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A INEQUALITIES FOR GAUSSIAN PROCESSES

In this section, we review some inequalities on the maximum of a Gaussian process. Let G(x) be a
separable zero-mean Gaussian process with x ∈ Γ. Define the metric on Γ by

dg(G(x1), G(x2)) =
√
E(G(x1)−G(x2))2.

The ε-covering number of the metric space (Γ, dg), denoted as N(ε,Γ, dg), is the minimum integer
N so that there exist N distinct balls in (Γ, dg) with radius ε, and the union of these balls covers Γ.
Let D be the diameter of Γ with respect to the metric dg . The supremum of a Gaussian process is
closely tied to a quantity called the entropy integral, defined as∫ D/2

0

√
logN(ε,Γ, dg)dε. (14)

For detailed discussion of entropy integral, we refer to Adler & Taylor (2009).

Lemma 1 provides an upper bound on the expectation of the maximum value of a Gaussian process,
which is Theorem 1.3.3 of Adler & Taylor (2009).

Lemma 1 Let G(x) be a separable zero-mean Gaussian process with x lying in a dg-compact set
Γ, where dg is the metric. Let N be the ε-covering number. Then there exists a universal constant η
such that

E
(

sup
x∈Γ

G(x)

)
≤ η

∫ D/2

0

√
logN(ε,Γ, dg)dε. (15)

Lemma 2, which is Theorem 2.1.1 of Adler & Taylor (2009), presents a concentration inequality.

Lemma 2 Let G be a separable Gaussian process on a dg-compact Γ with mean zero, then for all
u > 0,

P
(

sup
x∈Γ

G(x)− E(sup
x∈Γ

G(x)) > u

)
≤ e−u

2/2σ2
Γ , (16)

where σ2
Γ = supx∈Γ EG(x)2.

Theorem 3 is a slightly strengthened version of Theorem 1 of Wang et al. (2020). Its proof, in Sec-
tion E, is based on Lemmas 1-2 and some machinery from scattered data approximation Wendland
(2004).

Theorem 3 Suppose Condition 1 holds. Let µ(x) and σ(x) be as in Equation 2 and Equation 3,
respectively, and DΩ = diam(Ω) be the Euclidean diameter of Ω. Then for any u > 0, and any
closed deterministic subset A ⊂ Ω, with probability at least 1 − exp{−u2/(2σ2

A)}, the kriging
prediction error has the upper bound

sup
x∈A

Z(x)− µ(x) ≤ η1σA
√
p(1 ∨ log(A0DΩ))

√
log(eσ/σA)) + u, (17)

where A0 is defined in Condition 1, η1 is a universal constant, and σA = supx∈A σ(x).

B PROOF OF THEOREM 1

We proof Theorem 1 by partitioning Ω into subregions, and applying Theorem 3 on each of them.
Let Ωi = {x ∈ Ω|σe−i 6 σ(x) 6 σe−i+1}, for i = 1, . . .. Let σi = supx∈Ωi σ(x).
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Take η2 = η1

√
2e. By Theorem 3, we have

P

(
sup
x∈Ω

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
> η2

√
p(1 ∨ log(A0DΩ)) + u

)

6
∞∑
i=1

P

(
sup
x∈Ωi

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
> η2

√
p(1 ∨ log(A0DΩ)) + u

)

6
∞∑
i=1

P

(
sup
x∈Ωi

Z(x)− µ(x) > (η2

√
p(1 ∨ log(A0DΩ)) + u)σe−i

√
i

)

6
∞∑
i=1

P

(
sup
x∈Ωi

Z(x)− µ(x) > (η2

√
p(1 ∨ log(A0DΩ)) + u)σi log1/2(eσ/σi)/(

√
2e)

)

6
∞∑
i=1

exp
{
−u2 log(eσ/σi)/(4e

2)
}

6
∞∑
i=1

exp
{
−iu2/(4e2)

}
=

exp
{
−u2/(4e2)

}
1− exp {−u2/(4e2)}

,

which, together with the fact that M ≥ 0, implies the following upper bound of EM

EM =

∫ ∞
0

P(M > x)dx

≤
(∫ η2

√
p(1∨log(A0DΩ))+1

0

+

∫ ∞
η2

√
p(1∨log(A0DΩ))+1

)
P(M > x)dx

≤ η2

√
p(1 ∨ log(A0DΩ)) + 1 +

∫ ∞
1

2 exp
{
−x2/(4e2)

}
1− exp {−x2/(4e2)}

dx

≤ C0

√
p(1 ∨ log(A0DΩ)).

