© ® N O g A W N =

Borda Regret Minimization for Generalized Linear
Dueling Bandits

Anonymous Author(s)
Affiliation
Address

email

Abstract

Dueling bandits are widely used to model preferential feedback prevalent in many
applications such as recommendation systems and ranking. In this paper, we study
the Borda regret minimization problem for dueling bandits, which aims to identify
the item with the highest Borda score while minimizing the cumulative regret. We
propose a rich class of generalized linear dueling bandit models, which cover many
existing models. We first prove a regret lower bound of order Q(d?/3T%/3) for the
Borda regret minimization problem, where d is the dimension of contextual vectors
and T is the time horizon. To attain this lower bound, we propose an explore-
then-commit type algorithm for the stochastic setting, which has a nearly matching

regret upper bound O(d2/3T2/3). We also propose an EXP3-type algorithm for the
adversarial setting, where the underlying model parameter can change at each round.

Our algorithm achieves an O(d2/3T2/3) regret, which is also optimal. Empirical
evaluations on both synthetic data and a simulated real-world environment are
conducted to corroborate our theoretical analysis.

1 Introduction

Multi-armed bandits (MAB) (Lattimore and Szepesvari, [2020) is an interactive game where at each
round, an agent chooses an arm to pull and receives a noisy reward as feedback. In contrast to numer-
ical feedback considered in classic MAB settings, preferential feedback is more natural in various
online learning tasks including information retrieval [Yue and Joachims| (2009), recommendation
systems |Sui and Burdick|(2014)), ranking Minka et al.| (2018]), crowdsourcing (Chen et al.| (2013)), etc.
Moreover, numerical feedback is also more difficult to gauge and prone to errors in many real-world
applications. For example, when provided with items to shop or movies to watch, it is more natural
for a customer to pick a preferred one than scoring the options. This motivates Dueling Bandits
(Yue and Joachims) 2009)), where the agent repeatedly pulls two arms at a time and is provided with
feedback being the binary outcome of “duels” between the two arms.

In dueling bandits problems, the outcome of duels is commonly modeled as Bernoulli random vari-
ables due to their binary nature. At each round, suppose the agent chooses to compare arm ¢ and j, then
the binary feedback is assumed to be sampled independently from a Bernoulli distribution. For a duel-
ing bandits instance with K arms, the probabilistic model of the instance can be fully characterized by
a K x K preference probability matrix with each entry being: p; ; = IP (arm 4 is chosen over arm j) .

In a broader range of applications such as ranking, “arms” are often referred to as “items”. We will
use these two terms interchangeably in the rest of this paper. One central goal of dueling bandits
is to devise a strategy to identify the “optimal” item as quickly as possible, measured by either
sample complexity or cumulative regret. However, the notion of optimality for dueling bandits is way
harder to define than for multi-armed bandits. The latter can simply define the arm with the highest
numerical feedback as the optimal arm, while for dueling bandits there is no obvious definition solely
dependent on {p; ;|i,j € [K]}.
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The first few works on dueling bandits imposed strong assumptions on p; ;. For example, |Yue et al.
(2012)) assumed that there exists a true ranking that is coherent among all items, and the preference
probabilities must satisfy both strong stochastic transitivity (SST) and stochastic triangle inequality
(STI). While relaxations like weak stochastic transitivity (Falahatgar et al.,2018)) or relaxed stochastic
transitivity (Yue and Joachims, |2011) exist, they typically still assume the true ranking exists and the
preference probabilities are consistent, i.e., p; j > % if and only if 4 is ranked higher than j. In reality,
the existence of such coherent ranking aligned with item preferences is rarely the case. For example,
p;,; may be interpreted as the probability of one basketball team 7 beating another team j, and there
can be a circle among the match advantage relations.

In this paper, we do not assume such coherent ranking exists and solely rely on the Borda score
based on preference probabilities. The Borda score B(i) of an item ¢ is the probability that it is
preferred when compared with another random item, namely B(i) := 5 > ;i Pij- The item with
the highest Borda score is called the Borda winner. The Borda winner is intuitively appealing and
always well-defined for any set of preferential probabilities. The Borda score also does not require
the problem instance to obey any consistency or transitivity, and it is considered one of the most
general criteria.

To identify the Borda winner, estimations of the Borda scores are needed. Since estimating the Borda
score for one item requires comparing it with every other items, the sample complexity is prohibitively
high when there are numerous items. On the other hand, in many real-world applications, the agent
has access to side information that can assist the evaluation of p; ;. For instance, an e-commerce item
carries its category as well as many other attributes, and the user might have a preference for a certain
category (Wang et al.,|2018). For a movie, the genre and the plot as well as the directors and actors
can also be taken into consideration when making choices (Liu et al.,|[2017).

Based on the above motivation, we consider Generalized Linear Dueling Bandits. At each round, the
agent selects two items from a finite set of items and receives a comparison result of the preferred
item. The comparisons depend on known intrinsic contexts/features associated with each pair of
items. The contexts can be obtained from upstream tasks, such as topic modeling (Zhu et al., 2012) or
embedding (Vasile et al., 2016). Our goal is to adaptively select items and minimize the regret with
respect to the optimal item (i.e., Borda winner). Our main contributions are summarized as follows:

* We show a hardness result regarding the Borda regret minimization for the (generalized) linear
model. We prove a worst-case regret lower bound Q(d?/3T72/3) for our dueling bandit model,
showing that even in the stochastic setting, minimizing the Borda regret is difficult. The construc-
tion and proof of the lower bound are new and might be of independent interest.

* We propose an explore-then-commit type algorithm under the stochastic setting, which can achieve
a nearly matching upper bound O(d?/3T%/3). When the number of items K is small, the algorithm

can also be configured to achieve a smaller regret O ((dlog K)'/37%/3).

* We propose an EXP3 type algorithm for linear dueling bandits under the adversarial setting, which
can achieve a nearly matching upper bound O ((dlog K)'/37%/3).

* We conduct empirical studies to verify the correctness of our theoretical claims. Under both
synthetic and real-world data settings, our algorithms can outperform all the baselines in terms of
cumulative regret.

Notation In this paper, we use normal letters to denote scalars, lowercase bold letters to denote
vectors, and uppercase bold letters to denote matrices. For a vector x, ||x|| denotes its ¢o-norm. The
weighted £5-norm associated with a positive-definite matrix A is defined as ||x||a = VxT Ax. The
minimum eigenvalue of a matrix A is written as Apin(A). We use standard asymptotic notations
including O(-), Q(-), ©(-), and O(-), Q(-), ©(-) will hide logarithmic factors. For a positive integer
N, [N]:=1{1,2,...,N}.

2 Related Work

Multi-armed and Contextual Bandits Multi-armed bandit is a problem of identifying the best
choice in a sequential decision-making system. It has been studied in numerous ways with a wide
range of applications (Even-Dar et al.,[2002; |Lai et al.| |1985] |Kuleshov and Precup, 2014). Contextual
linear bandit is a special type of bandit problem where the agent is provided with side information, i.e.,
contexts, and rewards are assumed to have a linear structure. Various algorithms (Rusmevichientong
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and Tsitsiklis, [ 2010; Filippi et al., [2010; Abbasi-Yadkori et al., 2011 Li et al., | 2017; Jun et al.,[2017)
have been proposed to utilize this contextual information.

Dueling Bandits and Its Performance Metrics Dueling bandits is a variant of MAB with preferential
feedback (Yue et al.,|2012;Zoghi et al.;20144a,2015). A comprehensive survey can be found at Bengs
et al.| (2021). As discussed previously, the probabilistic structure of a dueling bandits problem is
governed by the preference probabilities, over which an optimal item needs to be defined. Optimality
under the Borda score criteria has been adopted by several previous works (Jamieson et al., 2015}
Falahatgar et al.| 2017a);|[Heckel et al.| 2018};|Saha et al.,[2021a). The most relevant work to ours is
Saha et al.[(2021a), where they studied the problem of regret minimization for adversarial dueling
bandits and proved a T-round Borda regret upper bound O(K'/3T2/3). They also provide an
Q(K'/3T2/3) lower bound for stationary dueling bandits using Borda regret.

Apart from the Borda score, Copeland score is also a widely used criteria (Urvoy et al.| 2013}
Zoghi et al., 2015} 2014b; [Wu and Liu, |2016; Komiyama et al., 2016). It is defined as C'(i) :=
%1 2 j»i 1{pij > 1/2}. A Copeland winner is the item that beats the most number of other items.
It can be viewed as a “thresholded” version of Borda winner. In addition to Borda and Copeland
winners, optimality notions such as a von Neumann winner were also studied in Ramamohan et al.
(2016)); Dudik et al.| (2015); Balsubramani et al.| (2016).

Another line of work focuses on identifying the optimal item or the total ranking, assuming the
preference probabilities are consistent. Common consistency conditions include Strong Stochastic
Transitivity (Yue et al., [2012; [Falahatgar et al., 2017ab), Weak Stochastic Transitivity (Falahatgar
et al., 2018; Ren et al., 2019;|Wu et al.,[2022; [Lou et al.,|2022), Relaxed Stochastic Transitivity (Yue
and Joachims}|2011)) and Stochastic Triangle Inequality. Sometimes the aforementioned transitivity
can also be implied by some structured models like the Bradley—Terry model. We emphasize that
these consistency conditions are not assumed or implicitly implied in our setting.

Contextual Dueling Bandits In Dudik et al.[|(2015)), contextual information is incorporated in the
dueling bandits framework. Later, Sahal (2021) studied a structured contextual dueling bandits setting
where each item ¢ has its own contextual vector x; (sometimes called Linear Stochastic Transitivity).
Each item then has an intrinsic score v; equal to the linear product of an unknown parameter vector
6* and its contextual vector x;. The preference probability between two items ¢ and j is assumed to
be p (v; — v;) where p(+) is the logistic function. These intrinsic scores of items naturally define a
ranking over items. The regret is also computed as the gap between the scores of pulled items and the
best item. While in this paper, we assume that the contextual vectors are associated with item pairs
and define regret on the Borda score. In Section[A.T] we provide a more detailed discussion showing
that the setting considered in|Sahal (2021)) can be viewed as a special case of our model.

