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Abstract

Data parallelism across multiple machines is widely adopted for accelerating dis-
tributed deep learning, but it is hard to achieve linear speedup due to the heavy
communication. In this paper, we propose SAPipe, a performant system that
pushes the training speed of data parallelism to its fullest extent. By introducing
partial staleness, the communication overlaps the computation with minimal stal-
eness in SAPipe. To mitigate additional problems incurred by staleness, SAPipe
adopts staleness compensation techniques including weight prediction and delay
compensation with provably lower error bounds. Additionally, SAPipe presents
an algorithm-system co-design with runtime optimization to minimize system
overhead for the staleness training pipeline and staleness compensation. We have
implemented SAPipe in the BytePS framework, compatible to both TensorFlow
and PyTorch. Our experiments show that SAPipe achieves up to 157% speedups
over BytePS (non-stale), and outperforms PipeSGD in accuracy by up to 13.7%.

1 Introduction
Deep Neural Networks (DNNs) have achieved ground-breaking performance on a wide range of
domains, such as computer vision (CV) [10, 17] and natural language processing (NLP) [29, 7].
Meanwhile, the model sizes and data volumes have grown exponentially, making DNN training
time-consuming and resource-intensive. The most common approach to accelerate DNN training is to
use data parallelism, scaling DNN training across multiple devices. Despite the substantial speedup,
distributed machine learning systems with data parallelism often cannot fully utilize the computation
resources and achieve linear scaling (i.e., GPU number times single-GPU training speed), due to
non-negligible communication overhead [31, 2, 23, 13].

Many recent studies have been devoted to developing communication acceleration techniques. Some
works reduce communication traffic using gradient compression [2] or mixed-precision training [21],
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while others schedule communication to overlap it with computation. For example, ByteSched-
uler [23] and PACE [3] propose preemptive communication scheduling to hide the communication
overhead within forward computation time. These communication scheduling approaches reduce the
communication overhead without affecting the convergence of training, but still cannot fully hide
communication when the communication-to-computation ratio is high.

A new direction to accelerate distributed DNN training has been explored, which intentionally
introduces staleness to the training pipeline in order to further increase the overlap between commu-
nication and computation. For example, PipeSGD [19] uses the gradients from the previous iteration
in stochastic gradient descent (SGD), resulting in fixed 1-step staleness.

Though introducing fixed staleness may fully overlap communication with computation for some
DNNs, the staleness may also incur severe problems to the convergence of training. We observe
significant accuracy degradation or even training divergence with only 1-step staleness of gradients in
our experiments. We identify this key limitation and propose 2 solutions: 1) partial staleness, which
introduces staleness to a limited number of layers; 2) staleness compensation, which compensates
the 1-step staleness by predicting the gradient to be produced in the next iteration, with optimized
implementation to reduce the overhead of prediction.

We design a performant and Staleness-Aware communication Pipeline (SAPipe) system for accelerat-
ing distributed DNN training, which reduces the communication overhead in distributed training by
overlapping communication with computation, and approaches the linear scaling.

The main contributions of this paper are as follows:

• We propose a partial staleness algorithm, which finds the minimal number of layers to introduce
staleness to, so as to keep the training pipeline running without stall (§ 3.1).

• We adopt multiple staleness compensation techniques, including delay compensation, weight
prediction and their combinations (§ 3.2).

• We propose an algorithm-system co-design, kernel fusion, and other runtime optimizations in
SAPipe, that are especially designed and implemented to minimize the system overhead of partial
staleness and staleness compensation (§ 3.3).

• We provide theoretical guarantees to show that SAPipe achieves the same convergence rate as
vanilla SGD, and conditionally better error bounds compared to PipeSGD (§ 4).

• We demonstrate that SAPipe outperforms existing frameworks. SAPipe achieves up to 157%
speedups over BytePS (non-stale), and outperforms PipeSGD in accuracy by up to 13.7% (§ 5).

2 Background
Preliminaries. In distributed deep learning, we solve the following optimization problem with
n workers: minx∈Rd F (x), where F (x) = 1

n

∑
i∈[n] Fi(x) =

1
n

∑
i∈[n] Ezi∼Dif(x; zi), ∀i ∈ [n],

is the objective function, x ∈ Rd is the set of model parameters (d is the total number of model
parameters), zi is a mini-batch of data randomly sampled from the local data Di on device i, and f(·)
is loss function. A typical DNN is composed of m layers, which are concatenated into a flattened
vector x for simplicity.

Distributed training with data parallelism. Data parallelism partitions the training data onto
multiple devices, i.e., workers. Each worker propagates its local data through the model and calculate
the loss (forward propagation). It uses the loss value to compute the gradients of each parameter
(backward propagation), and aggregates them from all workers, before updated to the global model.
To facilitate distributed training, the parameter server [18] and all-reduce [26] are the two most
popular communication architectures for gradient aggregation. The detailed process is shown in
Algorithm 1, highlighted in blue.

Staleness pipeline. To hide communication time, previous works (e.g., PipeSGD [19]) introduce
1-step staleness to the training pipeline, where the forward computation can progress without waiting
for the gradient synchronization. To be more specific, the gradient aggregation of each layer is
executed once its backward computation is finished, followed by the optimizer update using the
aggregated gradient from the previous iteration. Thus, the gradient aggregation overlaps with not
only the backward computation and optimizer update of the current iteration, but also the forward
computation of the next iteration. The gradient aggregation initiated in the current iteration will be
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Algorithm 1 Distributed Training /
Staleness Training Pipeline (PipeSGD)

1: Initialize x0

2: for all iteration t ∈ [T ] do
3: for all workers i ∈ [n] in parallel do
4: Compute ∇f(xt−1; zi,t), zi,t ∼ Di

5: if t = 1 then
6: Same as t > 1 Pass
7: else
8: gi,t ← ∇f(xt−1; zi,t)
9: gi,t ← ∇f(xt−2; zi,t−1)

10: gt =
1
n

∑
i∈[n] gi,t

11: xt ← optimizer (xt−1, gt, ηt)

Algorithm 2 Staleness-Aware Pipeline with Delay
Compensation (SAPipe-DC)

1: Initialize x0

2: for all iteration t ∈ [T ] do
3: for all workers i ∈ [n] in parallel do
4: Compute ∇f(xt−1; zi,t), zi,t ∼ Di

5: if t > 1 then
6: gi,t = ∇f(xt−2; zi,t−1)
7: gt =

1
n

∑
i∈[n] gi,t

8: ∆xt = xt−1 − xt−2

9: gDC
t ← DCλ(gt,∆xt)

10: ▷ DC is a func. defined in Equ. (1)
11: xt ← optimizer

(
xt−1, g

DC
t , ηt

)
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(a) Architecture (b) Workflow

(1) The computation sends gradients to the communication service for
synchronization, and receives non-stale synchronized results. 
(2) The computation sends requests for stale gradients. 
(3) The staleness mitigation module loads related data from staleness buffer,
and applies weight prediction and delay compensation to the DNN model.
(4) The communication service updates the staleness buffer when the
synchronization of stale gradients is finished

Figure 1: The architecture and workflow of SAPipe. Solid lines: data flow with all gradients. Dashed
lines: data flow with stale gradients.

finished in the next iteration. We outline the conceptual distributed staleness training pipeline in
Algorithm 1, highlighted in orange. Staleness pipeline results in delayed gradients, which may cause
significant accuracy degradation of the converged model, as shown in our experiments (§ 5).

3 SAPipe Design

To address the convergence issue of staleness pipeline, we design a staleness-aware system, SAPipe,
as shown in Figure 1(a), based on the following key designs.

Partial Staleness. Not all layers in a DNN model require a staleness training pipeline to fully hide
communication within computation. Our partial staleness algorithm finds a minimal number of layers
to be updated by stale gradients (§ 3.1), while updating the other layers without staleness.

Staleness Compensation. To further mitigate the problem caused by staleness of the layers chosen by
the partial staleness algorithm, we compensate the staleness of the gradients by multiple approaches
including delay compensation and weight prediction (§ 3.2).

Optimized Runtime. Both staleness training pipeline and staleness compensation incur additional
overhead of computation and memory copy. To minimize such overhead, we adopt several system
optimizations to achieve the high-performance runtime (§ 3.3).
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Table 1: Notations

Notation Description Notation Description
bi Duration of backward operator i T, t Total number and index of iterations
ui Duration of forward operator i gt Stochastic gradient gt = 1

n

∑
i∈[n] gi,t

vi Duration of comm. operator i (gt)j The jth coordinate of gt, j ∈ [d]
c Completion time of operators (gi,t)j The jth coordinate of gi,t, on worker i
n Total number of workers (∇Ft)j The jth coordinate of∇F (xt), j ∈ [d]
m Total number of layers ◦ Hadamard (coordinate-wise) product
x Model parameter x ∈ Rd d The number of model parameters

3.1 Partial Staleness

Due to the layer-wise structure of DNN models 1 and the reverse order of forward and backward
passes, it only requires parts of the gradients to be stale to hide the communication overhead. Reducing
the number of stale gradients mitigates the problems caused by staleness, improving convergence and
keeping communication overhead hidden at the same time. We seek to find the minimal number of
stale gradients such that there is no training pipeline stall, i.e., no waiting time for computing devices.

