Under review as a conference paper at ICLR 2025

A DOLPHIN EXPERIMENT DETAILS FOR BENCHMARKS

The following are more details on the experiment setup. For each experimental trial, we report the
highest evaluation accuracy over all epochs. Unless otherwise noted, each trial was run on a machine
with Intel Xeon Gold 6248 (2.50 GHz) CPUs and NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs.

A.1 MNIST SuM-N

For this task, the base neural network model is a standard CNN classifying each image into 10
classes of digits (0, 1, ..., 9). The symbolic module sums the Distribution objects over the logits
output by the neural model for each image.

Each of the MNIST Sum-N tasks had a batch train size of 64 samples, a learning rate of 0.001, and
a top-k value of 1. Each of the tasks were trained on a dataset size of the original MNIST dataset
divided by N of Sum-N. Sum5’s dataset consisted of 12000 train samples and 2000 test samples.
Sum10’s dataset consisted of 6000 train samples and 1000 test samples. Sum15’s dataset consisted
of 4000 train samples and 666 test samples.

A.2 HAND-WRITTEN FORMULA

For Hand-Written Formula, the perception model is again a standard CNN that classifies images
into 14 classes: 10 digits (0, 1, ..., 9), and 4 operations (+, -, X, and /). The DOLPHIN program for
this task builds strings of formulae from the outputs of the neural model and evaluates them using
Python’s eval function, demonstrating the ability of DOLPHIN to support black-box functions.

We trained each task with a batch train size of 64 samples. The learning rate was 0.0001, sample-k
was 7, and top-k value was 3. Length 7’s dataset consisted of 9600 samples for training, 2400 sam-
ples for testing. Length 15 consisted of 24000 training samples and 6000 testing samples. Length
19 consisted of 32000 training samples and 8000 testing samples.

A.3 PATHFINDER

For this task, the perception model is also a CNN, but it predicts edges between pairs of nodes
(denoted by dashes) as well as the end points depicted in the image of the maze. The DOLPHIN
program for this task is recursive since it must search for paths between the two dots.

For each of the PathFinder tasks, we used a batch train size of 64 samples, a learning rate of 0.0001,
and a top-k value of 3. Each task’s dataset consisted of 539459 images for training and 59940 images
for testing. Each task had its own dataset of images with dimensions of the task’s pixel size.

A.4 CLUTRR

For each CLUTRR task, we used a single A100 GPU (40 GB), with a learning rate of 0.00001 and
use a batch size of 16. The length of the training dataset for CLUTRR (Small) was 11,093 and that
of the test set was 1146. The training set for CLUTRR (Medium) contained 15,083 samples and the
test set contained 1048 samples.

The DOLPHIN program for CLUTRR receives as inputs pairs of entities from the input paragraph
along with the logits for each pair over 21 possible relations produced by the classification head of
the Roberta-base |Liu| (2019) model. The program then recursively derives relations over the graphs
these pairs represent until no new relations can be derived. After that, it returns the Distribution over
relations for the target pair of entities.

A.5 MUGEN

For each Mugen task, we use a batch size of 3 and a learning rate of 0.0001. From the full Mugen
dataset, we sample a training set of 5000 examples for Mugen (Medium), and from that set, we
sample a training set of 1000 for Mugen (Small). Both Small and Medium are evaluated on a fixed
holdout set of 1000 samples. We train and evaluate for up to 100 epochs.

13

Under review as a conference paper at ICLR 2025

MUGEN TVR (1K) MUGEN VTR (1K)
— DTKP (Dolphin) — DAMP (D — DTKP (Scallop) — DAMP (Scal s — DTKP (Dolphin) — DAMP (Dolphin) = DTKP (Scallop) — DAMP (callop)

Figure 7: Test accuracies for each epoch of DOLPHIN and Scallop for Mugen (Small). The accura-
cies for TVR are on the left and VTR are on the right.