3 Backgrounds and Preliminaries

3.1 Problem Setting

We first consider the stochastic preferential feedback model with K items in the fixed time horizon
setting. We denote the item set by [K] and let T be the total number of rounds. At each round ¢, the
agent can pick any pair of items (i, j;) to compare and receive stochastic feedback about whether
item 4, is preferred over item j;, (denoted by 7; > j;). We denote the probability of seeing the event
i > jasp,;; €[0,1]. Naturally, we assume p; ; + p;; = 1, and p; ; = 1/2.

In this paper, we are concerned with the generalized linear model (GLM), where there is assumed
to exist an unknown parameter * € R?, and each pair of items (4, ) has its own known contex-
tual/feature vector ¢; ; € R? with ||¢; ;|| < 1. There is also a fixed known link function (sometimes
called comparison function) p(-) that is monotonically increasing and satisfies p(z) + pu(—z) = 1,
e.g. a linear function or the logistic function p(x) = 1/(1 + e~*). The preference probability is
defined as p; ; = u(qsze*). At each round, denote r; = 1{i; > j;}, then we have

]E[Tt|it7jt] = DPis,je — M(¢Z,jt6*)~
Then our model can also be written as

re = p( Z7jt0*) + €4,
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where the noises {¢; } ;|7 are zero-mean, 1-sub-Gaussian and assumed independent from each other.
Note that, given the constraint p; ;+p;; = 1, itis implied that ¢; ; = —¢; ; forany i € [K],j € [K].

The agent’s goal is to maximize the cumulative Borda score. The (slightly modiﬁed[ﬂ) Borda score of
item ¢ is defined as B(i) = + Zfil pi,j» and the Borda winner is defined as i* = argmax;¢ x| B(i).
The problem of merely identifying the Borda winner was deemed trivial (Zoghi et al., 2014a;
Busa-Fekete et al.l 2018) because for a fixed item ¢, uniformly random sampling j and receiving
feedback r; ; = Bernoulli(p; ;) yield a Bernoulli random variable with its expectation being the
Borda score B(i). This so-called Borda reduction trick makes identifying the Borda winner as
easy as the best-arm identification for K-armed bandits. Moreover, if the regret is defined as
Regret(T) = Zthl (B(#*) — B(it)), then any optimal algorithms for multi-arm bandits can achieve
O(VT) regret.

However, the above definition of regret does not respect the fact that a pair of items are selected at
each round. When the agent chooses two items to compare, it is natural to define the regret so that
both items contribute equally. A commonly used regret, e.g., in|Saha et al.|(2021a), has the following
form:

T
Regret(T) = ) _ (2B(i") — B(ir) — B(31)), (M

t=1

where the regret is defined as the sum of the sub-optimality of both selected arms. Sub-optimality is
measured by the gap between the Borda scores of the compared items and the Borda winner. This
form of regret deems any classical multi-arm bandit algorithm with Borda reduction vacuous because
taking j; into consideration will invoke ©(T') regret.

Adversarial Setting |Saha et al.|(2021b) considered an adversarial setting for the multi-armed case,
where at each round ¢, the comparison follows a potentially different probability model, denoted by
{pﬁ’ j}i,je[ k1~ In this paper, we consider its contextual counterpart. Formally, we assume there is an

underlying parameter €}, and at round ¢, the preference probability is defined as pﬁ’ i= u( L 0;).
The Borda score of item i € [K] at round ¢t is defined as By (i) = & Jl.il P ;» and the Borda

winner at round 7" is defined as i* = argmax; ¢ g Zthl By (7). The T-round regret is thus defined
as Regret(T) = Z;‘FZI (2B.(i*) — By(ir) — B (jt))-

3.2 Assumptions

In this section, we present the assumptions required for establishing theoretical guarantees. Due to
the fact that the analysis technique is largely extracted from|Li et al.|(2017), we follow them to make
assumptions to enable regret minimization for generalized linear dueling bandits.

We make a regularity assumption about the distribution of the contextual vectors:

> Ao

Assumption 1. There exists a constant Ag > 0 such that Amin (727 >1e ZJK: L Pi )

This assumption is only utilized to initialize the design matrix V. = >",_; ¢, j, Z j, 80 that the

minimum eigenvalue is large enough. We follow|Li et al.|(2017) to deem A as a constant.

We also need the following assumption regarding the link function p(-):

Assumption 2. Let /i be the first-order derivative of 1. We have r := inf || <1,6—0+| <1 a(x"6) >
0.

Assuming x > 0 is necessary to ensure the maximum log-likelihood estimator can converge to the
true parameter 6 (Li et al.| 2017, Section 3). This type of assumption is commonly made in previous
works for generalized linear models (Filippi et al.,2010; [Li et al., | 2017; |[Faury et al., 2020).

Another common assumption is regarding the continuity and smoothness of the link function.

"Previous works define Borda score as B, = ﬁ > i Pi,j» excluding the diagonal term p;,; = 1 /2. Our

definition is equivalent since the difference between two items satisfies B(i) — B; = £=1(B] — Bj). Therefore,

the regret will be in the same order for both definitions.
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Assumption 3. y is twice differentiable. Its first and second-order derivatives are upper-bounded by
constants L,, and M, respectively.

This is a very mild assumption. For example, it is easy to verify that the logistic link function satisfies
Assumption [B|with L,, = M,, = 1/4.

4 The Hardness Result

L ]
2772 e
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ool AT BT bit(0),0) 2 + (bit(0), 0) 33 (bit(0), 6)
ood CoTe ii, )i ’ NS il
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Figure 1: Illustration of the hard-to-learn preference probability matrix {pg j }Yiek),je[k]- There are

K = 291 items in total. The first 2¢ items are “good” items with higher Borda scores, and the
last 2¢ items are “bad” items. The upper right block {pi,j}ic2a j>24 is defined as shown in the blue
bubble. The lower left block satisfies p; ; = 1 — p; ;. For any 0, there exist one and only best item ¢
such that bit(¢) = sign(6).

This section presents Theorem ] a worst-case regret lower bound for the stochastic linear dueling
bandits. The proof of Theorem {|relies on a class of hard instances, as shown in Figure[T} We show
that any algorithm will incur a certain amount of regret when applied to this hard instance class. The
constructed hard instances follow a stochastic linear model, which is a sub-class of the generalized
linear model. [Saha et al.| (2021b) first proposed a similar construction for finite many arms with no
contexts. Our construction is for a contextual setting and the proof of the lower bound takes a rather
different route.

For any d > 0, we construct the class of hard instances as follows. An instance is specified by a vector
0 € {—A, +A}. The instance contains 2¢*! items (indexed from 0 to 241 — 1). The preference
probability for an instance is defined by pg j as:

,ifi <245 <2%orifi > 29,5 > 24
,ifi <2 5> 24 + (9i5,0),
cifi>24,5 <24

0 _
bi; =

INPENTRN T

and the d-dimensional feature vectors ¢; ; are given by
0,ifi <2% j<2orifi>2¢ ;> 2¢
¢i; = < bit(q), if i < 24,5 > 24
—bit(5), ifi > 24,5 < 29,
where bit(-) is the (shifted) bit representation of non-negative integers, i.e., suppose x has the binary
representation z = by x 2° 4+ by x 21 4 -+ 4+ bg_1 x 2971 then
bit(l’) = (2b0 — 1,2b1 — 17 .. .,2bd,1 — 1) =2b—1.

Note that bit(-) € {—1,+1}%, and that ¢; ; = —¢; ; is satisfied. The definition of p? ; can be slightly
tweaked to fit exactly the model described in Section 3] (see Remark[TT]in Appendix).

Some calculation shows that the Borda scores of the 2911 items are:

5 1 . . ep - d
Be(l) _ § + §<blt(2), 0>, ifi <2 ,
g, if i > 2%
Intuitively, the former half of items (those indexed from 0 to 29 — 1) are “good” items (one among
them is optimal, others are nearly optimal), while the latter half of items are “bad” items. Under
such hard instances, every time one of the two pulled items is a “bad” item, then a one-step regret
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BO(i*) — B?(i) > 1/4is incurred. To minimize regret, we should thus try to avoid pulling *“bad”
items. However, in order to identify the best item among all “good” items, comparisons between
“good” and “bad” items are necessary. The reason is simply that comparisons between “good” items
give no information about the Borda scores as the comparison probabilities are pg ;= % for all

i,j < 2. Hence, any algorithm that can decently distinguish among the “good” items has to pull
“bad” ones for a fair amount of times, and large regret is thus incurred. A similar observation is also
made by Saha et al.|(2021al).

This specific construction emphasizes the intrinsic hardness of Borda regret minimization: to dif-
ferentiate the best item from its close competitors, the algorithm must query the bad items to gain
information.

Formally, this class of hard instances leads to the following regret lower bound for both stochastic
and adversarial settings:

Theorem 4. For any algorithm A, there exists a hard instance {pg ;} with T > 4d?, such that A will
incur expected regret at least Q(d?/3T%/3).

The construction of this hard instance for linear dueling bandits is inspired by the worst-case lower
bound for the stochastic linear bandit (Dani et al., [2008)), which has the order Q(d\/T), while ours is
Q(d?/3T2/3). The difference is that for the linear or multi-armed stochastic bandit, eliminating bad
arms can make further exploration less expensive. But in our case, any amount of exploration will
not reduce the cost of further exploration. This essentially means that exploration and exploitation
must be separate, which is also supported by the fact that a simple explore-then-commit algorithm
shown in Section [5|can be nearly optimal.

