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Figure 1: Comparison for task and dataset. (a) and (c) show the comparison between traditional Temporal Action datasets and our
Hidden Abnormal Intention (HAI) Dataset. Traditional datasets solely concentrate on actions that are visibly occurring, but our
HAI dataset analyzes the same video sample according to the structure from 4 coarse-grained dimensions as “Suspicious Gaze”,
“Suspicious Posture”, “Suspicious Object” and “Suspicious Behavior” and 11 fine-grained perspectives to provide comprehensive
guidance on abnormal intention and abnormal behavior. (b) and (d) show the comparison between traditional Temporal Action
Localization (TAL) task and our Temporal Intention Localization (TIL) task. TAL predicts actions from actions. Models are
provided with video input to locate the start and end times of actions by predicting action feature scores. However, our TIL
predicts abnormal intention and rates intention degrees from pre-abnormal actions with analysing their cumulative effect.
TIL does not directly locate isolated visible actions, instead, it focuses on locating a series of associated behavior related to
abnormal intention, predicting abnormal degree (uncertain, suspicious, alert) to facilitate the judgment and prediction of
abnormal behavior.

ABSTRACT
Our paper introduces a novel video dataset specifically designed
for Temporal Intention Localization (TIL), aimed at identifying
hidden abnormal intention in densely populated and dynamically
complex environments. Traditional Temporal Action Localization
(TAL) frameworks, focusing on overt actions within constrained
temporal intervals, often miss the subtleties of pre-abnormal ac-
tions that unfold over extended periods. Our dataset comprises
228 videos with 5790 clips, each annotated to capture fine-grained
actions within ambiguous temporal boundaries using a Joint-Linear-
Assignment methodology. This comprehensive approach enables
detailed analysis of the evolution of abnormal intention over time.
To address the detection of subtle, hidden intention, we developed
the Intention-Action Fusion module, an creative approach that in-
tegrates dynamic feature fusion across 11 behavioral subcategories,
significantly enhancing the model’s ability to discern nuanced in-
tention. This enhancement has led to performance improvements of
up to 139% in specific scenarios, dramatically boosting the model’s

sensitivity and interpretability, which is crucial for advancing the ca-
pabilities of proactive surveillance systems. By pushing the bound-
aries of current technology, our dataset and methodologies foster
the development of proactive surveillance systems capable of pre-
emptively identifying potential threats from nuanced behavioral
patterns, encouraging further exploration into the complexities of
intention beyond observable actions.

KEYWORDS
Multimedia, Hidden Intention, Pre-abnormal, Temporal Localiza-
tion

1 INTRODUCTION
Temporal Action Localization (TAL) focuses on analyzing untrimmed
long videos to identify and categorize periods of key action, distin-
guishing them from non-action backgrounds by marking the start
and end times of these actions. Common datasets such as THU-
MOS14 [11], ActivityNet [7] and Kinetics [13] have been important
in advancing this field, leading to the development of sophisticated

1
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Figure 2: As illustrated, when singular behavior, which may
appear normal in isolation, accumulate, the abnormal in-
tention gradually becomes apparent. As suspicious behavior
accumulates, the suspicious degree continues to increase.

models such as Actionformer [35], TriDet [20] [19], and Video-
Mamba [3]. While these models excel in recognizing actions, they
often struggle to interpret the hidden intention of these actions.
This challenge becomes more apparent in situations requiring a
nuanced understanding of the participants’ motives.

Based on the above challenges, our research pioneers the concept
of Temporal Intention Localization (TIL), aimed to identify and
locate segments within untrimmed videos that potentially hidden
intention, focusing on forecasting from action clues rather than
merely recognizing ongoing actions.

Unlike traditional temporal action localization tasks that locate
actions as they occur based on singular behavior, TIL anticipates
future actions by analyzing intention combined with sequences of
related behavior, thus requiring a higher degree of interpretability.
The evolution of TIL underscores not only the advancements in
action localization but also highlights the ongoing need to bridge the
gap between recognizing actions and understanding intention. As
shown in figure 1, in security-related contexts, our research tries to
discover hidden abnormal intention to make intervention measures
more precise and effective, facilitating pre-abnormal analysis.

The limitations of traditional coarse-grained datasets are particu-
larly pronounced when addressing the nuanced detection of hidden
abnormal intention. For instance, behavior preceding theft, like
looming, may seem harmless in everyday life but can signify pre-
meditated abnormal intention in specific contexts. Relying solely
on singular, overt actions for judgment falls short in accurately
detecting hidden intention. This shortfall underscores the inad-
equacy of existing coarse-grained labels, which lack the nuance
and specificity needed to discern the subtle cues of premeditated
abnormal actions. Hence, the challenge lies in understanding the
context and the myriad of small, seemingly innocuous behavior
that, when pieced together, reveal a larger, more concerning picture
of potential abnormal behavior like figure 2.

