
A Experimental setup

A.1 Datasets

We use two standardized few-shot image classification datasets.

Mini-ImageNet: This dataset [58] is a subset of ImageNet [10] and consists of 64 classes for training,
16 for validation, and 20 for testing. There are 600 images per class, with images of size 84 × 84.
Multiple versions of this dataset exist in the literature; we use the version by Ravi and Larochelle
[43].

Tiered-ImageNet: A larger subset of ImageNet, Tiered-ImageNet [45] consists of 608 classes split
into 351, 97, and 160 for training, validation, and testing, respectively. Each class has about 1, 300
images of size 84× 84. This dataset ensures that the train, validation, and test classes do not have
any semantic overlap and is proposed as a harder few-shot learning benchmark.

We also use the test splits of the following four datasets, as defined by Triantafillou et al. [57].

CUB-200: CUB-200 was collected by Welinder et al. [60] and contains 6, 033 bird images classified
into 200 bird species. The original version of the dataset contains 43 images that are also present
in ImageNet. We remove these duplicates to avoid overestimating the transfer capability during
evaluation. The test split contains 30 classes.

Describable Textures: Proposed by Cimpoi et al. [8], the task of this dataset is to classify images into
47 texture classes. Each of the 5, 640 images (120 samples per class) contains at least 90% of the
class’ texture, with sizes between 300 × 300 and 640 × 640 pixels. The train split has 33 classes,
while validation and test splits both consist of 7 classes.

VGG Flowers: Originally introduced by Nilsback and Zisserman [38], VGG Flowers consists
of 102 flower categories with each category containing between 40 and 258 images. While we
use Triantafillou et al. [57]’s train (71 classes), validation (15 classes), and test (16 classes) splits, our
models operate on the raw images, not the cropped versions.

FGVC Aircrafts: Maji et al. [35] introduced this dataset containing 10, 200 images of aircraft
partitioned into 102 classes, each with 100 samples. The test split contains 15 classes. As for
VGG Flowers, we do not crop those images using bounding box information, thus increasing the
classification difficulty.

A.2 Network architectures

We train two of the most popular network architectures in few-shot learning literature.

conv(64)4: This architecture [58] consists of 4 convolutional layers with 64 channels per layer.

ResNet-12: From the family of deep residual networks [23], this architecture has 4 blocks, each block
constituting 3 convolutional layers with 64× 2l−1 channels per layer in the l’th block. Two versions
of this network architecture exist in the literature; we use the one by Oreshkin et al. [39]. The other
version by Lee et al. [32] is 1.25× wider and has more parameters.

Both architectures use batch normalization [25] after every convolutional layer with ReLU as the
non-linearity. We do not use dropout [54] or any of its variants, like Ghiasi et al. [19]. For MAML
and ANIL, a fully-connected layer is appended at the top of the networks.

A.3 Training algorithms

For the metric-based family, we use ProtoNet with Euclidean [53] and scaled negative cosine
similarity measures [20]. Based on the implementation of Gidaris and Komodakis [20], we add a
learnable parameter that scales the cosine similarity. Additionally, we use MAML [15] and ANIL [41]
as representative gradient-based algorithms. We use the open-source library lear2learn [1]6 to
implement these algorithms.

6Available at: https://github.com/learnables/learn2learn

14

https://github.com/learnables/learn2learn


0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

conv(64)×4 on
Mini-ImageNet
(1-shot 5-way)

ResNet-12 on
Mini-ImageNet
(1-shot 5-way)

ResNet-12 on
Tiered-ImageNet
(1-shot 5-way)

0 1 2
Difficulty

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

conv(64)×4 on
Mini-ImageNet
(5-shot 5-way)

0 1 2
Difficulty

ResNet-12 on
Mini-ImageNet
(5-shot 5-way)

0 1 2
Difficulty

ResNet-12 on
Tiered-ImageNet
(5-shot 5-way)

Algorithm
Prototypical Network
(Euclidean)
Prototypical Network
(cosine)
MAML
ANIL

Figure 5: Episode difficulty is approximately normally distributed - density plots. Density plots of the
episode difficulty computed by conv(64)4’s on Mini-ImageNet (left), ResNet-12’s on Mini-ImageNet (center)
and ResNet-12’s on Tiered-ImageNet (right), trained using ProtoNets (Euclidean and cosine), MAML and ANIL
(depicted in the legend). The values are computed over 10k test episodes. The top row is for 1-shot 5-way
episodes and the bottom row is for 5-shot 5-way episodes. All the plots follow a bell curve, with the density
peak in the middle, which quickly drops-off on either side of the peak.