5 Stochastic Contextual Dueling Bandit

5.1 Algorithm Description

Algorithm 1 BETC-GLM

1: Input: time horizon 7', number of items K, feature dimension d, feature vectors ¢; ; fori € K],
J € [K], exploration rounds 7, error tolerance e, failure probability 4.

2: fort=1,2,...,7do

3: sample i; ~ Uniform([K]), j; ~ Uniform([K])
4:  query pair (i, j;) and receive feedback r;

5: end for
6
7
8

: Find the G-optimal design 7 (¢, j) based on ¢, ; fori € [K], j € [K]
: Let N(i,7) = {%—‘ for any (4, j) € supp(r), denote N = Zfil Z]K:1 N(i,j)
: fori € [K],j € [K],s € [N(i,j)] do
9:  sett <+ t+1,set (i, j) = (4,7)
10:  query pair (i, j;) and receive feedback r,
11: end for =R
12: Calculate the empirical MLE estimator 6, based on all 7 + N samples via (2)
13: Estimate the Borda score for each item:

Z (o] ]97-+N i = argmax B(i)
j=1 1€[K]

14: Keep querying (4, 7) for the rest of the time.

We propose an algorithm named Borda Explore-Then-Commit for Generalized Linear Models
(BETC-GLM), presented in Algorithm[I] Our algorithm is inspired by the algorithm for generalized
linear models proposed by |Li et al.| (2017).

At the high level, Algorithm [T]can be divided into two phases: the exploration phase (Line E]-@
and the exploitation phase (Line . The exploration phase ensures that the MLE estimator (7]
is accurate enough so that the estimated Borda score is within O(e)-range of the true Borda score



233
234

236
237

238

240

241
242

243
244

245
246

247

248
249

251

252
253

254

255

257
258
259

260

261
262
263
264
265
266

267
268

(ignoring other quantities). Then the exploitation phase simply chooses the empirical Borda winner
to incur small regret.

During the exploration phase, the algorithm first performs “pure exploration” (Line 2}[5)), which can
be seen as an initialization step for the algorithm. The purpose of this step is to ensure the design
matrix Vo = Y275 ¢, 5,07 . is positive definite.

After that, the algorithm will perform the “designed exploration”. Line [6| will find the G-optimal
design, which minimizes the objective function g(7) = max;; ||@i ;|5 ()-1, Where V(7) :=
D 7r(i7j)¢)i7jd)zj. The G-optimal design 7*(-) satisfies ||@; ; ||%f(7r*)_1 < d, and can be efficiently

approximated by the Frank-Wolfe algorithm (See Remark [§] for a detailed discussion). Then the
algorithm will follow 7 (-) found at Line[6]to determine how many samples (Line[7) are needed. At

Line , there are in total N = Zfil Zf:l N (i, j) samples queried, and the algorithm shall index
thembyt=7+1,7+2,..., 7+ N.

At Line [12] the algorithm collects all the 7 + N samples and performs the maximum likelihood
estimation (MLE). For the generalized linear model, the MLE estimator 0., y satisfies:

T+N . T+N
Z 1] ,0:1N)bi, 5, = Z Tt @i, jos (2
=1 =1

or equivalently, it can be determined by solving a strongly concave optimization problem:

T+N

§T+N € argmax Z (Tt¢717jt0 - m(qSI’th)),
)

t=1

where m(-) = p(-). For the logistic link function, m(z) = log(1 + e®). As a special case of
our generalized linear model, the linear model has a closed-form solution for @]) For example, if
p(x) = 5+ ie pij =5+ ¢; ;0% then () becomes:

T+N
0, n= V;iN (Tt - 1/2)¢itajt7

t=1

_ TN T
where V. n =) .1 &, 4, it s

After the MLE estimator is obtained, Line|13|will calculate the estimated Borda score E(z) for each
item based on 0., v, and pick the empirically best one.

5.2 A Matching Regret Upper Bound

Algorithm[T|can be configured to tightly match the worst-case lower bound. The configuration and
performance are described as follows:

Theorem 5. Suppose Assumption hold and T = Q(d?). For any § > 0, if we set 7 =
Ciy)g2(d +1og(1/68)) (Cy is a universal constant) and € = d'/ST~1/3, then with probability at least
1 — 24, Algorithm [I|will incur regret bounded by:

Ok 1d** T2 1og (T/ds) ).
By setting § = T'~!, the expected regret is bounded as 5(5*1d2/3T2/3).

For linear bandit models, such as the hard-to-learn instances in Section 4} x is a universal constant.
Therefore, Theorem [5]tightly matches the lower bound in Theorem ] up to logarithmic factors.

Remark 6 (Regret for Fewer Arms). In typical scenarios, the number of items K is not exponentially
large in the dimension d. In this case, we can choose a different parameter set of 7 and € such that
Algorithm [1{can achieve a smaller regret bound O (k' (dlog K)/3T?%/ 3) with smaller dependence
on the dimension d. See Theorem [I0]in Appendix

Remark 7 (Regret for Infinitely Many Arms). In most practical scenarios of dueling bandits, it is
adequate to consider a finite number K of items (e.g., ranking items). Nonetheless, BETC-GLM
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can be easily adapted to accommodate infinitely many arms in terms of regret. We can construct a
covering over all ¢; ; and perform optimal design and exploration on the covering set. The resulting

regret will be the same as our upper bound, i.e., O(d2/3T2/3) up to some error caused by the epsilon
net argument.

Remark 8 (Approximate G-optimal Design). Algorithm|I]assumes an exact G-optimal design 7 is
obtained. In the experiments, we use the Frank-Wolfe algorithm to solve the constraint optimization
problem (See Algorithm [5] Appendix [G.3). To find a policy 7 such that g(m) < (1 + €)g(7*),
roughly O(d/e) optimization steps are needed. Such a near-optimal design will introduce a factor of
(1+¢)'/3 into the upper bounds.

6 Adversarial Contextual Dueling Bandit

This section addresses Borda regret minimization under the adversarial setting. As we introduced in
Section the unknown parameter 6, can vary for each round ¢, while the contextual vectors ¢; ;
are fixed.

Our proposed algorithm, BEXP3, is designed for the contextual linear model. Formally, at round ¢
and given pair (i, j), we have p} ; = 3 + (¢ 5, 07 ).

6.1 Algorithm Description

Algorithm 2 BEXP3

1: Input: time horizon T', number of items K, feature dimension d, feature vectors ¢; ; for ¢ € K],
Jj € [K], learning rate 7, exploration parameter ~.
2: Initialize: ¢ (i) = +.
3: fort=1,...,7do
4:  Sample items i; ~ qt, jt ~ Gi.
: Query pair (i, j;) and receive feedback r;

5:
6:  Caleulate Q; = > c s 2 je i) 4 (et (1) bi b5 0: = Q' i, gt
7
8

Calculate the (shifted) Borda score estimates By (i) = (% > jerr] Pi §t>
Update for all i € [K], set

exp(n )y Bii)
> jerk) €Xp( i Bi()

==

Ge+1(1) = qe41(3) = (1 = 7)q@+1(2) +

9: end for

Algorithm E] is adapted from the DEXP3 algorithm in [Saha et al.[| (2021b), which deals with the
adversarial multi-armed dueling bandit. Algorithm[2maintains a distribution g, (-) over [K], initialized
as uniform distribution (Line[2)). At every round ¢, two items are chosen following ¢, independently.
Then Line EI calculates the one-sample unbiased estimate é\t of the true underlying parameter 6; .
Line[7|further calculates the unbiased estimate of the (shifted) Borda score. Note that the true Borda
score at round ¢ satisfies B;(i) = 2 + (& > jerr) P 07)- B, instead only estimates the second
term of the Borda score. This is a choice to simplify the proof. The cumulative estimated score

Zf: 1 B () can be seen as the estimated cumulative reward of item ¢ at round ¢. In Line Qt+1 18
defined by the classic exponential weight update, along with a uniform exploration policy controlled

by 7.

6.2 Upper Bounds

Algorithm 2] can also be configured to tightly match the worst-case lower bound:
Theorem 9. Suppose Assumption 1| holds. If we set = (log K)?/3d=/3T=2/3 and v =
Vnd/ o = (log K)1/3d1/3T_1/3)\61/2, then the expected regret is upper-bounded by

O((dlog K)'/*12/%).

Note that the lower bound construction is for the linear model and has K = O(2), thus exactly
matching the upper bound.
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7 Experiments

This section compares the proposed algorithm 1t 10!

BETC-GLM with existing ones that are capable o BT BB

of minimizing Borda regret. We use random re- — ETCEodh 407 — ercaon /
2.0 1 — BETC-GLM 2.5 4 — BETC-GLM

sponses (generated from fixed preferential matri- —— BETC.GLMMatch
ces) to interact with all tested algorithms. Each

algorithm is run for 50 times over a time hori-

—— BETC-GLM-Match

1.5 1 — BEXP3 207 — BEXP3

2
2.
1
1

Regret(T)
Regret(T)

zon of T = 105. We report both the mean and 051 05

the standard deviation of the cumulative Borda e e e B B B e e
¥.egret and Supply some analysis' The follow_ 0 25000 3()_(;()0 75000 100000 0 25000 ’\U_[I{(JU 75000 100000
ing list summarizes all methods we studies in (a) Generated Hard Case (b) EventTime

this section, a more complete description of the
methods and parameters are available in Ap- Figure 2: The regret of the proposed algorithms
pendix[Ef BETC-GLM(-MATCH): Algorithm[T] (BETC-GLM, BEXP3) and the baseline algo-
proposed in this paper with different parameters. rithms (UCB-BORDA, DEXP3, ETC-BORDA).
UCB-BORDA: The UCB algorithm (Auer et al.}

2002) using Borda reduction. DEXP3: Dueling-Exp3 developed by [Saha et al| (2021a). ETC-
BORDA: A simple explore-then-commit algorithm that does not take any contextual information into
account. BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm [2]

Generated Hard Case We first test the algorithms on the hard instances constructed in Section ]
We generate 8* randomly from {—A, +A}? with A = ﬁ so that the comparison probabilities

p?;- € [0,1] for all 4, j € [K]. We pick the dimension d = 6 and the number of arms is therefore

K = 29+1 = 128. Note the dual usage of d in our construction and the model setup in Section
We refer readers to Remark [TT)in Appendix [B]for more details.

