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Abstract

Dueling bandits are widely used to model preferential feedback prevalent in many1

applications such as recommendation systems and ranking. In this paper, we study2

the Borda regret minimization problem for dueling bandits, which aims to identify3

the item with the highest Borda score while minimizing the cumulative regret. We4

propose a rich class of generalized linear dueling bandit models, which cover many5

existing models. We first prove a regret lower bound of order Ω(d2/3T 2/3) for the6

Borda regret minimization problem, where d is the dimension of contextual vectors7

and T is the time horizon. To attain this lower bound, we propose an explore-8

then-commit type algorithm for the stochastic setting, which has a nearly matching9

regret upper bound Õ(d2/3T 2/3). We also propose an EXP3-type algorithm for the10

adversarial setting, where the underlying model parameter can change at each round.11

Our algorithm achieves an Õ(d2/3T 2/3) regret, which is also optimal. Empirical12

evaluations on both synthetic data and a simulated real-world environment are13

conducted to corroborate our theoretical analysis.14

1 Introduction15

Multi-armed bandits (MAB) (Lattimore and Szepesvári, 2020) is an interactive game where at each16

round, an agent chooses an arm to pull and receives a noisy reward as feedback. In contrast to numer-17

ical feedback considered in classic MAB settings, preferential feedback is more natural in various18

online learning tasks including information retrieval Yue and Joachims (2009), recommendation19

systems Sui and Burdick (2014), ranking Minka et al. (2018), crowdsourcing Chen et al. (2013), etc.20

Moreover, numerical feedback is also more difficult to gauge and prone to errors in many real-world21

applications. For example, when provided with items to shop or movies to watch, it is more natural22

for a customer to pick a preferred one than scoring the options. This motivates Dueling Bandits23

(Yue and Joachims, 2009), where the agent repeatedly pulls two arms at a time and is provided with24

feedback being the binary outcome of “duels” between the two arms.25

In dueling bandits problems, the outcome of duels is commonly modeled as Bernoulli random vari-26

ables due to their binary nature. At each round, suppose the agent chooses to compare arm i and j, then27

the binary feedback is assumed to be sampled independently from a Bernoulli distribution. For a duel-28

ing bandits instance with K arms, the probabilistic model of the instance can be fully characterized by29

a K×K preference probability matrix with each entry being: pi,j = P (arm i is chosen over arm j) .30

In a broader range of applications such as ranking, “arms” are often referred to as “items”. We will31

use these two terms interchangeably in the rest of this paper. One central goal of dueling bandits32

is to devise a strategy to identify the “optimal” item as quickly as possible, measured by either33

sample complexity or cumulative regret. However, the notion of optimality for dueling bandits is way34

harder to define than for multi-armed bandits. The latter can simply define the arm with the highest35

numerical feedback as the optimal arm, while for dueling bandits there is no obvious definition solely36

dependent on {pi,j |i, j ∈ [K]}.37
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The first few works on dueling bandits imposed strong assumptions on pi,j . For example, Yue et al.38

(2012) assumed that there exists a true ranking that is coherent among all items, and the preference39

probabilities must satisfy both strong stochastic transitivity (SST) and stochastic triangle inequality40

(STI). While relaxations like weak stochastic transitivity (Falahatgar et al., 2018) or relaxed stochastic41

transitivity (Yue and Joachims, 2011) exist, they typically still assume the true ranking exists and the42

preference probabilities are consistent, i.e., pi,j > 1
2 if and only if i is ranked higher than j. In reality,43

the existence of such coherent ranking aligned with item preferences is rarely the case. For example,44

pi,j may be interpreted as the probability of one basketball team i beating another team j, and there45

can be a circle among the match advantage relations.46

In this paper, we do not assume such coherent ranking exists and solely rely on the Borda score47

based on preference probabilities. The Borda score B(i) of an item i is the probability that it is48

preferred when compared with another random item, namely B(i) := 1
K−1

∑
j ̸=i pi,j . The item with49

the highest Borda score is called the Borda winner. The Borda winner is intuitively appealing and50

always well-defined for any set of preferential probabilities. The Borda score also does not require51

the problem instance to obey any consistency or transitivity, and it is considered one of the most52

general criteria.53

To identify the Borda winner, estimations of the Borda scores are needed. Since estimating the Borda54

score for one item requires comparing it with every other items, the sample complexity is prohibitively55

high when there are numerous items. On the other hand, in many real-world applications, the agent56

has access to side information that can assist the evaluation of pi,j . For instance, an e-commerce item57

carries its category as well as many other attributes, and the user might have a preference for a certain58

category (Wang et al., 2018). For a movie, the genre and the plot as well as the directors and actors59

can also be taken into consideration when making choices (Liu et al., 2017).60

Based on the above motivation, we consider Generalized Linear Dueling Bandits. At each round, the61

agent selects two items from a finite set of items and receives a comparison result of the preferred62

item. The comparisons depend on known intrinsic contexts/features associated with each pair of63

items. The contexts can be obtained from upstream tasks, such as topic modeling (Zhu et al., 2012) or64

embedding (Vasile et al., 2016). Our goal is to adaptively select items and minimize the regret with65

respect to the optimal item (i.e., Borda winner). Our main contributions are summarized as follows:66

• We show a hardness result regarding the Borda regret minimization for the (generalized) linear67

model. We prove a worst-case regret lower bound Ω(d2/3T 2/3) for our dueling bandit model,68

showing that even in the stochastic setting, minimizing the Borda regret is difficult. The construc-69

tion and proof of the lower bound are new and might be of independent interest.70

• We propose an explore-then-commit type algorithm under the stochastic setting, which can achieve71

a nearly matching upper bound Õ(d2/3T 2/3). When the number of items K is small, the algorithm72

can also be configured to achieve a smaller regret Õ
(
(d logK)1/3T 2/3

)
.73

• We propose an EXP3 type algorithm for linear dueling bandits under the adversarial setting, which74

can achieve a nearly matching upper bound Õ
(
(d logK)1/3T 2/3

)
.75

• We conduct empirical studies to verify the correctness of our theoretical claims. Under both76

synthetic and real-world data settings, our algorithms can outperform all the baselines in terms of77

cumulative regret.78

Notation In this paper, we use normal letters to denote scalars, lowercase bold letters to denote79

vectors, and uppercase bold letters to denote matrices. For a vector x, ∥x∥ denotes its ℓ2-norm. The80

weighted ℓ2-norm associated with a positive-definite matrix A is defined as ∥x∥A =
√
x⊤Ax. The81

minimum eigenvalue of a matrix A is written as λmin(A). We use standard asymptotic notations82

including O(·),Ω(·),Θ(·), and Õ(·), Ω̃(·), Θ̃(·) will hide logarithmic factors. For a positive integer83

N , [N ] := {1, 2, . . . , N}.84

2 Related Work85

Multi-armed and Contextual Bandits Multi-armed bandit is a problem of identifying the best86

choice in a sequential decision-making system. It has been studied in numerous ways with a wide87

range of applications (Even-Dar et al., 2002; Lai et al., 1985; Kuleshov and Precup, 2014). Contextual88

linear bandit is a special type of bandit problem where the agent is provided with side information, i.e.,89

contexts, and rewards are assumed to have a linear structure. Various algorithms (Rusmevichientong90
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and Tsitsiklis, 2010; Filippi et al., 2010; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017)91

have been proposed to utilize this contextual information.92

Dueling Bandits and Its Performance Metrics Dueling bandits is a variant of MAB with preferential93

feedback (Yue et al., 2012; Zoghi et al., 2014a, 2015). A comprehensive survey can be found at Bengs94

et al. (2021). As discussed previously, the probabilistic structure of a dueling bandits problem is95

governed by the preference probabilities, over which an optimal item needs to be defined. Optimality96

under the Borda score criteria has been adopted by several previous works (Jamieson et al., 2015;97

Falahatgar et al., 2017a; Heckel et al., 2018; Saha et al., 2021a). The most relevant work to ours is98

Saha et al. (2021a), where they studied the problem of regret minimization for adversarial dueling99

bandits and proved a T -round Borda regret upper bound Õ(K1/3T 2/3). They also provide an100

Ω(K1/3T 2/3) lower bound for stationary dueling bandits using Borda regret.101

Apart from the Borda score, Copeland score is also a widely used criteria (Urvoy et al., 2013;102

Zoghi et al., 2015, 2014b; Wu and Liu, 2016; Komiyama et al., 2016). It is defined as C(i) :=103
1

K−1

∑
j ̸=i 1{pi,j > 1/2}. A Copeland winner is the item that beats the most number of other items.104

It can be viewed as a “thresholded” version of Borda winner. In addition to Borda and Copeland105

winners, optimality notions such as a von Neumann winner were also studied in Ramamohan et al.106

(2016); Dudík et al. (2015); Balsubramani et al. (2016).107

Another line of work focuses on identifying the optimal item or the total ranking, assuming the108

preference probabilities are consistent. Common consistency conditions include Strong Stochastic109

Transitivity (Yue et al., 2012; Falahatgar et al., 2017a,b), Weak Stochastic Transitivity (Falahatgar110

et al., 2018; Ren et al., 2019; Wu et al., 2022; Lou et al., 2022), Relaxed Stochastic Transitivity (Yue111

and Joachims, 2011) and Stochastic Triangle Inequality. Sometimes the aforementioned transitivity112

can also be implied by some structured models like the Bradley–Terry model. We emphasize that113

these consistency conditions are not assumed or implicitly implied in our setting.114

Contextual Dueling Bandits In Dudík et al. (2015), contextual information is incorporated in the115

dueling bandits framework. Later, Saha (2021) studied a structured contextual dueling bandits setting116

where each item i has its own contextual vector xi (sometimes called Linear Stochastic Transitivity).117

