
Under review as a conference paper at ICLR 2024

A USEFUL MATHEMATICAL RESULTS

Theorem A.1 (Convergence for Euler’s method). Let xN be the result of applying Euler’s method’s
to the ordinary differential equation defined as follows

ẋ = f(x, t), t0 t t1, and x(0) = x0,

If the solution x has a bounded second derivative and f is Lipschitz continuous in x, then the global
truncation error is bounded by

|x(tn)� xn|
hM

2L

⇣
eL(ti�t0) � 1

⌘
, (19)

where M is an upper bound on the second derivative of x on the given interval and L is the Lipschitz
constant of f .
Lemma A.1 (Gronwall’s inequality). Let u, ↵, � be real-valued continuous functions that satisfies
the integral inequality

u(t) ↵(t) +

Z t

0
�(s)u(s)ds.

Then

u(t) ↵(t) +

Z t

0
↵(s)�(s) exp

✓Z t

s
�(r)dr

◆
.

If, in addition, ↵(t) is non-decreasing, then

u(t) ↵(t) exp

✓Z t

0
�(s)ds

◆
.

Theorem A.2. Let A be m ⇥ m random matrix whose entries Aij are independent identically
distributed standard Gaussian random variables. Then, there exists absolute constant c, C > 0 such
that

kAkop C
p
m, with probability at least 1� 2e�cm. (20)

Theorem A.3 (Strong Bai-Yin theorem). Let A be m ⇥ m random matrix whose entries Aij are
independent identically distributed standard Gaussian random variables. Then

lim
m!1

kAkop/
p
m =

p
2, almost surely. (21)

13

Under review as a conference paper at ICLR 2024

B PROOF OF PROPOSITION 3.1

In this section, we prove the upper bound of global truncation error introduced by using finite-depth
ResNet fL

✓ to approximate Neural ODE f✓. By Theorem A.1, it sufficient to show the mapping
f(·, t) : x 7! W (t)�(x) is Lipschitz continuous and k@2h/@t2k is upper bounded.

WLOG, we can assume the activation � is 1-Lipschitz continuous. It follows from Theorem A.3
that the function f(·, t) is Lipschitz continuous:

kf(x, t)� f(z, t)k =kW (t)�(x)�W (t)�(z)k
kW kop k�(x)� �(z)k
C1�wkx� zk,

where Ci > 0 are some absolute constant. This indicates f(·, t) is O (�w)-Lipschitz continuous.

We first consider the ODE is autonomous, i.e., W (t) = W . Then

d(dh/dt) =d(W�(h(t)))

=W d�(h(t))

=W

�0(h(t))�

✓
dh(t)

dt

◆
dt

�

=W diag (�0(t))W�(t)dtx

where � indicates element-wise multiply and �(t) := �(h(t)). Therefore, we have

d2h

dt2
= W diag (�0(t))W�(t).

By using Theorem A.3, we have
����
d2h

dt2

���� kW k2kh(t)k C2�
2
wkh(t)k. (22)

Notably, we have inequality

kh(t)k kh(0)k+
Z t

0
kW�(s)kds kh(0)k+

Z t

0
C3�wkh(s)kds.

Since h(0) = Ux, it follows from Gronwall’s inequality that we can upper bound kh(t)k as follows

kh(t)k kh(0)k exp
✓Z t

0
C3�wds

◆
 C4�vkxkeC3�wt. (23)

Then substitute equation 23 into equation 22 and we get
����
d2h

dt2

���� C1�v�
2
wkxkeC2�wT

Combining everything together yields

khL(x)� h(x, T)k A

B

�
eBT � 1

�
�, (24)

where A := C1�v�2
wkxkeC2�wT and B := 2C1�w.

Now, we consider the scenario for non-autonomous, i.e., W (t) 6= W (s) if s 6= t. However, as they
are independent, we have

dW (t) = lim
h!0+

W (t+ h)�W (t)

h
= lim

h!0+

p
hA

h
= lim

h!0+

Ap
h
= 0

where A 2 Rn⇥n and Aij
i.i.d.⇠ N (0,�2

w/n). Therefore, we have

d(dh/dt) = d(W (t)�(h(t))) = [dW (t)]�(t) +W (t)d�(t) = W (t)d�(t).

As kW (t)kop is the same as kW kop, the results are the same.

14

Under review as a conference paper at ICLR 2024

C PROOF OF THEOREM 3.2

In this Appendix, we show the pre-activation g`k acts like Gaussian random variable. As a conse-
quence, the finite-depth neural network fL

✓ tends to a Gaussian process as width n ! 1.

We first review the Master Theorem introduced in yang2019wide and restated as follows.
Lemma C.1. (Yang, 2019, Theorem 5.4) For any NETSOR program whose weight matrices are
random initiated as in (Yang, 2019, Assumption 5.1) and all activation functions are controllable.
If g1, · · · , g` are any G-vars (i.e., pre-activation in our case), then for any controllable function
� : R` ! R, we have

1

n

nX

k=1

�(g1k, · · · , g`k)
a.s.�! Ez⇠N (µ,⌃)�(z), (25)

where z := (z1, · · · , z`) and µ and ⌃ can computed by (Yang, 2019, Definition 5.2).

Then we can customize this theorem to our residual neural networks as follows.
Lemma C.2. Suppose the activation function � is nonlinear Lipschitz continuous function and
weights are randomly initialized as in equation 2 or equation ??. Then for any `, k 2 [0, L], any
controllable function � : R2 ! R and any x and x0, we have

1

n

nX

i=1

�(gki (x), g
`
i (x

0))
a.s.�! E

⇥
�(zk(x), z`(x0))

⇤
, (26)

where (z`(x), zk(x0)) are centered Gaussian whose covariance are computed as in Theorem 3.2.

Now, we are read to provide a inductive proof for Theorem 3.2. As suggested in the proof of
C.1, it suffices to prove for a fixed x. Hence, here we only provide a proof with single input x to
simplify the expression. The argument for general case with multiple input {x1, · · · , xN} is similar.
Additionally, we assume nout = 1(so V = vT), denote d = nin, and set �v = �w = �u = � to
further simplify the proof.

