© ® N O 0o B~ W N =

- a4 a4 a o
g A W N = O

16

17

18
19
20
21
22

23
24
25
26

Accelerating Visual Sparse-Reward Learning with
Latent Nearest-Demonstration-Guided Explorations

Anonymous Author(s)
Affiliation
Address

email

Abstract: Recent progress in deep reinforcement learning (RL) and computer
vision enables artificial agents to solve complex tasks, including locomotion, ma-
nipulation, and video games from high-dimensional pixel observations. How-
ever, RL usually relies on domain-specific reward functions for sufficient learn-
ing signals, requiring expert knowledge. While vision-based agents could learn
skills from only sparse rewards, exploration challenges arise. We present Latent
Nearest-demonstration-guided Exploration (LaNE), a novel and efficient method
to solve sparse-reward robot manipulation tasks from image observations and a
few demonstrations. First, LaNE builds on the pre-trained DINOv?2 feature extrac-
tor to learn an embedding space for forward prediction. Next, it rewards the agent
for exploring near the demos, quantified by quadratic control costs in the embed-
ding space. Finally, LaNE optimizes the policy for the augmented rewards with
RL. Experiments demonstrate that our method achieves state-of-the-art sample
efficiency in Robosuite simulation and enables under-an-hour RL training from
scratch on a Franka Panda robot, using only a few demonstrations.

Keywords: Computer Vision, Sparse Reward, RL from Demonstrations

Lift a Block 1 Open a Drawer Insert a Pen
5 Demos | 1 Demo = 5 Demos
45 minutes RL | 52minutesRL (. 58 min
Rk s -~ =¥ ol

Reach a Location |
1 Demo |
21 minutes RL |

Figure 1: LaNE enables under-an-hour RL training from scratch on a Franka Panda arm from image observa-
tions and sparse rewards, utilizing only a few demonstrations. LaNE achieves unparalleled sample efficiency by
learning an embedding space to quantify state proximity and reward explorations close to the demonstrations.

1 Introduction

Deep reinforcement learning (RL) is a versatile approach that learns from interaction data, often
without an explicit, hand-coded dynamics model. Through environmental interactions, RL agents
can learn optimal policies from dense or sparse reward feedback. State-of-the-art approaches al-
low learning policies for discrete actions and continuous action spaces while taking either low-
dimensional state vectors or high-dimensional sensor readings [1, 2, 3, 4].

However, applying deep RL to real-life domains, including real-hardware robot learning, remains
difficult. One challenge is the need to reliably track the complete system state [5]. A policy that
directly maps images to optimal actions could alleviate such engineering challenges: data augmen-
tation and self-supervised learning have enabled policy learning from image observations with high

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

27
28
29
30
31

32
33
34
35
36
37

38
39
40
41
42

43
44
45
46

47
48
49
50
51

52

53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69

70
71
72
73
74

sample efficiency [6, 7, 8, 9]. Meanwhile, it is also hard to assign informative rewards in a scalable
way. Reward engineering requires domain-specific knowledge: popular simulated environments
provide optional dense reward functions based on heuristics [10, 11] but rely on state readings not
readily available in the real physical system. Thus, there has been a lot of effort to help RL agents
explore more effectively in environments with sparse or no rewards [12, 13, 14].

We present Latent Nearest-demonstration-guided Exploration (LaNE), a novel approach to tackle
the exploration challenge in image-based control tasks with sparse rewards. LaNE builds on the
idea of learning from demonstrations (LfD) and draws inspiration from reward shaping [15, 16, 17,
18, 19, 20, 21, 22, 23]. Our main insight is that each step in the demonstration can be considered
a subgoal, and the agent should be credited for reaching a similar state (see Fig. 2). Our approach
presents two main contributions:

1. We define a distance measure among image observations by learning a lower-dimensional
latent space. Specifically, we train a Variational Autoencoder (VAE) so that the resulting
latent space’s forward dynamics are locally linear. A quadratic control cost in this space
effectively identifies nearby states, whereas pre-trained embeddings from even a state-of-
the-art computer vision model are insufficient.