Each item then has an intrinsic score vi equal to the linear product of an unknown parameter vector118

θ∗ and its contextual vector xi. The preference probability between two items i and j is assumed to119

be µ (vi − vj) where µ(·) is the logistic function. These intrinsic scores of items naturally define a120

ranking over items. The regret is also computed as the gap between the scores of pulled items and the121

best item. While in this paper, we assume that the contextual vectors are associated with item pairs122

and define regret on the Borda score. In Section A.1, we provide a more detailed discussion showing123

that the setting considered in Saha (2021) can be viewed as a special case of our model.124

3 Backgrounds and Preliminaries125

3.1 Problem Setting126

We first consider the stochastic preferential feedback model with K items in the fixed time horizon127

setting. We denote the item set by [K] and let T be the total number of rounds. At each round t, the128

agent can pick any pair of items (it, jt) to compare and receive stochastic feedback about whether129

item it is preferred over item jt, (denoted by it ≻ jt). We denote the probability of seeing the event130

i ≻ j as pi,j ∈ [0, 1]. Naturally, we assume pi,j + pj,i = 1, and pi,i = 1/2.131

In this paper, we are concerned with the generalized linear model (GLM), where there is assumed132

to exist an unknown parameter θ∗ ∈ Rd, and each pair of items (i, j) has its own known contex-133

tual/feature vector ϕi,j ∈ Rd with ∥ϕi,j∥ ≤ 1. There is also a fixed known link function (sometimes134

called comparison function) µ(·) that is monotonically increasing and satisfies µ(x) + µ(−x) = 1,135

e.g. a linear function or the logistic function µ(x) = 1/(1 + e−x). The preference probability is136

defined as pi,j = µ(ϕ⊤
i,jθ

∗). At each round, denote rt = 1{it ≻ jt}, then we have137

E[rt|it, jt] = pit,jt = µ(ϕ⊤
it,jtθ

∗).

Then our model can also be written as138

rt = µ(ϕ⊤
it,jtθ

∗) + ϵt,
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where the noises {ϵt}t∈[T ] are zero-mean, 1-sub-Gaussian and assumed independent from each other.139

Note that, given the constraint pi,j+pj,i = 1, it is implied that ϕi,j = −ϕj,i for any i ∈ [K], j ∈ [K].140

The agent’s goal is to maximize the cumulative Borda score. The (slightly modified 1) Borda score of141

item i is defined as B(i) = 1
K

∑K
j=1 pi,j , and the Borda winner is defined as i∗ = argmaxi∈[K] B(i).142

The problem of merely identifying the Borda winner was deemed trivial (Zoghi et al., 2014a;143

Busa-Fekete et al., 2018) because for a fixed item i, uniformly random sampling j and receiving144

feedback ri,j = Bernoulli(pi,j) yield a Bernoulli random variable with its expectation being the145

Borda score B(i). This so-called Borda reduction trick makes identifying the Borda winner as146

easy as the best-arm identification for K-armed bandits. Moreover, if the regret is defined as147

Regret(T ) =
∑T

t=1(B(i∗)−B(it)), then any optimal algorithms for multi-arm bandits can achieve148

Õ(
√
T ) regret.149

However, the above definition of regret does not respect the fact that a pair of items are selected at150

each round. When the agent chooses two items to compare, it is natural to define the regret so that151

both items contribute equally. A commonly used regret, e.g., in Saha et al. (2021a), has the following152

form:153

Regret(T ) =

T∑
t=1

(
2B(i∗)−B(it)−B(jt)

)
, (1)

where the regret is defined as the sum of the sub-optimality of both selected arms. Sub-optimality is154

measured by the gap between the Borda scores of the compared items and the Borda winner. This155

form of regret deems any classical multi-arm bandit algorithm with Borda reduction vacuous because156

taking jt into consideration will invoke Θ(T ) regret.157

Adversarial Setting Saha et al. (2021b) considered an adversarial setting for the multi-armed case,158

where at each round t, the comparison follows a potentially different probability model, denoted by159

{pti,j}i,j∈[K]. In this paper, we consider its contextual counterpart. Formally, we assume there is an160

underlying parameter θ∗
t , and at round t, the preference probability is defined as pti,j = µ(ϕ⊤

i,jθ
∗
t ).161

The Borda score of item i ∈ [K] at round t is defined as Bt(i) = 1
K

∑K
j=1 p

t
i,j , and the Borda162

winner at round T is defined as i∗ = argmaxi∈[K]

∑T
t=1 Bt(i). The T -round regret is thus defined163

as Regret(T ) =
∑T

t=1

(
2Bt(i

∗)−Bt(it)−Bt(jt)
)
.164

3.2 Assumptions165

In this section, we present the assumptions required for establishing theoretical guarantees. Due to166

the fact that the analysis technique is largely extracted from Li et al. (2017), we follow them to make167

assumptions to enable regret minimization for generalized linear dueling bandits.168

We make a regularity assumption about the distribution of the contextual vectors:169

Assumption 1. There exists a constant λ0 > 0 such that λmin

(
1

K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j

)
≥ λ0.170

This assumption is only utilized to initialize the design matrix Vτ =
∑τ

t=1 ϕit,jtϕ
⊤
it,jt

so that the171

minimum eigenvalue is large enough. We follow Li et al. (2017) to deem λ0 as a constant.172

We also need the following assumption regarding the link function µ(·):173

Assumption 2. Let µ̇ be the first-order derivative of µ. We have κ := inf∥x∥≤1,∥θ−θ∗∥≤1 µ̇(x
⊤θ) >174

0.175

Assuming κ > 0 is necessary to ensure the maximum log-likelihood estimator can converge to the176

true parameter θ∗ (Li et al., 2017, Section 3). This type of assumption is commonly made in previous177

works for generalized linear models (Filippi et al., 2010; Li et al., 2017; Faury et al., 2020).178

Another common assumption is regarding the continuity and smoothness of the link function.179

1Previous works define Borda score as B′
i =

1
K−1

∑
j ̸=i pi,j , excluding the diagonal term pi,i = 1/2. Our

definition is equivalent since the difference between two items satisfies B(i)−Bj = K−1
K

(B′
i−B′

j). Therefore,
the regret will be in the same order for both definitions.
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Assumption 3. µ is twice differentiable. Its first and second-order derivatives are upper-bounded by180

constants Lµ and Mµ respectively.181

This is a very mild assumption. For example, it is easy to verify that the logistic link function satisfies182

Assumption 3 with Lµ = Mµ = 1/4.183

4 The Hardness Result184

“good”

{

“bad”

{


1
2 · · ·

1
2

...
. . .

...
1
2 · · ·

1
2

3
4+

⟨ϕi,j ,θ⟩

1
4+

⟨ϕj,i,θ⟩

1
2 · · ·

1
2

...
. . .

...
1
2 · · ·

1
2



3
4 + ⟨bit(0),θ⟩ 3

4 + ⟨bit(0),θ⟩ · · · 34 + ⟨bit(0),θ⟩
3
4 + ⟨bit(1),θ⟩ 3

4 + ⟨bit(1),θ⟩ · · · 34 + ⟨bit(1),θ⟩
...

...
. . .

...
3
4 + ⟨bit(2d − 1),θ⟩ 3

4 + ⟨bit(2d − 1),θ⟩ · · · 34 + ⟨bit(2d − 1),θ⟩

Figure 1: Illustration of the hard-to-learn preference probability matrix {pθi,j}i∈[K],j∈[K]. There are
K = 2d+1 items in total. The first 2d items are “good” items with higher Borda scores, and the
last 2d items are “bad” items. The upper right block {pi,j}i<2d,j≥2d is defined as shown in the blue
bubble. The lower left block satisfies pi,j = 1− pj,i. For any θ, there exist one and only best item i
such that bit(i) = sign(θ).
This section presents Theorem 4, a worst-case regret lower bound for the stochastic linear dueling185

bandits. The proof of Theorem 4 relies on a class of hard instances, as shown in Figure 1. We show186

that any algorithm will incur a certain amount of regret when applied to this hard instance class. The187

constructed hard instances follow a stochastic linear model, which is a sub-class of the generalized188

linear model. Saha et al. (2021b) first proposed a similar construction for finite many arms with no189

contexts. Our construction is for a contextual setting and the proof of the lower bound takes a rather190

different route.191

For any d > 0, we construct the class of hard instances as follows. An instance is specified by a vector192

θ ∈ {−∆,+∆}d. The instance contains 2d+1 items (indexed from 0 to 2d+1 − 1). The preference193

probability for an instance is defined by pθi,j as:194

pθi,j =


1
2 , if i < 2d, j < 2d or if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+ ⟨ϕi,j ,θ⟩,

and the d-dimensional feature vectors ϕi,j are given by195

ϕi,j =


0, if i < 2d, j < 2d or if i ≥ 2d, j ≥ 2d

bit(i), if i < 2d, j ≥ 2d

−bit(j), if i ≥ 2d, j < 2d,

where bit(·) is the (shifted) bit representation of non-negative integers, i.e., suppose x has the binary196

representation x = b0 × 20 + b1 × 21 + · · ·+ bd−1 × 2d−1, then197

bit(x) = (2b0 − 1, 2b1 − 1, . . . , 2bd−1 − 1) = 2b− 1.

Note that bit(·) ∈ {−1,+1}d, and that ϕi,j = −ϕj,i is satisfied. The definition of pθi,j can be slightly198

tweaked to fit exactly the model described in Section 3 (see Remark 11 in Appendix).199

Some calculation shows that the Borda scores of the 2d+1 items are:200

Bθ(i) =

{
5
8 + 1

2 ⟨bit(i),θ⟩, if i < 2d,
3
8 , if i ≥ 2d.

