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Abstract

Practical applications of machine learning for materials discovery remain severely
limited by the quantity and quality of the available data. Furthermore, little is
known about the ability of machine learning models to extrapolate outside of
the training distribution, which is essential for the discovery of compounds with
extraordinary properties. To address these challenges, we develop a novel deep
representation learning framework for chemical compositions. The proposed
model, named COmpositional eMBedding NETwork (CombNet), combines recent
developments in graph-based encoding of chemical compositions with a supervised
contrastive learning approach. This is motivated by the observation that contrastive
learning can produce a regularized representation space from raw data, offering
empirical benefits for extrapolation in low-data scenarios. Moreover, our method
harnesses exclusively the chemical composition of the underlying materials, as
crystal structure is generally unavailable before the material is discovered. We
demonstrate the effectiveness of CombNet over state-of-the-art methods under a
bespoke evaluation scheme that simulates a realistic materials discovery scenario
with experimental data.

1 Introduction

Materials discovery is increasingly benefiting from the synergy between recent advancements in
Machine Learning (ML) and the growing availability of material databases [Jain et al., 2013, Blokhin
and Villars, 2018], revealing interesting perspectives in accelerating the exploration of new materials
[Wang et al., 2022, Tewari et al., 2020, Hargreaves et al., 2023]. ML aims to address the limitations
imposed by physics-based simulations in density functional theory (DFT), which require substantial
computational resources and are prone to systematic errors due to numerical approximations [Schleder
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et al., 2019]. Despite these interesting premises, the desire to discover novel over-performing materials
poses unique challenges to ML. First, available data offer a narrow diversity in terms of chemical
properties and mainly originate from DFT calculations. This affects the suitability for industrial
applications, frequently necessitating specialized materials with unconventional traits and might bias
ML models away from modeling real-world experimental conditions. Secondly, the discovery of
extraordinary materials requires designing stable approaches to predict material properties outside
the known data distribution, which is known as extrapolation. However, extrapolation in ML is
just in a nascent state [Courtois et al., 2023, Xu et al., 2021]. As a result, the majority of current
research predominantly occurs within interpolation settings [Zhuo et al., 2018, Wang et al., 2021,
Goodall and Lee, 2020], where models’ predictions are evaluated on a random subset of the original
dataset. We argue that this is not in line with the interest of researchers, which is more often aimed
at the discovery of materials with extraordinary properties, e.g., room temperature superconductors
[Pickett, 2023], rather than compounds with an average behavior. The interplay between these two
primary considerations results in significant limitations for most of the popular approaches in the
field. For example, ensemble methods [Breiman, 2001a, Chen and Guestrin, 2016] have shown
great robustness in predicting chemical properties in low-data regimes [Chelladurai et al., 2022,
Riebesell, 2016, Gaultois et al., 2016], but are unable to extrapolate, as new predictions will simply be
generated from averages of instances in the training dataset [Ellis]. On the other hand, modern deep
learning architectures dealing either with compositions [Wang et al., 2021, Goodall and Lee, 2020] or
structures [Xie and Grossman, 2018, Choudhary and DeCost, 2021, Chen et al., 2019], offer more
promises for extrapolation but are still severely limited by the lack of extensive training datasets.

In this work, we tackle both challenges, i.e., low-data regime and extrapolation, by developing a
deep representation learning framework for chemical compositions driven by supervised Contrastive
Learning (CL). CL is a popular representation learning paradigm that clusters together similar data
points according to predefined similarity criteria, enhancing the discriminative power of the learned
features Le-Khac et al. [2020]. Because of that, it recently achieved broad success in computer vision
[Chen et al., 2020, Khosla et al., 2020, Zbontar et al., 2021] and natural language processing [Gao
et al., 2022, Zhang et al., 2022a] domains. Our motivation comes from the recently established
promises of CL in low-data regimes [Na and Kim, 2022] and extrapolation [Na et al., 2022]. In fact,
empirical evidence has shown that CL can be valuable in obtaining meaningful data representations
when dealing with limited training datasets [Na and Kim, 2022]. Intuitively, learning the latent space
directly by grouping together similar samples can lead to more discriminative features in the learned
representations. In contrast, neural networks may face challenges in inferring the representation
space when only a relatively small amount of training data is available. Furthermore, recent studies
have shown that multi-layer perceptrons (MLPs) tend to converge towards linear functions when
evaluated outside of the training distribution [Courtois et al., 2023]. On the other hand, a CL approach
can make the latent space smoother and more amenable to linear relationships, yielding favorable
outcomes in extrapolation tasks [Na et al., 2022] when paired with a downstream MLP. Notably,
the proposed approach exclusively relies on the chemical composition of the underlying materials.
Models centered on composition hold substantial value for materials discovery, as composition can be
defined for materials that may not have been discovered yet, whereas crystal structure is unavailable
in this regard. Our main contributions can be summarized as follows:

• We introduce COmpositional eMBedding NETwork (CombNet), a novel framework for
representation learning of chemical compositions driven by supervised contrastive learning.

• We provide a thorough analysis of state-of-the-art ML models for property prediction in a
realistic discovery scenario, i.e., experimental datasets paired with an extrapolation task.

• We demonstrate the effectiveness of CombNet in learning useful representations over state-
of-the-art ML models and chemically-informed feature schemes.

2 Related work

Materials property prediction The use of ML to predict material properties has undergone
considerable growth in recent years. Two main strands can be highlighted, namely traditional
approaches and deep learning architectures. Conventional featurization schemes, whether from
crystalline structures [Himanen et al., 2020, isa, 2017] or from stochiometry alone [Ward et al.,
2016, Tshitoyan et al., 2019, Oliynyk et al., 2016], provide a detailed description of the abstract
materials space and serve as effective means to encapsulate chemical knowledge. These are usually
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paired with traditional approaches such as linear models or ensemble methods (e.g., random forests
[Breiman, 2001b]). Despite their simplicity, these methods have found widespread application in the
literature [Zhuo et al., 2018, Gaultois et al., 2016, Mansouri Tehrani et al., 2018]. However, linear
models may fail to model complex chemical phenomena whereas ensemble methods are unsuitable
for extrapolation. Moreover, deep learning (DL) models have been harnessed for encoding chemical
information beyond feature engineering, thereby expanding the accessibility of ML techniques to
a wider audience, including those who may not possess in-depth materials science expertise dom
[2020]. Such models are commonly classified according to their input, with some designed to
accept only chemical compositions and others able to include crystalline structures as well. Notable
examples from the former category include Elemnet [Jha et al., 2018], which processes vectorized
representations of compositions using a one-hot encoding scheme; Roost [Goodall and Lee, 2020],
an attentional graph neural network that generates and processes stoichiometric graphs from input
compositions; CrabNet [Wang et al., 2021], a recently proposed transformer-based model that also
operates at the stoichiometry level and that has achieved state-of-the-art results in several proposed
benchmarks regarding materials property prediction [Dunn et al., 2020]. Notable examples of the
second category are crystal graph convolutional neural network (CGCNN) [Xie and Grossman,
2018], MegNet [Chen et al., 2019] and ALIGNN [Choudhary and DeCost, 2021], all graph neural
network models which take into account the geometry of crystal lattices. Despite the remarkable level
of flexibility offered by DL models, their success is conditioned to a large availability of training data,
which is typically limited in realistic experimental scenarios. Furthermore, none of the mentioned
DL models have established theoretical or empirical support for their ability to extrapolate beyond
the data they have been trained on. We argue that there is a noticeable absence of prior research that
specifically addresses realistic discovery scenarios, i.e., the challenge of simultaneous extrapolation
with limited experimental data.