2. We propose a systematic way to provide dense reward signals in sparse-reward tasks un-
der the LfD paradigm. When exploring near the demonstrations, the RL agent receives
additional task-progress-informed rewards. The augmented reward function also derives
bounded value functions, significantly improving training stability.

LaNE is independent of the underlying RL algorithm, and we use Soft Actor-Critic [1] in this paper.
In Robosuite simulation [11], our method significantly improves sample efficiency when learning
long-horizon, sparse-reward visual manipulation tasks. On real hardware, LaNE enables learning
various manipulation tasks from scratch with a Franka Panda arm, each with under an hour of train-
ing and only one to five demonstrations (see Fig. 1).

2 Related Work

Exploration is a known challenge in deep RL, especially in sparse-reward environments [24]. One
solution is to guide exploration with domain knowledge. In reward shaping, intermediate rewards
can be added at important checkpoint locations [11], derived from physics knowledge [25], or
learned from human annotations [26]. Aside from external guidance, other works aim to improve the
agents’ intrinsic exploration behavior. Maximum entropy RL balances exploration and exploitation
by encouraging high policy entropy [1]. Hierarchical RL and intrinsically motivated skill learning
are also potential remedies [12, 27]. Our work aims to alleviate the need for domain expertise in the
reward-shaping approach by using a few demonstrations.

Learning from demonstrations (LfD) has proven helpful in expediting RL, especially in sparse re-
ward settings. Prior works have introduced various auxiliary training objectives. Behavior cloning
[21, 23] and supervised @)-value updates [18] can effectively learn from optimal demonstrations.
[28] employ an information theoretic approach to guide policy distributions. GAIL [29] and AIRL
[30] perform adversarial training to distinguish expert and policy rollouts. [17] and [20] learn poten-
tial functions from value estimates, allowing imperfect or mismatched demonstrations to be used.
CoDER [31] performs contrastive learning to pre-train the image encoders. Other methods perform
warm start with scripted or behavior-cloned policies [14, 22]. Our method adopts the LfD paradigm
for efficient learning and is compatible with sub-optimal demonstrations.

Aside from more efficient exploration and LfD, model-based RL methods aim to improve efficiency
by generating new synthetic experiences with learned world models. DreamerV2 [6] learns an ac-
curate discrete world model from high-dimensional image inputs, enabling human-level RL per-
formance in Atari games. Modem [32] combines model-based learning with demonstrations by
over-sampling demonstrated data to form a behavior prior. Our method LaNE also learns a forward

75
76

77
78
79
80
81
82
83

84

85
86
87
88
89

90
91

92

93
94
95
96
97
98
99

100

101
102
103

1
1 % @ 1 1 iy
0p —> 0] —> -+ —>op,
Demo Off Policy RL
2 2 Storage -
ey LA S —o S
S " e o
Slice
o (o)
<
a? a? Replay ; -
n 0 o — > on Buffer 1 New Experience
% @i or, il N o - O e P
(a) Demonstrations (b) Nearest-Demo Matching (c) RL Updates

Figure 2: Latent Nearest-demonstration-guided Exploration (LaNE) augments the sparse task reward with a
dense exploration reward in vision-based RL. (Left) We utilize variable-length demonstrations, each consisting
of observations o} and actions ai. (Middle) A dense exploration reward 7 is given when a transition lands
sufficiently close to a demonstration and is discounted based on its distance to the goal. (Right) Using the
combined reward signal, the RL agent learns to map a sensor observation o to an action a.

dynamics model but only as an auxiliary task for representation learning. Hence, it can be integrated
with both model-based and model-free RL methods.