Intuitively, the former half of items (those indexed from 0 to 2d − 1) are “good” items (one among201

them is optimal, others are nearly optimal), while the latter half of items are “bad” items. Under202

such hard instances, every time one of the two pulled items is a “bad” item, then a one-step regret203
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Bθ(i∗) − Bθ(i) ≥ 1/4 is incurred. To minimize regret, we should thus try to avoid pulling “bad”204

items. However, in order to identify the best item among all “good” items, comparisons between205

“good” and “bad” items are necessary. The reason is simply that comparisons between “good” items206

give no information about the Borda scores as the comparison probabilities are pθi,j = 1
2 for all207

i, j < 2d. Hence, any algorithm that can decently distinguish among the “good” items has to pull208

“bad” ones for a fair amount of times, and large regret is thus incurred. A similar observation is also209

made by Saha et al. (2021a).210

This specific construction emphasizes the intrinsic hardness of Borda regret minimization: to dif-211

ferentiate the best item from its close competitors, the algorithm must query the bad items to gain212

information.213

Formally, this class of hard instances leads to the following regret lower bound for both stochastic214

and adversarial settings:215

Theorem 4. For any algorithm A, there exists a hard instance {pθi,j} with T > 4d2, such that A will216

incur expected regret at least Ω(d2/3T 2/3).217

The construction of this hard instance for linear dueling bandits is inspired by the worst-case lower218

bound for the stochastic linear bandit (Dani et al., 2008), which has the order Ω(d
√
T ), while ours is219

Ω(d2/3T 2/3). The difference is that for the linear or multi-armed stochastic bandit, eliminating bad220

arms can make further exploration less expensive. But in our case, any amount of exploration will221

not reduce the cost of further exploration. This essentially means that exploration and exploitation222

must be separate, which is also supported by the fact that a simple explore-then-commit algorithm223

shown in Section 5 can be nearly optimal.224

5 Stochastic Contextual Dueling Bandit225

5.1 Algorithm Description226

Algorithm 1 BETC-GLM

1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for i ∈ [K],
j ∈ [K], exploration rounds τ , error tolerance ϵ, failure probability δ.

2: for t = 1, 2, . . . , τ do
3: sample it ∼ Uniform([K]), jt ∼ Uniform([K])
4: query pair (it, jt) and receive feedback rt
5: end for
6: Find the G-optimal design π(i, j) based on ϕi,j for i ∈ [K], j ∈ [K]

7: Let N(i, j) =
⌈
dπ(i,j)

ϵ2

⌉
for any (i, j) ∈ supp(π) , denote N =

∑K
i=1

∑K
j=1 N(i, j)

8: for i ∈ [K], j ∈ [K], s ∈ [N(i, j)] do
9: set t← t+ 1, set (it, jt) = (i, j)

10: query pair (it, jt) and receive feedback rt
11: end for
12: Calculate the empirical MLE estimator θ̂τ+N based on all τ +N samples via (2)
13: Estimate the Borda score for each item:

B̂(i) =
1

K

K∑
j=1

µ(ϕ⊤
i,j θ̂τ+N ), î = argmax

i∈[K]

B̂(i)

14: Keep querying (̂i, î) for the rest of the time.

We propose an algorithm named Borda Explore-Then-Commit for Generalized Linear Models227

(BETC-GLM), presented in Algorithm 1. Our algorithm is inspired by the algorithm for generalized228

linear models proposed by Li et al. (2017).229

At the high level, Algorithm 1 can be divided into two phases: the exploration phase (Line 2-11)230

and the exploitation phase (Line 12-14). The exploration phase ensures that the MLE estimator θ̂231

is accurate enough so that the estimated Borda score is within Õ(ϵ)-range of the true Borda score232
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(ignoring other quantities). Then the exploitation phase simply chooses the empirical Borda winner233

to incur small regret.234

During the exploration phase, the algorithm first performs “pure exploration” (Line 2-5), which can235

be seen as an initialization step for the algorithm. The purpose of this step is to ensure the design236

matrix Vτ+N =
∑τ+N

t=1 ϕit,jtϕ
⊤
it,jt

is positive definite.237

After that, the algorithm will perform the “designed exploration”. Line 6 will find the G-optimal238

design, which minimizes the objective function g(π) = maxi,j ∥ϕi,j∥2V(π)−1 , where V(π) :=239 ∑
i,j π(i, j)ϕi,jϕ

⊤
i,j . The G-optimal design π∗(·) satisfies ∥ϕi,j∥2V(π∗)−1 ≤ d, and can be efficiently240

approximated by the Frank-Wolfe algorithm (See Remark 8 for a detailed discussion). Then the241

algorithm will follow π(·) found at Line 6 to determine how many samples (Line 7) are needed. At242

Line 8-11, there are in total N =
∑K

i=1

∑K
j=1 N(i, j) samples queried, and the algorithm shall index243

them by t = τ + 1, τ + 2, . . . , τ +N .244

At Line 12, the algorithm collects all the τ + N samples and performs the maximum likelihood245

estimation (MLE). For the generalized linear model, the MLE estimator θ̂τ+N satisfies:246

τ+N∑
t=1

µ(ϕ⊤
it,jt θ̂τ+N )ϕit,jt =

τ+N∑
t=1

rtϕit,jt , (2)

or equivalently, it can be determined by solving a strongly concave optimization problem:247

θ̂τ+N ∈ argmax
θ

τ+N∑
t=1

(
rtϕ

⊤
it,jtθ −m(ϕ⊤

it,jtθ)

)
,

where ṁ(·) = µ(·). For the logistic link function, m(x) = log(1 + ex). As a special case of248

our generalized linear model, the linear model has a closed-form solution for (2). For example, if249

µ(x) = 1
2 + x, i.e. pi,j = 1

2 + ϕ⊤
i,jθ

∗, then (2) becomes:250

θ̂τ+N = V−1
τ+N

τ+N∑
t=1

(rt − 1/2)ϕit,jt ,

where Vτ+N =
∑τ+N

t=1 ϕit,jtϕ
⊤
it,jt

.251

After the MLE estimator is obtained, Line 13 will calculate the estimated Borda score B̂(i) for each252

item based on θ̂τ+N , and pick the empirically best one.253

5.2 A Matching Regret Upper Bound254

Algorithm 1 can be configured to tightly match the worst-case lower bound. The configuration and255

performance are described as follows:256

Theorem 5. Suppose Assumption 1-3 hold and T = Ω(d2). For any δ > 0, if we set τ =257

C4λ
−2
0 (d+ log(1/δ)) (C4 is a universal constant) and ϵ = d1/6T−1/3, then with probability at least258

1− 2δ, Algorithm 1 will incur regret bounded by:259

O
(
κ−1d2/3T 2/3

√
log
(
T/dδ

))
.

By setting δ = T−1, the expected regret is bounded as Õ(κ−1d2/3T 2/3).260

For linear bandit models, such as the hard-to-learn instances in Section 4, κ is a universal constant.261

Therefore, Theorem 5 tightly matches the lower bound in Theorem 4, up to logarithmic factors.262

Remark 6 (Regret for Fewer Arms). In typical scenarios, the number of items K is not exponentially263

large in the dimension d. In this case, we can choose a different parameter set of τ and ϵ such that264

Algorithm 1 can achieve a smaller regret bound Õ
(
κ−1(d logK)1/3T 2/3

)
with smaller dependence265

on the dimension d. See Theorem 10 in Appendix A.2.266

Remark 7 (Regret for Infinitely Many Arms). In most practical scenarios of dueling bandits, it is267

adequate to consider a finite number K of items (e.g., ranking items). Nonetheless, BETC-GLM268
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can be easily adapted to accommodate infinitely many arms in terms of regret. We can construct a269

covering over all ϕi,j and perform optimal design and exploration on the covering set. The resulting270

regret will be the same as our upper bound, i.e., Õ(d2/3T 2/3) up to some error caused by the epsilon271

net argument.272

Remark 8 (Approximate G-optimal Design). Algorithm 1 assumes an exact G-optimal design π is273

obtained. In the experiments, we use the Frank-Wolfe algorithm to solve the constraint optimization274

problem (See Algorithm 5, Appendix G.3). To find a policy π such that g(π) ≤ (1 + ε)g(π∗),275

roughly O(d/ε) optimization steps are needed. Such a near-optimal design will introduce a factor of276

(1 + ε)1/3 into the upper bounds.277

6 Adversarial Contextual Dueling Bandit278

This section addresses Borda regret minimization under the adversarial setting. As we introduced in279

Section 3.1, the unknown parameter θt can vary for each round t, while the contextual vectors ϕi,j280

are fixed.281

Our proposed algorithm, BEXP3, is designed for the contextual linear model. Formally, at round t282

and given pair (i, j), we have pti,j =
1
2 + ⟨ϕi,j ,θ

∗
t ⟩.283

6.1 Algorithm Description284

Algorithm 2 BEXP3

1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for i ∈ [K],
j ∈ [K], learning rate η, exploration parameter γ.

2: Initialize: q1(i) = 1
K .

3: for t = 1, . . . , T do
4: Sample items it ∼ qt, jt ∼ qt.
5: Query pair (it, jt) and receive feedback rt
6: Calculate Qt =

∑
i∈[K]

∑
j∈[K] qt(i)qt(j)ϕi,jϕ

⊤
i,j , θ̂t = Q−1

t ϕit,jtrt.