As depicted in Figure[2a] the proposed algorithms (BETC-GLM, BEXP3) outperform the baseline
algorithms in terms of cumulative regret when reaching the end of time horizon 7. For UCB-BORDA,
since it is not tailored for the dueling regret definition, it suffers from a linear regret as its second
arm is always sampled uniformly at random, leading to a constant regret per round. DEXP3 and
ETC-BORDA are two algorithms designed for K -armed dueling bandits. Both are unable to utilize
contextual information and thus demand more exploration. As expected, their regrets are higher than
BETC-GLM or BEXP3.

Real-world Dataset To showcase the performance of the algorithms in a real-world setting, we use
EventTime dataset (Zhang et al., 2016)). In this dataset, X' = 100 historical events are compared in a
pairwise fashion by crowd-sourced workers. We first calculate the empirical preference probabilities
D;,; from the collected responses, and construct a generalized linear model based on the empirical
preference probabilities. The algorithms are tested under this generalized linear model. Due to space
limitations, more details are deferred to Appendix [F

As depicted in Figure [2b] the proposed algorithm BETC-GLM outperforms the baseline algorithms
in terms of cumulative regret when reaching the end of time horizon 7'. The other proposed algorithm
BEXP3 performs equally well even when misspecified (the algorithm is designed for linear setting,
while the comparison probability follows a logistic model).

8 Conclusion and Future Work

In this paper, we introduced Borda regret into the generalized linear dueling bandits setting, along
with an explore-then-commit type algorithm BETC-GLM and an EXP3 type algorithm BEXP3. The
algorithms can achieve a nearly optimal regret upper bound, which we corroborate with a matching
lower bound. The theoretical performance of the algorithms is verified empirically. It demonstrates
superior performance compared to other baseline methods.

For future works, due to the fact that our exploration scheme guarantees an accurate estimate in all
directions, our work can be extended to solve the top-k recovery or ranking problem, as long as a
proper notion of regret can be identified.



349

350
351

352
353

354
355

356
357
358

359
360

361
362
363

364
365

366
367

368
369

370
371
372

373
374
375

376
377

378
379

380
381

382
383
384

385
386

387
388

389
390
391

392
393

References

ABBASI-YADKORI, Y., PAL, D. and SZEPESVARI, C. (2011). Improved algorithms for linear
stochastic bandits. In NIPS.

AUER, P., CESA-BIANCHI, N. and FISCHER, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47 235-256.

BALSUBRAMANI, A., KARNIN, Z., SCHAPIRE, R. E. and ZOGHI, M. (2016). Instance-dependent
regret bounds for dueling bandits. In Conference on Learning Theory. PMLR.

BENGS, V., BUSA-FEKETE, R., EL MESAOUDI-PAUL, A. and HULLERMEIER, E. (2021).
Preference-based online learning with dueling bandits: A survey. Journal of Machine Learn-
ing Research 22 7-1.

BUSA-FEKETE, R., HULLERMEIER, E. and MESAOUDI-PAUL, A. E. (2018). Preference-based
online learning with dueling bandits: A survey. ArXiv abs/1807.11398.

CHEN, X., BENNETT, P. N., COLLINS-THOMPSON, K. and HORVITZ, E. (2013). Pairwise ranking
aggregation in a crowdsourced setting. In Proceedings of the sixth ACM international conference
on Web search and data mining.

DANI, V., HAYES, T. P. and KAKADE, S. M. (2008). Stochastic linear optimization under bandit
feedback. In Annual Conference Computational Learning Theory.

DUDIK, M., HOFMANN, K., SCHAPIRE, R. E., SLIVKINS, A. and ZOGHI, M. (2015). Contextual
dueling bandits. ArXiv abs/1502.06362.

EVEN-DAR, E., MANNOR, S. and MANSOUR, Y. (2002). Pac bounds for multi-armed bandit and
markov decision processes. In Annual Conference Computational Learning Theory.

FALAHATGAR, M., HAO, Y., ORLITSKY, A., PICHAPATI, V. and RAVINDRAKUMAR, V. (2017a).

Maxing and ranking with few assumptions. Advances in Neural Information Processing Systems
30.

FALAHATGAR, M., JAIN, A., ORLITSKY, A., PICHAPATI, V. and RAVINDRAKUMAR, V. (2018).
The limits of maxing, ranking, and preference learning. In International conference on machine
learning. PMLR.

FALAHATGAR, M., ORLITSKY, A., PICHAPATI, V. and SURESH, A. T. (2017b). Maximum selection
and ranking under noisy comparisons. In International Conference on Machine Learning. PMLR.

FAURY, L., ABEILLE, M., CALAUZENES, C. and FERCOQ, O. (2020). Improved optimistic
algorithms for logistic bandits. In International Conference on Machine Learning. PMLR.

FIL1PPI, S., CAPPE, O., GARIVIER, A. and SZEPESVARI, C. (2010). Parametric bandits: The
generalized linear case. Advances in Neural Information Processing Systems 23.

HECKEL, R., SIMCHOWITZ, M., RAMCHANDRAN, K. and WAINWRIGHT, M. (2018). Approximate
ranking from pairwise comparisons. In International Conference on Artificial Intelligence and
Statistics. PMLR.

JAMIESON, K., KATARIYA, S., DESHPANDE, A. and NOWAK, R. (2015). Sparse dueling bandits.
In Artificial Intelligence and Statistics. PMLR.

JUN, K.-S., BHARGAVA, A., NOWAK, R. and WILLETT, R. (2017). Scalable generalized linear
bandits: Online computation and hashing. Advances in Neural Information Processing Systems 30.

KoMmryaMA, J., HONDA, J. and NAKAGAWA, H. (2016). Copeland dueling bandit problem:
Regret lower bound, optimal algorithm, and computationally efficient algorithm. In International
Conference on Machine Learning. PMLR.

KULESHOV, V. and PRECUP, D. (2014). Algorithms for multi-armed bandit problems. arXiv preprint
arXiv:1402.6028 .

10



394
395

396

397
398

399
400

401
402

403
404

405
406

407
408

409
410

411
412

413
414

415
416

417
418

419
420

421
422
423

424
425
426

427

428
429

431
432

434
435

436
437

LA1 T. L., ROBBINS, H. ET AL. (1985). Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics 6 4-22.

LATTIMORE, T. and SZEPESVARI, C. (2020). Bandit Algorithms. Cambridge University Press.

L1, L., Lu, Y. and ZHOU, D. (2017). Provably optimal algorithms for generalized linear contextual
bandits. In International Conference on Machine Learning. PMLR.

Liu, C., JIN, T., Ho1, S. C. H., ZHAO, P. and SUN, J. (2017). Collaborative topic regression for
online recommender systems: an online and bayesian approach. Machine Learning 106 651-670.

Lou, H., JiN, T., WU, Y., XU, P., GU, Q. and FARNOUD, F. (2022). Active ranking without strong
stochastic transitivity. Advances in neural information processing systems .

MINKA, T. P., CLEVEN, R. and ZAYKOV, Y. (2018). Trueskill 2: An improved bayesian skill rating
system.

RAMAMOHAN, S., RAJKUMAR, A. and AGARWAL, S. (2016). Dueling bandits: Beyond condorcet
winners to general tournament solutions. In NIPS.

REN, W,, L1u, J. K. and SHROFF, N. (2019). On sample complexity upper and lower bounds for
exact ranking from noisy comparisons. Advances in Neural Information Processing Systems 32.

RUSMEVICHIENTONG, P. and TSITSIKLIS, J. N. (2010). Linearly parameterized bandits. Mathemat-
ics of Operations Research 35 395-411.

SAHA, A. (2021). Optimal algorithms for stochastic contextual preference bandits. Advances in
Neural Information Processing Systems 34 30050-30062.

SAHA, A., KOREN, T. and MANSOUR, Y. (2021a). Adversarial dueling bandits. ArXiv
abs/2010.14563.

SAHA, A., KOREN, T. and MANSOUR, Y. (2021b). Adversarial dueling bandits. In International
Conference on Machine Learning. PMLR.

Sul, Y. and BURDICK, J. (2014). Clinical online recommendation with subgroup rank feedback. In
Proceedings of the 8th ACM conference on recommender systems.

URvoOy, T., CLEROT, F., FERAUD, R. and NAAMANE, S. (2013). Generic exploration and k-armed
voting bandits. In ICML.

VASILE, F., SMIRNOVA, E. and CONNEAU, A. (2016). Meta-prod2vec: Product embeddings
using side-information for recommendation. In Proceedings of the 10th ACM conference on
recommender systems.

WANG, J., HUANG, P., ZHAO, H., ZHANG, Z., ZHAO, B. and LEE (2018). Billion-scale commodity
embedding for e-commerce recommendation in alibaba. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining .

Wu, H. and L1uU, X. (2016). Double thompson sampling for dueling bandits. ArXiv abs/1604.07101.

Wu, Y., JiN, T., Lou, H., XU, P.,, FARNOUD, F. and GU, Q. (2022). Adaptive sampling for
heterogeneous rank aggregation from noisy pairwise comparisons. In International Conference on
Artificial Intelligence and Statistics. PMLR.