BASIC CASE L = 0

As L = 0, we have f0
✓ (x) = vT�(h0). Note that we have g0 = h0 = Ux, then

g0k
i.i.d.⇠ N (0,�2kxk2/d| {z }

:=⌃0(x,x)

). (27)

We condition on �-algebra spanned by g0, denoted by B = {g0}. Then

f0
✓ |B ⇠ N (0,�2k�0k2/n), (28)

where �0 := �(h0). It follows from law of large number that

�2k�0k2/n =
�2

n

nX

k=1

���(h0
k)
��2

=
�2

n

nX

k=1

���(g0k)
��2

!�2E�(z0(x))2| {z }
:=⌃1(x,x)

, z0(x) ⇠ N (0,�2
u⌃

0(x, x)).

Therefore, we have

f1
✓ ! GP(0,⌃1), (29)

where

⌃1(x, x0) = �2E�(z0(x))�(z0(x0)). (30)

15

Under review as a conference paper at ICLR 2024

BASIC CASE L = 1

As L = 1, we have f1
✓ (x) = vT�(h1). Then g1 = W�(h0). By condition on B = {g0}, we have

g1k|B
i.i.d.⇠ N (0,�2k�0k2/n), (31)

where by using induction

�2k�1k2/n =
�2

n

nX

k=1

����(h)
k

���
2

(32)

=
�2

n

nX

k=1

���(g0k)
��2 (33)

!�2E
���(z0(x))

��2
| {z }

:=⌃1(x,x)

, z0(x) ⇠ N (0,�2
u⌃

0(x, x)) (34)

Since h1 = g0 + �g1, by condition on B = {g0, g1}, we have

f2
✓ |B ⇠ N (0,�2k�1k2/n), (35)

where it follows from inductive hypothesis and Lemma C.1 or Lemma C.2 that

�2
vk�1k2/n =

�2

n

nX

k=1

�(h1
k)

2 (36)

=
�2

n

nX

k=1

�(g0k + �g1k)
2 (37)

!�2E�(z0(x) + �z1(x))2| {z }
:=⌃2(x,x)

. (38)

Hence, we obtain

f2
✓ ! GP(0,⌃2(x, x0)), (39)

where

⌃2(x, x0) = �2E�(z0(x) + �z1(x))�(z0(x0) + �z1(x0)). (40)

GENERAL CASE L: SHARED WEIGHTS

Now consider fL
✓ (x) = vT�(hL). Here gL = W�(hL�1). As W is used before, we condition on

B = {g0, g1, · · · , gL�1}, then

g` = W�(h`�1), 8` 2 {1, 2, · · · , L� 1} (41)

or equivalently
⇥
g1 · · · gL�1

⇤
| {z }

:G

= W
⇥
�0 · · · �L�2

⇤
| {z }

�

(42)

where G 2 Rn⇥(L�1) and � 2 Rn⇥(L�1).

We can obtain the conditional distribution of W by solving the following optimization problem

min
W

1

2
kWk2F , s.t. G = W�. (43)

The Lagrange function is given by

L(W,V) =
1

2
kWk2F + hV,G�W�i (44)

16

Under review as a conference paper at ICLR 2024

Then

rWL(W,V) = W � V �T = 0 =) W ⇤ = V �T .

As G = W�, we have

G = W� = V �T� =) V = G(�T�)† =) W ⇤ = G(�T�)†�T .

Thus, we have

W |B = W ⇤ + W̃⇧T = G(�T�)†�T + W̃
�
In � ��†� , (45)

where W̃ is i.i.d.copy of W and �† = (�T�)†�T . Since gL = W�(hL�1), we have

gLk |B
independent⇠ N (Gk⇤(�

T�)†�T�,�2k⇧T�k2/n). (46)

where we denote � := �L�1 to simplify the notation. It follows from the induction that

⌦
�i,�j

↵
/n =

1

n

nX

k=1

�(hi
k)�(h

j
k)

=
1

n

nX

k=1

�(g0k + �g1k + · · ·+ �gik)�(g
0
k + �g1k + · · ·+ �gjk)

!E�(z0(x) + �z1(x) + · · ·+ �zi(x))�(z0(x) + �z1(x) + · · ·+ �zj(x))

=:E�(ui(x))�(uj(x)),

where we denote ui to simplify the notation

ui(x) = z0(x) + �z1(x) + · · ·+ �zi(x). (47)

Therefore, we have

(�T�)†�T� = (�T�/n)†
�
�T�/n

�
! ⌃(UL�2, UL�2)†⌃(UL�2, uL�1) (48)

where

U ` = (u0, u1, · · · , u`).

Moreover,

�2k⇧T�k2/n =
�2

n
�T (In � ��†)�

=
�2

n
�T�� �2

n
�T�(�T�)†�T�

=�2
⇥
�T�/n� (�T�/n)(�T�/n)†(�T�/n)

⇤

!�2
w

⇥
⌃(uL�1, uL�1)� ⌃(uL�1, UL�2)⌃(UL�2, UL�2)†⌃(UL�2, uL�1)

⇤

Therefore, it follows from the inductive hypothesis and Lemma C.2 or Lemma C.1 that for any
controllable , we have

1

n

nX

k=1

 (g0k, g
1
k, · · · , gLk)

a.s.! E
⇥
 (z0, z1, · · · , zL)

⇤
, (49)

where

Cov(z0(x), z`(x0)) = 0, 8` � 1 (50)

Cov(z`(x), zk(x)) = E
"
�

z0(x) + �

`�1X

i=1

zi(x)

!
�

z0(x

0) + �
k�1X

i=1

zi(x
0)

!#
, 8`, k � 1

(51)

Then by condition on B = {g0, · · · , gL}, we have

fL
✓ (x) = vT�(hL) ⇠ N (0,�2k�Lk2/n) (52)

17

Under review as a conference paper at ICLR 2024

where

�2k�Lk2/n =
�2

n

nX

k=1

�(hL
k)

2

=
�2

n

nX

k=1

�

g0k + �

LX

i=1

gik

!2

!�2E�

z0(x) + �

LX

i=1

zi(x)

!2

| {z }
:=⌃L+1

Thus, we obtain

fL
✓ ! GP(0,⌃L+1) (53)

where

⌃L+1(x, x0) = �2E
"
�

z0(x) + �

LX

i=1

zi(x)