7: Calculate the (shifted) Borda score estimates B̂t(i) = ⟨ 1K
∑

j∈[K] ϕi,j , θ̂t⟩.
8: Update for all i ∈ [K], set

q̃t+1(i) =
exp(η

∑t
l=1 B̂l(i))∑

j∈[K] exp(η
∑t

l=1 B̂l(j))
; qt+1(i) = (1− γ)q̃t+1(i) +

γ

K
.

9: end for
Algorithm 2 is adapted from the DEXP3 algorithm in Saha et al. (2021b), which deals with the285

adversarial multi-armed dueling bandit. Algorithm 2 maintains a distribution qt(·) over [K], initialized286

as uniform distribution (Line 2). At every round t, two items are chosen following qt independently.287

Then Line 6 calculates the one-sample unbiased estimate θ̂t of the true underlying parameter θ∗
t .288

Line 7 further calculates the unbiased estimate of the (shifted) Borda score. Note that the true Borda289

score at round t satisfies Bt(i) =
1
2 + ⟨ 1K

∑
j∈[K] ϕi,j ,θ

∗
t ⟩. B̂t instead only estimates the second290

term of the Borda score. This is a choice to simplify the proof. The cumulative estimated score291 ∑t
l=1 B̂l(i) can be seen as the estimated cumulative reward of item i at round t. In Line 8, qt+1 is292

defined by the classic exponential weight update, along with a uniform exploration policy controlled293

by γ.294

6.2 Upper Bounds295

Algorithm 2 can also be configured to tightly match the worst-case lower bound:296

Theorem 9. Suppose Assumption 1 holds. If we set η = (logK)2/3d−1/3T−2/3 and γ =√
ηd/λ0 = (logK)1/3d1/3T−1/3λ

−1/2
0 , then the expected regret is upper-bounded by

O
(
(d logK)1/3T 2/3

)
.

Note that the lower bound construction is for the linear model and has K = O(2d), thus exactly297

matching the upper bound.298
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7 Experiments299
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Figure 2: The regret of the proposed algorithms
(BETC-GLM, BEXP3) and the baseline algo-
rithms (UCB-BORDA, DEXP3, ETC-BORDA).

This section compares the proposed algorithm300

BETC-GLM with existing ones that are capable301

of minimizing Borda regret. We use random re-302

sponses (generated from fixed preferential matri-303

ces) to interact with all tested algorithms. Each304

algorithm is run for 50 times over a time hori-305

zon of T = 106. We report both the mean and306

the standard deviation of the cumulative Borda307

regret and supply some analysis. The follow-308

ing list summarizes all methods we studies in309

this section, a more complete description of the310

methods and parameters are available in Ap-311

pendix E: BETC-GLM(-MATCH): Algorithm 1312

proposed in this paper with different parameters.313

UCB-BORDA: The UCB algorithm (Auer et al.,314

2002) using Borda reduction. DEXP3: Dueling-Exp3 developed by Saha et al. (2021a). ETC-315

BORDA: A simple explore-then-commit algorithm that does not take any contextual information into316

account. BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 2.317

Generated Hard Case We first test the algorithms on the hard instances constructed in Section 4.318

We generate θ∗ randomly from {−∆,+∆}d with ∆ = 1
4d so that the comparison probabilities319

pθ
∗

i,j ∈ [0, 1] for all i, j ∈ [K]. We pick the dimension d = 6 and the number of arms is therefore320

K = 2d+1 = 128. Note the dual usage of d in our construction and the model setup in Section 3.1.321

We refer readers to Remark 11 in Appendix B for more details.322

As depicted in Figure 2a, the proposed algorithms (BETC-GLM, BEXP3) outperform the baseline323

algorithms in terms of cumulative regret when reaching the end of time horizon T . For UCB-BORDA,324

since it is not tailored for the dueling regret definition, it suffers from a linear regret as its second325

arm is always sampled uniformly at random, leading to a constant regret per round. DEXP3 and326

ETC-BORDA are two algorithms designed for K-armed dueling bandits. Both are unable to utilize327

contextual information and thus demand more exploration. As expected, their regrets are higher than328

BETC-GLM or BEXP3.329

Real-world Dataset To showcase the performance of the algorithms in a real-world setting, we use330

EventTime dataset (Zhang et al., 2016). In this dataset, K = 100 historical events are compared in a331

pairwise fashion by crowd-sourced workers. We first calculate the empirical preference probabilities332

p̃i,j from the collected responses, and construct a generalized linear model based on the empirical333

preference probabilities. The algorithms are tested under this generalized linear model. Due to space334

limitations, more details are deferred to Appendix F.335

As depicted in Figure 2b, the proposed algorithm BETC-GLM outperforms the baseline algorithms336

in terms of cumulative regret when reaching the end of time horizon T . The other proposed algorithm337

BEXP3 performs equally well even when misspecified (the algorithm is designed for linear setting,338

while the comparison probability follows a logistic model).339

8 Conclusion and Future Work340

In this paper, we introduced Borda regret into the generalized linear dueling bandits setting, along341

with an explore-then-commit type algorithm BETC-GLM and an EXP3 type algorithm BEXP3. The342

algorithms can achieve a nearly optimal regret upper bound, which we corroborate with a matching343

lower bound. The theoretical performance of the algorithms is verified empirically. It demonstrates344

superior performance compared to other baseline methods.345

For future works, due to the fact that our exploration scheme guarantees an accurate estimate in all346

directions, our work can be extended to solve the top-k recovery or ranking problem, as long as a347

proper notion of regret can be identified.348
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A Additional Results and Discussion448

A.1 Existing Results for Structured Contexts449

A structural assumption made by some previous works (Saha, 2021) is that ϕi,j = xi − xj , where xi450

can be seen as some feature vectors tied to the item. In this work, we do not consider minimizing the451

Borda regret under the structural assumption.452

The immediate reason is that, when pi,j = µ(x⊤
i θ

∗ − x⊤
j θ

∗), with µ(·) being the logistic function,453

the probability model pi,j effectively becomes (a linear version of) the well-known Bradley-Terry454

model. Namely, each item is tied to a value vi = x⊤
i θ

∗, and the comparison probability follows455

pi,j =
evi

evi+evj
. More importantly, this kind of model satisfies both the strong stochastic transitivity456

(SST) and the stochastic triangle inequality (STI), which are unlikely to satisfy in reality.457

Furthermore, when stochastic transitivity holds, there is a true ranking among the items, determined458

by x⊤
i θ

∗. A true ranking renders concepts like the Borda winner or Copeland winner redundant459

because the rank-one item will always be the winner in every sense. When ϕi,j = xi − xj , Saha460

(2021) proposed algorithms that can achieve nearly optimal regret Õ(d
√
T ), with regret being defined461

as462

Regret(T ) =

T∑
t=1

2⟨xi∗ ,θ
∗⟩ − ⟨xit ,θ

∗⟩ − ⟨xjt ,θ
∗⟩, (3)

where i∗ = argmaxi⟨xi,θ
∗⟩, which also happens to be the Borda winner. Meanwhile, by Assump-463

tion 3,464

B(i∗)−B(j) =
1

K

K∑
k=1

[
µ(⟨xi∗ − xk,θ

∗⟩)− µ(⟨xj − xk,θ
∗⟩)
]
≤ Lµ · ⟨xi∗ − xj ,θ

∗⟩,

where Lµ is the upper bound on the derivative of µ(·). For logistic function Lµ = 1/4. The Borda465

regret (1) is thus at most a constant multiple of (3). This shows Borda regret minimization can be466

sufficiently solved by Saha (2021) when structured contexts are present. We consider the most general467

case where the only restriction is the implicit assumption that ϕi,j = −ϕj,i.468

A.2 Regret Bound for Fewer Arms469

In typical scenarios, the number of items K is not exponentially large in the dimension d. If this is470

the case, then we can choose a different parameter set of τ and ϵ such that Algorithm 1 can achieve471

a regret bound depending on logK, and reduce the dependence on d. The performance can be472

characterized by the following theorem:473

Theorem 10. For any δ > 0, suppose the number of total rounds T satisfies,474

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
, (4)

where C3 is some large enough universal constant. Then if we set τ = (d log(K/δ))1/3T 2/3 and475

ϵ = d1/3T−1/3 log(3K2/δ)−1/6, Algorithm 1 will incur regret bounded by:476

O
(
κ−1(d log(K/δ))1/3T 2/3

)
.

By setting δ = T−1, the expected regret is bounded as Õ
(
κ−1(d logK)1/3T 2/3

)
.477

B Omitted Proof in Section 4478

The proof relies on a class of hard-to-learn instances. We first present the construction again for479

completeness.480

For any d > 0, we construct a hard instance with 2d+1 items (indexed from 0 to 2d+1 − 1). We481

construct the hard instance pθi,j for any θ ∈ {−∆,+∆}d as:482

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+ ⟨ϕi,j ,θ⟩, (5)
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where the feature vectors ϕi,j and the parameter θ are of dimension d, and have the following forms:483

ϕi,j =


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

bit(i), if i < 2d, j ≥ 2d

−bit(j), if i ≥ 2d, j < 2d,

where bit(·) is the (shifted) bit representation of non-negative integers, i.e., suppose x = b0 × 20 +484

b1×21+ · · ·+ bd−1×2d−1, then bit(x) = 2b−1. Note that bit(·) ∈ {−1,+1}d, and ϕi,j = −ϕj,i.485

Remark 11 (d + 1-dimensional instance). The hard instance described above does not strictly486

satisfy the assumption that pθi,j = ⟨θ,ϕi,j⟩, but can be easily fixed by appending an additional487

dimension to address the bias term defined in (5). More specifically, we can set F (x) = 1
2 + x488

and pθi,j = F (⟨ϕ̃i,j , θ̃⟩), where θ̃ ∈ {−∆,+∆}d × { 14} ⊂ Rd+1 and ϕ̃i,j = (ϕi,j , ci,j), with489

ci,j =


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

1, if i < 2d, j ≥ 2d

−1, if i ≥ 2d, j < 2d.