Finally, a rich collection of prior work has studied ways to learn better representations for RL from
high-dimensional image observations. RAD and DrQ [8, 9, 33] perform data augmentation on image
observations to promote task-relevant features. CURL and CoDER [7, 31] use contrastive learning
as a self-supervised auxiliary objective for feature learning. Recently, using foundation models as
feature extractors has also shown to be beneficial for learning generalizable agents [34]. Our method
builds on a state-of-the-art foundation model, DINOv2 [35], and uses data augmentation to learn a
robust embedding space.

3 Problem Setting

We tackle the challenges of vision-based RL in long-horizon, sparse reward tasks, where the agent
only receives a positive reward 7rqone at task completion while getting a constant negative reward
Tive €verywhere else. The interpretation of such a reward function is that the agent gets a high
reward only at task completion but is penalized for the trajectory length. Formally, letting G denote
the set of goal states, we define the reward function as follows:

r(s,a,8') = {

The sparse reward function reduces the need for expert knowledge or human intervention, making it
much easier to implement in a real-world environment, but makes exploration hard in training.

Tdone > 0 seg
Tive < 0 otherwise.

)

4 Method

We present Latent Nearest-demonstration-guided Exploration, an efficient RL algorithm centered
around a few demonstrations to tackle the exploration challenge with sparse-reward learning. The
core idea is to provide additional task-progress-aware dense rewards when the agent is close to the
demonstrations. We learn a structured embedding space to quantify state proximity from image
observations by learning a latent dynamics model as an auxiliary task. The cleverly designed aug-
mented reward function also derives bounded value functions, enabling us to perform value clipping
and greatly enhance training stability.

4.1 Reinforcement Learning from Demonstrations

LaNE utilizes a demonstration set D consisting of n successful trajectories of observations and
actions. Each demonstration trajectory ¢ may have a different length 7}, but must terminate in the
goal set G. We assume the demonstrations to come from a human operator or a heuristic controller

104
105
106
107

108
109
110
111
112
113
114

115

116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142

143
144
145
146
147
148

and, thus, can be sub-optimal. We formalize the notations as follows: 7 denotes the trajectory
for demonstration 7. s; is the underlying true environment state, and o; is the high-dimensional
observation, such as images. a; is the action taken by the demonstrator. Note that the RL algorithm
cannot access the ground truth state s; in the demonstrations, but only observations, as shown below:

D= {7-177—2 . .Tn}

T = (06,&6,021,0,21,-~~O7Ti_1,a§~i_1,02n) (2)

Vi, s, €G.
The demonstrations are stored in two forms. First, the trajectory form records the steps to success
from each state, allowing us to discount the exploration reward according to task progress, as detailed
in Section 4.3. Next, they are sliced into experience tuples (o, a, o', r, d) and placed in a replay buffer
B for representation learning and off-policy RL updates. Here, o’ denotes the next observation after
o. r is the sparse reward as defined in Equation 1, and d is a Boolean variable indicating episode

termination. LaNE uses a first-in-first-out replay buffer 3 with capacity for a limited number of
transitions, but the demonstrations are always retained to ensure sufficient reward signal.

4.2 Augmentation-Invariant Distance Measure

The key technical challenge behind LaNE is to Frozen Frozen
find a demonstration state closest to the agent’s
current state and quantify its proximity. Com- o
puting the distance between two states from N
their respective image observations is nontriv- §
ial: two drastically different states might only E, Dy
differ by a few pixels. Conversely, the same A B
underlying state might appear very different in My — 2
two images due to task-irrelevant background

features. To solve this, we embed the images .))

. . . . Figure 3: LaNE learns a latent space with locally linear

into a low-dimensional latent space to obtain a . . " ,
dynamics. Given a transition tuple (o, a, 0'), the ob-

viable distance measure. Inspi.red by Embed ¢¢rvagions are first encoded by a frozen DINOv2 model
to Control (E2C) [36], we train a VAE [37] into w and w’. Next, the encoder E, further embeds
and enforce a locally linear dynamics model w into a low-dimensional latent state z. The forward
to regularize the structure of the latent space. model M, predicts the transition matrices A, B and
. : N ’
The locally-linear dynamics model captures our offset c. Fmal}y, the decAoder Dg reconstructs w’ from
| for the latent 0 be t 1l the predicted 2/, where 2’ = Az + Ba + c. The train-
gloa or) ¢ latent space to . ¢ temporally con- ;ple modules Ey4, My, and Dy are colored in orange.
sistent since we have a multi-step control task.