!
�

z0(x0) + �

LX

i=1

zi(x0)

!#
(54)

Let u`(x) := z0(x) + �
P`

i=1 z
i(x). Notably, u`(x) is still a Gaussian random variable as it is the

sum of several Gaussian. Then we have

⌃`+1(x, x0) = �2E�(u`(x))�(u`(x0)),

where

Cov(u`(x), uk(x0)) =Cov(z0(x) + �
X̀

i=1

zi(x), z0(x0) + �
kX

j=1

zj(x0))

=Cov(z0(x), z0(x0)) + �
kX

j=1

Cov(z0(x), zi(x0)) + �
X̀

i=1

Cov(zj(x0), z0(x))

+ �2
X̀

i=1

kX

j=1

Cov(zi(x), zj(x0))

=Cov(z0(x), z0(x0)) + �2
X̀

i=1

kX

j=1

Cov(zi(x), zj(x0)),

where we use the independence between z0 and zi for all i � 1.

GENERAL CASE L: INDEPENDENT WEIGHTS

Now we have fL
✓ (x) = vT�(hL). Note that gL = WL�(hL�1). By condition on previous layers, it

follows from the inductive hypothesis and Lemma C.2 or C.1 that

gLk |B
i.i.d.⇠ N (0,�2k�L�1k2/n). (55)

Note the conditional distribution of gLk is much simpler comparing to its counterpart with shared
weights. Then we have

�2k�L�1k2/n =
�2

n

nX

k=1

�

g0k + �

L�1X

`=1

g`k

!2

!�2E�

z0(x) + �

L�1X

`=1

z`(x)

!2

| {z }
:=⌃L(x,x)

.

18

Under review as a conference paper at ICLR 2024

where the covariance are given by

Cov(zi(x), zj(x0)) = �ij�
2⌃i(x, x0), 8i, j 2 {0, 1, 2 · · · , L� 1}. (56)

The cross terms are zeros because W ` and W k are independent.

Now, we condition on B = {g0, · · · , gL}, and we have

fL
✓ (x) = vT�(hL) ⇠B N (0,�2k�Lk2/n), (57)

where by using the inductive hypothesis and Lemma C.2 or C.1, we have

�2k�Lk2/n =
�2

n

nX

k=1

�(hL
k)

2

=
�2

n

nX

k=1

�

g0k + �

LX

i=1

gik

!2

!�2E�

z0(x) + �

LX

i=1

zi(x)

!2

| {z }
:=⌃L+1

Thus, we have

fL
✓ ! GP(0,⌃L+1),

where

⌃L+1(x, x0) = �2E
"
�

z0(x) + �

LX

i=1

zi(x)

!
�

z0(x0) + �

LX

i=1

zi(x0)

!#
(58)

Additionally, as Cov(zi(x), zj(x0)) = 0 if i 6= j.

Let u` = z0 + �
P`

i=1 z
i. Then u` is another Gaussian. It follows from independence between zi

and zj for i 6= j. Then we have

Cov(u`(x), u`(x0)) =Cov(z0(x), z0(x0)) + �2
X̀

i=1

Cov(zi(x), zi(x0))

=⌃0(x, x0) + �2
X̀

i=1

⌃i(x, x0).

Therefore, we have

⌃L+1(x, x0) = E
⇥
�(uL(x))�(uL(x0))

⇤
= E�(f(x))�(f(x0)),

where

f ⇠ N

0,�2

u⌃
0 + �2

LX

i=1

⌃i

!
, (59)

19

Under review as a conference paper at ICLR 2024

D PROOF OF THEOREM 3.4

This section is deducted to prove the strict positive definiteness of ⌃`. We will prove it by using
the concept of dual activation and Hermitian expansion. Here a brief introduction is provided as
follows. For details, we refer readers to Daniely et al. (2016).

Let x ⇠ N (0, 1) and f : R ! R. Then we can define an inner product

hf, gi := Ex⇠N (0,1)f(x)g(x).

Thus, we can further define a Hilbert space of functions H, that is, f 2 H if and only if

kfk2 = Ex⇠N (0,1) |f(x)|2 < 1.

Next, consider the function sequence 1, x, x2, · · · . Clearly, they are independent. Then apply Gram-
Schmidt process to the function sequence w.r.t. the inner product we define before, and we obtain
{hn} the (normalized) Hermite polynomial that is an orthonormal basis to the Hilbert space H:

hn(x) = (�1)ne
x2

2
dn

dxn
e�

x2

2 , (60)

Now, we are ready to introduce dual activation. The dual activation �̂ : [�1, 1] ! R of an
activation � : R ! R is defined by

�̂(⇢) := E(X,Y)⇠N⇢
�(X)�(Y). (61)

where N⇢ is multidimensional Gaussian distribution with mean 0 and covariance matrix

1 ⇢
⇢ 1

�
.

Then the dual kernel k� is defined as follows for every pair x, x0 on a sphere:

k�(x, x
0) := �̂(hx, x0i).

If a function � 2 H, we not only can obtain an expansion of � by using the orthonormal basis of
Hermitian polynomials but also an expansion to the dual activation �̂ by using the same Hermitian
coefficients. As a consequence, the corresponding dual kernel k� can be shown to be strict positive
definite by using the Hermitian expansion.
Lemma D.1. (Daniely et al., 2016, Lemma 12) If � 2 H, then

�(x) =
1X

n=0

anhn(x), (62)

�̂(⇢) =
1X

n=0

a2n⇢
n. (63)

where an := hhn,�i is the Hermite coefficients, and the above is Hermitian expansion.
Theorem D.1. (Jacot et al., 2018, Theorem 3)(Gneiting, 2013, Theorem 1) For a function f :
[�1, 1] ! R with f =

P1
n=0 bnhn, the kernel Kf : Sn0�1 ⇥ Sn0�1 ! R defined by

Kf (x, x
0) := f(xTx0)

is strictly positive define for any n0 � 1 if and only if the coefficients bn > 0 for infinitely many
even and odd integer n.

D.1 INDEPENDENT WEIGHTS

Now, we are ready to conduct proof for the strict positive definiteness of ⌃`. We start with indepen-
dent weights.