To ensure ∥ϕ̃i,j∥2 ≤ 1, we can further set ϕ̃i,j ← (d+1)−1/2ϕ̃i,j490

and θ̃ ← (d+ 1)1/2θ̃.491

We rewrite (5) as:492

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

⟨bit(i),θ⟩, if i < 2d, j ≥ 2d

−⟨bit(j),θ⟩, if i ≥ 2d, j < 2d,

(6)

and the Borda scores are:493

Bθ(i) =

{
5
8 + 1

2 ⟨bit(i),θ⟩, if i < 2d,
3
8 , if i ≥ 2d.

Intuitively, the former half arms indexed from 0 to 2d − 1 are “good” arms (one among them is494

optimal), while the latter half arms are “bad” arms. It is clear that choosing a “bad” arm i will incur495

regret B(i∗)−B(i) ≥ 1/4.496

Now we are ready to present the proof.497

Proof of Theorem 4. First, we present the following lemma:498

Lemma 12. Under the hard instance we constructed above, for any algorithm A that ever makes499

queries it ≥ 2d, there exists another algorithm A′ that only makes queries it < 2d for every t > 0500

and always achieves no larger regret than A.501

Proof of Lemma 12. The proof is done by reduction. For any algorithm A, we wrap A with such a502

agent A′:503

1. If A queries (it, jt) with it < 2d, the agent A′ will pass the same query (it, jt) to the504

environment and send the feedback rt to A;505

2. If A queries (it, jt) with it ≥ 2d, jt < 2d, the agent A′ will pass the query (jt, it) to the506

environment and send the feedback 1− rt to A;507

3. If A queries (it, jt) with it ≥ 2d, jt ≥ 2d, the agent A′ will uniform-randomly choose i′t508

from 0 to 2d − 1, pass the query (i′t, i
′
t) to the environment and send the feedback rt to A.509

For each of the cases defined above, the probabilistic model of bandit feedback for A is the same as510

if A is directly interacting with the original environment. For Case 1, the claim is trivial. For Case 2,511

the claim holds because of the symmetry of our model, that is pθi,j = 1− pθj,i. For Case 3, both will512
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return rt following Bernoulli(1/2). Therefore, the expected regret ofA in this environment wrapped513

by A′ is equal to the regret of A in the original environment.514

Meanwhile, we will show A′ will incur no larger regret than A. For the first two cases, A′ will515

incur the same one-step regret as A. For the third case, we know that Bθ(it) = Bθ(jt) = 3
8 ,516

while E[Bθ(i′t)] =
5
8 + 1

2 ⟨Ei′t
[bit(i′t)],θ⟩ = 5

8 + 1
2 ⟨0,θ⟩ =

5
8 , meaning that the one-step regret is517

smaller.518

Lemma 12 ensures it is safe to assume it < 2d. For any θ and k ∈ [d], define519

Pθ,k := Pθ

( T∑
t=1

1{bit[k](it) ̸= sign(θ[k])} ≥ T

2

)
,

where the superscript [k] over a vector denotes taking the k-th entry of the vector. Meanwhile, we520

define θ\k to satisfy (θ\k)[k] = −θ[k] and be the same as θ at all other entries. We have521

Pθ\k,k := Pθ\k

( T∑
t=1

1
{

bit[k](it) ̸= sign
(
(θ\k)[k]

)}
≥ T

2

)

= Pθ\k

( T∑
t=1

1{bit[k](it) = sign(θ[k])} ≥ T

2

)

= Pθ\k

( T∑
t=1

1{bit[k](it) ̸= sign(θ[k])} < T

2

)
.

By the Bretagnolle–Huber inequality and the decomposition of the relative entropy, we have522

Pθ,k + Pθ\k,k ≥
1

2
exp

(
−KL(Pθ,A∥Pθ\k,A)

)
≥ 1

2
exp

(
− Eθ

[ T∑
t=1

KL
(
pθi,j

∥∥∥pθ\k

i,j

)])

≥ 1

2
exp

(
− Eθ

[ T∑
t=1

C⟨ϕit,jt ,θ − θ\k⟩2
])

=
1

2
exp

(
− Eθ

[
40∆2

T∑
t=1

1{it < 2d ∧ jt ≥ 2d}
])

,

where the first inequality comes from the Bretagnolle–Huber inequality; the second inequality is the523

decomposition of the relative entropy; the third inequality holds because the Bernoulli KL divergence524

KL(p∥p+ x) is 10-strongly convex in x for any fixed p ∈ [1/8, 7/8], and indeed pθi,j ∈ [1/8, 7/8]525

as long as d∆ ≤ 1/8; the last equation holds because ϕit,jt has non-zero entries only when (it, jt)526

belongs to that specific regions.527

From now on, we denote N(T ) :=
∑T

t=1 1{it < 2d ∧ jt ≥ 2d}. Further averaging over all528

θ ∈ {−1,+1}d, we have529

1

2d

∑
θ∈{−1,+1}d

Pθ,k ≥
1

4

1

2d

∑
θ∈{−1,+1}d

exp
(
− 40∆2Eθ[N(T )]

)
≥ 1

4
exp

(
− 40∆2 1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )]

)
,

where the first inequality is from averaging over all θ; the second inequality is from Jensen’s530

inequality.531
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Utilizing the inequality above, we establish that532

1

2d

∑
θ∈{−1,+1}d

Regret(T ;θ,A) ≥ 1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

Bθ(i∗)−Bθ(it)

]

=
1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

⟨θ, sign(θ)− bit(it)⟩
]

=
1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

d∑
k=1

2∆1{bit[k](it) ̸= sign(θ[k])}
]

=
2∆

2d

∑
θ∈{−1,+1}d

d∑
k=1

Eθ

[ T∑
t=1

1{bit[k](it) ̸= sign(θ[k])}
]

≥ 2∆

2d

∑
θ∈{−1,+1}d

d∑
k=1

Pθ,k ·
T

2

≥ ∆dT

4
exp

(
− 40∆2 1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )]

)
, (7)

where the first inequality comes from the Borda regret; the second inequality comes from the533

inequality E[X] ≥ aP(X ≥ a) for any non-negative random variable; the last inequality is from534

rearranging terms and invoking the results above.535

Meanwhile, we have (remember N(T ) :=
∑T

t=1 1{it < 2d ∧ jt ≥ 2d})536

1

2d

∑
θ∈{−1,+1}d

Regret(T ;θ,A) ≥ 1

2d

∑
θ∈{−1,+1}d

Eθ

[
1

4

T∑
t=1

1{it < 2d ∧ jt ≥ 2d}
]

=
1

4

1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )], (8)

where the first inequality comes from that any items i ≥ 2d will incur at least 1/4 regret.537

Combining (7) and (8) together and denoting that X = 1
2d

∑
θ∈{−1,+1}d Eθ[N(T )], we have that for538

any algorithm A, there exists some θ, such that (set ∆ = d−1/3T−1/3
√
40

)539

Regret(T ;θ,A) ≥ max

{
∆dT

4
exp(−40∆2X),

X

4

}
= max

{
d2/3T 2/3

4
√
40

exp(−d−2/3T−2/3X),
X

4

}
≥ d2/3T 2/3

4
√
40

max

{
exp(−d−2/3T−2/3X), d−2/3T−2/3X

}
≥ d2/3T 2/3

8
√
40

,

where the first inequality is the combination of (7) and (8); the second inequality is a rearrangement540

and loosely lower bounds the constant; the last is due to max{e−y, y} > 1/2 for any y.541

C Omitted Proof in Section 5542

We first introduce the lemma about the theoretical guarantee of G-optimal design: given an action543

set X ⊆ Rd that is compact and span(X ) = Rd. A fixed design π(·) : X → [0, 1] satisfies544 ∑
x∈X π(x) = 1. Define V(π) :=

∑
x∈X π(x)xx⊤ and g(π) := maxx∈X ∥x∥2V(π)−1 .545
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Lemma 13 (The Kiefer–Wolfowitz Theorem, Section 21.1, Lattimore and Szepesvári (2020)). There546

exists an optimal design π∗(·) such that |supp(π)| ≤ d(d+ 1)/2, and satisfies:547

1. g(π∗) = d.548

2. π∗ is the minimizer of g(·).549

The following lemma is also useful to show that under mild conditions, the minimum eigenvalue of550

the design matrix can be lower-bounded:551

Lemma 14 (Proposition 1, Li et al. 2017). Define Vτ =
∑τ

t=1 ϕ
⊤
it,jt

ϕit,jt , where each (it, jt) is552

drawn i.i.d. from some distribution ν. Suppose λmin

(
E(i,j)∼ν [ϕ

⊤
i,jϕi,j ]

)
≥ λ0, and553

τ ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2B

λ0
,

where C1 and C2 are some universal constants. Then with probability at least 1− δ,554

λmin(Vτ ) ≥ B.

C.1 Proof of Theorem 5555

The proof relies on the following lemma to establish an upper bound on |⟨ϕi,j , θ̂τ+N − θ∗⟩|.556

Lemma 15 (extracted from Lemma 3, Li et al. (2017)). Suppose λmin(Vτ+N ) ≥ 1. For any δ > 0,557

with probability at least 1− δ, we have558

∥θ̂τ+N − θ∗∥Vτ+N
≤ 1

κ

√
d

2
log(1 + 2(τ +N)/d) + log(1/δ).