Building upon the identified gaps in understanding the hidden
intention behind actions in abnormal scenarios, our research in-
troduces the Hidden Abnormal Intention (HAI) Dataset. Our
dataset is designed not just to capture actions but to delve into the
hidden intention that precede abnormal behavior. Unlike datasets
that prioritize overt action localization, HAI maps a series of multi-
perspective, multi-level behavior to their underlying abnormal in-
tention, creating a connected narrative that highlights the causal

relationship and cumulative effect between actions enhancing inter-
pretability. Meanwhile, we value the diversity of annotator perspec-
tives and align them with expert knowledge for a comprehensive
understanding. This progression entails equipping these models
with the ability to differentiate between normal behavior and those
imbued with covert motives, thereby furnishing a more refined
methodology for elucidating the hidden intention of humans prior
to committing the abnormal.

In our paper, we undertake a detailed study to uncover hidden
abnormal intention by carefully creating a dataset and refining
models. Leveraging the expertise of professionals, we have con-
structed a fine-grained, multi-level labeling system to explore the
feature of hidden abnormal behavior. Our dataset comprises 228
video, carefully annotated to reflect the gradation of abnormal in-
tention across different scenarios, utilizing a method known as
Joint-Linear-Assignment. This approach links annotated segments
end-to-end before applying a linear scoring of suspicion levels to
behavior, highlighting the increased suspiciousness of repetitive ac-
tions. This layered approach to labeling facilitates the development
of a nuanced understanding of pre-abnormal actions.

Our detailed annotation framework directs our model improve-
ment efforts towards locating 11 specific subcategories of behavior
with abnormal intention, instead of directly identifying hidden
intention segments. By aggregating predictive results for these
subcategories using a weighted combination, our model finely dis-
cerns the complex web of intention preceding abnormalities. This
dual approach enhances action localization precision and provides
novel insights into preemptive abnormal behavior identification,
significantly advancing behavioral analysis and security measures.

In our study, we advance temporal intention localization in pre-
abnormal analysis with 3 key innovations:

• Beneficial Dataset. We introduce a specialized dataset,
named HAI, aimed at understanding actions and their un-
derlying intention related to the abnormal, enriched with
expert annotations for comprehensive behavioral insights.

• SpecificAnnotation.Weemploy a Joint-Linear-Assignment
method for nuanced abnormal intention analysis across
video segments, enhancing behavioral understanding through
a focus on repetitive actions.

• Solid Method. Our approach refines predictive models by
focusing on pre-abnormal actions, improving accuracy in
locating hidden intention for effective security applications.

2 RELATEDWORK
Temporal Video Localization Datasets. Video datasets are cru-
cial for advancing action recognition and temporal localization.
To enhance model generalizability, many datasets include a wide
range of everyday action categories, tracing back to early datasets
like KTH [17] and Weizmann [5] [1]. With technological advance-
ments, more challenging datasets have been introduced, such as
UCF101 [22], Kinetics [13], ActivityNet [7], and FineAction [15].
These datasets expand action variety, enhance scene diversity, and
include annotations for temporal locations and spatiotemporal
bounding boxes. Rising demands for temporal localization in spe-
cific domains and unique action categories have led to the emer-
gence of domain-specific video datasets. For example, the UCF
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Figure 3: Visualization of the similarities and distinctions
among fine-grained labels under "Suspicious Gaze". All three
fine-grained labels prioritize suspicious pre-abnormal gaze,
yet diverge in range of gaze and duration.

Sports [16] [23] and Sports-1M datasets [12], by focusing on com-
plex sports actions, provide richer and harder research material. In
more detailed action recognition (AR) research, the FineGym [18]
dataset focuses on gymnastics, and the EPIC-KITCHENS [4] dataset
focuses on actions and object interactions in kitchen environments,
contributing to domain-specific research.

Despite efforts to improve annotation content and accuracy, most
domain-specific datasets still use traditional methods for annota-
tion. These datasets typically employ broadly related labels for
annotating target actions (e.g. True/False), lacking in-depth anno-
tations tailored to specific tasks within a given domain. In contrast,
our Hidden Abnormal Intention Dataset (HAI) creatively adopts a
more targeted and domain-task-aligned annotation approach: (1)
HAI identifies underlying intention through sequences of causally
linked actions, rather than directly annotating target behavior; (2)
To capture hidden intention, we employ associative labels that cu-
mulatively contribute to illustrating and understanding these covert
objectives. (3) HAI incorporates diverse annotator perspectives to
counter the subjectivity in interpreting hidden intention, enhanc-
ing accuracy through algorithmic and expert validation. (4) HAI
employs a unique hierarchical labeling system that breaks down
abnormal intention into 11 specific behavior analyzed from four
angles, enabling precise assessment of intention intensity.

