 I5

I1

I2

I3

I4

I5

0.00 0.42 0.67 0.74 0.79

0.42 0.00 0.56 0.66 0.71

0.67 0.56 0.00 0.52 0.57

0.74 0.66 0.52 0.00 0.29

0.79 0.71 0.57 0.29 0.00

(a) Average conflict in PCgrad

0 1 2 3 4
Iteration ×105

10 1

100

101

102

weight I1
weight I2
weight I3
weight I4
weight I5

(b) Gradient weights of NashMTL

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iteration ×105

100

101

102

weight I1
weight I2
weight I3
weight I4
weight I5

(c) Loss weight of UW

Figure 7: Behavior of multi-task learning methods through SNR-based interval clustering across
training iterations. A similar trend as in Fig. 3 is observed.

their cosine similarities calculated by every 10K iterations are averaged. Finally, we can plot the
average cosine similarity against the timestep axis as in Fig. 1. For plotting them against the log-SNR
axis, the values of the axis were adjusted, and the empty parts were filled with linear interpolation.

For ADM and LDM, the pairwise cosine similarity between gradients is calculated during 1M training
iterations and 400K training iterations, respectively.

Negative Transfer Analysis To calculate the negative transfer gap in Eq. 3, we need to additionally
train the model on denoising tasks within specific timestep interval [t1, t2]. Since we plot five intervals
[1, 200], [201, 400], [401, 600], [601, 800], and [801, 1000], we trained the model on denoising tasks
for each interval. Each model is trained for 600K iterations in ADM and 300K iterations in LDM on
the FFHQ dataset. For the model trained on entire denoising tasks, we used the trained model the
same as in Section 5.1. ADM is trained on 1M iterations and LDM is trained on 400K iterations. All
of these models are trained with the same batch size and learning rate as experiments in Section 5.1
(See Appendix E).

DDIM 50-step sampler [67] was used for the generation. FID is calculated with Clean-FID [51]
by setting the entire 70K FFHQ dataset as reference images. Since the official code of Clean-FID4

supports FID calculation with statistics from these reference images, we used it and reported FID
with 10k generated images.

C Implementation Details for MTL methods

We describe how MTL methods are applied in Section 4.2. To be more self-contained, we hereby
present implementation details for MTL methods. For the implementation of MTL methods, we used
the official code of LibMTL [39]5. NashMTL [46] supports practical speed-up by updating gradient
weights α every few iterations, not every iteration. We utilize this by updating α every 25 training
iterations.

D Additional Experimental Results

We present additional experimental results to supplement the empirical findings presented in Section 5.
In Section D.1, we provide visualizations of the behavior of MTL methods with other clustering meth-
ods that were not covered in Section 5.3. Furthermore, we examine the impact of our hyperparameter,
the number of clusters k, in Section D.2. To validate the effectiveness of interval clustering compared
to other clustering methods, we present additional results in Section D.3. In Section D.4, we delve
deeper into comparing the performance of stronger MTL baselines such as Linear Scalarization
(LS) [80, 35] and Random Loss Weighting (RLW) [40] with our proposed approach.

4https://github.com/GaParmar/clean-fid
5https://github.com/median-research-group/LibMTL

18

https://github.com/GaParmar/clean-fid
https://github.com/median-research-group/LibMTL

I1 I2 I3 I4 I5

I1

I2

I3

I4

I5

0.00 0.29 0.57 0.72 0.79

0.29 0.00 0.49 0.64 0.73

0.57 0.49 0.00 0.55 0.64

0.72 0.64 0.55 0.00 0.48

0.79 0.73 0.64 0.48 0.00

(a) Average conflict in PCgrad

0 1 2 3 4
Iteration ×105

10 1

100

101

102

weight I1
weight I2
weight I3
weight I4
weight I5

(b) Gradient weights of NashMTL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iteration ×105

100

101

102 weight I1
weight I2
weight I3
weight I4
weight I5

(c) Loss weight of UW

Figure 8: Behavior of multi-task learning methods through gradient-based interval clustering across
training iterations. A similar trend as in Fig. 3 is observed.