Contrastive Learning CL is a representation learning framework that has gained great popularity
in recent years [Le-Khac et al., 2020], especially given its effectiveness in self-supervised learning
of visual representations [Chen et al., 2020, Kumar et al., 2022]. Moreover, the adoption of such
paradigm has yielded promising outcomes within multi-modal domains explored by recent text-to-
image models [Zhang et al., 2022b, Radford et al., 2021]. Despite most applications privileging
computer vision and natural language processing, CL recently gained considerable attention in
the field of materials informatics: Koker et al. [2022] applied a self-supervised CL framework to
learn invariant representations of crystal structures under a predefined set of transformations; Kong
et al. [2022] incorporated a supervised CL module to facilitate the alignment between feature and
label embeddings under a density-of-states prediction task; Magar et al. [2022] derived crystal
representations by minimizing the cross-correlation between pairs of distorted samples originating
from the same crystal; Na and Kim [2022] provided a framework to map original crystal structures
to a smooth latent space shaped according to an initial target property. However, most of such CL
applications focus on crystalline structures, which are not functional for materials discovery tasks, as
knowledge of the structure is unavailable before the actual material is discovered. To the best of our
knowledge, no previous work has directed CL approaches to chemical compositions.

3 COmpositional eMBedding NETwork

We present COmpositional eMBedding NETwork (CombNet) (depicted in Fig. 1), a novel repre-
sentation learning framework for chemical compositions. The main components of the architecture
can be broadly grouped into two stages: an encoder block and a CL module. In the encoder, chemi-
cal compositions are represented as fully connected graphs, allowing for further processing of the
information with a graph-based neural encoder. Later, an additional network is used to project
representations into a separate space where the CL module learns a mapping to a regularized metric
space. At inference, representations learned through CombNet can be used to initialize a separate
MLP designated for downstream property prediction. In this section, we delve into the details of each
of these components.

3.1 Encoder block

Composition graphs In order to extract meaningful information from raw compositions, it is
necessary to translate them into suitable representations. Different approaches have been adopted to
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Figure 1: Overview of CombNet. The encoder network φθ first extracts and processes chemical
information from the constituent elements of the composition. Then, the projection head gψ further
maps representations into a separate space where CL takes place. The embeddings of Rb2CdP2Se6
and K4Bi2O5 are brought closer together within the embedding space due to their similar target
property (indicated below the respective formulas), while simultaneously being pushed apart from
the representation of K2HgP2Se6.

represent compositions within computational domains. Among those, we choose mat2vec [Tshitoyan
et al., 2019], which incorporates chemical information by representing each chemical element in a
composition with a predefined feature vector cki ∈ Rd (k = 1, ..., ni), where ni denotes the number of
elements in the i-th composition and d is the embedding dimensionality. We obtain the representation
of the i-th composition by weighting each cki by the fractional prevalence of the corresponding
element in the chemical formula and stacking them into a matrix Ci ∈ Rn×d.

The fundamental constituents of a chemical composition are atoms interconnected by chemical bonds.
These are ideal candidates for modeling using Graph Neural Networks (GNNs), which excel at
capturing interactions within structured data and exploiting them as architectural bias [Bacciu et al.,
2020, Bronstein et al., 2021]. To harness the potential of GNNs for our setting, as in Goodall and
Lee [2020], we conceptualize the elements within a composition as nodes and represent chemical
bonds as edges in a graph. The node features are given by the rows cki of Ci, while for the adjacency
matrix AC, we employ a fully connected matrix (with self-loops) with equal unitary edge weights,
signifying that every pair of atoms is considered, a priori, equally interconnected. As in Goodall and
Lee [2020], for each node (element) in each chemical composition, we project its representation into
a learnable space using a linear layer:

Hi = CiW + b (1)
Weights W and b are shared across different compositions in the dataset. Fractional amounts of
elements are concatenated to the terminal positions of node embeddings in the compositional graph
(Hi,AC).

Encoder network φ(·) A GNN encoder is used to map the nodes (elements) embeddings into
compact representation vectors. Specifically, we adopt multiple layers of Principal Neighbourhood
Aggregation (PNA) [Corso et al., 2020]:

H′
i = φ(Hi,AC) = PNA(Hi,AC) (2)
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a graph convolution scheme proposed in recent years that demonstrated great performance with
continuous node features and outperformed other state-of-the-art message-passing methods like Graph
Attention Network (GAT) [Veličković et al., 2017, Goodall and Lee, 2020] in various downstream
tasks, including molecular-property predictions [Stärk et al., 2022]. In principle, different encoders
can be used to process tokenized representations of compositions. In Appendix B we provide a
comparison between our chosen PNA encoder with a baseline MLP encoding strategy with no
aggregation between neighboring elements. Finally, a mean pooling operation is applied in order to
achieve graph-level (composition) representations mi from the node (element) representations h′k

i
(rows of H′

i):

mi =
1

ni

n∑
k=1

h′k
i . (3)