Methods for Temporal Action Localization. In Temporal
Action Localization (TAL), deep learning has driven significant ad-
vancements. Techniques range from anchor-based methods like
SSN [37]to actionness-guided approaches like UTS [28] for pinpoint-
ing actions. Additionally, graph-based models like G-TAD [34] and
Transformer-based systems such as Actionformer [35] have fur-
ther refined the understanding of complicated video relationships.
Alongside, two-stage methods and end-to-end learning, including
I3D [2] [8], offer robust frameworks for action proposal and fea-
ture extraction. Weakly supervised learning and 3D Convolutional
Networks, like C3D [25], also contribute by minimizing annotation
needs and capturing dynamic spatiotemporal patterns, marking a
comprehensive evolution in TAL.

Hidden Intention Detection. In traditional intention detection,
“intention” is equated with undisguised behavior, which has led to

the development of numerous intention detection algorithms. E3D-
LSTM [30] predicts human intention by learning explicit spatiotem-
poral visual representations, while EM-base [32] and HAO [31]
infer human intention by combining visual representations with
attention. Automatic planning techniques, generating plans from
sequences of past actions to predict possible future actions for in-
tention identification, have been successfully applied in human
intention recognition, such as the RACNN algorithm [29]. Not lim-
ited to this, HFD [33] introduces non-verbal cues as signals for
intention recognition. However, these works have not explored the
subtle, concealed intention in human activities, where the actor
hides certain behavior—namely hidden intention. It wasn’t until the
introduction of the Hidden Intention Discovery (HID) task [38] that
a deeper exploration into the recognition of hidden intention was
highlighted. Our HAI dataset provides more fine-grained, system-
atic annotation materials for the recognition of hidden intention,
supporting the development of more precise algorithm research,
improving existing algorithms, and introducing temporal localiza-
tion methods into hidden intention recognition, thus achieving a
more accurate quantification and localization of hidden intention.

3 KEY DEFINITIONS AND CONCEPTS
Our research focuses on the complex concept of hidden abnormal
intention and temporal intention localization.

3.1 Hidden Abnormal Intention
Hidden Abnormal Intention is defined as a series of preparatory
or exploratory actions exhibited by individuals before committing
abnormal actions. These actions, like subtle and indirect body lan-
guage or environmental interactions, are designed to conceal true
intention. For example, a potential thief may pretend to browse
goods while looking for opportunities to steal. By enabling security
personnel to take preventative measures beforehand, identifying
these hidden intention is crucial for preventing abnormal actions.

3.2 Temporal Intention Localization
Temporal Intention Localization specifically targets untrimmed
video to locate and identify segments indicative of abnormal in-
tention. Given an untrimmed video, denoted as𝑉 , the objective is to
identify and delineate a set of segments, represented as {𝑠1, 𝑠2, ..., 𝑠𝑛}.
Each identified segment 𝑠𝑖 is defined by a tuple (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 , 𝑙),
where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 indicate the segment’s commencement and
conclusion times within the video 𝑉 , respectively. Additionally, 𝑙
denotes the segment’s hidden abnormal intention level, categorized
into three distinct levels: 1 for low, 2 for moderate, and 3 for high,
each reflecting the inferred degree of hidden abnormal intention.
This task aims for precise localization and accurate intention as-
sessment, enhancing the analysis of video data for security and
surveillance purposes.

4 HAI DATASET
Abnormal actions such as theft pose a global threat to societal se-
curity and personal property, yet tracking and investigating these
acts is challenging. Effective prevention and timely identification
of abnormal intention are crucial to reducing crime. This dataset
is developed to assist researchers and technology developers in

3
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Figure 4: Illustration of
the hierarchies of HAI
labels. Abnormal inten-
tion is dissected into
four coarse-grained di-
mensions, under which
eleven detailed perspec-
tives are distinguished.

creating systems that can recognize and locate abnormal intention,
particularly during the crucial hidden phase before an incident. By
leveraging data-driven insights, this initiative aims to enhance se-
curity measures and reduce risks associated with abnormal actions,
thus promoting safer communities and protecting personal assets.

4.1 Hierarchical Labeling Framework
To capture the complexity and subtlety of HAI, we combined expert
knowledge with public insight, collaborating with frontline police
officers and security experts. This collaboration not only enriched
our dataset with practical accuracy and value but also enhanced
its broad applicability by integrating public understanding. We es-
tablished a hierarchical labeling system with multi-grained labels.
Coarse-grained labels identify broader behavioral categories pre-
ceding abnormal actions, such as “Suspicious Gaze,” which depict
general patterns during the preparatory phase. Fine-grained labels
offer detailed insights, specifying actions indicative of hidden inten-
tion like “Surveying the Area” or “Staring for an Extended Period”.
This approach helps illuminate the complicated behavior suspects
use to conceal their intention, as shown in figure 3.