Table 5: FID-10K scores of the LDM trained using a combination of UW and PCgrad methods on the
FFHQ dataset while varying the value of k. Notably, integrating MTL methods with two clusters
significantly improves FID scores. Increasing k from 2 to 5 also enhances FID scores, but further
increasing k from 5 to 8 shows similar results.

Clustering Vanilla Number of clusters (k)
k = 2 k = 5 k = 8

Timestep
10.56

9.563 9.151 9.083
SNR 9.606 9.410 9.367
Gradient 9.634 9.033 9.145

D.1 Visualization for the Behavior of MTL Methods with Other Clustering Methods

Due to space constraints in our main paper, we were unable to include the behavior analysis of MTL
methods for SNR-based and gradient-based interval clustering. However, we present these results in
Fig. 7 and 8, which show similar trends to the observations depicted in Fig. 4. These findings suggest
valuable insights into the behavior of MTL methods, regardless of the clustering objectives.

Firstly, we observed a notable increase in the occurrence of conflicting gradients as the timestep
difference between tasks increased. This observation suggests that the temporal distance between
denoising tasks plays a crucial role in determining the frequency of conflicting gradients.

Secondly, we noted that both loss and gradient balancing methods assign higher weights to task
clusters with higher levels of noise. This finding indicates that these methods allocate more importance
to the noisier tasks.

D.2 Analysis: The Number of Interval Clusters

To understand the impacts of the number of clusters k, we conducted experiments by varying k with 2,
5, and 8. We trained a model for timestep-based, SNR-based, and gradient-based clustering with each
k, resulting in nine trained models. For MTL methods, we used combined methods with UW [29]
and PCgrad [83] as in Section 5.4. All training configurations such as learning rate and training
iterations are the same as in Section 5.1. We evaluate 10K generated samples from the DDIM 50-step
sampler [67] for all methods with the FID score [51, 18].

Table 5 shows the results. Notably, we made an intriguing observation regarding the integration of
MTL methods with only two clusters, which resulted in a noteworthy enhancement in FID scores.
Additionally, we found that increasing the number of clusters, denoted as k, from 2 to 5 also exhibited
a positive impact on improving FID scores. However, our findings indicated that further increasing
k from 5 to 8 did not yield significant improvements and resulted in similar outcomes. From these
results, we conjecture that increasing the number of clusters to greater than five has no significant
effect.

19

Table 7: The results of Random Loss Weighting (RLW) and Linear Scalarization (LS) on the FFHQ
dataset in ADM architecture.

Clustering Method FID Precision Recall
- Vanilla 24.95 0.5427 0.3996

Timestep RLW 38.06 0.4634 0.3293
LS 25.34 0.5443 0.3868

SNR RLW 35.13 0.4675 0.3404
LS 25.69 0.5369 0.3843

Gradient RLW 36.19 0.4643 0.3392
LS 26.12 0.5120 0.3878

D.3 Comparison Interval Clustering with Task Grouping Method

To show the effectiveness of interval clustering methods for denoising task grouping in diffusion
models, we compare high-order approximation (HOA)-based grouping methods [72, 12].

For grouping N -tasks in deep neural networks, the early attempt [72] established a two-stage
procedure: (1) compute MTL performance gain for all task combinations and (2) search best groups
for maximizing MTL performance gain across the groups. However, performing (1) requires huge
computation since MTL performance gain should be measured for all 2N−1 combinations. Therefore,
they reduce computation by HOA, which utilizes MTL gains on only pairwise task combinations.
Also, the HOA scheme is inherited by the following work, task affinity grouping [12], which uses
their defined task affinity score instead of MTL gains. Different from these works, our interval
clustering aims to group the tasks with interval constraints.

Table 6: Comparison inter-
val clustering and high or-
der approximation-based task
grouping. DDIM-50 step sam-
pler is used.

Clustering FID-10k
HOA 9.873
Interval 9.033

For a fair comparison, we use a pairwise gradient similarity averaged
across training iterations between denoising tasks for the objective of
HOA-based grouping and interval clustering. In this case, the HOA-
based grouping becomes cosine similarity grouping used in [12],
and interval clustering becomes gradient-based clustering in our
method. However, for HOA-based grouping, a solution of brute force
searching with branch-and-bound-like algorithm [72, 12] requires
computational complexity of O(2N). It incurs enormous costs in
diffusion with many denoising tasks. Therefore, we use a beam-
search scheme in [68]. We set the number of clusters as 5 for both
methods.