ZAONIQ
CH
]
O\

Predict

Our method differs from E2C in three key ways: 1. LaNE leverages the feature extractor from a
strong pre-trained image model by embedding and predicting the frozen DINOv2 [35] features. As
we find with ablation studies in Section 5.2, learning on top of DINOvV2 features w is superior to
learning directly from pixels o. 2. We learn a latent space robust to pixel-space perturbations. It
has been shown that data augmentation is crucial for efficient and robust image-based reinforcement
learning [8, 9, 31, 33]. Hence, we apply a random data-augmentation function f(-) during represen-
tation learning. 3. Our RL policy network uses a separate CNN encoder to learn in an unconstrained
embedding space and benefit from low inference latency. Overall, the trainable components include
the encoder Ey, the decoder Dy, and the transition model M.

LaNE optimizes a variational lower bound (ELBO) objective across transition tuples (o, a, 0’); sam-
pled from the replay buffer. We assume the latent states z form a unit Gaussian prior p(z) ~
N(0,7). The encoded distributions ¢(z|w) and decoded distribution p(w | z) are also modeled
with Gaussian distributions. During training, the data-augmented observation features are encoded
into their latent distributions whose mean (¢ and diagonal covariance matrix X are predicted by the
encoder network E:

zZ o~ Qqﬁ(z |w) = N(Ma ¥), where (p, X) = E¢(w)7 w = DINOv2(f(0))

2~ ez |w') = N/, X'), where (4, X') = Eg(w'), w' = DINOv2(f(0)). ®)

149
150
151
152
153

154
155

156
157
158
159
160
161
162

163
164

165
166
167

168
169
170
171

172

173
174
175
176

177
178
179
180
181

The one-step forward model in the latent space is locally linear in the state and action, whose param-
eters (matrices A, B and offset ¢) depend on the starting state, as predicted by the latent transition
model My, Prior work shows that a latent linear dynamics model is tractable to learn but provides
modeling flexibility through local linearity [36]. The linear transition model allows the prediction
of the next step latent distribution using the current distribution and action as follows:

2 = Az 4 Ba + ¢, where (A, B, c) = My(2) 4)
qp(2'| z,a) = N (i, %), where j/ = Ap+ Ba+ ¢, ¥/ = ADAT, 5)

Finally, the decoder Dy reconstructs the next step observation embedding from the predicted next
step latent vector:

W = Dy(3). ©)

The encoder Fy, decoder Dy, and transition model M, are updated jointly using a combined loss
with three terms. First, we want the sampled starting latent state z to be reconstructed back to
the original image features w. Similarly, as we pass the sample through the dynamics model, the
resulting latent state prediction =" should be reconstructed back to w’. Finally, to ensure the latent
dynamics model is consistent over multiple steps, we want the predicted distribution gy, (i’ |w, a)
and encoded distribution g4 (z’|w’) to be similar. Formally, we write the overall training objective £
as follows, where) is a hyper-parameter for weighing the two loss terms:

LrLBo = E {— log p(w|z) — logp(w’lé’)} + Dk, (%(Z | w) H p(z)) (7
iad'ton Z/qu
[,dynamics = erM |:DKL (qw (il | 2, a) ’ Q¢'(Z/ ‘ w/)>:| (8)
L= E |:£ELBO +)\‘Cdynamics:| . (9)
(0,a,0")EB

In essence, we minimize the reconstruction error for the VAE using the ELBO objective (term 1)
and the forward prediction error in the latent space using KL divergence (term 2).