The labels logically arrange the abnormal process, enhancing our
understanding and detection of HAI. For example, under the coarse
category of “Suspicious Gaze”, we might find fine-grained labels like
“Quick Glance to the Side” or “Surveying the Area” which provide
insights into the specific actions a suspect might take to assess their
surroundings before committing. This annotation system aims to
cover the entire process from preparation to attempted actions
comprehensively, revealing the complexity of abnormal intention.

In the initial of the HAI dataset, we have carefully curated and
amalgamated 11 fine-grained behavior categories from a broad spec-
trum of hidden abnormal intention. These categories include: quick
glance to the side, surveying the area, staring for an extended period,
bending over to touch, concealing an object, taking out a tool, mask
action, looming, deliberately slowing down, tools, and mask. These
fine-grained categories are organized under four coarse-grained
categories that represent different aspects of suspicious behavior:
suspicious gaze, suspicious posture, suspicious behavior, and suspi-
cious objects. This organizational framework forms the semantic
backbone of our dataset, as illustrated in figure 4.

4.2 Dataset Collection and Annotation
Our dataset development pipeline is a structured process that spans
from the initial video collection to the final integration of annotated

data. The subsequent figure 5 provides a high-level overview of the
process, highlighting the systematic approach taken at each stage
to ensure the creation of a robust dataset for Hidden Abnormal
Intention (HAI) analysis. In the following subsections, we will delve
into the details of the dataset collection and the annotation steps
that form the backbone of our methodology.

4.2.1 Dataset Collection. We sourced our videos from publicly
datasets like UCF-Crime [24] and videos collected from the internet.
Our dataset cover a variety of scenarios, including indoor and out-
door abnormal actions, abnormal actions involving vehicles, both
individual and collaborative abnormal actions, and incidents occur-
ring at different times throughout the day. This diverse collection
is crucial because the abnormal doesn’t happen in just one kind of
place or time but occurring under numerous conditions.

To create an inclusive and representative dataset, we included
videos with varying resolutions and frame rates, ranging from low-
resolution videos common in less economically developed regions
to high-definition footage from more prosperous areas. This ap-
proach ensures our dataset reflects the universal nature of abnormal
actions, thereby enriching our insights.

Upon assembling the videos, we strictly excluded any footage
that did not accurately capture acts of abnormal behavior or at-
tempted incidents. This selective approach ensures the integrity
and relevance of our dataset, focusing exclusively on behavior that
merits further analysis.

4.2.2 Dataset Annotation. The entire annotation process, empha-
sizing multiple checks and expert feedback, ensures the dataset’s
high quality and utility. We believe this meticulous and strict anno-
tation work provides researchers and practitioners with a powerful
tool for better understanding abnormal behavior.

Annotation Preparation. To guide our annotation team, we
designed a comprehensive guideline, ensuring everyone clearly
understands the annotation process, the specific meanings and
scenarios for each label. This guideline covers everything from
video selection, importing information, to examples of each label,
aiming for a standardized execution as much as possible.

Preliminary Annotation. In this phase, annotators apply pre-
defined labels to the video content by identifying key behavior
and accurately marking relevant time segments. Each video is thor-
oughly annotated by at least three individuals to ensure compre-
hensive label application and understanding.

Annotation Review and Integration. After the initial anno-
tation, a dedicated team reviews the work to ensure accuracy and
consistency. Once all annotations and reviews are complete, we
compile all the information and start the integration process. We
take both the union and intersection of the data annotations, pre-
serving clips that any annotator considered suspicious (forming
annotation L) and those all annotators agreedwere suspicious (form-
ing annotation S). This method allows us to simulate different levels
of sensitivity to hidden abnormal intention, ensuring our dataset
offers multiple angles on observing hidden intention.

Joint-Linear-Assignment for pre-abnormal intention anal-
ysis. In developing the annotations of hidden abnormal intention,
we initiated by assigning a suspicion score to each category label
per frame, adhering to a linear scale to indicate increased suspicion
with repeated behavior. We then aggregated the suspicion scores

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Predicting the Unseen: A Novel Dataset for Hidden Intention Localization in Pre-abnormal Analysis ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Web