Proof of Theorem 5. The proof can be divided into three steps: 1. invoke Lemma 14 to show that559

the initial τ rounds for exploration will guarantee λmin(Vτ ) ≥ 1; 2. invoke Lemma 13 to obtain an560

optimal design π and utilize Cauchy-Schwartz inequality to show that |⟨θ̂τ+N − θ,ϕi,j⟩| ≤ 3ϵ/κ; 3.561

balance the not yet determined ϵ to obtain the regret upper bound.562

Since we set τ such that563

τ = C4λ
−2
0 (d+ log(1/δ))

≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2

λ0
,

with a large enough universal constant C4, by Lemma 14 to obtain that with probability at least 1− δ,564

λmin(Vτ ) ≥ 1. (9)

From now on, we assume (9) always holds.565

Define N :=
∑

i,j N(i, j), Vτ+1:τ+N :=
∑τ+N

t=τ+1 ϕ
⊤
it,jt

ϕit,jt , Vτ+N := Vτ +Vτ+1:τ+N . Given566

the optimal design π(i, j), the algorithm queries the pair (i, j) ∈ supp(π) for exactly N(i, j) =567

⌈dπ(i, j)/ϵ2⌉ times. Therefore, the design matrix Vτ+N satisfies568

Vτ+N ⪰ Vτ+1:τ+N

=
∑
i,j

N(i, j)ϕi,jϕ
⊤
i,j

⪰
∑
i,j

dπ(i, j)

ϵ2
ϕi,jϕ

⊤
i,j

=
d

ϵ2
V(π),

where V(π) :=
∑

i,j π(i, j)ϕi,jϕ
⊤
i,j . The first inequality holds because Vτ is positive semi-definite,569

and the second inequality holds due to the choice of N(i, j).570
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When (9) holds, from Lemma 15, we have with probability at least 1− δ, that for each ϕi,j ,571

|⟨θ̂ − θ∗,ϕi,j⟩| ≤ ∥θ̂τ+N − θ∗∥Vτ+N
· ∥ϕi,j∥V−1

τ+N

≤ ∥θ̂τ+N − θ∗∥Vτ+N
·
ϵ∥ϕi,j∥V(π)−1

√
d

≤ ∥θ̂τ+N − θ∗∥Vτ+N
· ϵ

≤ ϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ) (10)

where the first inequality is due to the Cauchy-Schwartz inequality; the second inequality holds572

because Vτ+N ⪰ d
ϵ2V(π); the third inequality holds because π is an optimal design and by573

Lemma 13, ∥ϕi,j∥2V(π)−1 ≤ d; the last inequality comes from Lemma 15.574

To summarize, we have that with probability at least 1− 2δ, for every i ∈ [K],575

|B̂(i)−B(i)| =
∣∣∣∣ 1K

K∑
j=1

(
µ(ϕ⊤

i,jθ
∗)− µ(ϕ⊤

i,j θ̂)
)∣∣∣∣

≤ 1

K

K∑
j=1

∣∣∣µ(ϕ⊤
i,jθ

∗)− µ(ϕ⊤
i,j θ̂)

∣∣∣
≤ Lµ

K

K∑
j=1

∣∣ϕ⊤
i,j

(
θ∗ − θ̂)

∣∣
≤ 3Lµϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ), (11)

where the first equality is by the definition of the empirical/true Borda score; the first inequality is576

due to the triangle inequality; the second inequality is from the Lipschitz-ness of µ(·) (Lµ = 1/4 for577

the logistic function); the last inequality holds due to (10). This further implies the gap between the578

empirical Borda winner and the true Borda winner is bounded by:579

B(i∗)−B(̂i) = B(i∗)− B̂(i∗) + B̂(i∗)−B(̂i)

≤ B(i∗)− B̂(i∗) + B̂(̂i)−B(̂i)

≤ 6Lµϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ),

where the first inequality holds due to the definition of î, i.e., B̂(̂i) ≥ B̂(i) for any i; the last inequality580

holds due to (11).581

Meanwhile, since N :=
∑

(i,j)∈supp(π) N(i, j) and supp(π) ≤ d(d + 1)/2 from Lemma 13, we582

have that583

N ≤ d(d+ 1)/2 +
d

ϵ2
,

because ⌈x⌉ < x+ 1.584

Therefore, with probability at least 1− 2δ, the regret is bounded by:585

Regret(T ) = Regret1:τ +Regretτ+1:τ+N +Regretτ+N+1:T

≤ τ +N +
12LµϵT

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ)

≤ τ + d(d+ 1)/2 +
d

ϵ2
+

12LµϵT

κ
·O

(
d1/2

√
log

(
T

dδ

))

= O

(
κ−1d2/3T 2/3

√
log

(
T

dδ

))
,
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where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ + 1 to τ + N , and586

τ + N + 1 to T ; the second inequality is simply bounding the one-step regret from 1 to τ + N587

by 1, while for t > τ + N , we have shown that the one-step regret is guaranteed to be smaller588

than 12Lµϵ
√

d log(1 + 2(τ +N)/d) + log(1/δ)/
√
2κ. The last line holds because we set τ =589

O(d + log(1/δ)) and ϵ = d1/6T−1/3. Note that to ensure τ + N < T , it suffices to assume590

T = Ω(d2).591

By setting δ = T−1, we can show that the expected regret of Algorithm 1 is bounded by592

Õ
(
κ−1(d2/3T 2/3)

)
.

593

C.2 Proof of Theorem 10594

The following lemma characterizes the non-asymptotic behavior of the MLE estimator. It is extracted595

from Li et al. (2017).596

Lemma 16 (Theorem 1, Li et al. 2017). Define Vs =
∑s

t=1 ϕ
⊤
it,jt

ϕit,jt , and θ̂s as the MLE597

estimator (2) at round s. If Vs satisfies598

λmin(Vs) ≥
512M2

µ(d
2 + log(3/δ))

κ4
, (12)

then for any fixed x ∈ Rd, with probability at least 1− δ,599

|⟨θ̂s − θ∗,x⟩| ≤ 3

κ

√
∥x∥2

V−1
s

log(3/δ).

Proof of Theorem 10. The proof can be essentially divided into three steps: 1. invoke Lemma 14 to600

show that the initial τ rounds for exploration will guarantee (12) is satisfied; 2. invoke Lemma 13 to601

obtain an optimal design π and utilize Lemma 16 to show that |⟨θ̂τ+N −θ,ϕi,j⟩| ≤ 3ϵ/κ; 3. balance602

the not yet determined ϵ to obtain the regret upper bound.603

First, we explain why we assume604

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
.

To ensure (12) in Lemma 16 can hold, we resort to Lemma 14, that is605

τ ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2B

λ0
,

B :=
512M2

µ(d
2 + log(3/δ))

κ4
.

Since we set τ = (d log(K2/δ))1/3T 2/3, this means T should be large enough, so that606

(d log(K2/δ))1/3T 2/3 ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
1024M2

µ(d
2 + log(3K2/δ))

κ4λ0
.

With a large enough universal constant C3, it is easy to verify that the inequality above will hold as607

long as608

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
.

By Lemma 14, we have that with probability at least 1− δ,609

λmin(Vτ ) ≥
512M2

µ(d
2 + log(3K2/δ))

κ4
. (13)

From now on, we assume (13) always holds.610
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Define N :=
∑

i,j N(i, j), Vτ+1:τ+N :=
∑τ+N

t=τ+1 ϕ
⊤
it,jt

ϕit,jt , Vτ+N := Vτ +Vτ+1:τ+N . Given611

the optimal design π(i, j), the algorithm queries each pair (i, j) ∈ supp(π) for exactly N(i, j) =612

⌈dπ(i, j)/ϵ2⌉ times. Therefore, the design matrix Vτ+N satisfies613

Vτ+N ⪰ Vτ+1:τ+N

=
∑
i,j

N(i, j)ϕi,jϕ
⊤
i,j

⪰
∑
i,j

dπ(i, j)

ϵ2
ϕi,jϕ

⊤
i,j

=
d

ϵ2
V(π),

where V(π) :=
∑

i,j π(i, j)ϕi,jϕ
⊤
i,j . The first inequality holds because Vτ is positive semi-definite,614

and the second inequality holds due to the choice of N(i, j).615

To invoke Lemma 16, notice that λmin(V) ≥ λmin(Vτ ). Along with (13), by Lemma 16, we have616

for any fixed ϕi,j , with probability at least 1− δ/K2, that617

|⟨θ̂ − θ∗,ϕi,j⟩| ≤
3

κ

√
∥ϕi,j∥2V−1

τ+N

log(3K2/δ)

≤ 3

κ

√
ϵ2

d
· ∥ϕi,j∥2V(π)−1 log(3K2/δ)

=
3ϵ

κ

√
∥ϕi,j∥2V(π)−1

d
·
√
log(3K2/δ)

≤ 3ϵ

κ
·
√

log(3K2/δ), (14)

where the first inequality comes from Lemma 16; the second inequality holds because Vτ+N ⪰618
d
ϵ2V(π); the last inequality holds because π is an optimal design and by Lemma 13, ∥ϕi,j∥2V(π)−1 ≤619

d.620

Taking union bound for each (i, j) ∈ [K] × [K], we have that with probability at least 1 − δ, for621

every i ∈ [K],622

|B̂(i)−B(i)| =
∣∣∣∣ 1K

K∑
j=1

(
µ(ϕ⊤

i,jθ
∗)− µ(ϕ⊤

i,j θ̂)
)∣∣∣∣

≤ 1

K

K∑
j=1

∣∣∣µ(ϕ⊤
i,jθ

∗)− µ(ϕ⊤
i,j θ̂)

∣∣∣
≤ Lµ

K

K∑
j=1

∣∣ϕ⊤
i,j

(
θ∗ − θ̂)