A.4 Sampling methods

We compare four sampling methods – EASY, HARD, CURRICULUM, and UNIFORM. In each case,
we mimic the target distribution using importance sampling (Section 3.3).

We also have baseline sampling in our comparisons. This involves episodic training without the use
of any weighting techniques, hence sampling episodes from the distribution q(τ) without making any
changes to it (Section 2.1). This is the default sampling strategy for few-shot episodic training.

A.5 Hyper-parameters

We tune hyper-parameters for each algorithm and dataset to work well across different few-shot
settings and network architectures. Additionally, we keep the hyper-parameters the same across all
different sampling methods for a fair comparison.

All models are trained using ADAM [28] with a learning rate of 10−3 on a single NVIDIA Tesla
V100 GPU. MAML and ANIL use an adaptation learning rate of 0.01 and 0.1 respectively, with
5 adaptation steps taken in both cases. All models are trained for a total of 20k iterations, with a
mini-batch of size 16 and 32 for Mini-ImageNet and Tiered-ImageNet respectively. After every 1k
iterations, we evaluate on 1k validation episodes. The model with the best validation performance is
finally evaluated on 1k test episodes.

B Episode difficulty is approximately normally distributed

Sampling episodes from q(τ) (Section 2.1) induces a distribution over their difficulty Ωlθ . Our
proposed method estimates this as a normal distribution (Section 3.2), and here we justify why.

We train conv(64)4’s on Mini-ImageNet and ResNet-12’s on both Mini-ImageNet and Tiered-
ImageNet using baseline sampling. This is done using all four learning algorithms – ProtoNet
(Euclidean and cosine), MAML and ANIL – for 1-shot 5-way and 5-shot 5-way classification. We
compute the episode difficulty over 10k test episodes, sampled using the episode distribution q(τ).

15



0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
Sa

m
pl

e 
qu

an
til

es

conv(64)×4 on
Mini-ImageNet
(1-shot 5-way)

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

ResNet-12 on
Mini-ImageNet
(1-shot 5-way)

0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

ResNet-12 on
Tiered-ImageNet
(1-shot 5-way)

0 1 2
Theoretical quantiles

0.0

0.5

1.0

1.5

2.0

2.5

Sa
m

pl
e 

qu
an

til
es

conv(64)×4 on
Mini-ImageNet
(5-shot 5-way)

0 1 2
Theoretical quantiles

0.0

0.5

1.0

1.5

2.0

2.5

ResNet-12 on
Mini-ImageNet
(5-shot 5-way)

0 1 2
Theoretical quantiles

0.5

0.0

0.5

1.0

1.5

2.0

ResNet-12 on
Tiered-ImageNet
(5-shot 5-way)

Algorithm
Prototypical Network
(Euclidean)
Prototypical Network
(cosine)
MAML
ANIL

Figure 6: Episode difficulty is approximately normally distributed - Q-Q plots. Q-Q plots of the episode
difficulty computed by conv(64)4’s on Mini-ImageNet (left), ResNet-12’s on Mini-ImageNet (center) and
ResNet-12’s on Tiered-ImageNet (right), trained using ProtoNets (Euclidean and cosine), MAML and ANIL
(depicted in the legend). The values are computed over 10k test episodes and are plotted against normal
distributions with the same mean and standard deviation as the episode difficulties. The top row is for 1-shot
5-way episodes and the bottom row is for 5-shot 5-way episodes. We also include the identity line in each plot
(in black). The closer the curve is to the identity line, the closer the distribution is to a normal.