MUGEN TVR (5K) MUGEN VTR (5K)
— DTKP (Scallop) — DAMP (Scallop) — DTKP (Dolphin) — DAMP (Dolpl ¢ — DTKP (Scallop) — DAMP (Scallop) — DTKP (Dolphin) — DAMP (Dolphin)

‘SFWW?\A_M‘MWWw\WW

VNG SN ARAN A o Ay YA =2 09

20 40 60 80 0 20 40 60 80

Figure 8: Test accuracies for each epoch of DOLPHIN and Scallop for Mugen (Medium). The
accuracies for TVR are on the left and VTR are on the right.

We use a combination of DistilBert (Sanh| [2019) and S3D (De Smet et al.,[2024) as the perception

model for the text and video inputs respectively. The DOLPHIN program for both Mugen tasks
computes the temporal alignment of a given text-video pair. The inputs (extracted from the text
and video by neural components) are pairs of IDs and actions, where the ID order corresponds to
the action sequence (e.g. the IDs for video actions are the frame numbers). The program finds the
Distribution of all valid mappings between text event IDs and video frame IDs that preserve the
order of actions.

A.6 AcCCURACY CURVES FOR MUGEN

Figures |7 and[8]show the test accuracies for each epoch of DOLPHIN and Scallop for Mugen (Small)
and Mugen (Medium) respectively. The accuracies for TVR are on the left and VTR are on the
right. Note that DOLPHIN converges within 20 epochs in all cases, while Scallop does not converge
within 100 epochs. Since DOLPHIN and Scallop implement identical symbolic programs and neural
network components, we attribute DOLPHIN’s better convergence to differences in the neurosym-
bolic backend. Importantly, the two use different frameworks for differentiable symbolic reasoning:
DOLPHIN uses PyTorch while Scallop uses its own implementation of auto-differentiation. There
could be optimizations in PyTorch that are absent from Scallop, where the performance boost is
magnified by the relative complexity of Mugen compared to the other tasks. However, this claim
requires further investigation to confirm.

B GRAPH RESULTS OF RQ3

We show the results of the provenance comparison experiments (RQ3) in Figure[d] The graph on the
top shows the accuracies achieved by each provenance over all tasks, while the bottom graph shows
the average training time per epoch required for each provenance over all tasks.

C DTKP-AM PROVENANCE

We clarify and expand on some aspects of the DTKP-AM provenance.

14

Under review as a conference paper at ICLR 2025

HEN DAMP
DTKP-AM

75

50

Accuracy (%)

25

< < & & N & & & &
«f_@ Fe & Sede & S TS S T ENEIE SN

: So
e O;@& T ¥ S &

S S S
@0%%(& $\\\°‘7 & & 50& @&7 &

Average Training Time per Epoch

IS
S

Ly oo & &Sy S
@

S .S
50:;3}\ % & c,,\ﬁgg‘ <

‘5& ﬁ\z W
Figure 9: Accuracy and average training time per epoch in seconds for DAMP and DTKP-AM.

C.1 WMC APPROXIMATION

In this section, we emphasize that DTKP-AM does not perform precise weighted model counting
(WMC) and address possible shortcomings that could arise. A hardware-efficient vectorization of
exact WMC is beyond the scope of this paper, and is itself an active area of research. Instead, we
use the following add-mult approximation of WMC:

Pr(t)=> Pr(t;) =Y _] norm(t;)
i i
We note that this approximation upper bounds the result from DTKP-WMC: the coarseness arises
from the summation, which may double count models that satisfy more than one of the proofs.

However, add-mult achieves significant computational speedup since it simplifies the exponential
enumeration over all possible models into a linear pass over the tag’s elements.

We further claim that this approximation does not destroy all the semantics from DTKP-WMC
due to DTKP-AM’s faithful implementation of the semiring operations ¢ and ® for tracking top-k
proofs. DTKP-AM tags therefore remain similar to DTKP-WMC tags at every intermediate sym-
bolic reasoning step. By contrast, the imprecise add-mult is a one-time transformation of the final
tags into probabilities, performed only after the tags have been propagated through the entire sym-
bolic program. Crucially, we show there exists information that is uniquely captured by top-k tag
operations, and is not lost when fuzzily converting the tags to probabilities.