To access the tail probability, we note that M − EM is also a Gaussian process with mean zero.
Thus by Lemma 2, we have

P(M − EM > t) ≤ e−t
2/2σ2

M ,

where

σ2
M = sup

x∈Ω
E

(Z(x)− µ(x))2

σ(x)2 log(eσ/σ(x))
≤ 1.

Hence, we complete the proof.

C INDEPENDENCE IN SEQUENTIAL GAUSSIAN PROCESS MODELING

The proof of Theorem 2 relies on certain independence properties of sequential Gaussian process
modeling shown in Lemmas 3-4. First we introduce some notation. For an arbitrary function f , and
X = (x1, . . . , xn), define f(X) = (f(x1), . . . , f(xn))T , and

IΨ,Xf(x) = rT (x)K−1f(X), (18)

where r = (Ψ(x − x1), . . . ,Ψ(x − xn))T ,K = (Ψ(xj − xk))jk. For notational convenience, we
define IΨ,∅f = 0.

Lemma 3 Let Z be a stationary Gaussian process with mean zero and correlation function Ψ. For
two sets of scattered points X ′ ⊂ X = (x1, . . . , xn), we have

Z − IΨ,X′Z = (Z − IΨ,XZ) + IΨ,X(Z − IΨ,X′Z). (19)

In addition, if X and X ′ are deterministic sets, then the residual Z − IΨ,XZ and the vector of
observed data (Z(x1), . . . , Z(xn))T are mutually independent Gaussian process and vector, re-
spectively.
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Proof It is easily seen that IΨ,X and IΨ,X′ are linear operators and IΨ,X′IΨ,X = IΨ,X , which
implies Equation 19.

The residual Z − IΨ,XZ is a Gaussian process because IΨ,X is linear. The independence between
the Gaussian process and the vector can be proven by calculation the covariance

Cov(Z(x′)− IΨ,X′Z(x′), Z(X))

= Cov(Z(x′)− rT (x′)K−1Z(X), Z(X))

= r(x′)− r(x′) = 0,

which completes the proof.

Lemma 4 For any instance algorithm of Bayesian optimization, the following statements are true.

1. Conditional on Fn−1 and Xn, the residual process Z(·)− µn(·) is independent of Fn.

2. Conditional on Fn, the residual process Z(·)−µn(·) is a Gaussian process with same law
as Z ′(·)− IΨ,X1:nZ

′(·), where Z ′ is an independent copy of Z.

Proof We use induction on n. For n = 1, the desired results are direct consequences of Lemma 3,
because the design set is suppressed conditional on F0.

Now suppose that we have proven already the assertion for n and want to conclude it for n + 1.
First, we invoke the decomposition given by Lemma 3 to have

Z ′ − IΨ,X1:nZ
′ = (Z ′ − IΨ,X1:(n+1)

Z ′) + IΨ,X1:(n+1)
(Z ′ − IΨ,X1:nZ

′). (20)

Because µn = IΨ,X1:n
Z, we also have

Z − µn = (Z − µn+1) + IΨ,X1:(n+1)
(Z − µn). (21)

By the inductive hypothesis, Z−µn has the same law as Z ′−IΨ,X1:nZ
′ conditional on Fn, denoted

by Z −µn
d
= Z ′−IΨ,X1:n

Z ′|Fn. Our assumption that Xn+1 is independent of (Z,Z ′) conditional
on Fn implies that Xn+1 is independent of (Z − µn, Z ′ − IΨ,X1:n

Z ′) as well. Thus,

Z − µn
d
= Z ′ − IΨ,X1:n

Z ′|Fn, Xn+1.