Public

datasets

unlabelled 

video pool 

√

√

√

(a) Collection and Annotation

Annotators Annotation

Relabel

Review

Guideline

 same 

 video 
annotation 1

annotation 2

annotation 3

 (b) Integration 

clip

clip

clip

clip

clip

clip

clip clip

annotation S

annotation L

√√

action 1

action 9

action 0

action 10

(c) Joint-Linear-Assignment for Abnormal Intention Analysis

…
…

Frame 
intention score

level degree

1.00

joint

0.00

Linear assignment

0.60

…
…

…
…

STEP 1 STEP 2 
score0

t

 t
 

t+n

score0
t+n

score1
t

score9
t

score10
t

)score
t 
= 

=

10

0i

norm score
t
i(

For  action_i :

score
t

Frame  t

 

t+n

score
t+ntrue0

t

false9
t

score
t+n

For score
t

STEP 3 0-0.3 ：uncertain

clip

0.3-0.6 ：suspicious
   > 0.6 ：alert

Figure 5: Dataset pipeline overview. (a) Collection and annotation process. Our dataset compiles data from global public datasets
and online abnormal actions videos, followed by expert-guided annotation by three annotators. (b) Integration process. By
union and intersection on three sets of annotations, we obtain lenient (annotation L) and strict (annotation S) annotations
respectively. (c) Process of Joint-Linear-Assignment for abnormal intention analysis. This process is divided into three steps:
STEP 1 assigns values to the frames where an action occurs. STEP 2 calculates the intention score by summing up across 11
categories. STEP 3 converts the score into the level of abnormal intention degree.

from all categories within a single frame, summing these values and
normalizing, to accurately gauge the intensity of hidden abnormal
intention for each frame. Frames with scores ranging from 0 to 0.3
are categorized as having an abnormal degree of uncertain. The
true intention is not fully determined but observation should be
remained. Those between 0.3 and 0.6 as suspicious, there are signs
or evidence to arouse initial suspicion so increased surveillance
may be conducted. Scores exceeding 0.6 are designated as alert,
evidence is sufficient to indicate a high risk of abnormal so we need
issue an alert or take action to prevent abnormal. This multi-level
framework of hidden abnormal intention annotations provides a
better understanding of the severity and potential risk associated
with each observed incident.

4.3 Unique Challenge
In addressing the complex task of identifying hidden abnormal
intention, our project faces nuanced challenges that distinguish it
from standard behavior analysis tasks. These challenges highlight
the complexity of our work and emphasize the need for a dataset
specifically designed to capture the subtleties of abnormal behavior.
Below, we delve into these unique challenges.

Integrated Causality and Cumulative Labeling. By annotat-
ing behavior causally related to abnormal intention and recognizing
label interconnections, our dataset highlights the cumulative effect
of actions, including repeated behavior and simultaneous actions.
This approach reveals how behavior accumulate to manifest HAI,
providing deeper analysis than traditional datasets.

Behavior : staring

Intention : shopping

Normal Abnormal

Intention : stealing

Behavior : staring

Figure 6: For the illustrated examples, despite the apparent
similarity in "staring" behavior, the underlying intention
starkly differ. Our dataset aims to unearth the hidden suspi-
cious intention beneath seemingly identical behavior.

Multi-Level Intention Localization and Granular Decom-
position. Our dataset offers an unprecedented level of detail, classi-
fying hidden abnormal intention across multiple levels and dissect-
ing these into 11 distinct behavior from four different viewpoints.
This not only allows for a nuanced understanding that surpasses
the simple binary categorizations found in traditional datasets but
also provides an complex mapping of the gradual buildup of covert
actions. Such granularity is crucial for accurately interpreting the
complex interplay of micro-behavior that collectively signal abnor-
mal intention, ensuring a comprehensive analysis of HAI.

Inter-Annotator Variability with Expert Comparison.We
acknowledge and preserve the diversity in annotators’ judgments,
providing a richer, context-dependent interpretation of behavior. By
comparing these diverse perspectives with expert knowledge, our
dataset permits a more refined assessment of the most appropriate
understanding of HAI.

Behavior-Intention Association. Distinguishing between sim-
ple, overt actions and hidden abnormal intention is essential. As
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(a) duration and count of 11 labels (b) correlation between 11 labels

(c) duration distribution (d) resolution distribution

Figure 7: (a) is the duration distribution and the count dis-
tribution across five sets of annotations for eleven different
labels, (b) is a heatmap displaying correlation between eleven
behavior through Jaccard [9] similarity, (c) (d) are the dura-
tion and resolution distribution of videos in the HAI dataset.

Shown in figure 6, HAI involves interpreting micro-behavior and
intention, a complex task not commonly addressed in conventional
behavior studies.

These challenges highlight the complexity and necessity of de-
veloping a dataset tailored to HAI, aiming to advance our under-
standing and detection capabilities in the area.