As a simple illustrative example, consider using APPLY with the following toy function:

f(a,b){T a=1"b

F otherwise
For any distribution D of mutually exclusive input symbols (e.g. the digit classification of a CNN),
we intuitively would like the distribution f(D, D) to assign a probability of 1 to symbol T and a
probability of 0 to symbol F. According to our semantics, the tag for T is actually given by:

F(D, D)(T) = P(D(i) @ D(i))
However, if we were to use DAMP to compute the tags for f(D, D), the provenance treats the two

input distributions as independent when they are the exact same distribution. Thus, the probability
assigned to T by f(D, D) is incorrectly calculated as:

F(D,D)(T) =) (D(i))*

%

15

Under review as a conference paper at ICLR 2025

On the other hand, consider any top-k provenance that satisfies:

t@t" =top, ({t; Ut | (ti, 1)) €t xt'})

where X is the set Cartesian product. Note that DTKP-AM does satisfy this condition, where the
set union is implemented with an element-wise minimum. Now assuming D(7) is initialized in
the natural way (i.e. a tag consisting of a single proof containing just the input symbol 7), then
D(i) ® D(i) = D() and therefore:

f(D,D)(T) = @D(z‘)

Under both and the add-mult approximation, the probability of T is:

> [T nom(D(i)ij) = > Di)is = > Pr(i) =1
% 7 [7

for any normalized D with at most k£ symbols. Even if the number of symbols exceeds &, we note that
the distributions we seek to learn are often skewed (an accurate model should assign a probability to
the ground truth that significantly outweighs the other symbols). For such distributions, DTKP and
DTKP-AM would still yield the same probability for T, and it is much closer to 1 than the sum of
squares result from DAMP.

While this example may seem contrived, it still suggests the smaller role a “correct” WMC can have
on the final answer compared to @ and ® implemented with proper set-based semantics. We even
hypothesize that in most cases, the add-mult approximation does not meaningfully affect the final
result compared to DTKP-WMC. This is empirically demonstrated by our benchmark results, which
shows DTKP-AM achieving similar accuracy to Scallop’s implementation of DTKP-WMC. In fact,
DAMP can be considered as a sort of ablation, where both the WMC and semiring operations use
fuzzy add-mult semantics instead of a set-based one, and indeed, its accuracy often performs worse
than both DTKP-WMC and DTKP-AM.

C.2 ROLE OF +00 AND —00

In this section, we motivate the use of +o0o0 and —oo in DTKP-AM'’s tensor representation of
tags. Because tensors ¢ are rectangular where every proof ¢ and symbol j; must have an en-
try t;;, we require a way to denote the absence of an input symbol from a proof, and the ab-
sence of a proof from a tag. Importantly, an absent symbol should not influence the probabil-
ity of a proof (i.e. its normalized value should contribute 1 to the probability’s product), and
an absent proof should not influence the probability of a tag (i.e. it should contribute O to the
sum during add-mult WMC). Indeed this is captured by our definition of norm, which clamps
400 to 1 (representing absent symbols) and —oo to O (representing absent proofs) during any
probability calculation. While this introduces clamping operations, PyTorch’s implementation of
clamp backpropagation ensures a gradient of 1 everywhere, even on the clamp boundaries (source:
https://github.com/pytorch/pytorch/pull/7049).

Since 0 corresponds to the tag consisting of no proofs (i.e. a tag with probability 0), we initialize
it to be a tensor where every proof is absent (all —oc). Likewise, since 1 corresponds to the tag
consisting of a single empty proof (i.e. a tag with probability 1), we initialize it to be a tensor where
every symbol is absent from the first row / proof (all +00), while the remaining rows / proofs are
absent (all —o0).