Fig. 5 illustrates the density plots of the computed difficulties. We observe that the episode difficulties
follow a bell curve in each case, which is naturally modeled with a normal distribution. Fig. 6
includes Q-Q plots for the same, plotted against normal distributions with the same mean and
standard deviation as the corresponding episode difficulties. These plots are typically used to assess
normality – the closer the curve is to the identity line, the closer the distribution is to a normal, which
is observed here.

Table 5: Episode difficulty is approximately normally distributed - Shapiro-Wilk normality tests. We
compute the episode difficulty for different datasets, algorithms and network architectures, for both the 1-shot
5-way and 5-shot 5-way settings. This is done for 10k test episodes each. In each case, we subsample 50
values 100 times and run the Shapiro-Wilk test on these subsets (with α = 0.05). The rejection rates of the null
hypothesis are averaged over everything but the axes mentioned in the left column and are mentioned in the
column on the right. The average rejection rate does not exceed 20%.

Rejection rate (%)

Dataset Mini-ImageNet 14.25
Tiered-ImageNet 17.38

Shots 1-shot 14.17
5-shot 16.42

Algorithm

ProtoNet (Euclidean) 19.67
ProtoNet (cosine) 09.17
MAML 13.33
ANIL 19.00

Network Architecture conv(64)4 09.63
ResNet-12 18.13

We additionally run the Shapiro-Wilk test for normality [50] on the computed episode difficulties,
which tests for the null hypothesis that the data is drawn from a normal distribution. The p-value for
this test is sensitive to the sample size – for large sample sizes, trivial departures from the normal

16



distribution can be detected, making the p-values unreliable. Instead, we subsample 50 values 100
times and run the test on these subsets (with α = 0.05). Table 5 summarizes the rejection rates of the
null hypothesis averaged over datasets, shots, algorithms and network architectures. Regardless of
which axis the rejection rate is averaged over, it does not exceed 20%. These results suggest that our
assumption of estimating the induced distribution over the episode difficulty as a normal distribution
is plausible.

C Episode difficulty is independent from modeling choices

This section provides the full version of the figures from Section 5.2.2.

Fig. 7 reports correlation plots for the difficulty of episodes when measured with two different
architectures. We use conv(64)4 and ResNet-12’s trained on Mini-ImageNet (1-shot 5-way) with
all training algorithms to compute episode difficulties for 10k test episodes. We then compute the
Spearman rank-order correlation coefficients across the two architectures, for a given algorithm.
The correlation coefficients are 0.57 for ProtoNet (Euclidean), 0.72 for ProtoNet (cosine), 0.58 for
MAML, and 0.49 for ANIL. As mentioned in Section 5.2.2, this positive correlation suggests that
episode difficulty is transferred across network architectures with high probability.

Fig. 8 tracks the difficulty of easy and hard episodes over training iterations, for all four training
algorithms. Out of 1k test episodes, we select the 50 easiest and 50 hardest episodes, i.e., episodes
with the lowest and highest difficulties respectively. We measure difficulty on these episodes every
1k training iterations, and observe that the difficulty lines for easy and hard episodes never cross –
easy episodes remain easy and hard episodes remain hard. This observation suggests that episode
difficulty transfers across different model parameters during training, justifying our online estimation
of difficulty parameters µ and σ2 (Section 3.2).

1 2 3 4 5
ResNet-12

1.0

1.5

2.0

2.5

co
nv

(6
4)

×4

Prototypical Network
(Euclidean)

0.5 1.0 1.5 2.0
ResNet-12

0.75

1.00

1.25

1.50

1.75

2.00

Prototypical Network
(cosine)

1.0 1.5 2.0 2.5 3.0
ResNet-12

1.00

1.25

1.50

1.75

2.00

2.25
MAML

2 4 6 8
ResNet-12

1.0

1.5

2.0

2.5

3.0

ANIL

Figure 7: Episode difficulty transfers across network architectures. Scatter plots (with regression line and
95% confidence interval) of episode difficulties computed on 10k 1-shot 5-way Mini-ImageNet episodes by
conv(64)4’s and ResNet-12’s trained using different training algorithms. Similar to Fig. 3, we observe that an
episode that is hard for one architecture is very likely to be hard for another, for all training algorithms.