YUE, Y., BRODER, J., KLEINBERG, R. D. and JOACHIMS, T. (2012). The k-armed dueling bandits
problem. J. Comput. Syst. Sci. 78 1538—-1556.

YUE, Y. and JOACHIMS, T. (2009). Interactively optimizing information retrieval systems as a
dueling bandits problem. In Proceedings of the 26th Annual International Conference on Machine
Learning.

YUE, Y. and JOACHIMS, T. (2011). Beat the mean bandit. In International Conference on Machine
Learning.

11



438
439

440
441

442
443

444
445

446
447

ZHANG, X., LI, G. and FENG, J. (2016). Crowdsourced top-k algorithms: An experimental
evaluation. Proc. VLDB Endow. 9 612-623.

ZHU, J., AHMED, A. and XING, E. P. (2012). Medlda: maximum margin supervised topic models.
J. Mach. Learn. Res. 13 2237-2278.

ZOGHI, M., KARNIN, Z. S., WHITESON, S. and DE RUKE, M. (2015). Copeland dueling bandits.
In NIPS.

ZOGHI, M., WHITESON, S., MUNOS, R. and DE RUUKE, M. (2014a). Relative upper confidence
bound for the k-armed dueling bandit problem. ArXiv abs/1312.3393.

ZOGHI, M., WHITESON, S., MUNOS, R. and RUKE, M. (2014b). Relative upper confidence bound
for the k-armed dueling bandit problem. In International conference on machine learning. PMLR.

12



448

449

450
451
452

453
454

455
456
457

458

460

461
462

464

465
466
467
468

469

470
471
472
473

474

475
476

477

478

479
480

481
482

A Additional Results and Discussion

A.1 Existing Results for Structured Contexts

A structural assumption made by some previous works (Saha, 2021) is that ¢; ; = x; — x;, where x;
can be seen as some feature vectors tied to the item. In this work, we do not consider minimizing the
Borda regret under the structural assumption.

The immediate reason is that, when p; j; = p(x; 0* —x 6*), with 1i(-) being the logistic function,
the probability model p; ; effectively becomes (a linear version of) the well-known Bradley-Terry
model. Namely, each item is tied to a value v; = x; 6%, and the comparison probability follows
Dij = % More importantly, this kind of model satisfies both the strong stochastic transitivity
(SST) and the stochastic triangle inequality (STI), which are unlikely to satisfy in reality.

Furthermore, when stochastic transitivity holds, there is a true ranking among the items, determined
by x;/ @*. A true ranking renders concepts like the Borda winner or Copeland winner redundant
because the rank-one item will always be the winner in every sense. When ¢; ; = x; — x;,[Saha

(2021)) proposed algorithms that can achieve nearly optimal regret 6(dﬁ ), with regret being defined
as

T
Regret(T) = ZQ(xi*70*> —(x;,,0") — (x,,,0"), 3)
t=1
where i* = argmax; (x;, 8*), which also happens to be the Borda winner. Meanwhile, by Assump-
tion[3]
1K
B(i*) = B(j) = 4 D [l(xis = x1,67)) = pl(x) — x4,07))] < Ly (xir = x;,0°),

k=1
where L, is the upper bound on the derivative of x(-). For logistic function L,, = 1/4. The Borda
regret (I is thus at most a constant multiple of (3). This shows Borda regret minimization can be
sufficiently solved by|Sahal(2021) when structured contexts are present. We consider the most general
case where the only restriction is the implicit assumption that ¢; ; = —¢; ;.

A.2 Regret Bound for Fewer Arms

In typical scenarios, the number of items K is not exponentially large in the dimension d. If this is
the case, then we can choose a different parameter set of 7 and e such that Algorithm[I]can achieve
a regret bound depending on log K, and reduce the dependence on d. The performance can be
characterized by the following theorem:
Theorem 10. For any § > 0, suppose the number of total rounds 7 satisfies,
2
> max {ar log(K~/9) L
KOA,

, 4

Nz “)

where Cj is some large enough universal constant. Then if we set 7 = (dlog(K/§))'/3T?/3 and

e =d/3T=1/310g(3K2/8)~1/6, Algorithmwill incur regret bounded by:
O(k~!(dlog(K/8))/3T?/3).

By setting 6 = 7, the expected regret is bounded as O (k! (dlog K)'/3T2/3).
B Omitted Proof in Section 4|

The proof relies on a class of hard-to-learn instances. We first present the construction again for
completeness.

For any d > 0, we construct a hard instance with 29+1 jtems (indexed from 0 to 291 — 1), We
construct the hard instance p? ; for any 6 € {—A, +A} as:

Lifi <295 < 24
 if i > 2,5 > 2¢
,ifi <245 > 24
Jifi > 24 5 < 24

i)
|

]
=
<
NN
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where the feature vectors ¢; ; and the parameter 8 are of dimension d, and have the following forms:

0, ifi <245 < 2¢

0, if3 > 2%, j > 24
bit(i), ifi < 24,5 > 24
—bit(j), ifi > 24,5 < 29,

¢)i,j =

where bit(-) is the (shifted) bit representation of non-negative integers, i.e., suppose x = by x 20 +
by x 214+ +bg_1 x 2971, then bit(z) = 2b— 1. Note that bit(-) € {—1,+1}%, and ¢; ; = —¢; ;.
Remark 11 (d + 1-dimensional instance). The hard instance described above does not strictly
satisfy the assumption that pg i = (0, @i ;), but can be easily fixed by appending an additional
dimension to address the bias term defined in (3). More specifically, we can set F(z) = % +x
and pzj = F((¢;,0)), where 8 € {—A,+A} x {1} c R¥™! and ¢;; = (¢, ci;), with
0, ifi < 24,5 < 24
0, ifi > 24,5 > 24
1, ifi < 24,5 > 24
—1, ifi > 24,5 < 29,
and 6 « (d + 1)'/20.

Cij = To ensure ||, ;||2 < 1, we can further set ;. ; < (d+1)"1/2¢; ;

We rewrite (3) as:

1 ifi<2d j <24 0, ifi < 24,5 < 24
o )3 ifi>2d5>024 N 0, ifi > 24, 5 > 24 ©)
Pri= 3, ifi <24 j > 24 (bit(i), 8), if i < 27, > 24

1, ifi>24 5 <24 —(bit(5),0), ifi > 29 j < 2¢

and the Borda scores are:

5 1 1 /hit(s i d
) 2 4+ >(bit(7),0), if i < 2
BB(Z){g .2. d’ ) P
g,leZQ.

Intuitively, the former half arms indexed from 0 to 2¢ — 1 are “good” arms (one among them is
optimal), while the latter half arms are “bad” arms. It is clear that choosing a “bad” arm ¢ will incur
regret B(i*) — B(i) > 1/4.

Now we are ready to present the proof.

Proof of TheoremHd} First, we present the following lemma:

Lemma 12. Under the hard instance we constructed above, for any algorithm A that ever makes
queries i; > 2%, there exists another algorithm A’ that only makes queries i; < 2¢ for every ¢ > 0
and always achieves no larger regret than A.

Proof of LemmalI2] The proof is done by reduction. For any algorithm A, we wrap A with such a
agent A’

1. If A queries (i, j;) with i, < 29, the agent A’ will pass the same query (i, j;) to the
environment and send the feedback r; to A;

2. If A queries (i, j;) with i; > 29 j, < 29, the agent A’ will pass the query (j;,i;) to the
environment and send the feedback 1 — r; to A;

3. If A queries (iy, j;) with i; > 27 j, > 29, the agent A’ will uniform-randomly choose 7
from 0 to 2¢ — 1, pass the query (i}, #}) to the environment and send the feedback 7; to A.

For each of the cases defined above, the probabilistic model of bandit feedback for A is the same as
if A is directly interacting with the original environment. For Case 1, the claim is trivial. For Case 2,
the claim holds because of the symmetry of our model, that is p‘Z ;=1- pjg-ﬂ-. For Case 3, both will
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return 7 following Bernoulli(1/2). Therefore, the expected regret of A in this environment wrapped
by A’ is equal to the regret of A in the original environment.

Meanwhile, we will show A’ will incur no larger regret than A. For the first two cases, A" will

incur the same one-step regret as .A. For the third case, we know that BY(i;) = B9(j,) = 2,

while E[B(i})] = 2 + 5(E; [bit(i})],0) = 3 + 5(0,6) = 2, meaning that the one-step regret is
smaller. O

Lemma|12|ensures it is safe to assume i; < 2¢. For any 6 and k € [d], define

T
Fou = IE”"(Zﬂ{bit“ﬂ (ir) # sign(61)} > g)

t=1

where the superscript [¥] over a vector denotes taking the k-th entry of the vector. Meanwhile, we
define 6\* to satisfy (0\F)[¥] = —@l¥] and be the same as @ at all other entries. We have

T
Po\k 1, := P (Zn {bit* (i,) # sign((@\F)F)} > Z)

t=1

T
~ o <Z 1 {bit?(i,) = sign(61)) > g)

t;l T
= Pows (Z 1{bit"1 (i,) # sign(6")} < 2) .
t=1

By the Bretagnolle-Huber inequality and the decomposition of the relative entropy, we have

1
Po . + Pork , > 5 &XP (— KL(Pg,4||Po\r 1))
1 [ \k
> 3 &P (Eg ZKL(pgj‘ pgj )})
-t=1
- T
> —exp ( —Eo| Y Cl¢i,;,,0 - 0\k>2]>

-t=1

- T
1 . .
— 2exp<—Eg 40A% " 1{i < 24 A Gy ZQd}D,

- t=1

where the first inequality comes from the Bretagnolle—Huber inequality; the second inequality is the
decomposition of the relative entropy; the third inequality holds because the Bernoulli KL divergence
KL(p|lp + x) is 10-strongly convex in x for any fixed p € [1/8,7/8], and indeed p? ; € [1/8,7/8]
as long as dA < 1/8; the last equation holds because ¢;, ;, has non-zero entries only when (i, j;)
belongs to that specific regions.