Suppose we have independent weights, then we have

⌃`+1(x, x0) = E�(u`(x))�(u`(x0))

20

Under review as a conference paper at ICLR 2024

where u`(x) = z0(x) + �
P`

i=1 z
i(x) and so

Cov(u`(x), u`(x0)) =Cov

z0(x) + �

X̀

i=1

zi(x), z0(x0) + �
X̀

i=1

zi(x0)

!

=Cov(z0(x), z0(x0)) + �2
X̀

i=1

Cov(zi(x), zi(x0))

=⌃0(x, x0) + �2
X̀

i=1

⌃i(x, x0).

where we use the fact Cov(z`(x), zk(x0)) = 0.
Lemma D.2. Suppose � is non-polynomial Lipschitz continuous and W ` 6= W k. If ⌃` is strictly
positive definite, then ⌃`+1 is also strictly positive definite

Proof. Assume the contrary. Then there exists a finite distinct collection {xi}Ni=1 and some constants
{ai}Ni=1 that has at least one nonzero such that

0 =
NX

i,j=1

aiaj⌃
`+1(xi, xj) =

NX

i,j=1

aiajE�(u`(xi))�(u
`(xj)) = E

NX

i=1

ai�(u
`(xi))

!2

.

This indicates
PN

i=1 ai�(u
`(xi)) = 0 almost everywhere. By the inductive hypothesis that ⌃` is

strict positive, we have (u`(x1), · · · , u`(xN)) is a nondegenerate Gaussian vector. This implies � is
constant function, which contradicts the assumption of �. Therefore,⌃`+1 is also strict positive.

Lemma D.3. Suppose � is non-polynomial Lipschitz continuous. Then ⌃1 is strictly positive defi-
nite.

Proof. WLOG, we can assume �2
u = 1/d, then ⌃0(x, x0) = hx, x0i. For ` = 1, we have

⌃1(x, x0) = �2
wE(u,v)⇠N (0,A0(x,x0)) [�(u)�(v)] ,

where

A0(x, x0) =

1 hx, x0i

hx0, xi 1

�
.

Then we have

⌃1(x, x0) = �2
wµ̂(x

Tx0)

where µ(x) := �(�ux).

Clearly, µ is Lipschitz continuous since � is. Let the expansion of µ in Hermite polynomials
{hn}1n=0 to be given as µ =

P1
n=0 anhn. Then we can write µ̂ as µ̂(⇢) =

P1
n=0 a

2
n⇢

n. Then
we have

⌃1(x, x0) = �2
wµ̂(x

Tx0) = �2
w

1X

n=0

a2n(x
Tx0)n.

Since � is assumed non-polynomials, µ is also non-polynomial, and so there are infinitely many
number of nonzero an in the expansion. Thus, bn := a2n > 0 for infinitely many even and odd
numbers. Since �2

w > 0, we have ⌃1 is strictly positive definite.

Then we obtain ⌃L is strict positive definite by combining Lemma D.2 and D.3. The corresponding
result is stared as follows.
Theorem D.2. For a non-polynomial Lipschitz nonlinear � and any input dimension n0, if the
weights are independent, i.e., W ` 6= W k, then the restriction of the covariance function ⌃L to the
unit sphere Sn0�1 = {x : kxk = 1}, is strict positive definite for 1 L < 1.

21

Under review as a conference paper at ICLR 2024

D.2 SHARED WEIGHTS

Actually, we can also show the strictly positive definite of ⌃`+1 using induction but make inductive
hypothesis based on different random vector.

Given distinct {xi}Ni=1, it is equivalent to show the random variables {z`(xi)}Ni=1 are nondegenerate.
Recall u` = u`�1 + �z`. Now, suppose we assume {u`(xi)}Ni=1 is nondegenerate. For simplicity,
we definite u` 2 RN with u`

i := u`(xi), then we have

u` ⇠ N (0, A`). (64)

As u` is nondegenerate, we have A` � 0. Now, we have z`+1 ⇠ N (0,K`+1), where

K`+1 = E
⇥
�(u`)�(u`)T

⇤
. (65)

We can show K`+1 is also nondegenerate. If not, then for some nonzero vector a 2 RN , we have

0 = aTK`+1a = E
⇥
aT�(u`)

⇤2
,

which implies aT�(u`) = 0 almost everywhere. By the inductive hypothesis, we have u` is nonde-
generate, and hence � must be some constant function, which contradicts � is nonlinear function.
Therefore K`+1 � 0.

Now, we have u`+1 = u` +�z`+1, and we want to show u`+1 is also nondegenerate. Let us assume
the contrary. Then there exists some nonzero vector a 2 RN such that

0 = aTCov(u`+1, u`+1)a = E
⇥
aTu` + aT�z`+1

⇤2
,

which further implies aTu` + aT�z`+1 = 0 almost surely. As both u` and z`+1 are nondegenerate,
we have aTu` = �aT�z`+1 a.s. This further implies

aTA`a = �2aTK`+1a.

WLOG, we can further assume � = 1. Then we have

E
�
aTu`

�2
= E

�
aT�(u)

�2
.

Since both u` and z`+1 are nondegenerate, we have aTu` 6= 0 and aT�(u) 6= 0. Thus, we have
aTu` = aT�(u) almost surely. This indicates � is a linear function, which contradicts our assump-
tion of nonlinear �. Therefore, we obtain u`+1 = u` + �z` is also nondegenerate.

Recall that in the proof of independent weights case, we have shown z1 are nondegenerate. Since
z0 and z1 are independent, and u1 = z0 + �z1, we obtain u1 is nondegenerate for the basic case,
which complete the entire proof.
Theorem D.3. For a non-polynomial Lipschitz nonlinear � and any input dimension n0, if the
weights are shared, i.e., W ` = W , then the restriction of the limiting covariance function ⌃L to the
unit sphere Sn0�1 = {x : kxk = 1}, is strict positive definite for 1 L < 1.

Then combine the two theorems Theorem D.2 and Theorem D.3 and obtained the desired result in
Theorem 3.4.

22

Under review as a conference paper at ICLR 2024

E PROOF OF LEMMA 3.1

In this section, we prove Lemma 3.1. Technically, we will show the depth convergence is uniform
in width n based on classic results from RMT A.3 or A.2. As a result, we can use arguments similar
to the Moore-Osgood theorem to obtain the desired result
Lemma E.1. For each L, we have the following a.e.

kh`k C2(1 + C1�w�)
`pn, (66)

where C1, C2 > 0 are some absolute constant.