Clearly, this equality in distribution is preserved by acting IΨ,X1:(n+1)
on both sides, which implies

(
Z − µn, IΨ,X1:(n+1)

(Z − µn)
) d

=
(
Z ′ − IΨ,X1:nZ

′, IΨ,X1:(n+1)
(Z ′ − IΨ,X1:nZ

′)
)
|Fn, Xn+1.

Incorporating the above equation with Equation 20 and Equation 21 yields

(Z − µn+1, Z − µn))
d
=
(
Z ′ − IΨ,X1:(n+1)

Z ′, Z ′ − IΨ,X1:n
Z ′
)
|Fn, Xn+1. (22)

Now we consider the vectors V := Z(Xn+1)−µn(Xn+1) and V ′ = Z ′(Xn+1)−IΨ,X1:n
Z ′(Xn+1).

Then Equation 22 implies

(Z − µn+1, V ))
d
=
(
Z ′ − IΨ,X1:(n+1)

Z ′, V ′
)
|Fn, Xn+1. (23)

Because V ′ consists of observed data, we can apply Lemma 3 to obtain that, conditional on Fn and
Xn+1, Z ′ − IΨ,X1:(n+1)

Z ′ is independent of V ′, which, together with Equation 23, implies that
Z − µn+1 and V are independent conditional on Fn and Xn+1. Because µn(Xn+1) is measurable
with respect to the σ-algebra generated by Fn and Xn+1, we obtain that Z − µn+1 is independent
of Z(Xn+1) conditional on Fn and Xn+1, which proves Statement 1. Combining Statement 1 and
Equation 22 yields Statement 2.
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D PROOF OF THEOREM 2

The law of total probability implies

P(MT − C
√
p(1 ∨ log(A0DΩ)) > t)

=

∞∑
i=n

P(MT − C
√
p(1 ∨ log(A0DΩ)) > t|T = n)P(T = n)

=

∞∑
n=1

P(Mn − C
√
p(1 ∨ log(A0DΩ)) > t|T = n)P(T = n)

=

∞∑
n=1

E
{
P(Mn − C

√
p(1 ∨ log(A0DΩ)) > t|Fn)

∣∣∣T = n
}
P(T = n),

where the last equality follows from the fact that {T = n} ∈ Fn, namely, T is a stopping
time. Clearly, the desired results are proven if we can show P(Mn − C

√
p(1 ∨ log(A0DΩ)) >

t|Fn) < e−t
2/2. Now we resort to part 2 of Lemma 4, which states that conditional on Fn,

Z(·) − µn(·) is identical in law to its independent copy Z ′(·) − IΨ,X1:n
Z ′(·). Although the event

{Mn−C
√
p(1 ∨ log(A0DΩ)) > t} looks complicated, it is measurable with respect toZ(·)−µn(·).

Thus, we arrive at

P(Mn − C
√
p(1 ∨ log(A0DΩ)) > t|Fn)

= P

(
sup
x∈Ω

Z ′(x)− IΦ,X1:n
Z ′(x)

σn(x) log1/2(eσ/σn(x))
− C

√
p(1 ∨ log(A0DΩ)) > t|Fn

)
. (24)

Because Z ′ is independent of Z, the part of conditioning with respect to Z(X1:n) in Equation 24
has no effect on Z ′. The only thing that matters is the effect of the conditioning on the design points
X1:n. Hence, Equation 24 is reduced to

P

(
sup
x∈Ω

Z ′(x)− IΦ,X1:n
Z ′(x)

σn(x) log1/2(eσ/σn(x))
− C

√
p(1 ∨ log(A0DΩ)) > t|X1:n

)
. (25)

Clearly, we can regard the points X1:n in the formula above as a fixed design. Then the probability
Equation 25 is bounded above by e−t

2/2 as asserted by Corollary 1.