5000 10000 15000 20000
Algorithm

1.0

1.5

2.0

2.5

Prototypical Network
(Euclidean)

5000 10000 15000 20000
Algorithm

Prototypical Network
(cosine)

5000 10000 15000 20000
Algorithm

MAML

5000 10000 15000 20000
Algorithm

ANIL

Episode type
All
Easy
Hard

Figure 8: Episode difficulty transfers across model parameters during training. Similar to Fig. 4, out of
1k test episodes, we select the 50 easiest and 50 hardest episodes and track the difficulties of them all throughout
training. The average difficulty of the episodes decreases over time, until convergence (vertical line), after which
the model overfits. Additionally, easier episodes remain easy while harder episodes remain hard, indicating
that episode difficulty transfers from one set of parameters to the next. Note that since we validate the models
every 1k iterations, these plots are not continuous and do not contain the values for the first 1k training iterations
(during which the episode difficulty drops quickly).

17



Table 6: Few-shot accuracies on benchmark datasets for 5-way few-shot episodes in the offline setting.
The mean accuracy and the 95% confidence interval are reported for evaluation done over 1k test episodes.
The first row in every scenario denotes baseline sampling. Best results for a fixed scenario are shown in bold.
Results where a sampling technique is better than or comparable to baseline sampling are denoted by †. Overall,
UNIFORM is among the best sampling methods in 19/24 scenarios.

Mini-ImageNet Tiered-ImageNet

conv(64)4 ResNet-12 ResNet-12

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

ProtoNet (Euclidean) 49.06±0.60 65.28±0.52 49.67±0.64 67.45±0.51 59.10±0.73 76.95±0.56
+ EASY 48.83±0.61† 65.92±0.55† 51.08±0.63† 67.30±0.52† 57.68±0.75 78.10±0.53†

+ HARD 45.69±0.61 66.47±0.52† 52.50±0.62† 71.03±0.51† 54.85±0.71 76.15±0.56
+ CURRICULUM 48.23±0.63 65.77±0.51† 50.00±0.61† 70.49±0.51† 59.15±0.76† 78.25±0.53†

+ UNIFORM 48.19±0.62 66.73±0.52† 53.94±0.63† 70.79±0.49† 58.63±0.76† 78.62±0.55†

ProtoNet (cosine) 50.03±0.61 61.56±0.53 52.85±0.64 62.11±0.52 60.01±0.73 72.75±0.59
+ EASY 49.60±0.61† 65.17±0.53† 53.35±0.63† 63.55±0.53† 60.03±0.75† 74.65±0.57†

+ HARD 49.01±0.60 66.45±0.50† 52.65±0.63† 70.15±0.51† 55.44±0.72 75.97±0.55†

+ CURRICULUM 49.38±0.61 64.12±0.53† 53.21±0.65† 65.89±0.52† 60.37±0.76† 75.32±0.58†

+ UNIFORM 50.07±0.59† 66.33±0.52† 54.27±0.65† 70.85±0.51† 60.27±0.75† 78.36±0.54†

MAML 46.88±0.60 55.16±0.55 49.92±0.65 63.93±0.59 55.37±0.74 72.93±0.60
+ EASY 44.52±0.60 57.36±0.59† 51.62±0.67† 64.33±0.61† 53.39±0.79 69.81±0.68
+ HARD 42.93±0.61 60.42±0.55† 49.57±0.69† 66.93±0.55† 50.48±0.73 71.20±0.63
+ CURRICULUM 45.42±0.60 61.61±0.55† 52.21±0.67† 66.25±0.60† 54.13±0.77 71.47±0.63
+ UNIFORM 46.67±0.63† 62.09±0.55† 52.65±0.65† 66.76±0.57† 54.58±0.77 72.00±0.66