Proof. Fix depth L, we consider

kh`k =kh`�1 + �W `�(h`�1)k
kh`�1k+ �kW `kkh`�1k
=
�
1 + �kW `k

�
kh`�1k.

As W ` i.i.d.⇠ N (0,�2
w/n), we have kW `k ⇠ �w almost surely. Then repeat this argument ` times and

we have
kh`k (1 + C1�w�)

`kh0k.

Recall that Uij
i.i.d.⇠ N (0,�2

u/d), we have kUk ⇠
p
n almost surely. Since h0 = g0 = Ux, we have

kh`k C2(1 + C1�w�)
`pn.

Lemma E.2. For each L, we have the following a.s. for all ` k L.

kh` � hkk C
p
n
⇥
(1 + C�w�)

k � (1 + C�w�)
`
⇤
, (67)

where C > 0 is some absolutely constant.

Proof. We consider a ResNet fL
✓ (x) defined equation 3. For ` k L, we have

kh` � hkk =khk + �W k+1�(hk) + · · ·+ �W `�(h`�1)� hkk
↵

�
khkk+ · · ·+ kh`�1k

�

↵
�
(1 + ↵)k + · · ·+ (1 + ↵)`�1

�
kh0k

kh0k
⇥
(1 + ↵)k � (1 + ↵)`

⇤

where ↵ := C�w� and we use the fact kW `k ⇠ �w and the previous result. Recall that h0 = g0 =
Ux and kUk ⇠

p
n, and we obtain the desired result.

Lemma E.3 (Uniform convergence). For each n, we have the following a.s.

k
⌦
�L(x),�L(x0)

↵
/n�Bnk C2

⇥
e2C1�wT � (1 + C1�wT/L)

2L
⇤
. (68)

where Bn = lim
L!1

⌦
�(x)L,�(x0)L

↵
/n and C > 0 is some absolute constant.

Proof. Fix L. For ` k L we denote An,` = 1
n

⌦
�`
i ,�

`
j

↵
to simplify the notations, where

�`
i := �(h`(x)) and �`

i := �(h`(x0)). Then

|An,` �An,k| =
����
1

n

⌦
�`
i ,�

`
j

↵
� 1

n

⌦
�k
i ,�

k
j

↵����

����
1

n

⌦
�`
i ,�

`
j

↵
� 1

n

⌦
�`
i ,�

k
j

↵����+
����
1

n

⌦
�`
i ,�

k
j

↵
� 1

n

⌦
�k
i ,�

k
j

↵����

=

����
1

n

⌦
�`
i ,�

`
j � �k

j

↵����+
����
1

n

⌦
�`
i � �k

i ,�
k
j

↵����

 1

n
k�`

ikk�`
j � �k

j k+
1

n
k�`

i � �k
i kk�k

j k.

23

Under review as a conference paper at ICLR 2024

By using Lemma E.1 and E.2, we have

|An,` �An,k| C
1

n
(1 + ↵)`

p
n ·

p
n
⇥
(1 + ↵)k � (1 + ↵)`

⇤

+ C
1

n
(1 + ↵)k

p
n ·

p
n
⇥
(1 + ↵)k � (1 + ↵)`

⇤

C
⇥
(1 + ↵)` + (1 + ↵)k

⇤ ⇥
(1 + ↵)k � (1 + ↵)`

⇤

C
⇥
(1 + ↵)2k � (1 + ↵)2`

⇤

Now let k = L and let L ! 1. Then Bn := lim
L!1

An,L is well defined by combining Lemma E.1
with squeeze theorem. Then we have

|An,` �Bn| C
⇥
e2�wT � (1 + ↵)2`

⇤
.

Note that as ` increase, � does not change as long as ` L. Therefore, we set ` = L, and obtain

|An,L �Bn| C
⇥
e2C�wT � (1 + C�w�L)

2L
⇤
. (69)

where �L = T/L. Therefore, we can see lim
L!1

An,L = Bn is uniform in n.

Lemma E.4 (Interchanging limits). For any x, x0 2 Sn0�1, the following holds a.s.

lim
n!1

lim
L!1

An,L = lim
L!1

lim
n!1

An,L = lim
n!1
L!1

An,L = ⌃⇤(x, x0), (70)

where An,L :=
⌦
�(x)L,�(x0)L

↵
/n.

Proof. Fix x and x0 and we simplify notations by using ⌃` := ⌃`(x, x0). Let ✏ > 0, then there
exists L(") such that k, ` � L implies

|An,` �An,k| ✏, 8n.

As we have shown the converges of Bn is uniform in n, let n ! 1, and we have
��⌃` � ⌃k

�� ✏.

Therefore, the sequence {⌃`} is a Cauchy sequence which converges to its limit ⌃⇤, as stated in the
previous lemma. Additionally, let k ! 1 and we have

��⌃` � ⌃⇤�� ✏.

On the other hand, let k ! 1, we have

|An,L �Bn| ✏.

By the (a.s.) convergence of An,L to ⌃L as n ! 1, there exists M(L, ✏) such that n � M implies
��An,L � ⌃L

�� ✏.

Then for fixed L and n � M , we have

|Bn � ⌃⇤| |Bn �An,L|+
��An,L � ⌃L

��+
��⌃L � ⌃⇤�� 3✏.

This proves that Bn ! ⌃⇤ as n ! 1.

Moreover, choose N = max{L(✏),M(L, ✏)}, we have lim
n!1
L!1

An,L = ⌃⇤, and complete the proof.

24

Under review as a conference paper at ICLR 2024

F PROOF OF THEOREM 3.6

For simplicity, we assume nout = 1, then we have vector v for the output layer. Additionally, we
assume �v = �w = �u to further simplify the notations.