4.4 Statistics
Our HAI dataset Precisely annotates 228 videos, yielding 5 annota-
tion files with a total of 5,790 clips spanning 8 hours of video from
global datasets, the internet, and surveillance footage. It includes
segments with 28 to 320 instances across 11 categories, and tempo-
ral durations from 8 to 2,223 seconds. Each video averages 122.65
seconds, includes 3.61 categories, and contains about 6 instances
per clip, with instances averaging 7.4 seconds and ranging from
0.1 to 312 seconds. The dataset features diverse global locations
and resolutions, authentically representing abnormal incidents. Fig-
ure 7 provides foundational data, and the heatmap calculates the
Jaccard [9] similarity between label pairs in the HAI, showing more
frequent label combinations in darker cells. We used the Apriori
algorithm to identify common action combinations, with Table 2
listing the top three by frequency and their support values, indicat-
ing the likelihood of these combinations occurring. This analysis
reveals potential patterns in hidden abnormal intention, enhancing

our understanding of behavior subtly indicating abnormal intention
and focusing on high-frequency action combinations.

Our annotation framework employs a three-tier hierarchical
structure with cumulative effect tagging to decode intention behind
abnormal activities. In video annotations, each frame can show
up to 7 behavior instances, with a cap of 17 recurrences of the
same behavior in a single video. Table 1 provides statistical data,
comparing our dataset with other related video datasets.

5 EMPIRICAL STUDIES
In the empirical study, we introduce and evaluate our novel Intention-
Action Fusion (IAF) module, alongside the pioneering HAI dataset,
within the realm of temporal intention localization. Through a se-
ries of rigorous experiments, including SOTA baseline comparisons
and a specific ablation study, we aim to underscore the effective-
ness of our methodological advancements and the intrinsic value of
our dataset. This comprehensive examination not only showcases
the precision and interpretability of our model in temporal inten-
tion localization but also provides a clear demonstration of how
fine-grained and causality labels and dynamic feature fusion signif-
icantly contribute to the understanding of hidden intention. The
empirical evidence gathered from these studies serves to highlight
the crucial role of our dataset and the IAF module in advancing the
field of intention analysis.

5.1 Intention-Action Fusion Module
We present an creative Intention-Action Fusion (IAF) Module based
on underpinned by the insight that the detection of surreptitious
abnormal behavior transcends the mere analysis of actions or the
prediction of intention in isolation. It receives feature informa-
tion from the temporal localization model on 11 types of behavior
indicative of hidden abnormal intention. It extracts temporal in-
formation about key actions from the videos and then performs
dynamic feature fusion on these key behavior based on predefined
prior knowledge. Specifically, for each segment of video features,
a weighted sum 𝑆𝑏,𝑡 =

∑11
𝑘=1𝑊𝑘 · 𝑇𝑏,𝑘,𝑡 is computed for the first

11 types of behavior, where𝑊𝑘 represents the weight for the 𝑘-th
behavior and𝑇𝑏,𝑘,𝑡 represents the feature value of the 𝑘-th behavior
at time 𝑡 for the 𝑏-th video. This weighted sum is then dynamically
added to the features of the intention categories of each segment
across all time points, modifying the original feature tensor to
𝑇 ′
𝑏,𝑙,𝑡

= 𝑇𝑏,𝑙,𝑡 + 𝑆𝑏,1,𝑡 for the intention level 𝑙 , applicable across all
time points 𝑡 . The fused information is subsequently incorporated
into the feature set for hidden abnormal intention, allowing the
model to flexibly optimize intention predictions tailored to the spe-
cific circumstances of different video contents. This methodology
ensures that the model’s predictions remain highly accurate and
strongly interpretable across diverse scenarios.

5.2 Experiment
In this section, we initially evaluate our HAI dataset by benchmark-
ing it against representative methods in the task of temporal action
localization, demonstrating its efficacy. Additionally, we conduct
an illustrative study using the Intention-Action Fusion module for
temporal localization to further establish the dataset’s utility. Our
focus centers on the application of fine-grained labels for in-depth
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Table 1: Comparison between the HAI and other related datasets. Our dataset employs a hierarchical labeling approach. We are
the first dataset to consider the cumulative effects and associative relationships of labels, adopting a hierarchical annotation
format while preserving the diversity among annotators.