3.2 Contrastive learning block

Projection head We employ an MLP, denoted as MLPproj, to project the embeddings produced by
the encoder into a separate space, where CL can take place. This is meant to facilitate the following
extraction of discriminative features. In fact, it has been empirically shown that this enhances the
effectiveness of contrastive training [Chen et al., 2020, He et al., 2020]. As in Chen et al. [2020], we
set:

zi = MLPproj(mi) = W(2)σ(W(1)mi) (4)
with ReLU activation function. Despite enhancing the training process, it was observed in Chen et al.
[2020] that such transformation removes information that might instead be useful for downstream
tasks. As a consequence of this evidence, we discard the projection head at inference time, i.e.,
after the training is complete, only the encoder block (Sec. 3.1) is used to create representations of
chemical compositions for downstream tasks.

Contrastive learning module: The central idea behind CL is to learn a parametric mapping
from an input space (chemical compositions Ci ) to an embedding space (representations zi) by
minimizing the distances between representations of similar data points while maximizing the
separation between representations of dissimilar ones. Similarity between data points is assessed
based on a predefined similarity function. A common declination of this framework is triplet-based
representation learning [Schroff et al., 2015]: for each data point , labeled as anchor Canc, both a
positive Cpos and a negative Cneg are sampled accordingly to a predefined similarity and used to
optimize a triplet loss function that minimizes the distance between zanc and zpos, while maximizing
the separation between zanc and zneg. While originally applied primarily in unsupervised learning
scenarios [Chen et al., 2020, Grill et al., 2020], this approach has witnessed recent extensions to
regression tasks Na and Kim [2022], Kim et al. [2019]. In regression, positives and negatives
are labeled as such based on their proximity to the anchor’s target value: given an anchor point
with its target (Canc, yanc), the corresponding positive and negative samples are selected such that
|yanc − ypos| < |yanc − yneg|, with y ∈ R being a one-dimensional scalar target. This approach
of matching distances between triplets of data points can be generalized to all the points in the
batch and has been introduced as distance-matching problem [Na et al., 2022]. In practice, such
conceptualization can be expressed through the following objective function:

L(z1, ..., zN , y1, ...yN ) =
1

4N(N − 1)

N∑
i=1

∑
j ̸=i

(∥z̄i − z̄j∥2 − |ȳi − ȳj |)2 . (5)

where z̄i, z̄j and ȳi, ȳj are normalized representations and targets to ensure numerical stability during
training and N is the number of compositions in a training batch. Specifically to our problem, we
define fψ = MLPproj◦ φ as the learnable parametric mapping and zi = fψ(Ci), where Ci is the input
graph (composition). By employing this approach, the resulting learned representations inherently
encode the relative distances of their associated targets.

4 Experiments

In this section, we present our experimental setting aimed at simulating a realistic discovery scenario.
In our benchmark, we investigate the performance of different methods (4.3) under an extrapolation
task (4.1) within the context of experimental datasets (4.2).
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Figure 2: Visual representation of the splitting method applied to the Seebeck coefficient (left) and
shear modulus (right).

4.1 Extrapolation benchmark

In a real materials discovery scenario, the main goal is to correctly identify extraordinary compounds
displaying a non-average behavior. This translates into accurately predicting the associated properties
of chemical compositions outside the boundaries of the training distribution. To define a suitable
benchmark that reflects this purpose, we follow a similar approach to Kauwe et al. [2020]. We
consider a regression task and define a biased test set that includes extraordinary compounds based
on the following criteria. Figure 2 provides a visual representation of the employed method.

• First, datasets are sorted according to the target property. In situations with one-sided
distributions, the top 5% of compositions with the highest (or lowest) associated target are
allocated to the test set (Fig. 2, right). In situations involving two-sided distributions, the 5%
allocation is divided, with 2.5% representing the highest property values and another 2.5%
representing the lowest property values (Fig. 2, left). Secondly, an additional 15% from
the rest of the dataset is utilized to populate the test set. This step is aimed at making the
extrapolation task less aggressive, while still being representative of the average extrapolation
performance of different methods.