As suggested from Yang (2019) proving Lemma C.1 or C.2, it is sufficient to consider a single data
input x. Hence, we fix one input data x. Note that we have Neural ODE f✓ = vT�(h(x, T)). By
condition on values of h(x, T), we have

f✓|B ⇠ N (0,�2k�(h(x, T))k2/n| {z }
⌃̂n

),

where we have

lim
n!1

⌃̂n(x, x) = lim
n!1

k�(h(x, T))k2/n

= lim
n!1

������

h(x, 0) +

Z T

0
W (t)�(h(x, t))dt

!�����

2

/n

(i)
= lim

n!1
lim

�!0+

������

h0(x) +

LX

`=1

�W `�(h`�1(x))

!�����

2

/n, � = T/L

= lim
n!1

lim
�!0+

���
�
hL(x)

���2 /n,

= lim
n!1

lim
�!0+

1

n

nX

k=1

���(hL
k)
��2

(ii)
= lim

�!0+
lim
n!1

1

n

nX

k=1

���(hL
k)
��2

(iii)
= lim

�!0+
⌃L(x, x)

(iv)
= ⌃⇤(x, x),

where (i) is due to Proposition 3.1, (ii) is due to Lemma 3.1, (iii) is due to Theorem 3.2 and (iv) is
ensured by combing Lemma 3.1 with Lemma E.1 and squeeze theorem:

lim
`!1

⌃`(x, x) = lim
`!1

lim
n!1

⌦
�(h`),�(h`)

↵
/n

 lim
`!1

lim
n!1

kh`k2/n

 lim
`!1

lim
n!1

C2(1 + C1�w�)
2`

= lim
`!1

C2(1 + C1�wT/`)
2`

= lim
`!1

C2e
2C1�wT .

Furthermore, by using Cauchy-Stewart inequality, we ensure ⌃⇤(x, x0) is also well-defined. As ⌃⇤

is a deterministic function, the conditioned and unconditioned distributions of f✓ are equal in the
limit: they are centered Gaussian random variables with covariance ⌃⇤.

25

Under review as a conference paper at ICLR 2024

G PROOF OF PROPOSITION 3.7

G.1 INDEPENDENT WEIGHTS

By Theorem 3.2, if independent weights are utilized, we have ⌃`+1(x, x0) = E�(f(x))�(f(x0))

with f ⇠ GP(0,⌃0 + �2
P`

i=1 ⌃
i). Recall that we have

⌦
�(hk(x)),�(hk(x))

↵
/n ! ⌃k(x, x0)

from the proof of Theorem 3.2. Additionally, Lemma E.1 implies
⌦
�(hk(x)),�(hk(x))

↵
/n (1 + �w�)

2kkh0(x)k2/n (1 + �w�)
2k < e�wT ,

where we use Theorem A.3 and � = T/`. Therefore, we have ⌃k = O (1) for each k. Then in the
limit of ` ! 1, we have

⌃0 + �2
X̀

i=1

⌃i = ⌃0 + (T/`)2 · O (`) = ⌃0 + T 2O
�
`�1
�
! ⌃0.

G.2 SHARED WEIGHTS

For any fixed n, we have

h`(x) = g0(x) + �
X̀

i=1

g`(x).

By Lemma E.1, we have

kg`k kh`�1k (1 + �w�)
`�1kh0(x)k.

Let � ! 0, then for any ` L, we have (1 + �w�)Lkh0(x)k ! e�wT kh0(x)k as � = T/L.
Therefore, we obtain

h(x, t) = g(x, 0) + �wT

Z t

0
g(x, s)ds. (71)

Consequently, we obtain

1

n
hh(x, t), h(x, t0)i

=
1

n

*
g(x, 0) + �wT

Z t

0
g(x, s)ds, g(x0, 0) + �wT

Z t0

0
g(x0, s0)ds0

+

=
1

n
hg(x, 0), g(x0, 0)i+ �wT

Z t

0

1

n
hg(x, 0), g(x0, s0)i ds0 + �wT

Z t0

0

1

n
hg(x, s), g(x0, 0)i ds

+ (�wT)
2

Z t

0

Z t0

0

1

n
hg(x, s), g(x0, s0)i dsds0.

Note that as h0(x) = Ux and kUk ⇠
p
n by Theorem A.3, we have kh0(x)k/

p
n ⇠ 1. Hence,

by using similar argument in Moore-Osgood theorem, we obtain in Lemma 3.1 the two limits, i.e.,
depth L and width n, commutes and converges to the double limit. Thus, let n ! 1 on both sides
yields

Cov(u(x, t), u(x0, t0)) = Cov(z(x, 0), z(x0, 0)) + (�wT)
2

Z t

0

Z t0

0
Cov(z(x, s), z(x0, s0))dsds0,

(72)

where we use the fact Cov(z(x, t), z(x, 0)) = 0 for all t > 0.

26

Under review as a conference paper at ICLR 2024

H PROOF OF LEMMA 3.2

Assume the inductive hypothesis is true, i.e., Cov(ui(x), uj(x)) = Cov(ui(x0), uj(x0)) for all x, x0

and i, j `. Then we have for any i, j `

Cov(zi+1(x), zj+1(x)) = E�(ui(x))�(uj(x)) = E�(ui(x0))�(uj(x0)) = Cov(zi+1(x0), zj+1(x0)),

where we use the inductive hypothesis Cov(ui(x), uj(x)) = Cov(ui(x0), uj(x0)). Thus, we obtain

Cov(zi(x), z`+1(x)) = Cov(zi(x0), z`+1(x0)), 8i 2 [1, `+ 1]. (73)

As u`+1 = u` + �z`+1, we can write

Cov(ui(x), u`+1(x)) =Cov(ui(x), u`(x)) + �Cov(ui(x), z`+1(x))

It follows from the inductive hypothesis that Cov(ui(x), u`(x)) = Cov(ui(x0), u`(x0)). We just
need to show the equality in the second term. It is indeed the case as

Cov(ui(x), z`+1(x)) =Cov(z0(x), z`+1(x)) + �
iX

k=1

Cov(zk(x), z`+1(x))

=�
iX

k=1

Cov(zk(x), z`+1(x)),

where we use the fact Cov(z0(x), z`+1(x)) = 0. Then it follows equation equation 73 that we
obtain

Cov(ui(x), u`+1(x)) = Cov(ui(x0), u`+1(x0)), 8i 2 [`]. (74)

Then use the same argument, we can further obtain

Cov(ui(x), uj(x)) = Cov(ui(x0), uj(x0)), 8i 2 [`+ 1]. (75)

For ` = 0, we have u0 = z0 and

Cov(z0(x), z0(x)) = �2
u hx, xi /d = �2

u hx0, x0i /d = Cov(z0(x0), z0(x0)),

where we use the assumption kxk = 1. This proves the basic case. Consequently, the entire proof is
complete.

