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A Testing for Invariance

We use the same test for invariance which was used in prior work (Peters et al., 2016; Heinze-Deml et al.,
2018; Mogensen et al., 2022). Specifically, the test checks whether the means and variances of the average
prediction errors (residuals) across all environments are the same. Algorithm 3 show the pseudo code which
checks whether S is an invariant set. X and Y are respectively the data of the covariate variables and the
target variable combined across all environments. E is a label vector such that each entry in E corresponds
to a data sample and samples belonging to the same environment have the same label. Checking for any
difference in means is done using the t-test. Checking for any difference in variances is done using the
Levene’s test (Levene, 1960). The regression model used can be linear or nonlinear. For nonlinear regression
model, we used gradient boosted tree (Friedman, 2001). Since high-capacity nonlinear model can overfit, we
use cross-validation prediction to avoid overfitting. The number of cross-validation fold is 10 when there are
fewer than 500 samples and is 2 otherwise.

Algorithm 3: is_invariant: invariance testing based on invariant residuals
Input: E, X, Y, S, threshold = 0.05
Output: Is Y ⊥⊥ E|S?

1 model = fit(X[:, S], Y )
2 residuals = Y − predict(model, X[:, S])
3 pValues = []
4 for eLabel do
5 inGroup = residuals[E==eLabel]
6 outGroup = residuals[E ̸=eLabel]
7 pValue1 = t_test(inGroup, outGroup)
8 pValue2 = levene_test(inGroup, outGroup)
9 pValues = pValues + [2 ∗ min(pValue1, pValue2)]

10 return min(pValues) < threshold

B Simulation details

Different synthetic datasets are generated by varying the following parameters: (1) number of predictors d,
(2) number of interventions Nint, and (3) the type of intervention. For each set of parameters, the following
procedure is repeated 100 times to generate 100 different random graphs.

1. Sample a random acyclic graph G with d + 1 nodes and a pair of nodes in G is connected with
probability pedge (which is 0.1 for the large dense graph and is 2/Nint otherwise).

2. Choose a random node with at least 1 parent to be Y .

3. Add a node E with no incoming edges. From of the set X1, . . . , Xd, pick Nint nodes.

4. If Y is not a descendant of E, repeat steps 1–3 until a graph where Y ∈ DE(E) is obtained.

E is an environment indicator. A data sample is observational when E = 0 and is interventional when E = 1
(the children of E may be intervened on).

For each graph, 50 sets of edge coefficients (βi→j) are drawn randomly. The coefficients are sampled inde-
pendently and uniformly from the interval U((−2, 0.5) ∪ (0.5, 2)). For each set of coefficients, we sample 4
datasets with different sample sizes n ∈ {102, 103, 104, 105}. Each data sample is generated as follow.

1. Sample E from a Bernoulli distribution with probability p = 0.5.

2. Iterate through the nodes in graph in topological order and generate its value:
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• If E = 1 and the node is a child of E, the value depends on the type of intervention.
• Else, the value is generated based on its parents’ values using functions fj . Gaussian noise is

added afterward.
Xj = fj(PA(Xj)) + N(0, 1)

• There are 4 different types of functions f that were used, namely
a Linear (Peters et al., 2016): fj(PA(Xj)) =

∑
i∈PA(Xj) βi→jXi

b Nonlinear type 1 (Heinze-Deml et al., 2018): fj(PA(Xj)) =
∏

i∈PA(Xj) sign(βi→j)gij(Xi)
where g is one of these 4 functions:
1. g(x) = x

2. g(x) = max{0, x}
3. g(x) = sign(x)

√
|x|

4. g(x) = sin(2πx)
b Nonlinear type 2 (Heinze-Deml et al., 2018): fj(PA(Xj)) =

∑
i∈PA(Xj) βi→jgij(Xi) with the

same g functions as nonlinear type 1
b Nonlinear type 3: fj(PA(Xj)) =

∑
i∈PA(Xj) βi→jX2

i

We consider 3 types of interventions: (1) perfect interventions, (2) imperfect interventions, and (3) noise
interventions (Cooper & Yoo, 1999; Tian & Pearl, 2001; Eberhardt & Scheines, 2007; Peters et al., 2016).

• Perfect interventions: the values of the intervened nodes are set to 1, regardless of the values of their
parents.

• Imperfect interventions: the values of the intervened nodes are still the weighted sum of their parents.
However, the edge coefficients are modulated by coefficients γi→j ∼ U(0.0, 0.2).

• Noise interventions: the values of the intervened nodes are still the weighted sum of their parents.
However, the additive noise is N(0, 4) instead of N(0, 1).

After all data samples are generated, the data are standardized along the causal order to prevent shortcut
learning (Reisach et al., 2021).

C Additional results

C.1 Linear Simulations — Perfect Interventions
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Figure 7: Performance when Nint = d = 6 (Table 1, No. 1). Reference set: PA(Y ).