A naive way is to enumerate all possible combinations of gradients and check if they lead to training
pipeline stall, which involves prohibitive complexity. Fortunately, the execution orders of the layers
in sequential models are fixed, which provides the opportunity for efficient searching.

Theorem 1. In a training pipeline without stall, if some forward layer is stale, then all its preceding
forward layers are stale.

Detailed proof of Theorem 1 is in the Appendix. Then we consider the case that the first k layers
need to be trained on staled gradients for fully overlapping its computation and communication, and
formulate the following convex program for finding the minimal number of stale layers. Here the
variables are defined in Table 1.

minimize k

subject to
∑
i

vi ≤
∑
i

bi +
∑
i

ui,

m∑
i=k+1

vi ≤
m−1∑
i=1

bi +

k∑
i=1

ui, i = 1, . . . ,m;

0 ≤ k ≤ m, vi > 0, bi > 0, ui > 0, i = 1, . . . ,m.

The first constraint aims to keep communication and computation fully overlapped. The second con-
straint ensures that the non-delayed gradients should be synchronized before the start of computation
of the corresponding layers. We assume that the computation time of each layer remains the same
under different solutions and the execution order follows FIFO. The above problem can be solved
in O(m2) time by enumerating k. The optimal solution gives the minimal delayed gradients and
ensures maximal training throughput.

Figure 2: DNN training pipeline. The ar-
rows denote dependencies between two
operators.

In SAPipe, the first k layers are updated with 1-step stal-
eness, while the remaining layers are updated by vanilla
distributed SGD without staleness (see Figure 2). The
basic version of SAPipe (referred to as vanila SAPipe) is
a mixture of distributed SGD and PipeSGD as given in Al-
gorithm 1. For theoretical analysis, we add the following
definition.

Definition 1. Let κ = dstale

d ∈ [0, 1] denote the portion
of model parameters updated by stale gradients, where
dstale is the total number of model parameters contained
in the k layers that are updated with 1-step staleness.

1We focus on sequential models, and the discussion about extending our methods to DAG models can be
found in the Appendix.
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Algorithm 3 Staleness-Aware Pipeline with Weight Prediction (SAPipe-WP)
1: Initialize x0

2: for all iteration t ∈ [T ] do
3: for all workers i ∈ [n] in parallel do
4: if t = 1 then
5: Compute ∇f(x0; zi,0), zi,0 ∼ Di

6: else
7: gi,t ← ∇f(x̃i,t−1; zi,t−1) ▷ Computed in the prev. iteration
8: Option 1: g̃i,t ← gi,t ▷ Local gradient
9: Option 2: g̃i,t ← gt−1 ▷ Latest sync. gradient

10: Option 3: g̃i,t ← DC(gt−1 − 1
ngi,t−1,∆xt) +

1
ngi,t, where ∆xt = xt−1 − xt−2

11: x̃i,t ← optimizer (xt−1, g̃i,t, ηt) ▷ 1-step-ahead weight prediction
12: Compute∇f(x̃i,t; zi,t), zi,t ∼ Di ▷ Synchronization is finished in the next iteration
13: gt ← 1

n

∑
i∈[n] gi,t

14: xt ← optimizer (xt−1, gt, ηt)

3.2 Staleness Compensation
We introduce two staleness compensation methods in our distributed training pipeline: delay compen-
sation and weight prediction. Note that in SAPipe, they are only applied to the first k layers of DNN,
chosen by the partial staleness algorithm above, while the remaining layers are updated by normal
distributed training procedure as shown in the blue part of Algorithm 1.

Delay compensation (DC). Inspired by DC-ASGD [34], we mitigate the effects of delayed gradients
on the model with delay compensation. This method leverages Taylor expansion of the gradient
function and efficient approximation of the Hessian matrix of the loss function. In the original design
of DC-ASGD, the following delay-compensated gradient is used: gt ≈ gt′+λgt′◦gt′◦(xt−1−xt′−1),
where t > t′, gt is the gradient evaluated on xt−1, and λ > 0 is a hyperparameter. Note that the delay
compensation above is a diagonal approximation of the full matrix form: gt′ ◦ gt′ ◦ (xt−1− xt′−1) ≈
gt′g

⊤
t′ (xt−1−xt′−1). In this paper, we prefer to use the full-matrix form of DC to avoid the additional

error caused by the diagonal approximation:
gt ≈ DCλ(gt′ , xt−1 − xt′−1) = gt′ + λgt′g

⊤
t′ (xt−1 − xt′−1). (1)

The detailed algorithm of SAPipe with DC is shown in Algorithm 2. We will show that by com-
pensating the 1-step staleness, SAPipe-DC achieves a lower error bound than vanilla SAPipe, and
converges as fast as the non-stale baseline.

Weight prediction (WP). In a 1-step staleness pipeline, model weights are always updated using
the synchronized gradients in the last iteration, resulting in convergence problems with inconsistent
weight. The goal of WP is to estimate the 1-step-ahead weights for forward pass and backward pass,
and to obtain 1-step-ahead gradients, in order to counteract the 1-step staleness. We provide three
options for weight prediction: 1) WP with local gradient in the current step, 2) WP with the latest
synchronized gradient, and 3) WP with all the above combined and DC.

The algorithm of SAPipe with WP is given in Algorithm 3. Line 5 computes the normal gradients
in the first step. In the following steps, Line 7 retrieves the local gradient cached in each worker,
and Line 8 to Line 10 provide the options for weight prediction. We apply an extra optimizer update
using predicted gradients (Line 11) in each worker to predict 1-step-ahead weights, and conduct
forward and backward propagation to obtain the 1-step-ahead gradients (Line 12). Line 13 finishes
the synchronization of the gradients from the last step, and Line 14 uses them to update the model.
Note that the delayed gradients in the last step are computed based on 1-step predicted weights.
Therefore, the 1-step staleness is compensated.

3.3 Optimized Runtime

Figure 1(b) shows the workflow of the staleness pipeline system. SAPipe’s staleness pipeline incurs
extra overhead, namely: (1) the computation of staleness compensation; (2) data transfer between
the staleness buffer and other modules. To minimize the system overhead, we present an algorithm-
system co-design. We fuse the computation operations in DC and WP methods and other small
weight update functions into several batched kernels. This saves a significant amount of kernel
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launching time. We further optimize the usage of staleness buffer. We use a double buffer system [28]
to handle stale gradients, reducing the transferring overhead, and minimize the memory usage by
sharing the staleness buffer between computation and communication. We also switch the location
of the staleness buffer between CPU memory and GPU memory according to the execution time
of communication and computation pipeline stages. This overlaps the transferring overhead of the
staleness buffer between communication and computation devices.

4 Theoretical Results
We establish theoretical guarantees of the convergence of SAPipe for smooth but non-convex prob-
lems, using SGD as the optimizer: optimizerSGD(xt−1, gt, ηt) = xt−1 − ηtgt, with a constant
learning rate ηt = η.

4.1 Assumptions
Assumption 1. (Smoothness) We assume that f(x; z), ∀z, are L-smooth: ∥∇f(x; z)−∇f(y; z)∥ ≤
L∥x− y∥,∀x, y , which implies f(y; z)− f(x; z) ≤ ⟨∇f(x; z), y − x⟩+ L

2 ∥y − x∥2.
Assumption 2. For any stochastic gradient gi,t = ∇f(xi,t−1; zi,t), zi,t ∼ Di, where Di is the local
dataset on worker i, we assume bounded variance and ℓ2-norm: E[∥gi,t −∇Fi(xi,t−1)∥2] ≤ V1,
∥gi,t∥2 ≤ V2,∀i ∈ [n], t ∈ [T ]. Furthermore, gradients from different workers are independent of
each other.

Assumption 3. Introduced in [30], we assume bounded gradient diversity:
∑

i∈[n] ∥∇Fi(x)∥2

∥
∑

i∈[n] ∇Fi(x)∥2 ≤ ρ, ∀x.

The gradient diversity shows to what extent the local gradients on different workers are distinguished
from each other. It is easy to check that Assumption 3 implies the bounded difference between the
local and global gradients: 1

n

∑
i∈[n] ∥∇Fi(x)−∇F (x)∥2 ≤

(
ρ
n − 1

)
∥∇F (x)∥2.

Assumption 4. For DC in Eqn. (1), we assume that the objective function f(x) is twice-
differentiable. Thus, we have the Taylor’s approximation on x′ ∈ Rd with bounded remainder:
∥∇f(x) − (∇f(x′) + ∇2f(x′)(x − x′))∥ ≤ M∥x − x′∥2, where ∇2f(x′) is the Hessian matrix
evaluated on x′. We also assume that the Hessian approximation error is upper-bounded by ∆,
∀x ∈ Rd, i.e., ∥∇f(x)(∇f(x))⊤ −∇2f(x)∥2 ≤ ∆, with vector-induced matrix norm ∥ · ∥2.