27

Under review as a conference paper at ICLR 2024

I PROOF OF THEOREM 3.9

By using the explicit form, we have

⌃⇤(x, x0) = E�(u(x, T))�(u(x0, T)), (76)

where

Cov(u(x, T), u(x0, T)) = �2
u hx, x0i /d+ (�wT)

2

Z T

0

Z T

0
Cov(z(x, s), z(x0, s0))dsds0.

WLOG, we can assume we choose �2
u/d = 1. As kxk = 1, we have

Cov(u(x, T), u(x, T)) = 1 + (�wT)
2

Z T

0

Z T

0
Cov(z(x, s), z(x, s0))dsds0 := 1 + c, (77)

where we denote c := (�wT)2
R T
0

R T
0 Cov(z(x, s), z(x, s0))dsds0. Notably, the convergence of

⌃` ensures c is a bounded nonnegative constant. It follows from Lemma 3.2 that for different
x, x0 2 Sd�1, we have

Cov(u(x, T), u(x, T)) = 1 + c = Cov(u(x0, T), u(x0, T)).

Then let us define Gaussian random variables (v(x), v(x0)) as follows

(v(x), v(x0)) ⇠ N
✓
0,

1 ⇢
⇢ 1

�◆
, (78)

where

⇢ =
hx, x0i+ (�wT)2

R T
0

R T
0 Cov(z(x, s), z(x, s0))dsds0

1 + c
. (79)

Therefore, we can rewrite ⌃⇤ as follows

⌃⇤(x, x0) = Eµ(v(x))µ(v(x0)) = µ̂(⇢),

where µ(z) := �(
p
1 + cz) and µ̂ is the dual activation of µ. Since � 2 H, i.e., Hilbert space with

Gaussian measure, we have µ 2 H. Let µ =
P

n anhn be the Hermite expansion, then we can
express the dual activation µ̂ as follows

µ̂(⇢) =
1X

n=0

a2n⇢
n.

Therefore, ⌃⇤ has expression

⌃⇤(x, x0) =
1X

n=0

a2n

hx, x0i+ (�wT)2

R T
0

R T
0 Cov(z(x, s), z(x, s0))dsds0

1 + c

!n

.

Since � is non-polynomial, so is µ, and hence, there is an infinite number of nonzero an’s. By
Theorem D.1, we can conclude that ⌃⇤ is strictly positive definite and complete the proof.

28

Under review as a conference paper at ICLR 2024

J ADDITIONAL EXPERIMENTAL RESULTS

In this section, we demonstrate our theoretical results using numerical experiments. By running
10,000 neural network with 1000 width, the output distribution of the Nerual ODE is compared with
the one the predicted by using the neural Gaussian process theory, i.e. Theorem 3.2 and Theorem
3.6. To verify Theorem 3.9, the smallest eigenvalue of the kernel matrix is computed, both by using
the neural network simulations and by the Gaussian process theory.

We also compare the results for the weight shared and weight unshared case as well as the result
of ResNet and Nerual ODE. These are also done both by using neural network simulations and the
Gaussian process theory (Theorem 3.2 and Theorem 3.6).

J.1 GAUSSIAN BEHAVIOR OF THE NEURAL ODE WITH SHARED WEIGHTS

Convergence of the Euler method. To solve the ODE on the time interval [0, 1], we use the simple
Euler method with time step �, as described by equation 3. To guarantee the convergence of the
Euler method, we plot the solution h1(t) over t 2 [0, 1] by using different � in the top left figure of
Figure 4. As can be seen from the figure, the solution converges to a smooth function almost when
� 0.01 or L � 100. Hence we take � = 0.01 in our simulations below.

Figure 4: Convergence of Euler method.

The Gaussian distribution. Theorem 3.6 predicts that the outputs of Neural ODE f✓ defined by
equation 1, tend to follow a Gaussian process as the width approaches infinity. To demonstrate this,
we take nin = 10 and nout = 10, with activation function ReLU. The weights are initialized using
equation 2 for the shared weight case and the unshared weight case.

We begin by randomly selecting an input x 2 Rnin and analyze the output distributions of 10,000
neural networks. Figure 5 shows that the distribution is Gaussian (the orange curve). A Kol-
mogorov–Smirnov test on this distribution gives a KS statistics 0.006 and p-value 0.8, confirming
the Gaussian distribution. Another important implication of Theorem 3.6 is that the output forms
a independent identical Gaussian distribution. To visualize this, we plot a pairplot in subplot of
Figure 5 illustrating the randomly selected three outputs, confirming the validity of this implication.

The Gaussian kernel computed using simulations and Gaussian process (Theorem 3.2) agree well.
To demonstrate this, we first plot the joint distribution of the outputs for two different inputs for
10,000 neural networks in the center left figure of Figure ??. Notably, the predicted limiting Gaus-
sian level curves, derived from the limiting kernel function stated in Lemma 3.6, perfectly match the
results of the simulations when the width is set to 1000. Moreover, we plot the covariance matrices
of the output of neural networks computed by 10, 000 simulations. The results are illustrated in Fig-
ure 6. Notably, we also include the sample covariance from the input data X and from the ResNet
with independent weights. We can see all covariance matrices have similar pattern as sample co-
variance X . It indicates the dependence in X does not vanish. Additionally, each covariance matrix
has different magnitudes. While Neural ODE and ResNet with shared are similar, ResNet without
shared weights are relatively small. Moreover, Neural ODE computed via dynamic programming
(DP) is relatively larger than the computed by simulation is because DP works on infinite-width.

29

Under review as a conference paper at ICLR 2024

Figure 5: Gaussian Distribution

Figure 6: Covariance matrices

30

Under review as a conference paper at ICLR 2024

Figure 7: Positive-definiteness of the kernel

Figure 8: Neural ODE with unshared weights. From left to right: value of h1(t) simulated using
different �; relative error of the simulated covariance with K0; the smallest eigenvalue of K(t) over
time; the value of K0,0(t) over time.