DataSet Avg Instance Task Hierarchical Label Label Annotator Annotation Form YearDuration Labeling Relationship Interpretability Discrepancy

HMDB51 [14] 3.15s AR — — × Minimize True/False ICCV 2011
UCF101 [22] 7.21s AR — — × Minimize True/False 2012
JHMDB [10] < 2s AR — — × Minimize True/False ICCV 2013
THUMOS’14 [11] 4.48s TAL — — × Minimize True/False 2014
ActivityNet [7] 1.5s TAL 4 (Nature, Setting) — × Minimize True/False CVPR 2015
Charades [21] 12.8s TAL — — × Minimize True/False ECCV 2016
Kinetics400 [13] 10s TAL — — × Minimize True/False 2017
AVA [6] 2.7s TAL — — × Minimize True/False CVPR 2018
FineGym [18] < 2s TAL 2 (Time), 3 (Semantic) — × Minimize True/False CVPR 2020
HACS [36] 33.2s TAL — — × Minimize True/False CVPR 2021
EPIC-KITCHENS [4] 3.1s TAL — — × Minimize True/False IJCV 2022
Our Dataset 7.4s TIL 3 (The Behavioral Vehicle of Intention) Cumulative ✓ Retain Level 2024

Table 2: Top three combinations by occurrence frequency
at different levels. We can study the potential behavioral
patterns in abnormal behavior through this information.

Level Combination Support

uncertain
Surveying the Area, Bending Over to Touch 0.0463
Bending Over to Touch, Concealing an Object 0.0421
Quick Glance to the Side, Surveying the Area 0.0386

suspicious
Surveying the Area, Bending Over to Touch 0.0544

Mask, Bending Over to Touch 0.0490
Quick Glance to the Side, Surveying the Area 0.0418

alert
Surveying the Area, Bending Over to Touch 0.1326
Quick Glance to the Side, Surveying the Area 0.1254

Mask, Bending Over to Touch 0.1147

learning and understanding, specifically investigating how such
detailed annotations facilitate the identification of covert behavior
with the aid of the Intention-Action Fusion module. The aim is
to highlight the crucial role our HAI dataset and methodological
enhancements play in accurately detecting clandestine actions.

5.2.1 Implementation Details. In our study, we aim to detect and
locate hidden abnormal intention, thus enabling the proactive iden-
tification of abnormal incidents within video. To achieve this, we
conduct a detailed evaluation of leading temporal recognition ap-
proaches at various levels of granularity, leveraging two SOTA :
TriDet [20] [19], ActionFormer [35]. We conducted experiments on
a dataset with five distinct sets of annotations. These sets include
annotation 1, annotation 2, annotation 3, annotation S, annotation
L. Annotation 1 was contributed by the least experienced annota-
tor, annotation 2 by the most experienced, and annotation 3 by an
annotator with moderate experience. Additionally, we utilized the
annotation integration method to obtain strict annotation (annota-
tion S) and lenient annotations (annotation L). The performance of
the models on these annotations gives us insight into how experi-
ence in annotation may influence the outcome of machine learning
models. The dataset is divided into training and testing sets with a
9:1 ratio. We utilize VideoMaeV2 [26] [27] to extract video features.

5.2.2 Evaluation Metrics. In our analysis, we measure the accuracy
of located action intervals using Intersection over Union (IoU), a
key metric that quantifies the overlap between the predicted action

(a) Ablation study of IAF module (b) Overall performance

Figure 8: (a) Ablation study of our IAF module for different
annotations on TriDet [20] [19]. (b) Performance of overall
dataset on Actionformer [35] and TriDet [20] [19].

intervals and the ground truth. IoU is determined by dividing the
size of the overlap between the ground truth interval (G) and the
predicted interval (D) by the size of their union, expressed as |G
∩ D| / |U|. The performance evaluation considers a range of IoU
thresholds from 0.3 to 0.7, allowing for a comprehensive assessment
of prediction accuracy across different levels of strictness.

5.2.3 Results. Table 3 and figure 8a presents the complex chal-
lenges embedded within the HAI dataset, revealed through the lens
of temporal intention localization tasks. The diverse annotations
spectrum necessitates a nuanced understanding of the dataset’s
inherent complexities. Prior to the integration of the Intention-
Action Fusion (IAF) module, the Actionformer [35] model displayed
a range of Avg mAP percentages from 0.59% to 3.39%, indicating
that the difficulty of intention localization for different experiential
annotated data in the dataset is variable. Therefore, in order to
reduce individual subjective bias and comprehensively evaluate
the performance of the model on the dataset, we simultaneously
calculate the overall dataset Avg mAP by taking the average of
the model’s results on five annotations. For the Actionformer [35]
model with the IAF module, Avg mAP values range from 0.79%
to 3.37% across different annotations, with an improvement in the
dataset AvgmAP from 2.02% to 2.26%. Incorporating the IAFmodule
brings about an overall performance boost, especially in annotation

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Comparative performance metrics of the Actionformer [35] and TriDet [20] [19] models on the HAI dataset with
and without the Intention-Action Fusion (IAF) module. The table showcases mean Average Precision (mAP) scores at varying
intersection over union (IoU) thresholds (0.3 to 0.7) for different annotation categories.