Note that the original paper of DC-ASGD proves that ∆→ 0 when t→∞ under certain assumptions.
Thus, it is reasonable to assume a bounded approximation error.
Assumption 5. For simplicity, we assume that for partial staleness, the elements of every gradient
are randomly and independently chosen to have 1-step staleness.
Assumption 6. There exists at least one global minimum x∗, where F (x∗) ≤ F (x),∀x. And we
define the initial gap as R0 = F (x0)− F (x∗).

4.2 Convergence Analysis
We derive the following error bounds on the convergence of SAPipe under the above assumptions.
All proofs can be found in Appendix A.
Theorem 2. Under Assumptions 1, 2, 5 and 6, taking η ≤ 1

L , after T iterations, for vanilla
SAPipe without DC or WP, we have the following error bound: 1

T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤

2R0

ηT + κErr0 + V ar0, where Err0 = L2η2V2 and V ar0 = LηV1

n .

Remark 1. Theorem 2 shows that the overall convergence error bound of vanilla SAPipe includes
2 main components: the gradient estimation error Err0 and the variance error V ar0. Err0 is
rooted in the 1-step staleness. V ar0 is incurred by the random sampling in stochastic gradients.
Remark 2. When no layer is updated with staleness, SAPipe is reduced to vanilla distributed SGD.
In this case, the gradient estimation error κErr0 vanishes with κ = 0, which results in the exact error
bound of vanilla distributed SGD. On the contrary, when all the layers are updated with staleness,
SAPipe is reduced to PipeSGD with the gradient estimation error Err0 and κ = 1.
Theorem 3. Under Assumptions 1, 2, 4, 5 and 6, taking a small enough λ so that ληV2 ≤ 1− 1√

2
,

and η ≤ 1
L , after T iterations, for Algorithm 2 (SAPipe-DC), we have the following error bound:
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1
T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT + κErrDC + (1 + κ)V ar0, where ErrDC = 128η4M2V 2
2 +

32η2(1− λ)2L2V2 + 32η2λ2∆2V2 + 16η3λ2LV 3
2 .

Remark 3. Regardless of the variance error, the main difference between the error bounds of vanilla
SAPipe and SAPipe-DC is the gradient estimation error. Note that if we have a small enough Hessian
estimation error yielding very small M and ∆, by taking small enough η and making λ → 1, the
overall gradient estimation error of SAPipe-DC is smaller than that of PipeSGD, i.e., ErrDC ≤ Err0
under certain conditions. In other words, SAPipe-DC has better convergence compared to PipeSGD
when the Hessian approximation error is small enough.

Theorem 4. Under Assumptions 1, 2, 3, 5 and 6, taking η ≤ 1
L , after T it-

erations, for Algorithm 3 (SAPipe-WP) with Option 1, we have the following error
bound: 1

T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT + κErrWP−1 + V ar0, where ErrWP−1 =

L2η2
[(

ρ
n − 1

)
V2 +

(
3− ρ

n

)
V1

]
.

Remark 4. The main difference between Theorem 2 and Theorem 4 is the gradient estimation error,
i.e., V2 versus

(
ρ
n − 1

)
V2 +

(
3− ρ

n

)
V1. When V1 and ρ are small enough (i.e., V1 ≤ 2−ρ/n

3−ρ/nV2),
SAPipe-WP with Option 1 produces a smaller error compared to the vanilla SAPipe, i.e., ErrWP−1 ≤
Err0 under certain conditions. In other words, SAPipe-WP with Option 1 has better convergence
compared to vanilla SAPipe when the difference between the local datasets on different workers is
small enough.

Theorem 5. Under Assumptions 1, 2, 5 and 6, taking η ≤ 1
L , after T itera-

tions, for Algorithm 3 (SAPipe-WP) with Option 2, we have the following error bound:
1
T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT + κErrWP−2 + V ar0, where ErrWP−2 = L2η2

1−2L2η2 (2V1 +

2L2η2V2).

Remark 5. The main difference between Theorem 2 and Theorem 5 is the gradient estimation error,
i.e., V2 versus 1

1−2L2η2 (2V1+2L2η2V2). When L is small enough (i.e., L2 ≤ 1−2V1/V2

4η2 ), SAPipe-WP
with Option 2 produces a smaller error compared to vanilla SAPipe, i.e., ErrWP−2 ≤ Err0 under
certain conditions. In other words, SAPipe-WP with Option 2 has better convergence compared to
vanilla SAPipe when the objective function is “smooth” enough.

Theorem 6. Under Assumptions 1, 2, 4, 5 and 6, taking η ≤ 1
L , after T itera-

tions, for Algorithm 3 (SAPipe-WP) with Option 3, we have the following error bound:
1
T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT + κErrWP−3 + V ar0, where ErrWP−3 = η2L2[8V1

n +

4η4M2V 2
2 + 2η2V2(L

2(1− λ)2 + λ2∆2)].

Remark 6. The main difference between Theorem 2 and Theorem 6 is the gradient estimation error,
i.e., V2 versus [8V1

n + 4η4M2V 2
2 + 2η2V2(L

2(1− λ)2 + λ2∆2)]. When η, M , ∆ are small enough
and n is large enough, SAPipe-WP with Option 3 produces a smaller error compared to vanilla
SAPipe, i.e., ErrWP−3 ≤ Err0 under certain conditions. Furthermore, λ provides a trade-off
between L2 and ∆2. If the objective function is relatively “smooth” yielding L < ∆, then λ → 0
is preferred, and otherwise λ→ 1 is preferred. In practice, since both L and ∆ are unknown and
depend on the model architecture and datasets, tuning λ ∈ [0, 1] is required for better performance.

Corollary 1. For vanilla SAPipe, SAPipe-DC and SAPipe-WP with all 3 options, taking η ∝
min

(
1√
T
, 1
L

)
, we have 1

T

∑T
t=1 E

[
∥∇F (xt−1)∥2

]
≤ O

(
1√
T

)
+O

(
V1

n
√
T

)
, same as vanilla SGD.

Remark 7. The corollary above shows that vanilla SAPipe, SAPipe-DC and SAPipe-WP with all
3 options converge to a critical point where ∥∇F (xt−1)∥ → 0, when T → +∞, and the error
decreases when there are more workers. In general, vanilla SAPipe, SAPipe-DC and SAPipe-WP
have the same overall convergence rate O

(
1√
T

)
. However, the detailed gradient estimation error

varies for different algorithms, as shown in Theorems 2, 3, 4, 5, and 6. Under certain conditions
such as low gradient variance, low gradient diversity, good smoothness, low Hessian approximation
error, and specific choices of η and λ, one of these algorithms achieves the lowest convergence error.
Hence, hyperparameter tuning and algorithm selection are required in practice.
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Table 2: Comparing model performance of SAPipe with baselines. We use perplexity (lower is better)
as the metric for GPT-2, and accuracy (higher is better) for other models.

Model VGG16 ResNet50 GPT-2 Transformer
Dataset CIFAR-10 ImageNet CIFAR-10 ImageNet WikiText-2 Multi30K

BytePS 0.925 ± 0.0020 0.731 ± 0.0020 0.932 ± 0.0022 0.762 ± 0.0022 20.10 ± 0.23 0.673 ± 0.0033
PipeSGD 0.906 ± 0.0064 0.726 ± 0.0019 0.893 ± 0.0032 0.753 ± 0.0015 22.36 ± 0.33 0.531 ± 0.0044

SAPipe-DC 0.908 ± 0.0018 0.734 ± 0.0011 0.894 ± 0.0019 0.758 ± 0.0150 22.50 ± 0.48 0.526 ± 0.0031
SAPipe-WP-OPT1 0.926 ± 0.0017 0.718 ± 0.0020 0.932 ± 0.0020 0.757 ± 0.0022 21.80 ± 0.25 0.663 ± 0.0059
SAPipe-WP-OPT2 0.902 ± 0.0026 0.729 ± 0.0059 0.908 ± 0.0019 0.751 ± 0.0061 22.60 ± 0.09 0.662 ± 0.0007
SAPipe-WP-OPT3 0.914 ± 0.0020 0.735 ± 0.0038 0.897 ± 0.0034 0.758 ± 0.0013 20.23 ± 0.32 0.668 ± 0.0032

Over PipeSGD 2% 0.9% 3.9% 0.5% 2.13 13.7%
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Figure 3: Training throughput.
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Figure 4: Convergence of different models. x-axis is wall-clock training time, and y-axis is perplexity
(lower is better) for GPT-2, and test accuracy (higher is better) for others.