∣∣
≤ 3Lµϵ

κ
·
√

log(3K2/δ), (15)

where the first equality is by the definition of the empirical/true Borda score; the first inequality is623

due to the triangle inequality; the second inequality is from the Lipschitz-ness of µ(·) (Lµ = 1/4 for624

the logistic function); the last inequality holds due to (14). This further implies the gap between the625

empirical Borda winner and the true Borda winner is bounded by:626

B(i∗)−B(̂i) = B(i∗)− B̂(i∗) + B̂(i∗)−B(̂i)

≤ B(i∗)− B̂(i∗) + B̂(̂i)−B(̂i)

≤ 6Lµϵ

κ
·
√

log(3K2/δ),

where the first inequality holds due to the definition of î, i.e., B̂(̂i) ≥ B̂(i) for any i; the last inequality627

holds due to (15).628
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Meanwhile, since N :=
∑

(i,j)∈supp(π) N(i, j) and supp(π) ≤ d(d + 1)/2 from Lemma 13, we629

have that630

N ≤ d(d+ 1)/2 +
d

ϵ2
,

because ⌈x⌉ < x+ 1.631

Therefore, with probability at least 1− 2δ, the regret is bounded by:632

Regret(T ) = Regret1:τ +Regretτ+1:τ+N +Regretτ+N+1:T

≤ τ +N +
12Lµϵ

κ
T ·
√
log(3K2/δ)

≤ τ + d(d+ 1)/2 +
d

ϵ2
+

12Lµϵ

κ
T ·
√
log(3K2/δ)

= O
(
κ−1(d log(K/δ))1/3T 2/3

)
,

where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ + 1 to τ + N , and633

τ + N + 1 to T . the second inequality is simply bounding the one-step regret from 1 to τ + N634

by 1, while for t > τ + N , we have shown that the one-step regret is guaranteed to be smaller635

than 12Lµϵ
√
log(3K2/δ)/κ. The last line holds because we set τ = (d log(3K2/δ))1/3T 2/3 and636

ϵ = d1/3T−1/3 log(3K2/δ)−1/6.637

By setting δ = T−1, we can show that the expected regret of Algorithm 1 is bounded by638

O
(
κ−1(d log(KT ))1/3T 2/3)

)
.

Note that if there are exponentially many contextual vectors (K ≈ 2d), the upper bound becomes639

Õ(d2/3T 2/3).640

D Omitted Proof in Section 6641

We make the following notation. LetHt−1 := (q1, P1, (i1, j1), r1, . . . , qt, Pt) denotes the history up642

to time t. Here Pt means the comparison probability pti,j at round t. The following lemmas are used643

in the proof. We first bound the estimate B̂t(i).644

Lemma 17. For all t ∈ [T ], i ∈ [K], it holds that B̂t(i) ≤ λ−1
0 /γ2.645

Proof of Lemma 17. Using our choice of qt ≥ γ/K, we have the following result for the matrix Qt:646

Qt =
∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j ⪰ γ2 1

K2

∑
i∈[K]

∑
j∈[K]

ϕi,jϕ
⊤
i,j . (16)

Furthermore, we can use the definition of the estimate B̂t(i) to show that647

B̂t(i) =

〈
1

K

∑
j∈[K]

ϕi,j , θ̂t

〉
=

〈
1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt)

≤ 1

K

∑
j∈[K]

∥ϕi,j∥2Q−1
t
,

where we use the fact that |rt| ≤ 1. Let Σ = 1
K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j . With (16) we have648

Qt ⪰ γ2Σ. Therefore, we can further bound B̂t(i) with649

B̂t(i) ≤
1

Kγ2

∑
j∈[K]

∥ϕi,j∥2Σ−1

≤ 1

γ2
max
i,j
∥ϕi.j∥2Σ−1

≤ λ−1
0

γ2
,
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where the first inequality holds due to (16) and that ∥x∥2A−1 ≤ ∥x∥2B−1 if A ⪰ B; the third inequality650

holds because we assume λ0 ≤ λmin

(
1

K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j

)
and ∥ϕi,j∥ ≤ 1.651

The following lemma proves that our (shifted) estimate is unbiased.652

Lemma 18. For all t ∈ [T ], i ∈ [K], the following equality holds:653

E[B̂t(i)] = Bt(i)−
1

2
.

Proof of Lemma 18. Using our definition of B̂t(i), we have654

B̂t(i) =

〈
1

K

∑
j∈[K]

ϕi,j , θ̂t

〉
=

〈
1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt).

Therefore, by the law of total expectation (tower rule), we have655

E[B̂t(i)] = EHt−1

[
E(it,jt,rt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt)|Ht−1

]]

= EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
Ert [rt(it, jt)|(it, jt)]

∣∣∣Ht−1

]]

= EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
pt(it, jt)

∣∣∣Ht−1

]]
Then we use the definition of pt and the expectation. We can further get the equality656

E[B̂t(i)] = EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jtϕ

⊤
it,jtθ

∗
〉∣∣∣Ht−1

]]

= EHt−1

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t

( ∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j

)
θ∗
〉∣∣∣∣Ht−1

]

= EHt−1

[〈 1

K

∑
j∈[K]

ϕi,j ,θ
∗
〉∣∣∣∣Ht−1

]
= Bt(i)−

1

2
.

Therefore, we have completed the proof of Lemma 18.657

The following lemma is similar to Lemma 5 in Saha et al. (2021b).658

Lemma 19. EHt [q
⊤
t B̂t] = EHt−1

[
Ex∼qt [Bt(x)|Ht−1]

]
− 1

2 , ∀t ∈ [T ].659

Proof of Lemma 19. Taking conditional expectation, we have660

EHt [q
⊤
t B̂t] = EHt

[
K∑
i=1

qt(i)B̂t(i)

]

= EHt−1

[
K∑
i=1

qt(i)E(it,jt,rt)

[
B̂(i)

∣∣∣Ht−1

]]

= EHt−1

[
K∑
i=1

qt(i)

(
Bt(i)−

1

2

)]

= EHt−1

[
Ex∼qt

[
Bt(x)

∣∣∣Ht−1

]]
− 1

2
,

where we use the law of total expectation again as well as Lemma 18.661

22



The last lemma bounds a summation
∑

i∈[K] qt(i)B̂t(i)
2, which will be important in our proof.662

Lemma 20. At any time t, E[
∑

i∈[K] qt(i)B̂t(i)
2] ≤ d/γ.663

Proof of Lemma 20. Let P̂t(i, j) = ⟨ϕi,j , θ̂t⟩. Using the definition of B̂t and P̂t(i, j), we have the664

following inequality:665

E

∑
i∈[K]

qt(i)B̂t(i)
2

 = E

∑
i∈[K]

qt(i)

 1

K

∑
j∈[K]

P̂t(i, j)

2


≤ E

∑
i∈[K]

qt(i)
1

K

∑
j∈[K]

P̂ 2
t (i, j)


= E

∑
i∈[K]

qt(i)
1

γ

∑
j∈[K]

γ

K
P̂ 2
t (i, j)


≤ 1

γ
E

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j)

 .

The first inequality holds due to the Cauchy-Schwartz inequality; the second inequality holds because666

the definition of qt satisfies qt ≥ γ/K.667

Expanding the definition of P̂ 2
t (i, j), we have668

P̂ 2
t (i, j) = r2t (it, jt)

(
ϕ⊤

i,jQ
−1
t ϕit,jt

)2
≤ ϕ⊤

it,jtQ
−1
t ϕi,jϕ

⊤
i,jQ

−1
t ϕit,jt ,

where we use 0 ≤ r2t (it, jt) ≤ 1. Therefore, the following inequality holds,669 ∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j) ≤

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕ
⊤
it,jtQ

−1
t ϕi,jϕ

⊤
i,jQ

−1
t ϕit,jt

= ϕ⊤
it,jtQ

−1
t

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j

Q−1
t ϕit,jt

= ϕ⊤
it,jtQ

−1
t ϕit,jt

= trace(ϕit,jtϕ
⊤
it,jtQ

−1
t ).

Using the property of trace, we have670

E

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j)

 ≤ trace

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,jQ

−1
t

 = d.

Therefore, we finish the proof of Lemma 20.671

Proof of Theorem 9. Our regret is defined as follows,672

EHT
[RT ] = EHT

[
T∑

t=1

[2Bt(i
∗)−Bt(it)−Bt(jt)]

]

= max
i∈[K]

EHT

[
T∑

t=1

[2Bt(i)−Bt(it)−Bt(jt)]

]
.
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The second equality holds because Bt and i∗ are independent of the randomness of the algorithm.673

Furthermore, we can write the expectation of the regret as674

EHT
[RT ] = 2 max

i∈[K]

T∑
t=1

Bt(i)−
T∑

t=1

EHT
[Bt(it) +Bt(jt)]

= 2 max
i∈[K]

T∑
t=1

Bt(i)− 2

T∑
t=1

EHt−1
[Ex∼qt [Bt(x)|Ht−1]]

= 2 max
i∈[K]

T∑
t=1

(
Bt(i)−

1

2

)
− 2EHt

[
q⊤t B̂t

]
, (17)

where the last equality is due to Lemma 19.675

Then we follow the standard proof of EXP3 algorithm (Lattimore and Szepesvári, 2020). Let676

St,k =
∑t

s=1

(
Bs(k)− 1

2

)
, Ŝt,k =

∑t
s=1 B̂s(k), ωt =

∑
k∈[K] exp(−ηŜt,k) and ω0 = K. We677

have ∀a ∈ [K],678

exp(−ηŜT,a) ≤
∑

k∈[K]

exp(−ηŜT,k) = ωT = ω0 ·
T∏

t=1

ωt

ωt−1
. (18)

For each term in the product, we have679

ωt+1

ωt
=
∑

k∈[K]

exp(−ηŜt−1,k)

ωt−1
· exp(−ηB̂t(k))

=
∑

k∈[K]

q̃t(k) exp(−ηB̂t(k)), (19)

where the second equality holds because of the definition of q̃t. For any η ≤ λ0γ
2, Lemma 17680

presents |ηB̂t(k)| ≤ 1. Thus, using the basic inequality exp(x) ≤ 1 + x+ x2/2 when x ≤ 1, and681

exp(x) ≥ 1 + x, we have682

ωt+1

ωt
≤
∑

k∈[K]

q̃t(k)
(
1− ηB̂t(k) + η2B̂2

t (k)
)

= 1− η
∑

k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

≤ exp

−η ∑
k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

 . (20)

Combining (18), (19) and (20), we have683

exp(−ηŜT,a) ≤ K exp

 T∑
t=1

−η ∑
k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

 ,

and therefore684

T∑
t=1

B̂t(a)−
T∑

t=1

q̃⊤t B̂t ≤
logK

η
+ η

T∑
t=1

∑
k∈[K]

q̃t(k)B̂
2
t (k).