E PROOF OF THEOREM 3

This proof is similar to Theorem 1 of Wang et al. (2020) but with a few technical improvements.

Because µ(x) is a linear combination of Z(xi)’s, µ(x) is also a Gaussian process. The main idea of
the proof is to invoke a maximum inequality for Gaussian processes, which states that the supremum
of a Gaussian process is no more than a multiple of the integral of the covering number with respect
to its natural distance d. See Adler & Taylor (2009); van der Vaart & Wellner (1996) for related
discussions.

Let g(x) = Z(x)− µ(x). For any x, x′ ∈ A, because A is deterministic, we have

d(x, x′)2 =E(g(x)− g(x′))2

=E(Z(x)− µ(x)− (Z(x′)− µ(x′)))2

=σ2(Ψ(x− x)− rT (x)K−1r(x) + Ψ(x′ − x′)− rT (x′)K−1r(x′)

− 2[Ψ(x− x′)− rT (x′)K−1r(x)]),

where r(·) = (Ψ(· − x1), . . . ,Ψ(· − xn))T , K = (Ψ(xj − xk))jk.

The rest of our proof consists of the following steps. In step 1, we bound the covering number
N(ε, A, d). Next we bound the diameter D. In step 3, we obtain a bound for the entropy integral. In
the last step, we invoke Lemmas 1 and 2 to obtain the desired results.
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Step 1: Bounding the covering number

Let h(·) = Ψ(x− ·)−Ψ(x′ − ·). It can verified that

d(x, x′)2 =− σ2[h(x′)− IΨ,Xh(x′)] + σ2[h(x)− IΨ,Xh(x)].

By Theorem 11.4 of Wendland (2004),

d(x, x′)2 ≤ 2σ2(σA/σ‖h‖NΨ(Rd)) = 2σσA‖h‖NΨ(Rd), (26)

where

σ2
A = sup

x∈A
σ(x)2 = σ2 sup

x∈A
(Ψ(x− x)− rT (x)K−1r(x)).

Denote the Euclidean norm by ‖ · ‖. Then, by the definition of the spectral density and the mean
value theorem, we have

‖h‖2NΨ(Rd) = Ψ(x− x)− 2Ψ(x′ − x) + Ψ(x′ − x′)

= 2

∫
Rd

(1− cos((x− x′)Tω))Ψ̃(ω)dω

≤
(

2

∫
Rd

‖ω‖Ψ̃(ω)dω

)
‖x− x′‖

≤ 2A0‖x− x′‖, (27)

where the last inequality follows from the fact that ‖ω‖ ≤ ‖ω‖1. Combining Equation 26 and
Equation 27 yields

d(x, x′)2 ≤ 2A
1/2
0 σσA‖x− x′‖1/2. (28)

Therefore, the covering number is bounded above by

logN(ε, A, d) ≤ logN

(
ε4

4A0σ2σ2
A

, A, ‖ · ‖
)
. (29)

The right side of Equation 29 involves the covering number of a Euclidean ball, which is well
understood in the literature. See Lemma 4.1 of Pollard (1990). This result leads to the bound

logN(ε, A, d) ≤ p log

(
48A0DAσ

2σ2
A

ε4
+ 1

)
≤ p log

(
48A0DΩσ

2σ2
A

ε4
+ 1

)
, (30)

where DA = diam(A) and DΩ = diam(Ω) are the Euclidean diameter of A and Ω, respectively.