5 Evaluation
5.1 Set-up

Testbed. We evaluate SAPipe 2 on 8 physical machines, each equipped with 90 CPU cores, 320GB
memory, 8 Tesla V100 GPUs with NVLinks, and 100Gbps bandwidth between any two machines.

Models and datasets. We choose two CV models, VGG16 [27], ResNet50 [10], and two NLP
models, pretrained GPT-2 [25], Transformer [29], as our benchmark models. The batch sizes per
GPU are 128 images, 128 images, 80 tokens and 3200 tokens, respectively. We adopt SGD optimizer
with 0.9 Polyak’s momentum [24] and 5e-5 weight decay when training VGG16 and ResNet50
models, and Adam [14] optimizer with (0.9, 0.98) betas for NLP models. The global learning rates
for VGG16, ResNet50 and GPT-2 are 0.1, 0.1, and 5e-5, respectively, and we follow the learning
rate setting in [29] when training Transformer. SAPipe uses Option 3 in Algorithm 3 as the default
staleness compensation method, with λ empirically set as 0.2.

We train CV models on two datasets: (i) CIFAR-10 [16] and (ii) ImageNet [17]. We fine-tune the
pretrained GPT-2 model on (iii) WikiText-2 language modeling dataset [20]. The Transformer model
is trained on (iv) Multi30K [8] for WMT16 English-to-German Multimodal Translation task.

Baselines. We compare SAPipe with three state-of-the-art communication frameworks: (1)
Horovod [26], a high-performance all-reduce paradigm; (2) BytePS [13], an optimized parameter-
server architecture; (3) PipeSGD [19], a pipelined training framework with 1-step staleness. 3. All
baselines and SAPipe are run on PyTorch computation framework. 4

2Code: https://github.com/ChenAris/sapipe.git
3Since PipeSGD is not open-sourced, we implement its staleness pipeline based on BytePS architecture.
4Magnified figures and additional experiment results are in the Appendix.
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Figure 5: Deep dive in SAPipe. “SAPipe w/o” denotes SAPipe without partial staleness.

5.2 Results and Analysis

Convergence. Figure 4 shows the convergence curves when training DNN models with 16 GPUs.
We observe that SAPipe converges much faster than baselines. It not only achieves the highest
training throughput, but also incurs very little influence on model convergence. For example, SAPipe
is roughly 35%, 67% and 21% faster for VGG16 than BytePS, Horovod and PipeSGD, respectively.
Though PipeSGD has comparable training speed, it converges much slower across models, and
decreases final accuracy by 13% with Transformer. This reveals the obvious error incurred by 1-step
staleness.

Staleness mitigation. Table 2 lists the final model performance of different frameworks. 5 SAPipe
achieves comparable test accuracy and perplexity with non-stale baseline, BytePS. PipeSGD incurs
significant performance drop on four models. With staleness compensation, SAPipe solves the
convergence problem with staleness pipeline, while greatly boosting the training speed. Overall,
SAPipe achieves significant improvement in accuracy/perplexity over PipeSGD of 2.6%, 3.5%, 13.7%
and 2.13, for VGG16, ResNet50, Transformer and GPT-2, respectively.

We also compare different staleness compensation options of SAPipe with baselines. The best option
varies among DNN training jobs. For example, “SAPipe-WP-OPT1” (i.e., predicting weights using
local gradients) achieves the highest test accuracy when training CV models on CIFAR-10, and
“SAPipe-WP-OPT3” (i.e., combined mitigation with WP and DC) is the best option for ImageNet,
WikiText-2 and Multi30K datasets. Other options improve the convergence to some extent as
compared to PipeSGD, but are suboptimal in these cases. The method to find the best staleness
mitigation option for a given DNN task is our future work.

Scalability. Figure 3 shows the throughput of baselines and SAPipe when training with different
numbers of workers. SAPipe achieves up to 57% and 203% speedups over BytePS and Horovod in
all settings. Horovod does not apply communication scheduling, which leads to the worst throughput.
BytePS enables preemptive communication scheduling, but it does not overlap gradient synchroniza-
tion of the first few layers with computation. Thus, the communication overhead in BytePS is still
large for GPT-2 model. PipeSGD performs the best among baselines, while SAPipe still achieves up
to 6% speedup over PipeSGD, thanks to our high-performance runtime optimization.

Ablation study. We evaluate the effectiveness of each component of SAPipe. Figure 5(a) shows
the throughput speedup and staleness mitigation with partial staleness when training VGG16 on
CIFAR-10 dataset with 8 GPUs. We observe that with our partial staleness, SAPipe improves the
final accuracy without slowing down training, by involving less delayed gradients.

We also compare SAPipe with BytePS, PipeSGD and SAPipe without runtime optimization when
training DNN models with 32 GPUs, as shown in Figure 5(c). We use the speedup over the BytePS
baseline as the throughput metric. “SAPipe w/o optimized execution” refers to a naive implementation
of staleness-aware pipeline, which incurs non-negligible overhead for staleness mitigation. SAPipe
achieves the highest throughput across all models, and the overhead of staleness mitigation decreases
the training speed by 7% to 24% over SAPipe. Without runtime optimization, the staleness pipeline
with mitigation methods could be slower than BytePS baseline by up to 6%.

Sensitivity. Figure 5(d) varies the value of hyperparameter λ in “SAPipe-WP-OPT3” method
when training ResNet50 and Transformer. We observe that the staleness compensation method is not

5Horovod does not impact the convergence and has the same final accuracy as BytePS, so we omit it.
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sensitive to the hyperparameter, and achieves the highest accuracy when it reaches 0.5, 0.2 and 0.2
when training on CIFAR-10, ImageNet and Multi30K datasets, respectively.

6 Related Work
Communication optimization. Many popular ML frameworks, such as TensorFlow [1] and Py-
Torch [22], enable overlapping communication with backward propagation by default. Recent
works [12, 9, 23, 3] further overlap gradient synchronization with forward computation via tensor
partitioning, at the cost of extra overhead. ASP [6] advocates asynchronous training to improve com-
munication efficiency; without controlling the staleness, it leads to unstable convergence. SSP [11] is
another asynchronous training protocol with bounded staleness. PipeSGD [19] restricts the staleness
to one step in training. However, these methods do not mitigate the extra error caused by staleness,
which degrades the model performance. We focus on synchronous pipelined training, without gradient
compression. We minimize the number of stale layers, and propose multiple staleness compensation
methods, achieving both high training throughput and comparable accuracy.

Staleness mitigation. Staleness mitigation is important for asynchronous SGD. Widely used ap-
proaches include staleness-aware rescaling of learning rate [33] and gradients [4], and delay compen-
sation [34]. [15, 5] use linear weight prediction to narrow down the difference between models used
in forward and backward passes for model parallelism. In our experiments, we find that simply using
delay compensation or linear weight prediction in PipeSGD results in poor convergence, which calls
for better strategies. Furthermore, the additional overhead incurred by staleness mitigation motivates
our co-design of training algorithms and system optimization. However, the best staleness mitigation
method varies in different DNN tasks, and this is the limitation of SAPipe that requires empirical
experiments to find the optimal solution.

7 Conclusion
We present SAPipe, a performant and staleness-aware pipelined system to accelerate distributed DNN
training without model performance loss. To fully overlap gradient synchronization communication
with computation with minimal staleness, we introduce partial staleness, which restricts the number
of layers learned with stale gradients. To further mitigate convergence issues caused by staleness,
SAPipe adopts weight prediction and delay compensation. With an algorithm-system co-design,
SAPipe achieves both better error bounds in theory, and high-performance runtime in practice.
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Appendix

A Proofs

In this section we provide the detailed proofs of the theoretical analysis.

Lemma 1. (General error bound) Under Assumption 1, taking η ≤ 1
L , in the tth step, for the

distributed SGD with the general gradient estimator gi,t (the gradient estimator produced by the ith
worker in the tth step), we have the following error bound in expectation conditional on xt′ where
t′ < t:

E[F (xt)]

≤ F (xt−1)−
η

2
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2
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2
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2
 .

The theorem states that in each iteration, the loss function F (x) is expected to decrease by
η
2∥∇F (xt−1)∥2, with the error caused by the variance of the stochastic gradient estimator
Lη2

2 E
[∥∥∥ 1
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∑
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1
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∑
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∥∥∥2] (i.e., variance) and the error caused by the difference

between the true gradient and the gradient estimator η
2
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∥∥∥2 (i.e., bias).

Proof. In the tth step, using L-smoothness, we have
F (xt)

≤ F (xt−1) + ⟨∇F (xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= F (xt−1) +

〈
∇F (xt−1),−η

1

n

∑
i∈[n]

gi,t

〉
+

L

2

∥∥∥∥∥∥−η 1n
∑
i∈[n]

gi,t

∥∥∥∥∥∥
2

.

Taking expectation on both sides conditional on xt′ where t′ < t, we have

E[F (xt)] ≤ F (xt−1)− η

〈
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We bound the terms step by step.