• We systematically exclude from the training set all compositions containing the most
prevalent element in the test set. For instance, in the case of the Seebeck coefficient,
compounds containing Copper (Cu) are removed from the training set. An exception arises
when oxygen (O) is the most prevalent element, as it is frequently abundant in several of
the considered datasets. In this scenario, we instead remove the second most prevalent
element from the training data. The deliberate exclusion of specific chemical elements from
the training aims at measuring the ability of different ML models to undertake chemical
extrapolation, extending their predictions to materials absent from the training set.

4.2 Datasets

We employ experimental data of thermoelectric properties derived from an available extension of the
UCSB repository Gaultois et al. [2013] and experimental data retrieved from the Materials Platform
for Data Science Blokhin and Villars [2018]. Thermoelectric properties hold pivotal significance in
modern materials research and technology, due to their diverse applications across various fields [Finn
et al., 2021]. For example, Seebeck coefficient quantifies the material’s ability to generate an electric
potential difference when subjected to a temperature gradient. An accurate prediction of such quantity
could help in energy conversion, waste heat recovery, and innovative heat management solutions
across industries [Yuan et al., 2022]. The considered datasets exhibit a relatively small size, which
reflects the inherent limitations associated with experimental data acquisition. More details about the
datasets can be found in Appendix A

Preprocessing steps are applied to the raw datasets in order to maintain consistency between the
various properties under consideration: first, we filter out all the pure elements and measurements
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associated with temperatures outside of ±15K from room temperature (298K). Furthermore, we
exclude data points beyond ±4 standard deviations from their respective medians. This approach
aims to ensure an adequate representation of data points within the tail(s) of the distribution, while
mitigating the inclusion of extreme values that could potentially introduce excessive noise during the
evaluation stage.

4.3 Evaluated models

CombNet Once the encoder block has been trained through the CL approach detailed in Sec. 3.2,
we evaluate CombNet by means of a separate downstream MLP, named MLPpred, which is separately
trained to map representations to the corresponding target properties yi. This is, for every composition
Ci in the test set:

ŷi = MLPpred(φ(Ci)) , (6)

where ŷi is the predicted property value. The training for this downstream task is performed through
the minimization of the Mean Absolute Error (ℓ1-loss) while all weights of φ are kept frozen. We
recall that to generate representations through CombNet, the projection head is discarded at this
inference stage and only the encoder φ is used.

Baselines We conduct a thorough comparison between CombNet and various ML models that
are commonly utilized for predicting material properties. We assess the effectiveness of standard
mat2vec features [Tshitoyan et al., 2019] paired with traditional ML techniques, i.e., ridge regression
(Ridge) [Bishop and Nasrabadi, 2006] and Support Vector Regression (SVR) [Smola and Schölkopf,
2004]. Notably, beyond their prevalent application in materials exploration Zhuo et al. [2018], these
approaches have also been studied within an extrapolation setting, to measure their effectiveness in
identifying exceptional materials Kauwe et al. [2020]. Additionally, we provide mat2vec features
directly to a similar MLPpred as the one employed by CombNet. For all the aforementioned models, in
order to obtain valid representations at the level of the chemical composition, we average the mat2vec
features of the constituent elements weighted by the fractional prevalence of each element. Finally, we
pair mat2vec features with CrabNet [Wang et al., 2021], which we adopt as primary representative of
the state-of-the-art in the DL paradigm. Instead, we deliberately avoid any use of ensemble methods,
e.g., Random Forest, given the a priori inability to extrapolate Ellis. To ensure uniformity in the
assessment of different models, mat2vec features are also used to initialize compound representations
for CombNet (as outlined in Sec. 3.1). Implementation details for CombNet and other baselines can
be found in Appendix C.