Step 2: Bounding the diameter D

Define the diameter under metric d by D = supx,x′∈A d(x, x′). For any x, x′ ∈ A,

d(x, x′)2 =E(g(x)− g(x′))2 ≤ 4 sup
x∈A

E(g(x))2

=4 sup
x∈A

E(Z(x)− IΨ,XZ(x))2

=4σ2 sup
x∈A

(Ψ(x− x)− rT (x)K−1r(x)) = 4σ2
A. (31)

Thus we conclude that

D ≤ 2σA. (32)

Step 3: Bounding the entropy integral

5
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By Equation 30 and Equation 32,∫ D/2

0

√
logN(ε, A, d)dε ≤

∫ σA

0

√
p log

(
48A0DΩσ2σ2

A

ε4
+ 1

)
dε

≤
(∫ σA

0

dε

)1/2(∫ σA

0

p log

(
48A0DΩσ

2σ2
A

ε4
+ 1

)
dε

)1/2

=

(∫ σA

0

dε

)1/2
(
σ

∫ σA/σ

0

p log

(
48A0DΩσ

2
A

u4σ2
+ 1

)
du

)1/2

≤ σ1/2
A

(
σ

∫ σA/σ

0

p log

(
48A0DΩσ

2
A

u4σ2
+

σ2
A

u4σ2

)
du

)1/2

≤
√

2pσA

√
log(e2

√
1 + 48A0DΩσ/σA))

≤
√

4pσA

√
log(e

√
1 + 48A0DΩ)

√
log(eσ/σA))

≤ c
√
p(1 ∨ log(A0DΩ))σA

√
log(eσ/σA)), (33)

where c =
√

6 log(7e).

Step 4: Bounding P(supx∈A Z(x)− µ(x) > η
∫D/2

0

√
logN(ε, A, d)dε+ u)

By Lemmas 1 and 2, we have

P

(
sup
x∈A

Z(x)− µ(x) > η

∫ D/2

0

√
logN(ε, A, d)dε+ t

)
≤ e−t

2/(2σ2
A). (34)

By plugging Equation 33 into Equation 34, we obtain the desired inequality with η1 = cη, which
completes the proof.

F CALIBRATING C VIA SIMULATION

An upper bound of the constant C in Theorem 1 can be obtained by examine the proof of Lemma
1 and Theorem 3. However, this theoretical upper bound can be too large for practical use. In this
section, we consider estimating C via numerical simulation.

According to Part 1 of Theorem 1,

C0 ≥ EM/
√
p(1 ∨ log(A0DΩ)),

whereM = supx∈Ω
Z(x)−µ(x)

σ(x) log1/2(eσ/σ(x))
,A0 is as in Equation 1, andDΩ is the Euclidean diameter of

Ω. For a specific Gaussian process, EM/
√
p(1 ∨ log(A0DΩ)) is a constant and can be obtained by

Monte Carlo. LetM be the collection of Gaussian processes satisfying the conditions of Theorem
1. Then

C0 = sup
M∈M

EM/
√
p(1 ∨ log(A0DΩ)) =: sup

M∈M
H(M).

The idea is to consider various Gaussian processes and find the maximum value of
EM/

√
p(1 ∨ log(A0DΩ)). This value can be close to C when we cover a broad range of Gaus-

sian processes.

In the numerical studies, we consider Ω = [0, 1]p for p = 1, 2, 3. We consider different A0 values
to get different A0DΩ’s. In each Monte Carlo sampling, we approximate M using

M1 = sup
x∈Ω1

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
,

where Ω1 is the first 100, 1000, 2000 points of the Halton sequence (Niederreiter, 1992) for p =

1, 2, 3, respectively. We calculate the average of M1/
√
p(1 ∨ log(A0DΩ)) over all the simulated

realizations of each Gaussian process.

6
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Specifically, We simulate 1000 realizations of the Gaussian processes for p = 1, 100 realizations
for p = 2, 3 and consider the following four cases. In Cases 1-3, we use maximin Latin hypercube
designs (Santner et al., 2003), and use independent samples from the uniform distribution in Case 4.

Case 1: We consider p = 1 with 20 and 50 design points. We consider the Gaussian correlation
functions and Matérn correlation functions with ν = 1.5, 2.5, 3.5. The results are presented in Table
2.

Case 2: We consider p = 2 with 20, 50, and 100 design points. We consider the Gaussian correlation
functions and product Matérn correlation functions with ν = 1.5, 2.5, 3.5. The results are presented
in Table 3.