Backbone annotation IAF module mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 Avg mAP

Actionformer [35]

annotation 1 × 5.57 3.85 2.37 0.90 0.33 2.60
✓ 5.76 4.52 2.28 1.24 0.28 2.82↑

annotation 2 × 5.07 2.62 1.32 0.80 0.36 2.03
✓ 3.02 2.14 1.35 0.71 0.30 1.50

annotation 3 × 3.49 2.18 1.09 0.55 0.09 1.48
✓ 5.60 4.11 2.87 0.91 0.65 2.83 ↑

annotation S × 1.42 0.79 0.49 0.19 0.07 0.59
✓ 2.25 1.02 0.45 0.14 0.07 0.79↑

annotation L × 7.04 5.59 2.55 1.15 0.65 3.39
✓ 7.11 4.21 3.02 1.55 0.96 3.37

TriDet [20] [19]

annotation 1 × 5.25 3.82 2.53 1.31 0.62 2.71
✓ 5.30 3.86 3.16 2.28 1.00 3.12↑

annotation 2 × 4.45 2.63 1.55 0.77 0.21 1.92
✓ 5.00 3.69 2.63 1.09 0.53 2.59↑

annotation 3 × 3.30 2.28 1.10 0.49 0.18 1.47
✓ 6.66 5.06 3.90 1.51 0.50 3.52 ↑

annotation S × 1.94 1.43 0.65 0.12 0.03 0.83
✓ 2.57 2.00 1.33 1.09 0.21 1.44 ↑

annotation L × 7.26 4.88 2.92 1.97 0.59 3.52
✓ 9.82 7.12 4.96 2.45 1.42 5.15 ↑

3 with a more moderate level of experience that aligns with the
general public, Avg mAP has improved by 91.21%.

In concert with the findings from the Actionformer [35] model,
the TriDet [20] [19] with the IAF module showcases a span of Avg
mAP values ranging from 1.44% to an impressive 5.15%, culminating
in a dataset Avg mAP of 3.16%. The incorporation of the IAF module
has led to a substantial enhancement in model performance, with
Avg mAP improvements oscillating between 15% and a remarkable
139% across the five annotations. Mirroring the trends observed
with the Actionformer [35], the deployment of the IAF module
within the TriDet [20] [19] model notably excelled in annotation 3,
underlining the module’s adeptness in optimizing localization in
scenarios with a balanced complexity that mirrors the collective
cognitive baseline of the general populace.

The use of the IAF module in various annotations has demon-
strated how deep learning models can effectively reflect common
human experiences through data annotation. Particularly in anno-
tations that combine expert knowledge with everyday experiences,
the IAF module effectively refines the model, improving its abil-
ity to recognize complex intention. This discovery highlights the
value of creating data annotations that connect with a wide range
of human experiences. By enhancing the model’s performance on
annotations that incorporate professional expertise and everyday
details, the IAF module makes significant progress in narrowing
the divide between artificial intelligence and the complex world of
human actions and intention.

5.2.4 Ablation experiment. To further elucidate the vital contribu-
tion of our proposed Intention-Action Fusion (IAF) module to the
model’s performance, we designed a specific ablation study. This
process involved using the TriDet [20] [19]model as our baseline
and integrating the IAF module with an essential modification:
during the model’s actual learning phase, the features used and op-
timized did not pass through the IAF module. However, the model

still maintained its focus on learning pre-abnormal actions, effec-
tively simulating the scenario where the IAF module’s advanced
feature processing capabilities were bypassed. As vividly illustrated
in figure 8b, the outcomes of this study were telling. There was a
noticeable decrement in performance post-ablation, a phenomenon
that was particularly pronounced in the dataset’s Avg mAP met-
ric. This stark contrast underscores the indispensable role of the
Intention-Action Fusion module in amplifying the model’s acumen
for locating hidden intention. It is a step forward in our endeavor
to refine and push the boundaries of hidden intention localization
methodologies, aiming to achieve unprecedented levels of accuracy
and efficiency in understanding and interpreting complex, nuanced
intention embedded within actions.

6 CONCLUSION
In this paper, we propose a new task—temporal intention localiza-
tion, which involves the chronological positioning of individuals’
intention, and introduce an novel dataset named the Hidden Abnor-
mal Intention Dataset (HAI). Unlike other existing datasets, the HAI
creatively employs a marking scheme more tailored to temporal
intention localization, utilizing associative labels with a cumula-
tive effect, diversity in annotation, and hierarchical labeling. This
provides a solid foundation for algorithmic research in temporal
intention localization. Building upon HAI, we have also developed
a unique algorithm to address the challenges of temporal intention
localization, and the results highlight the significant challenges
posed by our dataset for this task. These challenges underscore the
difficulty and importance of recognizing hidden abnormal inten-
tion in natural settings. We hope our efforts will pave the way for
new advancements in the field of temporal intention localization,
thereby contributing to the assurance of public safety and societal
well-being.
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