From now on, we denote N(T') := Ethl 1{i; < 2¢ A j; > 2%}. Further averaging over all
0 c {—1,+1}9, we have

1 11
o > Pox> 158 > exp(—40A%Eg[N(T)])
0c{—1,+1}d Oc{—1,4+1}d
1 1
> S exp (— 40A227 > Eg[N(T)]),

6c{—1,+1}d

where the first inequality is from averaging over all 8; the second inequality is from Jensen’s
inequality.
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Utilizing the inequality above, we establish that

r T
2% > Regret(T;0, A) > 2% > Ee|> B> —Be(it)}
Oc{—1,+1}d 0c{—1,+1}4 -t=1
1 r T
= o > Ee|)_(0,sign(6) bit(it»}
0e{—1,+1}4 -t=1
1 r T d
= > Ee| .Y 2A1{bitM(i,) £ sign(O[k])}]
0c{—1,+1}d =1k

-

-2 Y 3w

1 bit (i) signw““])}]
6e{—1,41}d k=1

2A ¢ T
> 57 Z Z]P’e,k )
0c{—1,+1}d k=1
AdT , 1
> Mo (—a0a7y, Y EalVD)) @
0c{—1,4+1}d

where the first inequality comes from the Borda regret; the second inequality comes from the
inequality E[X] > aP(X > a) for any non-negative random variable; the last inequality is from
rearranging terms and invoking the results above.

Meanwhile, we have (remember N (T') := 321, 1{i; < 2% A j, > 2})

T
1 1 1
g . Reget(Ti0,A)> o K [4 > i <2 A > 2%
0c{—1,4+1}4 6c{—1,+1}4 t=1
11
=154 > Ee[N(T)], ®)
0c{—1,+1}4

where the first inequality comes from that any items i > 27 will incur at least 1/4 regret.

Combining (7) and (8) together and denoting that X = 5 >, (~1,+132 Bo[N(T))], we have that for

» . —1/3mp—1/3
any algorithm A, there exists some @, such that (set A = %)

4

d2/3T2/3 X
= max { exp(—al_Z/BZI’_Q/?’X)7 }
4+/40 4
d2/3T2/3
2 [
44/40
d2/3T2/3
2
8v40
where the first inequality is the combination of (7) and (8)); the second inequality is a rearrangement
and loosely lower bounds the constant; the last is due to max{e~¥,y} > 1/2 for any y. O

AdT X
Regret(T;0,A) > max{ Z exp(—40A%X), }

max { exp(—d72/3T*2/3X)7 d2/3T2/3X}

C Onmitted Proof in Section

We first introduce the lemma about the theoretical guarantee of G-optimal design: given an action
set ¥ C R? that is compact and span(X) = RY. A fixed design 7(-) : X — [0,1] satisfies

Y xex T(x) = 1. Define V() := > 7(x)xx " and g(7) := maxyecx HXH%,(Tr)_l.
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Lemma 13 (The Kiefer—Wolfowitz Theorem, Section 21.1, Lattimore and Szepesvari|(2020)). There
exists an optimal design 7*(+) such that |[supp(7)| < d(d + 1)/2, and satisfies:

1. g(7*) =d.
2. 7* is the minimizer of g(-).

The following lemma is also useful to show that under mild conditions, the minimum eigenvalue of
the design matrix can be lower-bounded:

Lemma 14 (Proposition 1, |Li et al.|2017). Define V., = Z;l ¢Z,jt ¢i, ;,» where each (i, j;) is
drawn i.i.d. from some distribution v. Suppose Apin (E(i,j)Ny[¢Zj¢i7j]) > Ao, and

s (OMM CQ\/log(l/é))Q | 2B

Ao 2o’

where C and C5 are some universal constants. Then with probability at least 1 — 4,

AInin(‘['r) 2 B.
C.1 Proof of Theorem

The proof relies on the following lemma to establish an upper bound on |{¢; ;, §T+ N — 0%)].

Lemma 15 (extracted from Lemma 3, |Li et al.| (2017)). Suppose Apmin(V-+n) > 1. For any § > 0,
with probability at least 1 — §, we have

~ 1 /d
1048 — 07|V, .y < n\/Q log(1 +2(7 + N)/d) + log(1/6).

Proof of Theorem[3] The proof can be divided into three steps: 1. invoke Lemma[T4]to show that
the initial 7 rounds for exploration will guarantee Ap,in (V) > 1; 2. invoke Lemma|13|to obtain an

optimal design 7 and utilize Cauchy-Schwartz inequality to show that [(6,1n — 0, ¢; ;)| < 3€/k; 3.
balance the not yet determined e to obtain the regret upper bound.

Since we set 7 such that
T = Cy)g 2(d + log(1/6))

- (01\/&+02\/1og(1/5))2 L2

Xo o

with a large enough universal constant Cs, by Lemma I4]to obtain that with probability at least 1 — 4,
)\min(VT> 2 1. (9)
From now on, we assume (9) always holds.

Define N := 32, - N(i,j), Vogrorpn 1= Soioriy @3 @i jo- Vein = Vo + Voiir v Given
the optimal design 7 (i, j), the algorithm queries the pair (¢, j) € supp(w) for exactly N(i,j) =
[dr(i,j)/€?] times. Therefore, the design matrix V., v satisfies

VT+N = VT+1:T+N
= N(.i)biol;
1,7
dn (i, j)
= Z =2 IRT
2,7

d
= ?V(W)v

where V (m) := 2, i 7(i, )i d)Z ;- The first inequality holds because V' is positive semi-definite,
and the second inequality holds due to the choice of N (4, 7).
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When @I) holds, from Lemma we have with probability at least 1 — J, that for each ¢; ;,
(0 =0, 6ij)| < |10r4n = O |lv o - [1@illvor

~ . elldiillv(x)-1
<y = 07 =
<|Orin — 0%y, €
< ;.\/;ilog(1+2(T+N)/d)+log(1/5) (10)

where the first inequality is due to the Cauchy-Schwartz inequality; the second inequality holds
because V,n > 6%V(W); the third inequality holds because 7 is an optimal design and by
Lemma i ||%,(7T),1 < d; the last inequality comes from Lemma

To summarize, we have that with probability at least 1 — 24, for every ¢ € [K],

K
B - B = |1 3 (61,07 - u(61,0)|
j=1
1 & _
< 2 2 |n@],67) — u(e,0)|
K
<D0 [ol (0"~ 0)]
3L,¢ \/d
< P §log(1—|—2(7'+N)/d)~t—log(1/5)7 (11)

where the first equality is by the definition of the empirical/true Borda score; the first inequality is
due to the triangle inequality; the second inequality is from the Lipschitz-ness of (-) (L,, = 1/4 for
the logistic function); the last inequality holds due to (TI0). This further implies the gap between the
empirical Borda winner and the true Borda winner is bounded by:

B(i*) — B(i) = B(i*) — B(i*) + B(i*) — B(i)
< B(i*) — B(i*) + B(i) — B(i)
6L,€

< \/;l log(1 + 2(r + N)/d) + log(1/8),

where the first inequality holds due to the definition of 4, i.e., B(i) > B(i) for any i; the last inequality
holds due to (TT).
Meanwhile, since N := >7; o000y N (4, ) and supp(m) < d(d +1)/2 from Lemma we
have that

d

N <d(d+1)/2+ ,

€
because [x] < x + 1.
Therefore, with probability at least 1 — 24, the regret is bounded by:

Regret(T") = Regret,.. + Regret, .., x + Regret , x 1.7

<74 N4 2Ll \/g log(1 + 2(r + N)/d) + log(1/6)
K

12L,eT T
<7+dd+1)/2+ Ci+“€-o<d1/2 log ())
€ K

dé
T
— -1 2/3T2/3 1 -
O(H d og <d5>>’
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where the first equation is simply dividing the regret into 3 stages: 1 to 7, 7+ 1 to 7 + N, and
7+ N + 1 to T'; the second inequality is simply bounding the one-step regret from 1 to 7 + NV
by 1, while for ¢t > 7 + N, we have shown that the one-step regret is guaranteed to be smaller

than 12L,,e\/dlog(1 + 2(7 + N)/d) + log(1/5)/v/2k. The last line holds because we set 7 =

O(d + log(1/6)) and € = d*/5T~1/3. Note that to ensure 7 + N < T, it suffices to assume
T =Q(d?).

By setting 6 = , we can show that the expected regret of Algonthmlls bounded by
O(H_l(d2/3T2/3)) )

C.2 Proof of Theorem

The following lemma characterizes the non-asymptotic behavior of the MLE estimator. It is extracted
from Li et al.[(2017).

Lemma 16 (Theorem 1, [Li et al|2017). Define V, = >°;_, de)“,jt, and 8, as the MLE

estimator (2) at round s. If V satisfies
2072
512M2(d + log(3/6))

Arrlilﬂ (Vs) Z /434

) (12)
then for any fixed x € R¢, with probability at least 1 — 6,

~ 3 5
[0, = 0"3)] < =\ [IxIR, 1 Tog(3/6).

Proof of Theorem The proof can be essentially divided into three steps: 1. invoke Lemma|[T4]to
show that the initial 7 rounds for exploration will guarantee (I2) is satisfied; 2. invoke Lemma|I3|to

obtain an optimal design 7 and utilize Lemmato show that |<§T+ N —0,¢; ;)| < 3e¢/k; 3. balance
the not yet determined € to obtain the regret upper bound.