First, for 1⃝, we have
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For 2⃝, we have
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Combining the ingredients above together, we have
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Using Lemma 1, we establish the error bound of the convergence of vanilla SAPipe, Algo-
rithm 2 (SAPipe-DC) Algorithm 3 (SAPipe-WP).

Theorem 2. Under Assumption 1, 2, 5, and 6, taking η ≤ 1
L , after T iterations, for vanilla SAPipe

without DC or WP, we have the following error bound:

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT
+ κErr0 + V ar0,

where Err0 = L2η2V2, V ar0 = LηV1

n .

Proof. For vanilla SAPipe, we have E[gi,t] = ∇Fi(xt−2) if the gradient has one-step staleness.
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Thus, for the variance term, we have

E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2


=
1

n2

∑
i∈[n]

E
[
∥gi,t − E[gi,t]∥2

]
=

1

n2

∑
i∈[n]

E
[
∥gi,t −∇fi(xt−2)∥2

]
≤ V1

n
.

For the error of the gradient estimation, we have∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

∇Fi(xt−2)

∥∥∥∥∥∥
2

= ∥∇F (xt−1)−∇F (xt−2)∥2

≤ L2 ∥xt−1 − xt−2∥2 ▷ L-smoothness

= L2

∥∥∥∥∥∥η 1n
∑
i∈[n]

gi,t−1

∥∥∥∥∥∥
2

= L2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(xt−3)

∥∥∥∥∥∥
2

.

Putting all the ingredients together, we have
E[F (xt)]

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+
η

2

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

+
Lη2

2
E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2


≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2 +

κη

2
L2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(xt−3)

∥∥∥∥∥∥
2

+
Lη2

2

V1

n
.

By re-arranging the terms, we have

∥∇F (xt−1)∥2 ≤
2E[F (xt−1)− F (xt)]

η
+ κL2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(xt−3)

∥∥∥∥∥∥
2

+
LηV1

n
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
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≤ 2E[F (x0)− F (x∗)]

ηT
+ L2η2

1

T

T∑
t=3

E

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(xt−3)

∥∥∥∥∥∥
2

+
LηV1

n

≤ 2E[F (x0)− F (x∗)]

ηT
+ κL2η2V2 +

LηV1

n
. ▷ Assumption 2

Theorem 3. Under Assumption 1, 2, 4, 5, and 6, taking a small enough λ so that ληV2 ≤ 1− 1√
2

,
and η ≤ 1

L , after T iterations, for Algorithm 2 (SAPipe-DC), we have the following error bound:

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT
+ κErrDC + (1 + κ)V ar0,

where ErrDC = 128η4M2V 2
2 + 32η2(1− λ)2L2V2 + 32η2λ2∆2V2 + 16η3λ2LV 3

2 .

Proof. Thus, for the variance term, we have

E
[∥∥gDC

t − E[gDC
t ]

∥∥2]
= E

[∥∥gt + λgtg
⊤
t (xt−1 − xt−2)− E[gt + λgtg

⊤
t (xt−1 − xt−2)]

∥∥2]
= E

[∥∥gt − E[gt] + λgtg
⊤
t (xt−1 − xt−2)− E[λgtg⊤t (xt−1 − xt−2)]

∥∥2]
≤ 2E

[
∥gt − E[gt]∥2

]
+ 2E

[∥∥λgtg⊤t (xt−1 − xt−2)− E[λgtg⊤t (xt−1 − xt−2)]
∥∥2]

≤ 2V1

n
+ 2E

[∥∥λgtg⊤t (xt−1 − xt−2)− E[λgtg⊤t (xt−1 − xt−2)]
∥∥2]

≤ 2V1

n
+ 2λ2E

[∥∥gtg⊤t (xt−1 − xt−2)
∥∥2]

≤ 2V1

n
+ 2λ2E

[
∥gt∥2∥gt∥2∥xt−1 − xt−2∥2

]
≤ 2V1

n
+ 2λ2V 2

2 ∥xt−1 − xt−2∥2.

For the error of the gradient estimation, we have∥∥∇F (xt−1)− E[gDC
t ]

∥∥2
=

∥∥∇F (xt−1)− E[gt + λgtg
⊤
t (xt−1 − xt−2)]

∥∥2
=

∥∥∇F (xt−1)− E[gt +∇2f(xt−2)(xt−1 − xt−2)] + E[gt +∇2f(xt−2)(xt−1 − xt−2)]− E[gt + λgtg
⊤
t (xt−1 − xt−2)]

∥∥2
≤ 2

∥∥∇F (xt−1)− E[gt +∇2f(xt−2)(xt−1 − xt−2)]
∥∥2

+ 2
∥∥E[gt +∇2f(xt−2)(xt−1 − xt−2)]− E[gt + λgtg

⊤
t (xt−1 − xt−2)]

∥∥2
≤ 2M2∥xt−1 − xt−2∥4 + 2

∥∥E[∇2f(xt−2)(xt−1 − xt−2)]− E[λgtg⊤t (xt−1 − xt−2)]
∥∥2

▷ Assumption 4

≤ 2M2∥xt−1 − xt−2∥4

+ 2
∥∥E[(1− λ)∇2f(xt−2)(xt−1 − xt−2) + λ(∇2f(xt−2)(xt−1 − xt−2)− gtg

⊤
t (xt−1 − xt−2)]

∥∥2
≤ 2M2∥xt−1 − xt−2∥4 + 4(1− λ)2

∥∥E[∇2f(xt−2)(xt−1 − xt−2)]
∥∥2

+ 4λ2
∥∥E[∇2f(xt−2)(xt−1 − xt−2)− gtg

⊤
t (xt−1 − xt−2)]

∥∥2
≤ 2M2∥xt−1 − xt−2∥4 + 4(1− λ)2L2 ∥xt−1 − xt−2∥2

+ 4λ2
∥∥E[∇2f(xt−2)(xt−1 − xt−2)− gtg

⊤
t (xt−1 − xt−2)]

∥∥2
≤ 2M2∥xt−1 − xt−2∥4 + 4(1− λ)2L2∥xt−1 − xt−2∥2 + 4λ2∆2∥xt−1 − xt−2∥2.

▷ Assumption 4
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To finish the proof, we need to establish the upper bound of ∥xt−1 − xt−2∥. It is easy to check that
the term at = ∥xt − xt−1∥ has the following recursive inequality:

∥xt − xt−1∥
= ∥η(gt + λgtg

⊤
t (xt−1 − xt−2))∥

≤ η∥gt∥+ ηλ∥gtg⊤t (xt−1 − xt−2)∥ ▷ triangle inequality

≤ η∥gt∥+ ηλ∥gt∥2∥xt−1 − xt−2∥

≤ η
√
V2 + ηλV2∥xt−1 − xt−2∥.

Or, at ≤ η
√
V2 + ηλV2at−1. Note that a1 = ∥x1 − x0∥ = ∥ηg1∥ ≤ η

√
V2. Thus, we have ∀t ≥ 2:

∥xt − xt−1∥ ≤ η
√
V2

t−2∑
τ=0

(ληV2)
τ + η

√
V2(ληV2)

t−1 ≤ 2η
√
V2

1− ληV2
≤ 2
√
2η

√
V2.

Putting all the ingredients together, we have
E[F (xt)]

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+
κη

2
[2M2∥xt−1 − xt−2∥4 + 4(1− λ)2L2∥xt−1 − xt−2∥2 + 4λ2∆2∥xt−1 − xt−2∥2]

+
κLη2

2
[
2V1

n
+ 2λ2V 2

2 ∥xt−1 − xt−2∥2] +
(1− κ)Lη2V1

2n

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+ κ(64η5M2V 2
2 + 16η3(1− λ)2L2V2 + 16η3λ2∆2V2 + 8η4λ2LV 3

2 ) +
(1 + κ)η2LV1

2n
.

By re-arranging the terms, we have
∥∇F (xt−1)∥2

+ κ(128η4M2V 2
2 + 32η2(1− λ)2L2V2 + 32η2λ2∆2V2 + 16η3λ2LV 3

2 ) +
(1 + κ)ηLV1

n
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2E[F (x0)− F (x∗)]

ηT

+ κ(128η4M2V 2
2 + 32η2(1− λ)2L2V2 + 32η2λ2∆2V2 + 16η3λ2LV 3

2 ) +
(1 + κ)ηLV1

n
.

Theorem 4. Under Assumption 1, 2, 3, 5, and 6, taking η ≤ 1
L , after T iterations, for Algo-

rithm 3 (SAPipe-WP) with Option 1, we have the following error bound:

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT
+ κErrWP−1 + V ar0,

where ErrWP−1 = L2η2
[(

ρ
n − 1

)
V2 +

(
3− ρ

n

)
V1

]
.

Proof. For SAPipe-WP with Option 1, we have E[gi,t] = ∇Fi(x̃i,t−1).