C.3 FURTHER READING

For a more in-depth explanation of provenances in general, including the formalization of DTKP
semantics with Boolean formulae, see Section 4 of (2023)). For worked examples of prove-
nance computation with comparisons of top-k provenances to DAMP, we refer the reader to

Language Group (2022).
D CoONTROL FLOWS AND RECURSION IN DOLPHIN

16

https://github.com/pytorch/pytorch/pull/7049

Under review as a conference paper at ICLR 2025

Config Time for UDF (s) Time for Tag Computations (s) Total Time (s)
No Parallelism 36.24 (C) 461.02 (C) 497.26
Parallelized Tag Computations 14.13 (C) 75.125 (G) 89.25

Table 3: Time taken by the symbolic program for the HWF task split by the time spent on the CPU
and GPU. UDFs refer to user-defined functions where control flows reside for HWFE. The times
annotated with C and G indicate time spent on the CPU and GPU, respectively.

I def compute_paths (paths, edges):

2 new_paths = ApplyIf (paths, edges, lambda pl, p2: (pl[0], p2[1l]),
lambda pl, p2: pl[l] == p2[0])

2 merged = Union (paths, new_paths)

4 # checking for convergence via fix-point

5 if merged.symbols == paths.symbols:

6 return merged

7 else:

8 return compute_paths (merged, edges)

9

10 edges = Distribution (model (img), points)

1l paths = compute_paths (edges, edges)

Figure 10: Example of a transitive closure computation in DOLPHIN.

In this section, we provide a more detailed explanation of how DOLPHIN handles control flows
and recursion. In DOLPHIN, control flows largely exist within the lambda functions supplied to the
‘Apply‘, ‘Applylf*, and ‘Filter* operations, which can be arbitrary Python functions over the symbols
in the Distributions. As discussed in Section [3.2.2] these functions can include complex operations
like if-then-else branches, loops, and even recursions. We do assume that divergent control flows are
resolved within the lambda function itself. The nature of these functions means that they cannot be
parallelized over the GPU. Instead, they are executed sequentially on the CPU, while the associated
tags are computed parallely on the GPU. We optimize the design of the Distribution class so that
there is one set of CPU-based computations for the entire batch of samples rather than one set of
computations for each sample, which is typical of other neurosymbolic frameworks. This allows
DOLPHIN to maintain the benefits of parallelism even while the user-defined functions are executed
sequentially.

D.1 CoNTROL FLOW IN HWF

We demonstrate this by showing the time taken by the symbolic program for the HWF task split
by the time spent on the CPU and GPU in Table 3] The first row shows the time taken when the
neurosymbolic model is run sequentially on the CPU with no parallelism. The second row shows
the time taken when tag computations are parallelized on the GPU over batches of 64 samples each.
The times annotated with C and G indicate time spent on the CPU and GPU, respectively. We only
show the time taken in the forward pass in the table.

Observe that the time, both for UDF computation and for Tag computation, decreases as we move
from sequential CPU evaluation to the batched evaluation. Due to DOLPHIN’s design, increases in
batch size result in fewer CPU operations, since the set of CPU operations is shared for the entire
batch, while parallelizing more tag computations over the entire batch.

D.2 RECURSION
In order to write recursive computations in DOLPHIN, one has two choices: either supply a recursive

user-defined function to the DOLPHIN primitives, or write a more fine-grained program in Python
that uses DOLPHIN primitives in the base case as well as the recursive case, set to terminate once

17

1
2
3
4
5
6
7
8
9
0
11

Under review as a conference paper at ICLR 2025

a condition is met. Here, the diverging control flows can be merged using the UNION primitive.
We follow the latter approach for tasks involving recursion, such as Path and CLUTRR. The crux
of those programs involves performing a transitive closure computation over a graph, represented
by a set of edges for Path or relations for CLUTRR. We show an example of a transitive closure
computation in Figure[I0]

Here, lets say that model is a neural model that predicts the edges between each pair of points in
a graph, represented by points. The compute_paths function computes the transitive closure of
the graph by iteratively applying the edges to the paths. The APPLYIF function applies the edges to
the paths if the end of the first path is the same as the start of the second path. The UNION function
merges the new paths with the existing paths. The function compute_paths is called recursively
until a fixpoint is reached, specifically until no new paths can be added. This is a simple example
of a recursive computation in DOLPHIN, and also forms the core program needed for the PathFinder
task. We perform a similar recursive computation for the CLUTRR task, where we find the transitive
closure of a graph representing relations between people in a passage.