The learned latent space allows us to define a dynamics-aware distance measure between observa-
tions. Specifically, for two observations 01 and o2, we define the Augmentation-invariant Distance
Measure (ADM) to be the root quadratic cost between the augmented and encoded states z; and zs:

d(01,09) = ((21 = 22)" Q (21 — 22))?. (10)

Our design echoes the quadratic cost function commonly used in optimal control. Using an identity
weighting matrix @) = [further simplifies ADM to the Euclidean distance in the latent space. We
apply this simplification in our experiments, but other weighting matrices could be useful when the
agent observes both images and proprioceptive states.

4.3 Demonstration-Guided Exploration

We propose a systematic reward-engineering approach to credit the agent for staying close to demon-
strations. Given an experience tuple (o, a, o', r, d), we assign an additional exploration reward 7 if
o' is sufficiently close to a demonstrated state, up to a distance threshold ¢, which is dynamically
computed. We define € as the average distance between consecutive demonstration observations:

€= }Et [d(0i70i+1)]7 Oi7oi+1 €D. (11)

The threshold e approximates the distance of one environment step. As the agent gathers new ex-
periences, we re-compute €. This is necessary because the encoder E, decoder Dy, and dynamics
model parameters My, are constantly updated with the latest experience to ensure that ADM is not
overfitted to only the demonstration data. In addition, we find the trajectory index ¢ and time step ¢
of the nearest demonstration using the ADM d:

L = arg_rtnin d(o',0l), ol eD. (12)
2

182
183

184
185
186
187
188

189
190
191
192
193
194

195

196
197
198
199
200
201

202
203
204
205

207

208

209

210
211
212
213

Lift a Block Open a Door Stack Blocks Move a Can
5 demos 10 demos 10 demos 20 demos

Figure 4: LaNE achieves state-of-the-art sample efficiency in four Robosuite visual manipulation tasks. The
RL agent observes RGB images from 2 cameras, one in the front (shown above) and the other on the gripper.

After we compute ¢, ¢*, and t*, we assign a dense reward 74ense by augmenting the environment
reward with a task-progress-informed exploration reward:
r+altVry [d(o,0k) <€ Ao ¢ G
Tdense =

13
T otherwise. (3)

Here, the exploration reward r} = a%: ~"r, is modulated by the expected step to success, which

is the difference between the demo trajectory length 73~ and ¢*. In the context of LfD, 7} can be
interpreted as a point estimate of the potential function at o', echoing prior work in this domain [17,
20]. The discounting factor « is a hyper-parameter chosen independently from the RL discounting
factor v, and the nominal exploration reward 7. is a constant.

Inspecting the augmented reward rgengse, We see that when o’ finds its nearest neighbor close to one
of the successful terminal states, o’ is awarded almost the full nominal exploration reward r.. When
o' is close to one of the earlier steps in a demonstration, 7. is heavily discounted. Finally, if we are
very far from any demonstration observation (relative to the distance threshold €), or if we are at the
goal, the RL agent gets only the environment reward r (case 2 in Eq. 13). LaNE is versatile because
we can train a control policy to maximize rqense Using any off-the-shelf RL algorithm.

4.4 Prioritized Replay and Value Clipping

We improve training efficiency and stability by performing prioritized replay and @)-value clipping.
Prioritized replay is a standard tool when learning from demonstrations [19]: in each batch of b
transitions, we sample at least py fraction from the demonstrations, where b and pg are hyper-
parameters. Conservative g-value estimates are also widely used to stabilize training [1, 38]. LaNE
stands out because rqense derives upper and lower bounds on the g-value landscape, allowing us to
use a clipped value target when performing temporal difference updates.