Since q̃t =
qt−γ/K

1−γ , we have685

(1− γ)

T∑
t=1

B̂t(a)−
T∑

t=1

q⊤t B̂t ≤
logK

η
+ η

T∑
t=1

∑
k∈[K]

q̃t(k)B̂
2
t (k).
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Choosing a = i∗, changing the summation index to i and taking expectation on both sides, we have686

(1− γ)EHT

T∑
t=1

B̂t(i
∗)−

T∑
t=1

EHT

[
q⊤t B̂t

]
≤ logK

η
+ EHT

η T∑
t=1

∑
i∈[K]

qt(i)B̂
2
t (i)

 .

Substituting the above inequality into (17) and using Lemma 18, 19, we can bound the regret as687

E[RT ] ≤ 2γT +
2 logK

η
+ 2η

T∑
t=1

EHT

∑
i∈[K]

qt(i)st(i)
2


≤ 2γT + 2

logK

η
+

2ηdT

γ

≤ 2(logK)1/3d1/3T 2/3
√

1/λ0 + 2(logK)1/3d1/3T 2/3 + 2(logK)1/3d1/3T 2/3
√
λ0,

where the second inequality holds due to Lemma 20. In the last inequality, we put in our choice688

of parameters η = (logK)2/3d−1/3T−2/3 and γ =
√
ηd/λ0 = (logK)1/3d1/3T−1/3λ

−1/2
0 . This689

finishes our proof of Theorem 9.690
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E Detailed Explanation of Studied Algorithms in Experiments691

The following list summarizes all methods we implemented:692

BETC-GLM(-MATCH): Algorithm 1 proposed in this paper. For general link function, to find θ̂ by693

MLE in (2), 100 rounds of gradient descent are performed. The failure probability is set to δ = 1/T .694

Parameters τ and ϵ are set to values listed in Theorem 10. For BETC-GLM-MATCH, we use the τ695

and ϵ outlined in Theorem 5.696

UCB-BORDA: The UCB algorithm (Auer et al., 2002) using Borda reduction technique mentioned697

by Busa-Fekete et al. (2018). The complete listing is displayed in Algorithm 3.698

DEXP3: Dueling-Exp3 is an adversarial Borda bandit algorithm developed by Saha et al. (2021a),699

which also applies to our stationary bandit case. Relevant tuning parameters are set according to their700

upper-bound proof.701

ETC-BORDA: We devise a simple explore-then-commit algorithm, named ETC-BORDA. Like702

DEXP3, ETC-BORDA does not take any contextual information into account. The complete703

procedure of ETC-BORDA is displayed in Algorithm 4, Appendix G.2. The failure probability δ is704

optimized as 1/T .705

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 2. η and γ are706

chosen to be the value stated in Theorem 9.707

F Real-world Data Experiments708

To showcase the performance of the algorithms in a real-world setting, we use EventTime dataset709

(Zhang et al., 2016). In this dataset, K = 100 historical events are compared in a pairwise fashion by710

crowd-sourced workers.711

We first calculate the empirical preference probabilities p̃i,j from the collected responses. A visualized712

preferential matrix consisting of p̃i,j is shown in Figure 5 in Appendix F.1, which demonstrates713

that STI and SST conditions hardly hold in reality. During simulation, p̃i,j is the parameter of the714

Bernoulli distribution that is used to generate the responses whenever a pair (i, j) is queried. The715

contextual vectors ϕi,j are generated randomly from {−1,+1}5. For simplicity, we assign the item716

pairs that have the same probability value with the same contextual vector, i.e., if p̃i,j = p̃k,l then717

ϕi,j = ϕk,l. The MLE estimator θ̂ in (2) is obtained to construct the recovered preference probability718

p̂i,j := µ(ϕ⊤
i,j θ̂) where µ(x) = 1/(1 + e−x) is the logistic function. We ensure that the recovered719

preference probability p̂i,j is close to p̃i,j , so that ϕi,j are informative enough. As shown in Figure 3,720

our algorithm outperforms the baseline methods as expected. In particular, the gap between our721

algorithm and the baselines is even larger than that under the generated hard case. In both settings,722

our algorithms demonstrated a stable performance with negligible variance.723
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Figure 4: The regret of the proposed algorithm (BETC-GLM,BEXP3) and the baseline algorithms
(UCB-BORDA, DEXP3, ETC-BORDA).

F.1 Data Visualization724

The events in EventTime dataset are ordered by the time they occurred. In Figure 5, the magnitude of725

each p̃i,j is color coded. It is apparent that there is no total/consistent ordering (i.e., p̃i,j > 1
2 ⇔ i ≻ j)726
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can be inferred from this matrix due to inconsistencies in the ordering and many potential paradoxes.727

Hence STI and SST can hardly hold in this case.728

Figure 5: Estimated preferential matrix consists of p̃i,j from the EventTime dataset.

G Additional Information for Experiments729

G.1 The UCB-BORDA Algorithm730

The UCB-BORDA procedure, displayed in Algorithm 3 is a UCB algorithm with Borda reduction731

only capable of minimization of regret in the following form:732

Regret(T ) =

T∑
t=1

(
B(i∗)−B(it)

)
.

Let ni be the number of times arm i ∈ [K] has been queried. Let wi be the number of times arm i733

wins the duel. B̂(i) is the estimated Borda score. α is set to 0.3 in all experiments.734

Algorithm 3 UCB-BORDA

1: Input: time horizon T , number of items K, exploration parameter α.
2: Initialize: n = w = {0}K , B̂(i) = 1

2 , i ∈ [K]
3: for t = 1, 2, . . . , T do
4: it = argmaxk∈[K]

(
B̂k +

√
α log(t)

nk

)
5: sample jt ∼ Uniform([K])
6: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)
7: nit = nit + 1, wit = wit + rt, B̂(it) =

wit

nit

8: end for

G.2 The ETC-BORDA Algorithm735

The ETC-BORDA procedure, displayed in Algorithm 4 is an explore-then-commit type algorithm736

capable of minimizing the Borda dueling regret. It can be shown that the regret of Algorithm 4 is737

Õ(K1/3T 2/3).738
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Algorithm 4 ETC-BORDA

1: Input: time horizon T , number of items K, target failure probability δ

2: Initialize: n = w = {0}K , B̂(i) = 1
2 , i ∈ [K]

3: Set N = ⌈K−2/3T 2/3 log(K/δ)1/3⌉
4: for t = 1, 2, . . . , T do

5: Choose action it ←

{
1 + (t− 1) mod K, if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

6: Choose action jt =

{
Uniform([K]), if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

7: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)
8: if t ≤ N then
9: nit = nit + 1, wit = wit + rt, B̂(it) =

wit

nit

10: end if
11: end for

G.3 FRANK-WOLFE algorithm used to find approximate solution for G-optimal design739

In order to find a solution for the G-optimal design problem, we resort to Frank-Wolfe algorithm740

to find an approximate solution. The detailed procedure is listed in Algorithm 5. In Line 4, each741

outer product costs d2 multiplications, K2 such matrices are scaled and summed into a d-by-d matrix742

V(π), which costs O(K2d2) operations in total. In Line 5, one matrix inversion costs approximately743

O(d3). The weighted norm requires O(d2) and the maximum is taken over K2 such calculated values.744

The scaling and update in the following lines only requires O(K2). In summary, the algorithm is745

dominated by the calculation in Line 5 which costs O(d2K2).746

In experiments, the G-optimal design π(i, j) is approximated by running 20 iterations of Frank-Wolfe747

algorithm, which is more than enough for its convergence given our particular problem instance. (See748

Note 21.2 in (Lattimore and Szepesvári, 2020)).749

Algorithm 5 G-OPTIMAL DESIGN BY FRANK-WOLFE

1: Input: number of items K, contextual vectors ϕi,j , i ∈ [K], j ∈ [K], number of iterations R
2: Initialize: π1(i, j) = 1/K2

3: for r = 1, 2, · · · , R do
4: V(πr) =

∑
i,j πr(i, j)ϕi,jϕ

⊤
i,j

5: i∗r , j
∗
r = argmax(i,j)∈[K]×[K] ||ϕi,j ||V(πr)−1

6: gr = ||ϕi∗r ,j
∗
r
||V(πr)−1

7: γr = gr−1/d
gr−1

8: πr+1(i, j) = (1− γr)πr(i, j) + γr1(i
∗
r = i)1(j∗r = j)

9: end for
10: Output: Approximate G-optimal design solution πR+1(i, j)
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