In order to avoid confusion, we briefly summarize the different MLPs that are utilized in this work,
underlining their different purposes: 1) MLPproj: in CombNet, the projection head that is used to
transform representations before the application of CL (Eq. 4); 2) MLPpred: a downstream model
that is employed to predict target properties from representations (Eq. 6); in CombNet, this maps
the learned representations to the corresponding target properties, while in the employed baseline,
this leverages mat2vec features instead. 3) MLPenc: an alternative baseline encoder for updating
element representations without an aggregation scheme, investigated in the ablation study proposed
in Appendix B).

4.4 Results

In Tables 1, 2 we report the performance of the aforementioned models on different datasets. As
evaluation metrics, we consider the mean absolute error (MAE) and the coefficient of determination
(R2), as common choices within regression tasks.

General improvement From the results, we observe that CombNet outperforms the considered
baselines on most datasets. For some chemical properties, this leads to a remarkable improvement:
for example, when considering Seebeck coefficient, CombNet leads to a reduction in MAE of ≈
20% w.r.t. (MLPpred + mat2vec) and ≈ 30% w.r.t. CrabNet; similarly, in the case of temperature
for congruent melting, we observe a reduction of ≈ 17% w.r.t. (MLPpred + mat2vec) and ≈ 21%
w.r.t. CrabNet. These improvements are even more pronounced when considering the R2 metric: for
example, the performance is almost doubled on Seebeck dataset w.r.t. (MLPpred + mat2vec) and a
≈ 45% improvement is observed on thermal conductivity dataset again w.r.t. (MLPpred + mat2vec).
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Table 1: Extrapolation task: Mean absolute error (MAE) for each considered model and dataset.
Results are averaged across 5 different random seeds. Best-performing results are shown in green,
while second best-performing are shown in yellow, when there is an overlap in the uncertainty bands.

DATASET SEEBECK KAPPA TCONGRMELT ELECMASS BMODULUS SMODULUS BANDGAP

RIDGE 171.84±3.33 0.4±0.01 513.01±13.66 0.72±0.01 75.1±2.57 51.06±3.61 2.07±0.04

SVR 204.74±1.04 0.38±0.02 686.33±9.21 0.73±0.01 97.01±2.19 73.00±2.39 1.97±0.03

MLPPRED 158.36±3.92 0.37±0.01 341.49±40.01 0.65±0.01 57.72±1.22 51.79±1.78 1.78±0.03

CRABNET 183.63±4.71 0.45±0.02 358.98±12.18 0.83±0.01 64.15±0.69 69.79±3.58 1.88±0.03

COMBNET (+ MLPPRED ) 128.17±7.06 0.36±0.01 282.66±7.82 0.68±0.01 61.56±3.6 50.64±4.23 1.71±0.01

Table 2: Extrapolation task: Coefficient of determination (R2) for each considered model and dataset.
Results are averaged across 5 different random seeds. Best-performing results are shown in green,
while second best-performing are shown in yellow, when there is an overlap in the uncertainty bands.
’/’ denotes a negative R2 and thus the failure of the corresponding regression task.

DATASET SEEBECK KAPPA TCONGRMELT ELECMASS BMODULUS SMODULUS BANDGAP

RIDGE 0.16±0.06 0.17±0.01 0.38±0.03 0.22±0.00 0.26±0.04 0.3±0.05 /

SVR / 0.21±0.02 0.06±0.00 0.2±0.01 / / /

MLPPRED 0.25±0.05 0.22±0.05 0.64±0.07 0.29±0.02 0.51±0.04 0.25±0.00 0.07±0.01

CRABNET 0.14±0.02 / 0.67±0.04 0.1±0.00 0.44±0.04 / 0.08±0.07

COMBNET (+ MLPPRED ) 0.47±0.09 0.32±0.05 0.74±0.02 0.33±0.02 0.46±0.04 0.35±0.05 0.10±0.01

We argue that CombNet may be particularly valuable for thermoelectric applications, especially
when dealing with doped materials. Doping is a widely practiced technique where the introduction
of a low level of distinct atomic species into a parent material radically changes its properties,
despite apparently negligible change in composition. Consequently, conventional featurization
methods or supervised ML models may struggle to capture these important distinctions. On the other
hand, supervised CL could recalibrate the relationships between chemical compositions and their
corresponding properties to address this important situation. In fact, given a parent composition,
previous approaches may create similar representations for small variations of the original material,
while CombNet aligns the representations with the observed differences in the target property. We
plan to expand on this work by deepening this consideration.