ICP, MMSE-ICP, and fastICP obtain very similar results for large sparse graphs (Figure 11). However, for
large dense graph (Figure 12), both MMSE-ICP and fastICP outperform the baselines. Although MMSE-
ICP and fastICP achieve similar performance for small graph or large sparse graph in which MMSE-ICP can
search exhaustively, when the graph is large and dense, the ability to search through all nodes gives fastICP an
edge over MMSE-ICP.
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102 103 104 105

Number of samples

0.00

0.25

0.50

0.75

1.00

Jaccard

102 103 104 105

Number of samples

F1

102 103 104 105

Number of samples

Recall

ICP ICPCORTH IAS MMSE-ICP fastICP

(b) Reference set: S∗=DE(E) ∩ PA(Y )

Figure 8: Performance when Nint = 1; d = 6 (Table 1, No. 2)
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Figure 9: Performance when Nint = 2; d = 6 (Table 1, No. 2)
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(b) Reference set: S∗=DE(E) ∩ PA(Y )

Figure 10: Performance when Nint = 3; d = 6 (Table 1, No. 2)
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(a) Reference set: PA(Y )
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Figure 11: Performance for large sparse graphs (Table 1, No. 5)
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Figure 12: Performance for large dense graphs (Table 1, No. 6)
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C.2 Linear Simulations — Strong Dependency

Since MMSE used in the proposed algorithms is estimated empirically from data, there may be potential
robustness issues with minimizing empirical MMSE. For instance, the proposed algorithms can be sensitive
to strong dependency between causal parents and other predictors. To verify the robustness of the proposed
algorithms in general and the MMSE estimation in particular, we conduct experiments whereby noisy copies
of Xi are created. In particular, after the Xi variables are generated following a noisy linear system with
perfect intervention, the copies X ′

i of Xi are created by adding Gaussian noise to Xi, i.e. X ′
i := Xi +N(0, ϵ2).

We experimented with 2 non-zero values for ϵ: 0.1 and 0.01. The smaller ϵ is, the stronger the dependency.
ϵ must be non-zero because it is assumed that there is no redundant variables in the system. The algorithms
are robust when they do not mistake the noisy copies for the true parents.

E X2 X1 Y

X ′
2 X ′

1

Figure 13: Example of a simulation with strong dependency. X ′
i are noisy copies of Xi.

Figure 14 and 15 show the results for the two different values of ϵ. The results indicate that the empirical
MMSE estimation is quite robust as the proposed algorithms still do relatively well and still outperform the
baseline models.
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(a) Reference set: PA(Y )

102 103 104 105

Number of samples

0.00

0.25

0.50

0.75

1.00

Jaccard

102 103 104 105

Number of samples

F1

102 103 104 105

Number of samples

Recall

ICP ICPCORTH IAS MMSE-ICP fastICP

(b) Reference set: S∗=DE(E) ∩ PA(Y )

Figure 14: Performance when Nint = 1; d = 6, ϵ = 0.1
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Figure 15: Performance when Nint = 1; d = 6, ϵ = 0.01
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C.3 Linear Simulations — Imperfect Interventions

For noise interventions, MMSE-ICP and fastICP achieve similar performance and outperform the baselines in
both Jaccard similarity and F1-score (Figure 17). The same trends are observed for imperfect interventions
(Figure 16). Although MMSE-ICP and fastICP outperform ICP and IAS for imperfect interventions, there
is still a large variance in the Jaccard similarity and F1-score of MMSE-ICP and fastICP. This could be
because the approximate test based on residuals of a linear predictor does not have sufficient power to detect
this types of changes in mechanisms. Switching to an invariance test with higher detection power might
result in better results and lower variance.
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Figure 16: Performance under “imperfect” interventions when d = 6; Nint = 1 (Table 1, 3rd row)
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Figure 17: Performance under “noise” interventions when d = 6; Nint = 1 (Table 1, 4th row)
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C.4 Nonlinear Simulations
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Figure 18: Nonlinear type 1. d = 6; Nint = 1. Same as Figure 5.
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Figure 19: Nonlinear type 2. d = 6; Nint = 1.
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Figure 20: Nonlinear type 3. d = 6; Nint = 1.

C.5 Real data

We validated the proposed algorithms using the Sachs et al. (2005)’s benchmark which has a well-established
causal graph. Since invariance-based algorithms are designed for local causal discovery problem, but the Sachs
et al. (2005) benchmark is a global causal discovery, we need to consider each node as a target, one at a
time. We adopt the setup proposed by Meinshausen et al. (2016) for this problem. The results on the Sachs
et al. (2005) benchmark is shown in Figure 21. For each method, we ran multiple times with different cut-off
value α. We can see that MMSE-ICP and fastICP are usually better than ICP, having higher true positives
at the same level of false negatives.
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Figure 21: Results of different algorithms on Sachs et al. (2005) benchmark. Each method is ran multiple
times with different cut-off value α. Solid line is the performance from random guessing.
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