Thus, for the variance term, since gi,t is a valid gradient, similar to Theorem 2, we have

E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

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=
1

n2

∑
i∈[n]

E
[
∥gi,t − E[gi,t]∥2

]
≤ V1

n
.

For the error of the gradient estimation, we have∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

∇Fi(x̃i,t−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇Fi(xt−1)−
1

n

∑
i∈[n]

∇Fi(x̃i,t−1)

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

∥∇Fi(xt−1)−∇Fi(x̃i,t−1)∥2

≤ L2 1

n

∑
i∈[n]

∥xt−1 − x̃i,t−1∥2 ▷ L-smoothness

= L2 1

n

∑
i∈[n]

∥∥∥∥∥∥η 1n
∑
j∈[n]

(gj,t−1)− ηgi,t−1

∥∥∥∥∥∥
2

=
L2η2

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j∈[n]

(gj,t−1)− gi,t−1

∥∥∥∥∥∥
2

Putting all the ingredients together, we have
E[F (xt)]

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+
η

2

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

+
Lη2

2
E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2


≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2 +

κη

2

L2η2

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j∈[n]

(gj,t−1)− gi,t−1

∥∥∥∥∥∥
2

+
Lη2

2

V1

n
.

By re-arranging the terms, we have

∥∇F (xt−1)∥2 ≤
2E[F (xt−1)− F (xt)]

η
+

κL2η2

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j∈[n]

(gj,t−1)− gi,t−1

∥∥∥∥∥∥
2

+
LηV1

n
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]

≤ 2E[F (x0)− F (x∗)]

ηT
+

1

T

T∑
t=3

L2η2
1

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1n
∑
j∈[n]

(gj,t−1)− gi,t−1

∥∥∥∥∥∥
2

+
LηV1

n
.
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To finish the proof, we establish the following upper bound for ∀i, j ∈ [n], i ̸= j

1

n

∑
i∈[n]

E

∥∥∥∥∥∥ 1n
∑
j∈[n]

(gj,t−1)− gi,t−1

∥∥∥∥∥∥
2

=
1

n

∑
i∈[n]

E

∥∥∥∥∥∥
 1

n

∑
j∈[n]

∇fj(x̃t−2)

−∇fi(x̃t−2)

∥∥∥∥∥∥
2

=
1

n

∑
i∈[n]

E

∥∥∥∥∥∥
 1

n

∑
j∈[n]

∇fj(x̃t−2)

−∇fi(x̃t−2)± (∇F (x̃t−2)−∇Fi(x̃t−2))

∥∥∥∥∥∥
2

=
1

n

∑
i∈[n]

E

∥∥∥∥∥∥
 1

n

∑
j∈[n]

∇fj(x̃t−2)

−∇F (x̃t−2)

∥∥∥∥∥∥
2

+
1

n

∑
i∈[n]

E ∥∇Fi(x̃t−2)−∇fi(x̃t−2)∥2

+
1

n

∑
i∈[n]

E ∥∇F (x̃t−2)−∇Fi(x̃t−2)∥2

≤ 1

n

∑
i∈[n]

E ∥∇F (x̃t−2)−∇Fi(x̃t−2)∥2 + 2V1

≤
( ρ

n
− 1

)
E ∥∇F (x̃t−2)∥2 + 2V1 ▷ Assumption 3

≤
( ρ

n
− 1

)
V ′
1 + 2V1 ▷ Assumption 2

=
( ρ

n
− 1

)
(V2 − V1) + 2V1 ▷ Assumption 2, V2 = V1 + V ′

1

≤
( ρ

n
− 1

)
V2 +

(
3− ρ

n

)
V1.

Finally, putting all the ingredients above together, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2E[F (x0)− F (x∗)]

ηT
+ κL2η2

[( ρ

n
− 1

)
V2 +

(
3− ρ

n

)
V1

]
+

LηV1

n
.

Theorem 5. Under Assumption 1, 2, 5, and 6, taking η ≤ 1
L , after T iterations, for Algo-

rithm 3 (SAPipe-WP) with Option 2, we have the following error bound:

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT
+ κErrWP−2 + V ar0,

where ErrWP−2 = L2η2

1−2L2η2 (2V1 + 2L2η2V2).

Proof. For SAPipe-WP with Option 2, we have E[gi,t] = ∇Fi(x̃t−1).

Thus, for the variance term, since gi,t is a valid gradient, similar to Theorem 2, we have

E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

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=
1

n2

∑
i∈[n]

E
[
∥gi,t − E[gi,t]∥2

]
≤ V1

n
.

For the error of the gradient estimation, we have∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

∇Fi(x̃t−1)

∥∥∥∥∥∥
2

= ∥∇F (xt−1)−∇F (x̃t−1)∥2

≤ L2 ∥xt−1 − x̃t−1∥2 ▷ L-smoothness

= L2

∥∥∥∥∥∥η 1n
∑
i∈[n]

(gi,t−1 − gi,t−2)

∥∥∥∥∥∥
2

= L2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

.

Putting all the ingredients together, we have
E[F (xt)]

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+
η

2

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

+
Lη2

2
E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2


≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2 +

κη

2
L2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

+
Lη2

2

V1

n
.

By re-arranging the terms, we have
∥∇F (xt−1)∥2

≤ 2E[F (xt−1)− F (xt)]

η
+ κL2η2

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

+
LηV1

n
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]

≤ 2E[F (x0)− F (x∗)]

ηT
+

1

T

T∑
t=3

κL2η2E

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

+
LηV1

n
.
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To finish the proof, we establish the following upper bound

E

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥ 1n
∑
i∈[n]

[(∇f(x̃t−2; zi,t−2)−∇F (x̃t−2)) + (∇F (x̃t−3)−∇f(x̃t−3; zi,t−3)) + (∇F (x̃t−2)−∇F (x̃t−3))]

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇f(x̃t−2; zi,t−2)−∇F (x̃t−2))

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇F (x̃t−3)−∇f(x̃t−3; zi,t−3))

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇F (x̃t−2)−∇F (x̃t−3))

∥∥∥∥∥∥
2

≤ E ∥∇F (x̃t−2)−∇F (x̃t−3)∥2 + 2V1

≤ L2E ∥x̃t−2 − x̃t−3∥2 + 2V1

= L2E ∥xt−3 − xt−4 − η(gt−3 − gt−4)∥2 + 2V1

≤ 2L2E ∥xt−3 − xt−4∥2 + 2L2η2E ∥gt−3 − gt−4∥2 + 2V1

≤ 2L2E ∥ηgt−3∥2 + 2L2η2E ∥gt−3 − gt−4∥2 + 2V1

≤ 2L2η2E ∥gt−3 − gt−4∥2 + 2V1 + 2L2η2V2,

where gt =
1
n

∑
i∈[n] gi,t.

Thus, we have the following recursive upper bound
E ∥gt−1 − gt−2∥2 ≤ 2L2η2E ∥gt−3 − gt−4∥2 + 2V1 + 2L2η2V2,

and at the very beginning, there is no staleness, thus g1 − g2 = 0.

Thus, using η ≤ 1
2L , we have

E ∥gt−1 − gt−2∥2 ≤
1

1− 2L2η2
(2V1 + 2L2η2V2).

Finally, putting all the ingredients together, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2E[F (x0)− F (x∗)]

ηT
+

κL2η2

1− 2L2η2
(2V1 + 2L2η2V2) +

LηV1

n
.

Theorem 6. Under Assumption 1, 2, 4, 5, and 6, taking η ≤ 1
L , after T iterations, for Algo-

rithm 3 (SAPipe-WP) with Option 3, we have the following error bound:

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2R0

ηT
+ κErrWP−3 + V ar0,

where ErrWP−3 = η2L2[8V1

n + 4η4M2V 2
2 + 2η2V2(L

2(1− λ)2 + λ2∆2)].