Positive-definiteness of the kernel. The initial covariance matrix ⌃0 given by equation ?? may be
singular. However, from Theorem 3.9, ⌃(t) is positive definite for any t > 0. Note that one can
apply Theorem 3.9 on any time interval [0, T] for T > 0. We compute covariance matrix of h` for
each ` using the neural network simulations and also by using the Gaussian process theory, and plot
the result in Figure 7. The smallest eigenvalue increases over time and is always positive, validating
our theory. Other analysis and plots about smallest eigenvalues are provided in Section 4.

Width and time step. We study the error between the computed covariance matrix ⌃⇤ using neural
network simulations and our theoretical value that is computed using Theorem 3.2. The results are
provided in Section 4.

J.2 THE GAUSSIAN BEHAVIOR OF THE NEURAL ODE WITH UNSHARED WEIGHTS

For unshared weights, due to Theorem 3.2 (ii), we can get that as � ! 0, �2
PL

i=1 ⌃
i

C�max |�i| ! 0 and so
f ⇠ GP(0,⌃0)

which means that the kernel of the Gaussian process for wide Neural ODEs with unshared wight
remains constant over time. We plot the smallest eigenvalue of the kernel over time as well the value
of K[0, 0] over time in the third and the fourth figure in Figure 8. The error between K⇤(t = 1) and
K0 for different � is plotted in the second figure of 8, confirming the result that the Gaussian kernel
becomes constant over time as � ! 0.

Such a behavior has already been noted in Hayou & Yang (2023). For the weight unshared case, the
output becomes random due to the independently randomly sampled W ` for each layer. Indeed, if
we take � = 1p

L
, the solution h`(t) converges to the stochastic differential equation

dh(t) = �w�(h(t))dWt.

However, with the Neural ODE scaling � = 1/L, the solution converges to

dh(t) =
1p
L
�w�(h(t))dWt ! 0.

31

Under review as a conference paper at ICLR 2024

Figure 9: Simulation results of ResNets. From left to right: the value of h`
1 over depth ` with

shared weight; the value of h`
1 over depth ` with unshared weight; pairplot of three output over

10,000 neural networks with shared weight;pairplot of three output over 10,000 neural networks
with unshared weight.

We plot the solution of the h(t) of the Neural ODE with unshared weight in leftmost figure in Figure
8 for different �. As can be seen from the figure, the trajectory of h(t) is stochastic and as � ! 0,
the fluctuation of the h(t) is significantly reduced and the Neural ODE becomes a Gaussian process
with constant kernel over time.

J.3 COMPARISON BETWEEN INFINITE DEPTH RESNET AND NEURAL ODE

Neural ODE can be viewed as a special case of ResNet with scaling � = 1/L. Theorem 3.2
shows that large width finite depth ResNet is a Gaussian process, both for weight shared and weight
unshared case, for any choice of �. Here we compared the ResNet with � = 1 and the Neural ODE.

We plot the value of the first neuron h`
1 over ` = 1 ⇠ 1000 for � = 1 for the weight share and

unshare case in the left two figures of Figure 9. The magnitude of h`
1 both becomes very large at

depth L = 100. Compared the top left figure of Figure ?? and the left figure of Figure 8, we can see
that the ODE scaling help control the magnitude of the output. Compared the weight share case to
the weight unshare case, the shared weight leads to a bigger growth of the fL (or f (t = 1) in Neural
ODE), both in ResNets and Neural ODEs. As L ! 1, the kernel KL can become singular in the
ResNet, as shown in the third figure of Figure 9.

J.4 GAUSSIAN PROCESSING REGRESSION VS. NEURAL NETWORK TRAINING

As Neural ODE is a Gaussian process, we can use the resulting Gaussian process to performe
Bayesian inference for wide deep neural networks on MNIST. We found the Nerual ODE Gaus-
sian Process can perform as well as the width neural networks.

32

Under review as a conference paper at ICLR 2024

K EFFICIENT COMPUTATION OF THE GP KERNEL

In order to efficiently compute the kernel of the Gaussian process, we follow the approach described
in Lee et al. (2018). However, due to the correlation across layers, we need to slightly modify
their approach. Instead of computing equation ?? directly, we compute the kernel for each pair of
datapoints using numerical integration. For a pair of input x, x0, equation ?? can be written as

K`,k(x, x0) = K`�1,k(x, x0)+�2
w�

2Pk�1
i=0 V�(K`�1,`�1(x, x),K`�1,i(x, x0),Ki,i(x0, x0)), 8k ` L.

To compute V�, we populate a matrix F containing a lookup table for V�. We first construct a
uniform spacing grid with u = [�umax, · · · , umax] 2 Rnu ,�x = [0, · · · ,�max] 2 Rn� ,�y =
[0, · · · ,�max] 2 Rn� and correlation c = [�1, · · · , 1] 2 Rnc with nu, n�, nc be the number of grid
points. The lookup table is generated by computing

Fi,j,k =

P
ab �(u

a)�(ub) exp

0

@� 1
2

ua

ub

�T
2

4
�i
x cj

q
�i
x�

k
y

cj
q
�i
x�

k
y �k

y

3

5

ua

ub

�1

A

P
ab exp

0

@� 1
2

ua

ub

�T
2

4
�i
x cj

q
�i
x�

k
y

cj
q
�i
x�

k
y �k

y

3

5

ua

ub

�1

A

.

Thus we can approximate the function V�(K`�1,`�1(x, x),K`�1,i(x, x0),Ki,i(x0, x0)) by tri-
linear interpolation into the matrix Fi,j,k, where we interpolate into �x and �y using
the value of K`�1,`�1(x, x) and Ki,i(x0, x0) and interpolate into c using the value of
Kl�1,i(x, x0)/

p
Kl�1,l�1(x, x) ·Ki,i(x0, x0). Indeed, we need to first take the same input in

K`,k(x, x) and K`,k(x0, x0) and follows the algorithm 1 to compute the kernel for all 1 `, k L
since these values are needed when computing K`,k(x, x0). Then we follow algorithm 1 with dif-
ferent input to compute K`,k(x, x0) for all 1 `, k L iteratively.

33