E COMPARISON WITH TENSOR-BASED NEUROSYMBOLIC FRAMEWORKS

Systems like LYRICS (Marra et al.}[2019)), Logic Tensor Networks (LTNs) (Badreddine et al.}[2022),
and Tensorlog (Cohen et al.,[2020)) all have limited expressivity, which is one of the obstacles DOL-

PHIN aims to overcome. Specifically, they restrict the symbolic programs to first order logic and
require users to specify low-level information such as how variables are grounded and what their
domains are. They also restrict the symbols to be in the form of tensors and the user defined func-
tions to consist of TensorFlow operations. These restrictions allow such systems to use TensorFlow
to compile these programs into highly efficient computational graphs, but at the cost of expressiv-
ity. These frameworks also exclusively support simpler provenances and t-norms which are not
sufficient for complex neurosymbolic programs.

On the other hand, DOLPHIN allows the user to track tags for specific symbols which can be arbitrary
Pythonic objects. DOLPHIN programs further allow the user to manipulate Distributions over such
symbols using arbitrarily complex code which may not necessarily translate to a computational
graph. As such, there is a fine balance between the probabilistic computations, that happen over a
GPU, and the symbolic computations, that take place on a CPU, all while maintaining a mapping
between the two. This requirement sets a unique challenge addressed by DOLPHIN that we believe
sets it apart from systems that use tensor operations for neurosymbolic learning. This fundamental
design choice is also what allows DOLPHIN to be more expressive and flexible than existing systems.
We also design DOLPHIN to be modular so that users can easily extend it to support new provenances
and t-norms. As such, the t-norms used in LYRICS and LTN can be trivially added in a vectorized
manner to DOLPHIN.

For instance, assume the case of MNIST Sum-2, where ‘model° is the neural model. This is how it
needs to be expressed in LTN:

Predicates

Digit = ltn.Predicate.FromLogits (model, activation_function="softmax")

Variables

dl = ltn.Variable("digitsl", range(10))

d2 = ltn.Variable("digits2", range(10))

Operators

Not = ltn.Wrapper_Connective (ltn.fuzzy_ops.Not_Std())

And = ltn.Wrapper_Connective (ltn.fuzzy_ops.And_Prod())

Or = ltn.Wrapper_Connective (ltn.fuzzy_ops.Or_ProbSum())

Implies = ltn.Wrapper_Connective (ltn.fuzzy_ops.Implies_Reichenbach())

Forall = ltn.Wrapper_Quantifier (ltn.fuzzy_ops.Aggreg_pMeanError(),
semantics="forall")

Exists = ltn.Wrapper_Quantifier (ltn.fuzzy_ops.Aggreg_pMean (), semantics="
exists")

mask
add = ltn.Function.Lambda (lambda inputs: inputs[0]+inputs[1l])
equals = ltn.Predicate.Lambda (lambda inputs: inputs[0] == inputs[l])

18

19
20

)

IS

Under review as a conference paper at ICLR 2025

Axioms
@tf.function
def axioms (images_x, images_y, labels_z, p_schedule=tf.constant(2.)):

images_x = ltn.Variable ("x", images_x)
images_y = ltn.Variable("y", images_y)
labels_z = ltn.Variable("z", labels_z)
axiom = Forall (
ltn.diag (images_x, images_y, labels_z),
Exists(
(d1,d2),

And (Digit ([images_x,dl]),Digit ([images_y,d2])),
mask=equals ([add([dl,d2]), labels_z]),
p=p_schedule
)y
p=2
)
result_logits = axiom.tensor
return result_logits

Note that the FOL semantics of the Real Logic language used in LTN requires the user to specify
the tracking of the probabilities with the symbols denoted by the ‘digits** variables.