Proof. Note that similar to the other options, in this case we still have gi,t as a valid stochastic
gradient. Thus, for the variance term, we have

E


∥∥∥∥∥∥ 1n

∑
i∈[n]

gi,t −
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2


=
1

n2

∑
i∈[n]

E
[
∥gi,t − E[gi,t]∥2

]
≤ V1

n
.
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For the error of the gradient estimation, we have∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

E[gi,t]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇F (xt−1)−
1

n

∑
i∈[n]

∇Fi(x̃i,t−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇Fi(xt−1)−
1

n

∑
i∈[n]

∇Fi(x̃i,t−1)

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

∥∇Fi(xt−1)−∇Fi(x̃i,t−1)∥2

≤ L2 1

n

∑
i∈[n]

∥xt−1 − x̃i,t−1∥2 ▷ L-smoothness

= L2 1

n

∑
i∈[n]

∥∥∥∥∥∥η 1n
∑
j∈[n]

(gj,t−1)− η

(
DC(gt−2 −

1

n
gi,t−2,∆xt−2) +

1

n
gi,t−1

)∥∥∥∥∥∥
2

= η2L2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j ̸=i

(gj,t−1)−DC(gt−2 −
1

n
gi,t−2,∆xt−2)

∥∥∥∥∥∥
2

= η2L2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j ̸=i

(gj,t−1)−DC

 1

n

∑
j ̸=i

(gj,t−2),∆xt−2

∥∥∥∥∥∥
2

= η2L2 1

n

∑
i∈[n]

∥∥∥∥∥∥∥
1

n

∑
j ̸=i

(gj,t−1)−

 1

n

∑
j ̸=i

(gj,t−2) + λ

 1

n

∑
j ̸=i

(gj,t−2)

 1

n

∑
j ̸=i

(gj,t−2)

⊤

(xt−2 − xt−3)


∥∥∥∥∥∥∥
2

= 2η2L2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1n
∑
j ̸=i

(gj,t−1)−

 1

n

∑
j ̸=i

(gj,t−2 +∇2f(xt−3, zj,t−3)(xt−2 − xt−3))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
1⃝

+ 2η2L2 1

n

∑
i∈[n]

∥∥∥∥∥∥∥
1

n

∑
j ̸=i

∇2f(xt−3, zj,t−3)(xt−2 − xt−3)− λ

 1

n

∑
j ̸=i

(gj,t−2)

 1

n

∑
j ̸=i

(gj,t−2)

⊤

(xt−2 − xt−3)

∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
2⃝

.

For 1⃝, we have
1⃝

= 2η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

(gj,t−1) −

 1

n

∑
j ̸=i

(gj,t−2 + ∇2
f(xt−3, zj,t−3)(xt−2 − xt−3))

∥∥∥∥∥∥
2

= 2η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇f(xt−2, zj,t−2) −

 1

n

∑
j ̸=i

∇f(xt−3, zj,t−3) + ∇2
f(xt−3, zj,t−3)(xt−2 − xt−3)

∥∥∥∥∥∥
2

≤ 4η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇f(xt−2, zj,t−2) −
1

n

∑
j ̸=i

∇f(xt−2, zj,t−3)

∥∥∥∥∥∥
2

+ 4η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇f(xt−2, zj,t−3) −

 1

n

∑
j ̸=i

∇f(xt−3, zj,t−3) + ∇2
f(xt−3, zj,t−3)(xt−2 − xt−3)

∥∥∥∥∥∥
2
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≤ 4η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇f(xt−2, zj,t−2) −
1

n

∑
j ̸=i

∇f(xt−2, zj,t−3)

∥∥∥∥∥∥
2

+ 4η
2
L

2
M

2∥xt−2 − xt−3∥4

≤ 4η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇f(xt−2, zj,t−2) − E[
1

n

∑
j ̸=i

∇f(xt−2, zj,t−2)]

∥∥∥∥∥∥
2

+ 4η
2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥E[ 1n
∑
j ̸=i

∇f(xt−2, zj,t−3)] −
1

n

∑
j ̸=i

∇f(xt−2, zj,t−3)

∥∥∥∥∥∥
2

+ 4η
2
L

2
M

2∥xt−2 − xt−3∥4

≤ 8η
2
L

2 V1

n
+ 4η

2
L

2
M

2∥xt−2 − xt−3∥4

≤ 8η
2
L

2 V1

n
+ 4η

2
L

2
M

2∥ηgt−2∥4

≤ 8η
2
L

2 V1

n
+ 4η

6
L

2
M

2
V

2
2 .

For 2⃝, we have
2⃝
= 2η

2
L

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇2
f(xt−3, zj,t−3)(xt−2 − xt−3) − λ

 1

n

∑
j ̸=i

(gj,t−2)

 1

n

∑
j ̸=i

(gj,t−2)

⊤

(xt−2 − xt−3)

∥∥∥∥∥∥
2

≤ 2η
2
L

2
(1 − λ)

2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇2
f(xt−3, zj,t−3)(xt−2 − xt−3)

∥∥∥∥∥∥
2

+ 2η
2
L

2
λ
2 1

n

∑
i∈[n]

∥∥∥∥∥∥ 1

n

∑
j ̸=i

∇2
f(xt−3, zj,t−3)(xt−2 − xt−3) −

 1

n

∑
j ̸=i

(gj,t−2)

 1

n

∑
j ̸=i

(gj,t−2)

⊤

(xt−2 − xt−3)

∥∥∥∥∥∥
2

≤ 2η
2
L

2
(1 − λ)

2
L

2 ∥∥xt−2 − xt−3

∥∥2
+ 2η

2
L

2
λ
2
∆

2 ∥∥xt−2 − xt−3

∥∥2

≤ (2η
2
L

4
(1 − λ)

2
+ 2η

2
L

2
λ
2
∆

2
)∥ηgt−2∥

2

≤ 2η
4
L

2
V2(L

2
(1 − λ)

2
+ λ

2
∆

2
).

Putting all the ingredients together, we have
E[F (xt)]

≤ F (xt−1)−
η

2
∥∇F (xt−1)∥2

+
η

2
∥∇F (xt−1)− E[gt]∥2 +

Lη2

2
E
[
∥gt − E[gt]∥2

]
≤ F (xt−1)−

η

2
∥∇F (xt−1)∥2

+
κη

2
[8η2L2V1

n
+ 4η6L2M2V 2

2 + 2η4L2V2(L
2(1− λ)2 + λ2∆2)] +

Lη2

2

V1

n
.

By re-arranging the terms, we have
∥∇F (xt−1)∥2

≤ 2E[F (xt−1)− F (xt)]

η

+ κ(8η2L2V1

n
+ 4η6L2M2V 2

2 + 2η4L2V2(L
2(1− λ)2 + λ2∆2)) +

LηV1

n
.

By telescoping and taking total expectation, after T iterations, we have

1

T

T∑
t=1

E
[
∥∇F (xt−1)∥2

]
≤ 2E[F (x0)− F (x∗)]

ηT

+ κ(8η2L2V1

n
+ 4η6L2M2V 2

2 + 2η4L2V2(L
2(1− λ)2 + λ2∆2)) +

LηV1

n
.
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B Proof of Theorem 1

Theorem 1. In training pipeline with no stall, if some forward layer is stale, then all its preceding
forward layers are stale.

Proof. We prove this by contradiction. Given staleness for i-th forward layer, it satisfies the layer
stale condition:

c(ui) < c(vi) + vi. (2)
Suppose there exists k-th layer which is not stale, where k < i. According to comm-forward
dependency condition, we have

c(uk) ≥ c(vk) + vk. (3)
Since k < i, according to forward dependency, we have

c(uk) < c(ui). (4)
Under no preemption assumption, c(vi) + vi ≤ c(vk). Combine equations 4 3, we have

c(ui) > c(uk) ≥ c(vk) + vk ≥ c(vi) + vi + vk > c(vi) + vi,

which is in contradiction with equation 2.

C Optimized Runtime

C.1 Weight Update

Overhead of many small kernel launch. The default implementation of the weight update function
in the ML framework backend involves multiple CUDA kernel launch overhead for each independent
parameter. The weight update occurs upon the arrival of each synchronized gradient, which leads
to many fragments of small kernels for each parameter. Each kernel launch, regardless of the real
computation complexity, incurs some fixed overhead, such as kernel latency, kernel overhead, CPU
launch overhead and additional overhead [32]. In general, these kernels cannot be fused together
considering different completion time of gradients, while setting a barrier for the completion of
all gradient synchronization incurs large waiting overhead. This issue is enlarged with staleness
mitigation methods, which introduce extra weight updates and multiple staleness data movement.

Our Solution: Kernel Fusion. However, for the staleness pipeline, the weight update kernels could
be fused since the input tensors are stored in the staleness buffer in the last step. After backward
propagation, the communication operations are executed to synchronize the gradients. The results of
synchronized stale gradients are stored in the staleness buffer, while others are directly applied to
update the weights on arrival. And the results of stale gradients in the last step are retrieved and the
corresponding weight updates kernels are fused together to reduce the overhead.

C.2 Double Buffer Optimization

Extra buffer overhead. There are two staleness buffers for each parameter in SAPipe to enable the
cross-iteration execution: the read buffer for computation pipeline reading gradients from previous
step and the write buffer for communication pipeline writing synchronized gradients in current step.
The double staleness buffer setup increases the GPU memory consumption and incur memory copy
overhead to update the reading buffer in each iteration.

Our Solution: Double Buffer System and Buffer Sharing. We adopt double buffer system
technique to omit the memory copy overhead between double staleness buffers. The reading and
writing of the staleness buffers shuffles at each training step. The communication service alternate
different buffers to write the synchronization results, while the forward computation can read stored
data from the available buffer at each step without colliding. This omits the memory copy overhead
between two buffers used in different pipeline stages.