We apply the combined method with UW [29] and PCgrad [83] as in Section 5.3 for the resulting
clusters from both HOA-based grouping and interval clustering. We trained the model on the FFHQ
dataset [27] and used LDM architecture [56]. All training configurations are the same as in Section 5.1.
For evaluation metrics, we use FID and its configurations are the same as in Section 5.1.

Table 6 shows the results, indicating that the interval clustering outperforms HOA-based task grouping.

D.4 Comparison to Random Loss Weighting and Linear Scalarization

Linear Scalarization (LS) [80, 35] and Random Loss Weighting (RLW) [40] can serve as strong
baselines for MTL methods. Therefore, validating the superiority of our method compared to theirs
can emphasize the necessity of applying sophisticated MTL methods such as UW, PCgrad, and
NashMTL. Accordingly, we provide the results of comparative experiments for LS and RLW on the
FFHQ dataset using ADM architecture in Table 7. We note that all experimental configuration is the
same as in vanilla training in Section 5.1.

As shown in the results, LS achieves slightly worse performance than vanilla training, which suggests
that simply re-framing the diffusion training task as an MTL task and applying LS is not enough.
Also, RLW achieves much worse performance compared to vanilla training. It appears that the
randomness introduced by loss weighting interferes with diffusion training. These results indicate
that sophisticated MTL methods are indeed responsible for significant performance gain.

20

E Detailed Experimental Settings in Section 5

In this section, we describe the details of experimental settings in Section 5. For validating the
effectiveness in both pixel-space and latent-space diffusion models in unconditional generation, we
used ADM [8] and LDM [56] as same in our observational study (refer to details of architecture in
Appendix B).

E.1 Detailed Settings of Comparative Evaluation and Analysis (Section 5.1 and 5.3)

A single A100 GPU is used for experiments in Section 5.1 and 5.3.

Setups for Unconditional Generation We trained the models on FFHQ [27] and CelebA-HQ [26]
datasets. All training was performed with AdamW optimizer [43] with the learning rate as 1e−4 or
2e−5, and better results were reported. For ADM, we trained 1M iteration with batch size 8 for the
FFHQ dataset and trained 400K iterations with batch size 16 for the CelebA-HQ dataset. For LDM,
we trained 400K iterations with batch size 30 for both FFHQ and CelebA-HQ datasets. We generate
10K samples with a DDIM-50 step sampler and measure FID [18], Precision [36], and Recall [36]
scores. For all evaluation metrics, we use all training data as reference data. FID is calculated with
clean-FID [51], and Precision and Recall are computed with publicly available code 6. All analyses
are conducted above trained models.

Setups for Class-Conditional Generation We trained the DiT-S/2 [52] on ImageNet dataset [7].
All training was performed with the AdamW optimizer [43] with the learning rate of 1e−4 or 2e− 5,
and better results were reported. As in DiT [52], we applied the classifier-free guidance [19] and
trained 800K iterations with a batch size of 50. All samples are generated by a DDPM 250-step
sampler. For evaluation metrics, we follow the evaluation protocol in ADM [8], by using their
evaluation code7. We used the cosine schedule [47] for noise scheduling and SD-XL VAE [53] for
our VAE.

E.2 Detailed Settings of Comparison to Loss Weighting Methods (Section 5.2)

We trained the DiT-L/2 [52] on ImageNet dataset [7]. All training was performed with the AdamW
optimizer [43] with the learning rate of 1e−4. As in DiT [52], we applied the classifier-free guid-
ance [19] and trained 400K iterations with a batch size of 256. All samples are generated by a DDPM
250-step sampler and classifier-guidance scale of 1.5. We used the cosine schedule [47] for noise
scheduling. For experiments, we used 8 A100 GPUs.