On the other hand, DOLPHIN’s design allows the user to write the same program in a more intuitive
way:

dl
dz2

Distribution (model (img[0]), range(10))
Distribution (model (img[1l]), range(10))

result_logits = GetProbs (Apply(dl, d2, lambda x, y: x + y))

If we consider the HWF task, where the neural model needs to predict both numbers and operators,
DOLPHIN allows the user to write the following (naive) program:

symbols = [str(i) for i in range(10) 1 + ["+', "=/, "'x", " /"']
res = Distribution (model (img[0]), symbols)

for i in range(l, expr_length):
op = Distribution (model (img[i]), symbols)
res = Apply(res, op, lambda x, y: x + V)

res = Apply(res, lambda expr: eval (expr))
result_logits = GetProbs(res)

Writing the same program in LTN is not feasible due to the requirement of concatenating strings and
evaluating the expressions they represent. The actual program for the HWF task in LTN would be
much more complex, shown in the Appendix [G.

E.1 OPTIMIZING PROBABILISTIC COMPUTATIONS

Other works such as (Dang et al [2021)) and (Darwiche] 2020), focus on solely on probabilistic
computations rather than neurosymbolic frameworks. For instance, Juice (Dang et al., |2021) is a
Julia package for logic and probabilistic circuits, which is not designed to be integrated with deep
learning frameworks. On the other hand, focuses on variable elimination with
applications to optimize tensor-based computation. It will be interesting to see how DOLPHIN can
be integrated with such systems to further improve the scalability and efficiency of neurosymbolic
learning, and will include a discussion on this in the revised manuscript. However, we still believe
that DOLPHIN’s novelty lies in its design that allows for the seamless integration of general purpose
neurosymbolic programs within deep learning frameworks, which is not addressed by the existing
systems.

19

1
>
3
4
5

Under review as a conference paper at ICLR 2025

N B=64 B =256

Time per Epoch (s) Accuracy Time per Epoch (s) Accuracy
4 11.42 0.96 8.92 0.97
8 12.55 0.95 9.15 0.95
16 27.45 0.94 15.71 0.89
20 36.59 0.92 18.73 0.85

Table 4: MNIST ProductN Training Epoch Times in Seconds.

F ON COMBINATORIAL EXPLOSIONS

The nature of the APPLY and APPLYIF primitives imply the possibility of combinatorial ballooning
of computations in cases where either the number of symbols is large or where there are several
distributions over which the function is applied. This is indeed a fundamental challenge in neu-
rosymbolic frameworks as a whole. DOLPHIN mitigates this by leveraging the Distribution class,
which condenses symbols into a single collection stored in CPU RAM while maintaining tags as a
GPU tensor (b x N x T, where b is the batch size, N is the number of symbols and T is the shape
of the tag). As shown in Figure[2b] this approach reduces symbolic overhead by avoiding redundant
evaluations for each batch sample, unlike frameworks like Scallop, where each sample in a batch is
independently evaluated. While tag evaluations still involve all combinations across all samples in
a batch, they are computed in a vectorized manner on the GPU.

To see the effect of such computations even on larger experiments, we consider MNIST ProductN,
where we multiply digits classified by the MNIST CNN as opposed to adding them in SumN. We
show the per epoch training times in Table [4] for batch sizes of 64 and 256. In both cases, the
DOLPHIN program is able to achieve high accuracies even for N=20 while running in reasonable
amounts of time. The scaling gets even better for larger batch sizes (e.g. 256) since it increases the
number of parallelized operations executed at any given time.