ANIL 46.59±0.60 63.47±0.55 49.65±0.65 59.51±0.56 54.77±0.76 69.28±0.67
+ EASY 44.83±0.63 62.23±0.56 49.40±0.64† 56.73±0.60 54.50±0.80† 65.45±0.66
+ HARD 43.30±0.58 59.87±0.55 47.91±0.62 62.05±0.59† 50.22±0.71 62.06±0.65
+ CURRICULUM 45.69±0.60 63.00±0.54† 50.22±0.66† 61.76±0.57† 55.59±0.78† 69.83±0.73†

+ UNIFORM 46.93±0.62† 62.75±0.60 49.56±0.62† 64.72±0.60† 54.15±0.79† 70.44±0.69†

D Comparing episode sampling methods

In addition to the discussion in Section 5.3, this section presents the full suite of results for the
comparison of different episode sampling methods. We compute results over 2 datasets, 2 network
architectures, 4 algorithms and 2 few-shot protocols, resulting in 24 total scenarios. Table 6 contains
all performance numbers. As mentioned in the main text, UNIFORM is among the better sampling
schemes in 19/24 scenarios, followed by baseline sampling which is competitive in 10/24 scenarios.
Importantly, when UNIFORM underperforms it is a close second.

E Difference in effectiveness in the 1- and 5-shot settings

The 1-shot setting is inherently noisier than 5-shot. Support samples are randomly drawn from the
class-populations, which are then used to construct the few-shot classifier. Sampling only 1 support
per-class is more susceptible to outliers in the query set than sampling 5 (the higher the support-shot,
the better the estimate of the class-population). This noise propagates to the loss (in the case of
baseline sampling) as well as the weighted loss (in the case of UNIFORM sampling). Hence, larger
noise degrades the approximation to a uniform distribution over episode difficulty and ultimately
results in UNIFORM not getting as much gain in the 1-shot setting.

We empirically confirm this hypothesis. We use the same 24 scenarios as the ones in Sections 5.3
and 5.4 and compare the training procedures of UNIFORM under 1- vs. 5-shot settings. Using Eq. (3),
we compute the per-episode weighted loss during the training process, followed by the per-mini-batch
standard deviation. The average deviation is higher under the 1-shot than the 5-shot setting in all
scenarios (for both offline and online settings). Additionally, the average deviation is ≈ 1.9 times
larger under the 1-shot setting. These experiments confirm the above hypothesis and help explain

18



why UNIFORM (online) outperforms the baseline in (only) 5/12 1-shot scenarios, is comparable in
6/12, and underperforms in 1/12.

Table 7: Few-shot accuracies on benchmark datasets after training on Mini-ImageNet for 5-way few-
shot episodes in the offline and online settings. The mean accuracy and the 95% confidence interval are
reported for evaluation done over 1, 000 test episodes. Best results for a fixed scenario are shown in bold. The
first row in every scenario denotes baseline sampling. Compared to baseline sampling, online UNIFORM does
statistically better in 49/64 scenarios, comparable in 12/64 scenarios and worse in only 3/64 scenarios.

conv(64)4 ResNet-12

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

CUB-200

ProtoNet (Euclidean) 37.24±0.53 52.07±0.53 36.53±0.54 51.49±0.56
+ UNIFORM (Online) 37.08±0.53 53.32±0.53 39.48±0.56 56.57±0.55

ProtoNet (cosine) 37.49±0.54 49.31±0.53 38.67±0.60 49.75±0.57
+ UNIFORM (Online) 41.56±0.58 54.17±0.53 40.55±0.60 56.30±0.55

MAML 34.52±0.53 47.11±0.60 35.80±0.56 45.16±0.62
+ UNIFORM (Online) 35.84±0.54 46.67±0.55 37.18±0.55 46.58±0.58

ANIL 35.40±0.54 38.20±0.56 33.20±0.54 39.26±0.58
+ UNIFORM (Online) 36.89±0.55 42.83±0.58 34.47±0.56 42.08±0.58

Describable Textures

ProtoNet (Euclidean) 32.05±0.45 45.03±0.44 31.87±0.45 44.10±0.43
+ UNIFORM (Online) 32.69±0.49 45.23±0.43 33.55±0.46 47.37±0.43