E.3 Detailed Settings of Combining MTL Methods with Sophisticated Training Objectives
(Section 5.4)

We trained three different models: vanilla LDM, vanilla LDM with P2 [6], and vanilla LDM with
P2, PCgrad [83], and UW [29] applied simultaneously. All training configurations are the same
in Section 5.1 but we use 500K iterations. We generate 50K samples for evaluation with a DDIM
200-step sampler and evaluate FID.

F Qualitative Results

In this section, we provide qualitative comparison results, which were omitted from the main paper
due to space constraints. In Figure 9, 10, 11 and 12, we visualize the generated images by all models
that are used for results in Table 1. As shown in the results, we can observe that incorporating
MTL methods for diffusion training can improve the quality of generated images. One noteworthy
observation is that UW [29] tends to generate higher-quality images compared to NashMTL [46] and
PCGrad [83]. This finding aligns with the results observed in Table 1.

Moreover, we plot the randomly selected samples from 50K generated data in Fig. 13. Despite being
randomly selected, the majority of the generated images exhibit remarkable fidelity.

6https://github.com/youngjung/improved-precision-and-recall-metric-pytorch
7https://github.com/openai/guided-diffusion/tree/main/evaluations

21

https://github.com/youngjung/improved-precision-and-recall-metric-pytorch
https://github.com/openai/guided-diffusion/tree/main/evaluations

(a) Vanila (b) PCgrad
- Timestep

(c) PCgrad
- SNR

(d) PCgrad
- Gradient

(e) Nash
- Timestep

(f) Nash
- SNR

(g) Nash
- Gradient

(h) UW
- Timestep

(i) UW
- SNR

(j) UW
- Gradient

Figure 9: Qualitative comparison of ADM trained on the FFHQ dataset.

(a) Vanila (b) PCgrad
- Timestep

(c) PCgrad
- SNR

(d) PCgrad
- Gradient

(e) Nash
- Timestep

(f) Nash
- SNR

(g) Nash
- Gradient

(h) UW
- Timestep

(i) UW
- SNR

(j) UW
- Gradient

Figure 10: Qualitative comparison of LDM trained on the FFHQ dataset.

G Dynamic Programming Algorithm for Interval Clustering

In this section, we introduce the algorithm for optimizing the interval cluster and the implementation
details. The optimal solution of interval clustering can be found using dynamic programming
for a Lcluster function [2, 49, 76]. The sub-problem is then defined as finding the minimum
cost of clustering X1,i = {1, . . . , i} into m clusters. By saving the minimum cost of clustering
X1,i = {1, . . . , i} into m clusters to the matrix D[i,m], the value in D[T, k] represents the minimum
clustering costs for the original problem in Eq. 4. For some timestep m ≤ j ≤ i, D[j − 1,m− 1]
must contain the minimum costs for clustering X1,j−1 into (m− 1) clusters [49, 76]. This establishes
the optimal substructure for dynamic programming, which leads to the recurrence equation as follows:

D[i,m] = min
m≤j≤i

{
D[j − 1,m− 1] + Lcluster(Xj,i)

}
, 1 ≤ i ≤ T, 1 ≤ m ≤ k. (6)

To obtain the optimal intervals l1, . . . , lk, we use S[i,m] to record the argmin solution of Eq. 6. Then,
we backtrack the solution in O(k) time from S[T, k] by assigning lm = S[lm+1 − 1,m] from m = k
to m = 1 by initializing lk = S[T, k].

Interval clustering with SNR-based or gradient-based objectives can produce unbalanced sizes of
each interval, which causes unbalanced allocation of task clusters due to randomly sampled timestep
t. Therefore, we add constraints on the size of each cluster to avoid seriously unbalanced task clusters.
To add constraints on the size of each cluster ni = |Ii| = ri − li + 1 for i = 1, ..., k, we define the
lower and upper bounds of it as mI and MI with mI ≤ ni

k ≤ MI . In Eq. 6, the m-th cluster (i.e.,
Xj,i) size nm must range from mI to MI , yielding i+ 1−MI ≤ j ≤ i+ 1−mI . Furthermore, to

22

(a) Vanila (b) PCgrad
- Timestep

(c) PCgrad
- SNR

(d) PCgrad
- Gradient

(e) Nash
- Uniform

(f) Nash
- SNR

(g) Nash
- Gradient

(h) UW
- Timestep

(i) UW
- SNR

(j) UW
- Gradient

Figure 11: Qualitative comparison of ADM trained on the CelebA-HQ dataset.