Case 3: We consider p = 3 with 20, 50, 100 and 500 design points. We consider the product Matérn
correlation functions with ν = 1.5, 2.5, 3.5. The results are shown in Table 4.

Case 4: We consider p = 2 with 20, 50, and 100 design points. We consider the product Matérn
correlation functions with ν = 1.5, 2.5, 3.5. The results are shown in Table 5.

Table 2: Simulation results of Case 1
design points A0DΩ = 1 A0DΩ = 3 A0DΩ = 5 A0DΩ = 10 A0DΩ = 25

Gaussian 20 0.11640290 0.1978563 0.2450737 0.4542654 0.859318
50 0.08102775 0.0916648 0.1206034 0.1683377 0.422786

ν = 1.5 20 0.9640650 1.065597 0.9537634 0.9429957 1.0197966
50 0.9442937 1.009187 0.8981430 0.8331926 0.8372607

ν = 2.5 20 0.7432965 0.8554707 0.7804686 0.8371662 1.0074204
50 0.7304104 0.8218710 0.7346077 0.6987832 0.7563067

ν = 3.5 20 0.6054239 0.7248086 0.6833789 0.7711124 0.9608837
50 0.3367513 0.6941391 0.6244660 0.6278185 0.6928741

Table 3: Simulation results of Case 2
design points A0DΩ = 1 A0DΩ = 3 A0DΩ = 5 A0DΩ = 10 A0DΩ = 25

Gaussian 20 0.2801128 0.4767259 0.5644628 0.7408401 1.0554507
50 0.1465512 0.2927036 0.3789438 0.5683807 0.9309326
100 0.1156139 0.1961319 0.2436626 0.4189444 0.7641615

ν = 1.5 20 0.8106718 0.9528429 0.8748865 0.9365989 1.0894451
50 0.8114071 0.9299506 0.8568070 0.8576984 0.9964256
100 0.8137517 0.9108342 0.8224467 0.7951887 0.9168643

ν = 2.5 20 0.6072854 0.7709362 0.7411921 0.8540687 1.0933120
50 0.6316136 0.7218077 0.7218077 0.7690956 0.9703693
100 0.5651732 0.6677120 0.6677120 0.7090934 0.8791792

ν = 3.5 20 0.5243251 0.6881401 0.6915576 0.8290974 1.0876019
50 0.3947094 0.6420423 0.6434791 0.7030224 0.9494486
100 0.2898865 0.6279639 0.6036111 0.6420049 0.8373886

Table 4: Simulation results of Case 3
Cases H(M)

20 design points, ν = 1.5, A0DΩ = 1 0.6977030
500 design points, ν = 3.5, A0DΩ = 5 0.4961581
100 design points, ν = 2.5, A0DΩ = 3 0.6628567
50 design points, ν = 1.5, A0DΩ = 10 0.7632713

From Tables 2-5, we find the following patterns:
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Table 5: Simulation results of Case 4
Cases H(M)

100 design points, ν = 3, A0DΩ = 3 0.6778535
50 design points, ν = 1.5, A0DΩ = 1 0.8144700
20 design points, ν = 2.5, A0DΩ = 5 0.7735112
100 design points, ν = 1.5, A0DΩ = 10 0.8164859

• All numerical values (H(M)) in Tables 2-5 are less than 1.10. Only eight entries are greater
than one.

• In most scenarios, the obtained values are decreasing in ν. This implies that H(M) is
smaller when M is smoother.

• H(M) is not monotonic inA0DΩ, which implies a more complicated function relationship
between H(M) and A0DΩ.

• In most scenarios, H(M) decreases as the dimension p increases.
• The obtained values are decreasing in the number of design points.

In summary, the largest H(M) values are observed when the sample size is small, the smooth-
ness is low and the dimension is low. Therefore, we believe that our simulation study covers the
largest possible H(M) values and our suggestion of choosing C0 = 1 can be used in most practical
situations.
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