ProtoNet (cosine) 32.09±0.45 38.44±0.41 31.48±0.45 39.46±0.41
+ UNIFORM (Online) 33.63±0.47 43.28±0.44 32.69±0.48 45.56±0.42

MAML 29.47±0.46 37.85±0.47 32.19±0.48 41.14±0.46
+ UNIFORM (Online) 31.84±0.49 40.81±0.44 31.65±0.46 43.21±0.44

ANIL 29.86±0.46 40.69±0.46 28.85±0.41 37.04±0.44
+ UNIFORM (Online) 31.29±0.48 41.42±0.45 31.38±0.47 39.03±0.47

FGVC-Aircraft

ProtoNet (Euclidean) 26.03±0.37 39.41±0.48 25.98±0.39 36.76±0.45
+ UNIFORM (Online) 26.18±0.38 40.23±0.46 27.43±0.42 38.49±0.46

ProtoNet (cosine) 27.11±0.39 32.14±0.38 25.23±0.39 32.07±0.41
+ UNIFORM (Online) 27.15±0.38 37.78±0.45 26.89±0.39 37.42±0.44

MAML 26.78±0.38 34.21±0.41 25.50±0.39 29.38±0.40
+ UNIFORM (Online) 26.62±0.39 34.41±0.44 26.22±0.39 30.21±0.43

ANIL 25.67±0.37 27.17±0.36 23.27±0.31 24.52±0.29
+ UNIFORM (Online) 25.60±0.37 27.92±0.39 23.78±0.34 28.70±0.39

VGG Flowers

ProtoNet (Euclidean) 53.50±0.63 70.96±0.51 57.74±0.68 74.87±0.49
+ UNIFORM (Online) 54.72±0.65 73.59±0.49 55.94±0.67 76.62±0.50

ProtoNet (cosine) 52.94±0.62 66.04±0.53 52.98±0.65 66.79±0.51
+ UNIFORM (Online) 54.23±0.63 71.93±0.48 57.06±0.65 67.31±0.48

MAML 49.70±0.60 63.69±0.54 50.13±0.64 61.41±0.63
+ UNIFORM (Online) 49.72±0.60 63.52±0.54 49.53±0.65 63.99±0.58

ANIL 47.03±0.65 46.40±0.66 42.05±0.67 40.01±0.65
+ UNIFORM (Online) 47.48±0.67 47.08±0.67 38.94±0.61 50.25±0.63

F Better sampling improves cross-domain few-shot classification

In Section 5.5, we show that few-shot performance in the cross-domain setting can benefit from
better sampling. We train models on Mini-ImageNet (as done in Section 5.4) and test the few-

19



shot performance on the following datasets: CUB-200 [60], Describable Textures [8], FGVC-
Aircraft [35], VGG Flowers [38]. We use conv(64)4 and ResNet-12 network architectures trained
using ProtoNet (Euclidean and cosine), MAML and ANIL algorithms for the 5-ways 1- and 5-shot
settings. Altogether, these makeup 64 new scenarios. We measure the accuracy on the test splits
of [57].

We compare online UNIFORM against baseline sampling and observe that online UNIFORM does
statistically better in 49/64 scenarios, comparable in 12/64 scenarios, and worse in only 3/64
scenarios. The performance numbers are included in Table 7.

This further goes to show that sampling under the episodic training paradigm matters. Using online
UNIFORM leads to statistically significant improvements over the ubiquitous baseline sampling in
most cases and rarely degrades performance.

G Number of trials

In Tables 2 and 6 we make use of one random seed to give one training job per scenario per sampling
method. However we report performances over 1k test episodes, as is typically done in few-shot
learning. We additionally ran 3 training jobs for baseline sampling and online UNIFORM, resulting in
3 training jobs per scenario per sampling method. We observe that the difference in accuracy is .20%
and .02% on average (ignoring the standard deviations) for baseline sampling and online UNIFORM;
the effect of multiple random seeds is diminished when testing over many episodes.

20