First, we explain why we assume
03 log(
T> 25 _ {d5/ 2
o Vi
To ensure (T2 in Lemma[I6]can hold, we resort to Lemma([T4] that is
CiVd+ Cay/log(1/6)\> 2B
> + 2=,
- Ao Ao

_ 512M7(d* +log(3/4))
- :

/5)}

K

Since we set 7 = (dlog(K?2/58))'/3T?/3, this means T should be large enough, so that
C1Vd + Cay/log(1 /5))2 . 1024M2(d? + log(3K?2/5))

2 1/372/3 <
(dlog(K/6)) 72 = = oy

With a large enough universal constant C', it is easy to verify that the inequality above will hold as
long as

C3 log(K*/4)
> 0/2
T ,{6)\8’/2 {d f }

By Lemma|[I4] we have that with probability at least 1 — 4,
2 72 2
512M; (d* + log(3K /6)).

K4

/\min (VT) Z

From now on, we assume (13) always holds.

(13)
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5]t
the optimal design 7 (i, 7), the algorithm queries each pair (¢, j) € supp(n) for exactly N (i, j) =
[dr(i,j)/€?] times. Therefore, the design matrix V., v satisfies

Define N := 32,  N(i,j), Vogrorpn == S 1oriy @3 @i, jo- Vesn = Vo + Vo v Given

VT+N i VT+1:T+N

- Z N(i,j)bi ;b

€2

2,7
= d7(1,3)¢i,j¢zj
‘7j

where V (m) := 2, m(i, )i ; ¢Ij. The first inequality holds because V, is positive semi-definite,
and the second inequality holds due to the choice of N (3, 7).

To invoke Lemma notice that Ayin (V) > Apmin (V7). Along with (13), by Lemma we have
for any fixed ¢; ;, with probability at least 1 — 6 /K2, that

~ . 3 5
(0 — 6%, ¢; ;)| < ;\/”(ﬁi,j”\,;iN log(3K2/5)

3 /e 2 2
< Ii\/d s |v(7r)—1 log(3K2/4)

3¢ H(l”i,j”%/(ﬂ—l
=\ —— /1 K2/6
el o8 (3K2/3)

< 5. ViosBRED), (14)

where the first inequality comes from Lemma[I6} the second inequality holds because V. n >
6%V(W); the last inequality holds because 7 is an optimal design and by Lemma i ||%,(7T),1 <
d.

Taking union bound for each (i, j) € [K] x [K], we have that with probability at least 1 — 4, for
every i € [K],

K
B - BG)| = |5 D (1(@],0°) - u(o],0)
1 fl ~
< e j; ‘N(¢1T30*) - H(¢IJ0)‘
Ly <& T (pr B
<25 e, (67 - 0)

=1

< 2 g BR]), (1s)

where the first equality is by the definition of the empirical/true Borda score; the first inequality is
due to the triangle inequality; the second inequality is from the Lipschitz-ness of p(-) (L,, = 1/4 for
the logistic function); the last inequality holds due to (T4)). This further implies the gap between the
empirical Borda winner and the true Borda winner is bounded by:

<
Il

w

B(i*) — B(i) = B(i*) — B(i*) + B(i*) — B(i)

< B(i*) — B(i*) + B(i) — B(i)
< OB g BR]),

where the first inequality holds due to the definition of , i.e., E(?) > E(z) for any ¢; the last inequality
holds due to (15).
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Meanwhile, since N := 3 o000 IV (4, j) and supp(m) < d(d + 1)/2 from Lemma we
have that

d
N <d(d+1)/2+ —,
€

because [z] < x + 1.
Therefore, with probability at least 1 — 20, the regret is bounded by:
Regret(T') = Regret,.. + Regret, ..,y + Regret, , x 1.1

12L
<7+N+ H“ET - /1og(3K2/3)
d 121
<THdd+1)/24 5+ “6
= O(/@’l(dlog(K/d))l/gTQ/g),

where the first equation is simply dividing the regret into 3 stages: 1 to 7, 7+ 1 to 7 + N, and
7+ N + 1to T. the second inequality is simply bounding the one-step regret from 1 to 7 + N
by 1, while for ¢ > 7 + N, we have shown that the one-step regret is guaranteed to be smaller

than 12L,¢,/log(3K?2/5) /. The last line holds because we set 7 = (dlog(3K?2/8))/3T?/3 and
e =d/3T7-1/3 log(3K2/6)’1/6

By setting 6 = , we can show that the expected regret of Algonthmlls bounded by
O(k™ 1 (dlog(KT))'/31?/3)).

Note that if there are exponentially many contextual vectors (K = 2%), the upper bound becomes
O(d?/3T2/3), O

T - +/log(3K2/4)

D Omitted Proof in Section @

We make the following notation. Let H;_1 := (q1, P1, (¢1,51),71,- - - , Gt, P;) denotes the history up
to time t. Here P, means the comparison probability pﬁ’ ; atround ¢. The following lemmas are used

in the proof. We first bound the estimate B, (3).
Lemma 17. Forall t € [T), i € [K], it holds that By (i) < Aot /2

Proof of LemmalI7] Using our choice of ¢, > /K, we have the following result for the matrix (;:
Z th Qt ¢u¢”f77z Z¢'L]¢1] (16)
i€[K] je[K] i€[K] jE[K]

Furthermore, we can use the definition of the estimate Bf( ) to show that

< Z ¢lj70t> = <[1( Z ¢i,j7Qt1¢it1jt>Tt(it7jt)

JE[K] JE[K]
< T Z ”d’z,]'
JE (K]

where we use the fact that || < 1. Let X = 75 31" 321 ;4. With (T6) we have
Q¢ = 722. Therefore, we can further bound Et( 1) with

By(i) < e > il

JE[K]

1

< 7rrga}XH¢i.jll2z—1
-1

< )‘L

— 727
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where the first inequality holds due to (T6) and that ||x|% .
holds because we assume \g < /\min(% Zfil Eszl ¢i,j¢zj) and ||¢; ;|| < 1.

< Ixlg

The following lemma proves that our (shifted) estimate is unbiased.

Lemma 18. Forallt € [T],i €

[K], the following equality holds:

1

]E[Et(%)} = By(i) — 9

Proof of Lemma(I8] Using our definition of B, (i), we have

1 ~ 1
= <K Z d)i,ja0t> = <K
JE[K]

JE[K]

Therefore, by the law of total expectation (tower rule), we have

E[B(i)] = Ex,_,

JE[K]

JE[K]

:]E(itw K Z bi, Q7 b, gt>pt gy Jt ‘Ht 1}

JE[K]

Z G, Qr ' bi g

_, if A > B; the third inequality

:]E(imjmn)K Z @i, Qr ﬁbzt gt>7"t(lt7]t)|7‘[t 1H

- :E(it,]t K Z ®ij, Qr ¢1t;7t> v [Te (s 3)| (e i) ‘Ht 1H

Then we use the definition of p, and the expectation. We can further get the equality

JE[K]

(& T ow0)

JE[K]

B [(+ Z 152 Q1 D1 @], 1,0 >]Ht_1}_
_ < _

< 3 i Qi

(Z th 1)t (7

i€[K]je[K]

ol

Therefore, we have completed the proof of Lemma|[T8]

The following lemma is similar to Lemma 5 in|Saha et al.|(2021b).

Lemma 19. Ey, [q, Et}

=B, , [Eang, [Bi(@)[Hi1]] —

Proof of Lemma[I9 Taking conditional expectation, we have

K
Ey,la) Be] = Ex, [Z q:(i) By (i)

where we use the law of total expectation again as well as Lemma|[T§]

= Eres | 0BG or [BO)

Li=1

=Ey, , é (i) (Bt(i) - ;)]

=Ey,_, :JEquf, {Bt(””)‘%—ln B

22
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The last lemma bounds a summation _, ¢ Gt (z)ﬁt (4)2, which will be important in our proof.

Lemma 20. Atany time ¢, E[3", ] @ (i) B (i)2] < d/~.

Proof of Lemma[20] Let P,(i,§) = (di j, §t> Using the definition of B; and P (i, j), we have the
following inequality:

2
N /- . 1 =, .
E Y a)B)’| =E| ) ) Ve > Bii,j)
1€[K] 1€[K] JEIK]
<E Z Z P2 (4, 4)
Li€[K] ge (K]
Nt Y 52, -
=E Y a@()- > el
Li€[K] JEIK]
< ]E Z Z (1) qe(j %)
i€[K] je[K

The first inequality holds due to the Cauchy-Schwartz inequality; the second inequality holds because
the definition of ¢, satisfies ¢, > v/ K.

Expanding the definition of ]3t2 (i,7), we have
52/ . . — 2
Pt2(27]) = rtQ(Ztvjt) (d)IJQt 1¢it7jt)
< ¢Z,th;1¢i,j¢ZjQ;1¢it,jt7

where we use 0 < 72 (iy, jt) < 1. Therefore, the following inequality holds,

Z Z qt qt Z Z qt qt ¢zt,7tQt ¢1,]¢ Qt 1¢zt,_]t

i€[K] je[K] i€[K] jE[K]

¢7, tht_l Z z Qt(i)Qt(j)@,j(ﬁiT,j Qt_l(bi,,,jt

i€[K] jE[K]
=@ ;,Q7  bi, g
= trace(¢it7jt¢l7th;1).