G THE HWF MODEL

We show the neurosymbolic model written in DOLPHIN for the HWF task along with the base neural
model. In the HWF task, the neural model simply classifies each input image into 14 symbols: 10
digits and 4 operations.

class SymbolNet (nn.Module) :
def __init__ (self):
super (SymbolNet, self).__init__ ()
self.convl = nn.Conv2d(l, 32, 3, stride = 1, padding = 1)
self.conv2 = nn.Conv2d (32, 64, 3, stride = 1, padding = 1)
self.fcl = nn.Linear (30976, 128)
self.fcl_bn = nn.BatchNormld (128)
self.fc2 = nn.Linear (128, 14)

def forward(self, x):
x = self.convl (x)
F.relu(x)
self.conv2 (x)
F.max_pool2d(x, 2)
F.dropout (x, p=0.25, training=self.training)
torch.flatten(x, 1)
self.fcl (x)
self.fcl bn (x)
F.relu (x)
F.dropout (x, p=0.5, training=self.training)
self.fc2(x)
return F.softmax (x, dim=1)

XX X X X X X X X X

This neural model is then used in the DOLPHIN program as follows:

20

Under review as a conference paper at ICLR 2025

| class HWFNet (nn.Module) :
2 def _ _init_ (self):
super (HWFNet, self).__init__ ()

Symbol embedding

6 self.symbol_cnn = SymbolNet ()

7 self.operators = [("+",), ("=",), ("*",), ("/",)]

8 self.symbols = [(str(i),) for i in range(l10)] + self.operators

9

10 self.db = torchgl.Database()

1

12 def forward(self, img_seq, img_seq_len):

13 batch_size, formula_length, _, _, _ = img_seq.shape

14 length = [l.item() for 1 in img_seqg_len]

15

16 inp = img_seq.flatten(start_dim=0, end_dim=1)

17 symbol = self.symbol_cnn(inp) .view(batch_size, -1, 14)

18

19 def eval_formula(s) :

20 try:

21 return eval ("".Jjoin(s))

22 except:

23 return math.nan

24

25 def concat_symbol (formula, symbol):

26 if formula[-1] == "":

27 return formula

28 else:

29 if not isinstance(symbol, tuple):

30 sympbol = (symbol,)

31 formula += symbol

32 if len(formula) % 2 == 1 and len(formula) > 1:

33 if formula[-2] in ["*", "/"]:

34 eval_result = str(eval_formula (formula[-3:1))

35 formula = formula[:-3] + (eval_result,)

36 return formula

37

38 def infer_expression(length, xsymbols):

39 res = symbols[0]

40 for i in range(l, len(symbols)):

41 res = Apply(res, symbols[i], concat_symbol)

42 x = (Apply(res, eval_formula),)

43 return x

44

45 def reorg(symbols, lengths):

46 distrs = []

47 for 1 in range (symbol.shape[l]):

48 if i < lengths:

49 distrs.append(Distribution (symbols[i, :].view(-1, 14), self.
symbols))

50 if 1 $ 2 == 0:

51 distrs[—-1] = distrs[-1].filter(lambda s : s not in self.
operators)

52 else:

53 distrs[-1] = distrs[-1].filter(lambda s : s in self.
operators)

54 else:

55 distrs.append(Distribution (torch.ones (1, device=device), [(""
e 1))

56

57 res = (lengths, =xdistrs)

58 return res

59

60 q = torchgl.Query ("hwf", base="symbols").join("lengths") \

61 .project (lambda symbols, lengths: reorg(symbols, lengths)) \

21

62
63
64

65
66
67

Under review as a conference paper at ICLR 2025

.project (infer_expression, batch_size=batch_size)

res = g(db, tensors={"symbols": symbol, "lengths": length}, disable
=True) .rows

stacked = Distribution.stack (res)
return GetProbs (stacked)

The HWFNet class is the neurosymbolic model. It takes in a sequence of images, img_seq, and their
lengths, img_seqg_len. Note that within a single batch there may be image sequences of varying
lengths. The neural model, symbol_cnn, is used to classify each image in the sequence into one
of the 14 symbols. Since we know that each number in the expression is a single digit, the reorg
function is used to filter out relevant symbols based on their position in the sequence (operators in
even places, digits in odd places). This function also pads sequences of smaller lengths with empty
strings, written as Distributions with a single element and a probability of 1. Once reorganized,
the infer_expression function is used to infer the expression from the symbols. It does so by
first concatenating Distributions using the concat_symbol function, which also performs partial
evaluations whenever possible. Once all the symbols are concatenated, the expression is evaluated
using the eval_formula function. The final expression is then returned as a Distribution. As a
sidenote, while optional, we use the TorchQL library to help write certain parts
of the program. This shows the ease with which Distributions can be used with existing machine
learning frameworks.