(a) Vanila (b) PCgrad
- Timestep

(c) PCgrad
- SNR

(d) PCgrad
- Gradient

(e) Nash
- Timestep

(f) Nash
- SNR

(g) Nash
- Gradient

(h) UW
- Timestep

(i) UW
- SNR

(j) UW
- Gradient

Figure 12: Qualitative comparison of LDM trained on the CelebA-HQ dataset.

satisfy the (m− 1)-clusters constraint, 1 + (m− 1)mI ≤ j. Finally, Eq. 6 with constraints on the
size of the cluster is derived as follows:

D[i,m] = min
max{1+(m−1)mI ,i+1−MI}≤j

j≤i+1−mI

{
D[j−1,m−1]+Lcluster(Xj,i)

}
, 1 ≤ i ≤ T, 1 ≤ m ≤ k.

(7)
Specifically, we assign ⌊ T

2k ⌋ and ⌈ 3T
2k ⌉ to mI and MI , respectively.

H Broader Impacts

Revisiting Diffusion Models through Multi-Task Learning Our work revisits diffusion model
training from a Multi-Task Learning aspect. We show that negative transfer still occurs in diffusion
models and addressing it with MTL methods can improve the diffusion models. Starting from our
work, a better understanding of the multi-task learning characteristics in diffusion models can lead to
further advancements in diffusion models.

Negative Societal Impacts Generative models, including diffusion models, have the potential
to impact privacy in various ways. For instance, in the context of DeepFake applications, where
generative models are used to create realistic synthetic media, the training data plays a critical role in
shaping the model’s behavior.

When the training data is biased or contains problematic content, the generative model can inherit
these biases and potentially generate harmful or misleading outputs. This highlights the importance

23

Figure 13: Randomly selected images from generated images of LDM with combined methods of
UW, PCgrad, and P2 on the FFHQ dataset. DDIM 250-step sampler is used.

of carefully selecting and curating the training data for generative models, particularly when privacy
and ethical considerations are at stake.

I Limitations

Our work has two limitations that can be regarded as future works. Firstly, we have not yet completely
resolved the issue of negative transfer in the training of diffusion models as shown in Fig. 5. This
indicates that learning entire denoising tasks still causes degradation in certain denoising tasks.
By successfully addressing this degradation and enabling the model to harmoniously learn entire
denoising tasks, we anticipate significant improvements in the performance of the diffusion model.

Secondly, our study does not delve into the architectural design aspects of multi-task learning
methods. While our focus lies on model-agnostic approaches in MTL, it is worthwhile to explore
the possibilities of designing appropriate architectures within an MTL framework. Previous works
in diffusion models utilize timestep and noise level as input, which can be considered as using task
embeddings scheme [73]. By revisiting these aspects, the architecture of the diffusion model can be
further advanced in future works.

24

	Introduction
	Related Work
	Preliminaries and Observation
	Preliminaries
	Observation

	Methodology
	Interval Clustering
	Incorporating MTL Methods into Diffusion Model Training

	Experiments
	Comparative Evaluation
	Comparison to Loss Weighting Methods
	Analysis
	Combining MTL Methods with Sophisticated Training Objectives

	Conclusion
	Relation to Negative Transfer Gap in Previous Literature
	Detailed Experimental Settings for Observational Study
	Implementation Details for MTL methods
	Additional Experimental Results
	Visualization for the Behavior of MTL Methods with Other Clustering Methods
	Analysis: The Number of Interval Clusters
	Comparison Interval Clustering with Task Grouping Method
	Comparison to Random Loss Weighting and Linear Scalarization

	Detailed Experimental Settings in Section 5
	Detailed Settings of Comparative Evaluation and Analysis (Section 5.1 and 5.3)
	Detailed Settings of Comparison to Loss Weighting Methods (Section 5.2)
	Detailed Settings of Combining MTL Methods with Sophisticated Training Objectives (Section 5.4)

	Qualitative Results
	Dynamic Programming Algorithm for Interval Clustering
	Broader Impacts
	Limitations