To further minimize the memory consumption of staleness buffer, we explore to share the read and
write buffer between communication and computation stages. When the read buffer finishes passing
the previous step’s gradient to the computation backend 6, the synchronized gradient in current step

6The buffer reading time here denotes the time interval between backward and forward propagation, which
consists of dependency awaiting and data transferring time.
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Figure 6: Optimize staleness buffer.

could be allowed to update the reading buffer without being stored in extra memory (see Figure 6
(b)). A dependency is added to avoid race condition that the buffer could be updated only after it has
been read in current step. However, this dependency may cause waiting time in the communication
pipeline, harming the throughput potentially. Hence, we share the staleness buffer only for the
communication-intensive tasks, where the communication time is larger than the buffer reading time.

C.3 Buffer Switch

Transferring overhead of staleness buffer. The staleness buffers are involved in both communica-
tion and computation pipelines: 1) the results of synchronized gradient are written into the staleness
buffer; 2) the computation stage reads gradients from the staleness buffer for parameter updates. Since
the NIC is connected to the PCIe of one of the CPU socket and the computation is on the GPU device,
there exists transferring overhead between host and device memory even with only one staleness
buffer. The buffer transferring overhead between CPU and GPU is not negligible, considering the
slow PCIe bandwidth and large number of parameters.

Our Solution: Buffer Switch. However, the buffer transferring overhead between CPU and GPU can
be hidden behind pipeline stages of SAPipe. The communication and computation pipelines pipeline
of SAPipe might not be balanced due to different communication-to-computation ratios for DNN
training jobs. Hence, the staleness buffer could be placed close to the faster pipeline stage for balanced
training pipeline. To reduce the transferring overhead, we dynamically switch the location of the
staleness buffer according to the duration of communication and computation pipeline stages. Given
a DNN training job, SAPipe will profile the completion time of communication (vi)and computation
(bi and ui) through warm-up steps, as well as the buffer transferring overhead δ, and determine the
location of the staleness buffer for all gradients: GPU buffer for low communication-to-computation
ratio (e.g.,

∑
i vi+δ∑

i(bi+ui)
≤ 1), and CPU buffer for the opposite case (e.g.,

∑
i vi∑

i(bi+ui)+δ > 1).

The intuition behind is to remove the transferring overhead from slower pipeline stage so as to balance
the training pipeline.
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Algorithm 4 Determine the start time of comm ops.
Input: Forward DAG dependency graph G = (B, V,E), where bn is the first backward layer;
Output: Start time c(vi) of communication operators.

1: S ← {bm}
2: t← c(bm)
3: r(cm)← 0
4: while S is not empty do
5: bi ← RANDOMSELECT(S)
6: S ← S − {bi}, S ← S + {bj |(bi, bj) ∈ E}
7: r(vi)← t
8: t← t+ bi
9: R← SORT(r(c1), . . . , r(vm)) // in descending order

10: t← 0
11: while R is not empty do
12: r(vk)← R[−1]
13: S ← R.where(r(vi) <= t) + vk
14: i = GETMININDEX(S)
15: S ← S − vi
16: c(vi)← t
17: t← t+ vi
18: R← R− r(vi)

D Partial Staleness on DAG Model

In a more general case where the forward and backward propagation cannot be linearized as a chain
of computation across layers, Theorem 1 does not hold and the searching algorithm for sequential
models falls short in finding optimal solution. Solving the optimal stale gradient problem for general
DAG models is NP-hard. Hence, we present the prototypical heuristic for finding the partial stale
gradients for DAG model, as shown in Algorithm 5.

Algorithm 4 determines the execution order and start time for each communication operation, and
Algorithm 5 finds the optimal solution of stale gradients. Line 1-8 of Algorithm 4 output the time of
each communication operation that is ready to be launched, which is the completion time of their
corresponding backward operations. By default, the execute order of available backward operations
is decided randomly as in Line 5. Line 9 sorts the ready time of communication operations in
descending order, and Line 5-18 determines the launching time for all communication operations.
Line 13 selects the candidate communication operations that are available at current scheduling time
unit, and Line 14 determines the one with minimal index in ready time set to be launched.

Algorithm 5 further determines the staleness of all gradients according to the scheduled communica-
tion operations and forward computation. Line 4 randomly selects one available forward operation ui

from set S, and Line 5 updates set S with the neighbors of ui. Line 6-10 checks the stale condition
of selected forward operation ui: if its dependent communication operation vi has not been finished
at the scheduling time, then vi is stale; otherwise, if vi is finished, ui can be computed immediately
and vi is non-stale.

E Discussion

SAPipe has some requirements for superior model performance:

• Our algorithm for selecting partial staleness can only be used in sequential models, though the
staleness compensation and runtime optimizations can be directly applied to a more complicated
DAG model. Extending SAPipe to complicated DAG models is our future work.

• The throughput improvement depends on the communication-to-computation ratios. When training
models with relatively higher (but no greater than 1) communication-to-computation ratios, SAPipe
can achieve higher speedups than the baseline due to higher overlapping potentials.
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Algorithm 5 Searching partial staleness for DAG.
Input: Forward DAG dependency graph G = (U,E), where u1 is the first forward layer; starting
time for communication operators c(vi),∀i = 1, . . . ,m; starting time for the first forward layer
c(u1)
Output: Partial staleness for each layer, xi,∀i = 1, . . . ,m.

1: S ← {u1}
2: t← c(u1)
3: while S is not empty do
4: ui ← RANDOMSELECT(S)
5: S ← S − {ui}, S ← S + {uj |(i, j) ∈ E}
6: t← t+ ui

7: if t < c(vi) then
8: xi ← 1
9: else

10: xi ← 0

• Theoretically, many factors can affect accuracy, which depends on the properties of the datasets
and model structures. Our methods can achieve higher performance under certain conditions, e.g.,
low gradient variance, low gradient diversity, and good smoothness (as discussed in Remark 7 of
Section 4.2).

• The performance of staleness mitigation methods varies in different models and datasets. The best
choice of the mitigation methods depends on the choice of hyperparameters and some unknown
constant values such as smoothness, gradient diversity and variance. This is the limitation and future
work of our paper.

F Experiments

F.1 Datasets Details

We train CV models on two datasets: (1) CIFAR-10 dataset [16], which consists of 50,000 training
images and 10,000 test images with 10 classes, and (2) ImageNet dataset [17], which contains
1,281,167 training and 50,000 validation images with 1000 classes. We fine-tunes the pretrained
GPT-2 model on (3) WikiText-2 language modeling dataset [20], which is a collection of over 2
million tokens extracted from the set of articles on WikiPedia. Transformer model is trained on
(4) Multi30K dataset [8], which is a English-to-German multimodel translation dataset with 29,000
training and 1,000 test sentences.

F.2 Magnified Figures and Extra Experiments

As shown in Figure 9, in most cases, without the proposed staleness mitigation methods, the vanilla
PipeSGD has significant regression in accuracy/perplexity compared to the non-stale baseline, when
the same number of iterations are executed. Additionally, we see that PipeSGD has much worse
converged results than the baseline in NLP models. This may result from the more complicated
models, which are more sensitive to the staleness. Overall, SAPipe has comparable converge rate and
final converged results across four models.

Figure 10(a) and (b) show the throughput speedup and staleness mitigation with partial staleness.
With partial staleness, SAPipe further reduces the negative impact of staleness on model performance,
and improves the accuracy by 1.28% and 2.4% for VGG16 and ResNet50, respectively. We ob-
serve divergence when training PipeSGD with ResNet50 on CIFAR-10 dataset, while our staleness
mitigation methods greatly solves this issue.

F.3 Divergence on PipeSGD

We use 2 GPUs to train VGG16 and ResNet50 on CIFAR-10 dataset, and observe severe convergence
problems of PipeSGD, as shown in Figure 11. PipeSGD diverges on ResNet50 model with 1-step
staleness, while SAPipe mitigates the staleness problem and converges as fast as the BytePS baseline.
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Figure 7: Training throughput.
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(b) ResNet50, CIFAR-10

0 2000 4000 6000
Time (s)

20

25

30

Pe
rp

le
xi

ty

BytePS
Horovod
PipeSGD
SAPipe

(c) GPT-2, WikiText-2

0 500 1000 1500 2000
Time (s)

20

40

60

Te
st

 A
cc

ur
ac

y 
(%

)

BytePS
Horovod
PipeSGD
SAPipe

(d) Transformer, WMT16

Figure 8: Convergence of different models. The x-axis is wall-clock training time, and the y-axis is
perplexity (lower is better) for GPT-2, and test accuracy (higher is better) for others.
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Figure 9: Convergence of different models. The x-axis is the number of epochs.
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(a) VGG16 with partial staleness. “SAPipe w/o” de-
notes SAPipe without partial staleness.
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(b) ResNet50 with partial staleness. “SAPipe w/o”
denotes SAPipe without partial staleness.
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(c) Runtime optimization. “SAPipe w/o” denotes
SAPipe without runtime optimization.
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Figure 10: Deep dive in SAPipe.
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Figure 11: Training on CIFAR-10 with 2 GPUs. X-axis is the training epoch, and y-axis is the test
accuracy.
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