Supplementary material for Enhancing extrapolation in Materials Science through Contrastive Learning of Chemical Compositions

Anonymous Author(s) Affiliation Address email

1 A Datasets

2 In table 1 we report a summary of different datasets of chemical properties examined in this study.

³ The stated dataset sizes correspond to the application of the preprocessing steps outlined in the main paper.

Dataset name	Property	units	size	original source
seebeck	Seebeck coefficient	μ V/K	403	UCSB
kappa	Thermal conductivity	W/mK (log10)	319	UCSB
tcongrmelt	Temperature for congruent melting	К	3674	MPDS
elecmass	Effective mass of electrons	m_0 (log10)	320	MPDS
bmodulus	Bulk modulus	GPa	1432	MPDS
smodulus	Shear modulus	GPa	317	MPDS
bandgap	Band gap	eV	2728	MPDS

Table 1: Utilized datasets to benchmark the proposed approach.

4

5 B Implementation details

All neural network-based models have been implemented utilizing PyTorch [1] and PyTorch Geomet-6 ric [2]. CombNet's encoder module is configured with 128 input channels, 256 hidden channels, and 7 256 output channels, employing 3 message-passing layers. The projection head MLP_{proj} is designed 8 as a single-layer MLP with a hidden dimension set to 512. The separate MLP_{pred} model, emloyed both 9 as baseline and for fine-tuning contrastive-learned representations, adopts hidden dimensions [512, 10 256, 128, 64]. All neural networks utilize ReLU as activation function. CrabNet model is utilized 11 with its default settings, while Ridge and SVR are implemented using the sci-kit learn package [3], 12 also with default settings. 13

14 **References**

15 [1] Pytorch: An imperative style, high-performance deep learning library, 2019.

[2] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

- [3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning*
- Research, 2011.