Using the property of trace, we have

E[> > a@a(Pih)| <wace | > > a@al)¢ul Q' | =d

ie[K] je[K] i€[K] je[K]

Therefore, we finish the proof of Lemma O

Proof of Theorem[9] Our regret is defined as follows,

T
By, [Rr] = Egey Z 2B4(i") — By(ir) — Bt (jit)]

T
= max B lz 2B4(i) — By(it) — Bi(jt)]
t=1
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673 The second equality holds because B, and +* are independent of the randomness of the algorithm.
674 Furthermore, we can write the expectation of the regret as

T

Eop [Rr] =2 Ig[i}? Z By(i) = Y By [Bilis) + Bi(js)]
! t=1

T
= 2 max Z By (i) — 2 Z Eat, s [Exng, [Be(z)[Hi-1]]

1€[K] et
T 1 R
— 2 max (Bt(i) . ) —9Ey, [qj Bt} : (17)
i€[K] 2

675 where the last equality is due to Lemma[T9]

676 Then we follow the standard proof of EXP3 algorithm (Lattimore and Szepesvari, |2020). Let
677 Sip = >, (Bs(k) = 3), Sip = St Bo(k), wi = 2ore(r] €XP(—nSex) and wo = K. We
678 have Va € [K],

T
exp(—nSrq) < Z exp(— (18)
kE[K] -1
679 For each term in the product, we have
D D )
Wt Wi—1
ke[K)]
= > G(k)exp(—nBy(k)), (19)
ke[K]

680 where the second equality holds because of the definition of ;. For any < A2, Lemma

es1 presents [nB, (k)| < 1. Thus, using the basic inequality exp(z) < 1 + x + 22/2 when z < 1, and
es2  exp(x) > 1+ x, we have

S < ST Gulk) (1 —0Bi(k) +n* B2(k))

Wt

kE[K]
=1-n Y @k +17 Y G(k)Bi (k)
ke[K] ke[K]

<exp | —n Y Gk)Bek) + 17 > G(k)BEk) | . (20)
]

ke[K] ke[K

683 Combining (T8), (T9) and (20), we have
T
exp(—nSr.a) < Kexp [ Y (=0 Y G(k)Bu(k) + 17 > @ulk :

t=1 ke[K] ke[K]

684 and therefore
T

d logK ~ 2
) - @B =0 3 awBih).

t=1 ke[K]

U:>

350

L K
685 Since ¢; = % we have

T T T
~ ~ log K ~ 5
DY Bila) - > /B < BT 103 Y @k Bik).
t=1 t=1

n t=1 ke[K]

24



686

687

688

689
690

Choosing a = i*, changing the summation index to ¢ and taking expectation on both sides, we have

T T T
(1= NEwe > Buli*) = > By |a] B < loi BB [0 Y w)B2)
t=1 t=1

= t=14€[K]

Substituting the above inequality into (T7) and using Lemma[T8] [T9] we can bound the regret as

T
2log K . .
E[Rr] < 9T + =22 420 By | 2 aeli)se(i)?
n t=1 i€[K]
log K 2ndT
og K 2ndT’
Y
< 2(log K)Y3dM3T2/3\/1/ Mg + 2(log K)Y3dM3T2/3 4+ 2(log K)Y/3d 3 T2/3\/ A,

where the second inequality holds due to Lemma[20] In the last inequality, we put in our choice

of parameters 1 = (log K)*/3d=1/3T=2/3 and = \/nd/Xo = (log K)/3d*/3T=1/3\5*/? This
finishes our proof of Theorem 9] O

< 24T + 2
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E Detailed Explanation of Studied Algorithms in Experiments

The following list summarizes all methods we implemented:

BETC-GLM(-MATCH): Algorithmproposed in this paper. For general link function, to find 6 by
MLE in (), 100 rounds of gradient descent are performed. The failure probability is set to § = 1/7".
Parameters 7 and e are set to values listed in Theorem[T0] For BETC-GLM-MATCH, we use the 7
and ¢ outlined in Theorem 3

UCB-BORDA: The UCB algorithm (Auer et al.,[2002) using Borda reduction technique mentioned
by Busa-Fekete et al.| (2018). The complete listing is displayed in Algorithm 3]

DEXP3: Dueling-Exp3 is an adversarial Borda bandit algorithm developed by |Saha et al.| (2021a),
which also applies to our stationary bandit case. Relevant tuning parameters are set according to their
upper-bound proof.

ETC-BORDA: We devise a simple explore-then-commit algorithm, named ETC-BORDA. Like
DEXP3, ETC-BORDA does not take any contextual information into account. The complete
procedure of ETC-BORDA is displayed in Algorithm 4] Appendix[G.2] The failure probability ¢ is
optimized as 1/7.

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm[2] 1 and ~ are
chosen to be the value stated in Theorem 0

F Real-world Data Experiments

To showcase the performance of the algorithms in a real-world setting, we use EventTime dataset
(Zhang et al,[2016). In this dataset, K = 100 historical events are compared in a pairwise fashion by
crowd-sourced workers.

We first calculate the empirical preference probabilities p; ; from the collected responses. A visualized
preferential matrix consisting of p; ; is shown in Figure [5|in Appendix which demonstrates
that STI and SST conditions hardly hold in reality. During simulation, p; ; is the parameter of the
Bernoulli distribution that is used to generate the responses whenever a pair (4, j) is queried. The
contextual vectors ¢); ; are generated randomly from {—1, +1}5. For simplicity, we assign the item
pairs that have the same probability value with the same contextual vector, i.e., if p; ; = py; then

®i,j = @r,1. The MLE estimator 6 in (2) is obtained to construct the recovered preference probability

Dij = ,u(qb;-':ja) where p(z) = 1/(1 4 e~ %) is the logistic function. We ensure that the recovered
preference probability p; ; is close to p; ;, so that ¢; ; are informative enough. As shown in Figure
our algorithm outperforms the baseline methods as expected. In particular, the gap between our
algorithm and the baselines is even larger than that under the generated hard case. In both settings,
our algorithms demonstrated a stable performance with negligible variance.

x10*

351 — UCB-Borda

301 DEXP3
—— ETCBorda

54 —— BETC-GLM /
—— BETC-GLM-Match

1 — BEXP3

= oo

Regret(T)

)

0.5 1

0.0 1

T T T T T
0 25000 50000 75000 100000
T

Figure 3: EventTime

Figure 4: The regret of the proposed algorithm (BETC-GLM,BEXP3) and the baseline algorithms
(UCB-BoRrRDA, DEXP3, ETC-BORDA).

F.1 Data Visualization

The events in EventTime dataset are ordered by the time they occurred. In Figure 5] the magnitude of
each p; ; is color coded. It is apparent that there is no total/consistent ordering (i.e., p; ; > % &= 7)
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can be inferred from this matrix due to inconsistencies in the ordering and many potential paradoxes.
Hence STI and SST can hardly hold in this case.

Ny

Figure 5: Estimated preferential matrix consists of p; ; from the EventTime dataset.

G Additional Information for Experiments

G.1 The UCB-BORDA Algorithm

The UCB-BORDA procedure, displayed in Algorithm 3]is a UCB algorithm with Borda reduction
only capable of minimization of regret in the following form:

T
Regret(T) = Y (B(i*) — B(i)).

Let n; be the number of times arm ¢ € [K] has been queried. Let w; be the number of times arm 4
wins the duel. B(%) is the estimated Borda score. « is set to 0.3 in all experiments.

Algorithm 3 UCB-BORDA

1: Input: time horizon 7', number of items K, exploration parameter c.
2: Initialize: n=w = {0}, B(i) = %,i € [K]
3: fort=1,2,...,T do

it = argmax,e k] (Ek + 4 /%&‘i(t))

sample j; ~ Uniform([K])
query pair (i, j,) and receive feedback r; ~ Bernoulli(p;, j,)

n;, =n;, + 1, Wi, = W, + Ty, B(lt) =

A

end for

G.2 The ETC-BORDA Algorithm

The ETC-BORDA procedure, displayed in Algorithm []is an explore-then-commit type algorithm
capable of minimizing the Borda dueling regret. It can be shown that the regret of Algorithmd]is

O(K'/312/3).
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Algorithm 4 ETC-BORDA

1: Input: time horizon 7', number of items K, target failure probability ¢
2: Initialize: n = w = {0}X, B(i) = 1,i € [K]

3: Set N = [K~2/3T2/31og(K /§)/3]

4: fort=1,2,...,T do

Lo 1+ (t—1)mod K, ift < KN,
5:  Choose action i; < ~
argmax;e (g B(i), if t > KN.

Uniform([K]), ift < KN,
argmax;¢ gy B(i), if t > KN.

7:  query pair (4, j;) and receive feedback r, ~ Bernoulli(p;, ;,)
8 if ¢t < N then

6:  Choose action j; = {

~

9: Ilif/ = nit + 1, Wz't = Wif, —+ Tt, B(Zt) = ‘::f
10:  end if
11: end for

738 G.3 FRANK-WOLFE algorithm used to find approximate solution for G-optimal design

740 In order to find a solution for the G-optimal design problem, we resort to Frank-Wolfe algorithm
741 to find an approximate solution. The detailed procedure is listed in Algorithm[5] In Line[d] each
742 outer product costs d? multiplications, K2 such matrices are scaled and summed into a d-by-d matrix
743 'V (), which costs O(K2d?) operations in total. In Line one matrix inversion costs approximately
744 O(d?). The weighted norm requires O(d?) and the maximum is taken over K 2 such calculated values.
745 The scaling and update in the following lines only requires O(K?). In summary, the algorithm is
746 dominated by the calculation in Line [5|which costs O(d? K?).

747 In experiments, the G-optimal design 7 (i, j) is approximated by running 20 iterations of Frank-Wolfe
748 algorithm, which is more than enough for its convergence given our particular problem instance. (See
749 Note 21.2 in (Lattimore and Szepesvari, [2020)).

Algorithm 5 G-OPTIMAL DESIGN BY FRANK-WOLFE

: Input: number of items K, contextual vectors ¢; ;,i € [K], j € [K], number of iterations R
: Initialize: (i,j) = 1/K?

cforr=1,2,--- ,Rdo

V(m,) = Zi,j Wr(iaj)(ﬁi,j(sz‘

ir, Jy = argmax(; ;e (kx (k] @il v (r,)-1

gr = bz je vz

— grfl/d
= gr—1

S A A R L T

—

: Output: Approximate G-optimal design solution wr1 (%, j)
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