For such a complex DOLPHIN program, using a simple provenance like DAMP proves insufficient
for longer sequences since the tags of all possible combinations of symbols are collated into a single
number. On the other hand, DTKP-AM is able to track the top-k proofs for each symbol, pruning
out the less probable proofs. Furthermore, since each proof is a collection of input symbols leading
to a specific output, once the loss is calculated, gradients can be backpropogated directly to the
input symbols that had the most influence on the output. On the other hand, the gradients may be
distributed across all symbols in DAMP as it backpropogates through each intermediate computation
regardless of their role in the computation of the output, resulting in slower convergence.

H ON THE LANGUAGE AND SEMANTICS

H.1 LANGUAGE

We designed DOLPHIN primitives to allow the expression of complex neurosymbolic programs in
conjunction with user-defined functions. To develop the primitives, we studied several neurosym-
bolic tasks to determine the most common operations needed for these tasks. We found that the main
operation needed in most programs is to apply a function to symbols from different input models
and relations. This is primarily achieved via the join operation in Datalog, but we introduce the
Apply or ApplyIf primitives for a more Pythonic approach. Filters are used to remove symbols
violating conditions, similar to Datalog selections, while Union mimics the disjunction operation in
Datalog, typically needed for writing recursive programs as described in Appendix [D!

H.2 SEMANTICS

We designed DOLPHIN to be a general-purpose neurosymbolic framework able to support various
semantics, as long as they can be expressed as operations over tags tracked via the Distribution class.
DOLPHIN assumes that the provenance supplied to it offers both the conjunction and disjunction
operations that operate over combinations of tags from input symbols, as well as a way to translate
tags to probabilities. As long as these assumptions are satisfied, the primitives of DOLPHIN preserve
the semantics offered by the provenances.

22

Under review as a conference paper at ICLR 2025

As such, supplying the DAMP provenance to the DOLPHIN program introduces basic fuzzy seman-
tics which are preserved by DOLPHIN. However, there are cases where the independence assump-
tions may not hold and fuzzy semantics may not be appropriate.

The DTKP-AM provenance, on the other hand, offers an alternative without the assumption of
variable independence, except on the input variables. At each step of the program, each symbol is
associated with the tags of the input symbols that produce it via the proofs. Again, since DTKP-AM
satisfies the aforementioned assumptions, the top-k semantics of the provenance are preserved.

These tags are then translated into probabilities by performing an add-mult operation over the proofs.
This approximation of the WMC operation is more complex and results in a more precise translation
of tags to probabilities. However, as we see in the experiments where Scallop uses DTKP-WMC,
the accuracies achieved by DTKP-AM and DTKP-WMC are comparable.

23

	Introduction
	Overview
	The Dolphin Framework
	Dolphin Core Design Principles
	The Dolphin Syntax
	Abstractions
	Operations

	Control Flow and Recursion
	Dolphin Provenances
	Building the Dolphin Program

	Experiments
	Benchmarks
	Experimental Setup and Baselines
	RQ1: Scalability
	RQ2: Accuracy
	RQ3: Provenance Comparisons

	Related Work
	Conclusion and Limitations
	Dolphin Experiment Details for Benchmarks
	MNIST Sum-N
	Hand-Written Formula
	PathFinder
	CLUTRR
	Mugen
	Accuracy Curves for Mugen

	Graph Results of RQ3
	DTKP-AM Provenance
	WMC approximation
	Role of + and -
	Further reading

	Control Flows and Recursion in Dolphin
	Control Flow in HWF
	Recursion

	Comparison with Tensor-based Neurosymbolic Frameworks
	Optimizing Probabilistic Computations

	On Combinatorial Explosions
	The HWF Model
	On the Language and Semantics
	Language
	Semantics