Comparison with mat2vec The MLPpred functions as both a baseline with standard mat2vec
features, and as a downstream model for CombNet. This choice allows a fair evaluation of represen-
tations deriving from CombNet against chemically informed predefined features. Our results suggest
that CombNet can be used to generate more informative representations of chemical compositions in
the context of an extrapolation setting.

5 Limitations and future work

Our study addresses two primary challenges in materials informatics: low-data availability and
extrapolation. We propose using CL as a primary tool to ameliorate both situations, inspired by
the promises established in the recent literature [Na and Kim, 2022, Na et al., 2022]. Nevertheless,
the interpretability of our results faces limitations due to the inherent complexity of the task at
hand: evaluating different approaches in a pure extrapolation setting may introduce excessive noise,
hindering meaningful comparisons between models. So, as a first avenue for future work, it would
be interesting to undertake a more extensive study to capture distinct aspects of interpolation and
extrapolation, by also including a broader variety of datasets.
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A second avenue for further work is motivated by the ablation study reported in Appendix B. Although
the main results in Tables 1 and 2 identify CombNet as the top-performing model, the ablation study
reported in B reveals some interesting findings. Notably, the model featuring a PNA encoder without
CL (trained in an end-to-end manner) exhibits a remarkable performance. As further work, we plan
to enhance the comparisons of different models by investigating the performance of various encoders
with different levels of complexity, with an without CL, for an improved analysis. As a possible
hypothesis in this direction, it seems likely that we would find that the benefit of including CL goes
down as one increases the complexity of the encoder, ceteris paribus.

A final important direction for further research is the nature of data utilized as input. In this study,
we exclusively rely on the stoichiometry of materials. We recall that this is actually a strength, in
the sense that, when trying to discover new materials, we will normally not know much about the
underlying crystalline structure. Thus, a stoichiometry-only baseline, as studied here, is a natural and
important one. On the other hand, when extra domain knowledge is accessible, it becomes crucial to
integrate it appropriately. Therefore, as future work, we envision the integration of additional prior
knowledge into the generated material embeddings, e.g. by leveraging recent advancements in Large
Language Models (LLMs) for capturing chemistry domain knowledge Xie et al. [2023], Jablonka
et al. [2023], or by integrating structural information when it is accessible, e.g., if we have available
crystal structures corresponding to the chemical compositions in the datasets under examination.

6 Conclusions

Motivated by the recent surge in the application of CL within the realm of materials science, especially
in the domain of crystalline structures, our work introduces CombNet, a novel representation learning
framework grounded in supervised CL that relies solely on materials’ chemical composition. Contrary
to predefined feature schemes, CombNet centers on creating material representations that closely align
with the specific chemical property under examination. Additionally, the alignment of representations
with their corresponding targets induces a regularized space that becomes more amenable to linear
relationships, ultimately simplifying the extrapolation task even when handling complex chemical
properties. We have evaluated CombNet in a realistic materials discovery scenario, i.e., low data
regime and extrapolation, which we believe to be crucial when assessing the performance of different
ML models in materials science. By addressing what we believe are fundamental issues in materials
informatics, we believe that our work will contribute to the ongoing exploration of harnessing ML
techniques to accelerate the discovery of novel functional materials. As a future research direction,
we envision the integration of our approach with additional prior knowledge deriving from crystal
structures or pretrainined LLMs, in order to produce more informative material representations.
Additionally, we believe it would be interesting to deepen the application of CL techniques, like
CombNet, within the task of predicting chemical properties of doped materials for thermoelectric
applications.

Data availability

The original UCSB repository can be found at the following link, under the name
’ucsb_thermoelectrics’: https://hackingmaterials.lbl.gov/matminer/dataset_summary.
html An updated version of the UCSB datasets utilized in this work will be made available upon
request. All MPDS data can be obtained through accessing the corresponding API. More information
can be found at: https://mpds.io/developer/.
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Appendix

A Datasets

In table 3 we report a summary of different datasets of chemical properties examined in this study. The stated
dataset sizes correspond to the application of the preprocessing procedure described in section 4.1 of the paper.

Table 3: Utilized datasets to benchmark the proposed approach.

Dataset name Property units size original source

seebeck Seebeck coefficient µV/K 403 UCSB

kappa Thermal conductivity W/mK (log10) 319 UCSB

tcongrmelt Temperature for congruent melting K 3674 MPDS

elecmass Effective mass of electrons m0 (log10) 320 MPDS

bmodulus Bulk modulus GPa 1432 MPDS

smodulus Shear modulus GPa 317 MPDS

bandgap Band gap eV 2728 MPDS

B Ablation study

We have proposed a supervised contrastive learning method for chemical compositions in a joint context of
low-data and extrapolation, common situations in materials informatics. The main results are shown in tables
1, 2 and clearly demonstrate the effectiveness of the proposed model over several state-of-the-art methods. To
further investigate the impact deriving from various components in the proposed architecture, we provide a
comparative analysis of the results across different design choices. In table 4 we report the obtained results
under various investigated configurations. We assess the impact deriving from the presence of three main
modules: contrastive learning (CL), Projection head (P), and PNA encoder (PNA). Additionally, we compare the
results obtained when using exclusively the PNA encoder trained in an end-to-end fashion to directly predict the
property of interest (4th row in table 4). Clearly, this last case will lack both CL and Projection head. Therefore,
out of the 23 potential settings, two are consistently omitted and therefore only 6 configurations are reported.
In scenarios where CL is applied without utilizing PNA encoder (1st and 2nd rows in table 4), we employ a
baseline encoder given by a simple MLP, that we denote as MLPenc. Our goal is to explore the benefits that the
more sophisticated encoder (PNA) can offer in terms of aggregating information from neighboring elements, as
opposed to the absence of an aggregation scheme encountered with a straightforward MLP. Overall, we observe
a similar performance between the different examined configurations. Interestingly, we note that in some cases
the performance of PNA encoder alone trained in an end-to-end manner is comparable with that of the proposed
method. We argue that the level of sophistication of PNA is such that it effectively extracts and processes all
available information, acting as a bottleneck with respect to the subsequent CL module. In general, we expect
different degrees of improvement depending on the different modules utilized as encoder (e.g., GAT [Veličković
et al., 2017]). We leave as future work a thorough comparison among various encoders for the input materials.
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Table 4: Ablation study for various considerations: Mean absolute error (MAE) and Coefficient of
determination (R2) for each considered model and dataset. Results are averaged across 5 different
random seeds. Best-performing results are shown in boldface, while second best-performing are
underlined.

MODULE SEEBECK KAPPA TCONGRMELT ELECMASS BMODULUS SMODULUS BANDGAP

CL PNA P

134.49±9.78 0.36±0.02 260.21±15.86 0.72±0.03 59.96±5.44 49.47±4.29 1.76±0.00

145.05±13.83 0.35±0.02 270.88±24.29 0.72±0.02 60.92±3.29 50.58±4.41 1.72±0.05

129.59±4.98 0.35±0.02 287.06±9.15 0.68±0.01 62.73±3.19 52.63±7.27 1.69±0.05

137.55±3.59 0.38±0.01 294.74±23.88 0.68±0.01 59.99±1.9 47.85±2.05 1.72±0.01

128.17±11.01 0.36±0.02 282.66±7.82 0.68±0.01 61.56±3.6 50.64±4.23 1.71±0.01

C Implementation details

All neural network-based models have been implemented utilizing PyTorch [tor, 2019] and PyTorch Geometric
[Fey and Lenssen, 2019]. CombNet’s encoder module is configured with 128 input channels, 256 hidden
channels, and 256 output channels, employing 3 message-passing layers. The projection head MLPproj is
designed as a single-layer MLP with a hidden dimension set to 512. The separate MLPpred model, emloyed both
as baseline and for fine-tuning contrastive-learned representations, adopts hidden dimensions [512, 256, 128,
64]. All neural networks utilize ReLU as activation function. CrabNet model is utilized with its default settings,
while Ridge and SVR are implemented using the sci-kit learn package [Pedregosa et al., 2011], also with default
settings.
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