The definition of 7gense in Eq. 13 contains the nominal exploration reward 7., a constant hyper-
parameter. We pick |ro| < |7ive| to obtain bounded Q-values. Under rgepse, @ transition either
receives a positive reward 74one and terminates the episode or receives a non-positive reward ;e +
1 - r%. The highest ()-value is achieved at task completion. On the other hand, in the worst case
where the agent receives 7y, all the time and never succeeds, the)-value is bounded below by
YooY Trive = (1 — 7)Tlive. Thus, we obtain the following bound:

(1 - ’Y)Tlive S Q(07 0,) S Tdone-

5 Experiments

5.1 Simulated Manipulation Tasks

We solve four robot manipulation tasks from the Robosuite simulator [11]: lifting a block, opening
a door, stacking blocks, and moving a soda can. The RL agent observes 128 x 128 RGB images
from two cameras, one mounted on the robot gripper and one in front of the robot. The robot uses
Operational Space Control — the agent predicts actions to change the robot’s hand displacement,

214
215
216

217
218
219
220
221
222
223

224

225
226
227
228
229

231
232
233
234

235
236
237
238

240
241

mm E2C-MPC MoDem W CoDER . LaNE

Lift a Block Open a Door Stack Blocks Move a Can
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
© © © T
0.6 ©06 0.6 0.6
0 « « o
@ @ @ @
Soa $o0a toa Soa
o S o o
3 > 3 3
B2 /\\ Bo.2 Bo.2 Bo.2
0.0 0.0 0.0 = 0.0
0 1 2 3 4 5 00 02 04 06 08 10 0.0 0.5 1.0 15 00 05 10 15 20 25
environment steps led # environment steps 1e5 # environment steps 1e5 # environment steps 1e5

Figure 5: We compare LaNE with optimal control and state-of-the-art RL methods: E2C [36], MoDem [32]
and CoDER [31]. Our method (red) consistently learns faster and converges to higher success rates than all
three baseline methods.

I RAD RAD+PR Emm RAD+PR+VC s LaNE N Nore No DINO mm DINO Only BN LaNE
Stack Blocks Move a Can Stack Blocks Move a Can
1.0 1.0 1.0 1.0
208 208 208 008
© © © ©
€06 =0.6 0.6 0.6
” « » »
g g g ¢
o4 Soa $oa Soa4
8 8 8 8
s s s s
902 “0.2 “0.2 No.2
0.0 0.0 —t 0.0 0.0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5 # environment steps 1e5 # environment steps 1e5 # environment steps 1e5

Figure 6: Left: Starting from RAD [8], we add PR (prioritized replay), VC (value clipping), and exploration
reward 7 to understand their contributions. PR and VC are necessary for efficient learning, but the exploration
reward is the most crucial and significantly improves. Right: We experiment with LaNE variants without pre-
training (No DINO) or fine-tuning (DINO Only). While either variant improves from the baseline where no
exploration reward is given, combining both results in the quickest exploration.

rotation, and gripper width for 7 degrees of freedom. Figure 4 shows one of the camera angles.
The demonstrations come from a hand-coded controller that utilizes state information. The state is
unavailable for the RL agent, who must learn from images alone.

We compare LaNE with optimal control, model-free, and model-based RL. For E2C [36], we run
an MPC controller in the latent space to minimize a quadratic state cost towards the demonstrated
goal state. CoDER [31] and MoDem [32] are state-of-the-art vision-based RL algorithms in the LfD
setting. We initiate all methods with the same demonstrations and measure the evaluation success
rates during training. Figure 5 shows the mean and standard deviation across five random seeds as a
function of training environment steps. Our method outperforms all three baselines across all tasks
while showing major advantages in the two more challenging tasks.

5.2 Ablation Studies

Our approach utilizes multiple techniques to maximize the utility of demonstrations and to speed
up learning. We perform ablation studies to answer two key questions: 1. Is reward augmentation
really necessary, or are regularization tricks like prioritized replay (PR) and value clipping (VC) by
themselves sufficient? 2. LaNE learns an embedding space by fine-tuning a pre-trained computer
vision model. Are both the fine-tuning step and the pre-trained DINOv2 model necessary?

For question 1, we start from a standard image-based RL algorithm RAD [8] (initialized with demon-
strations) and introduce our key components one at a time, namely prioritized replay (PR), value
clipping (VC), and the exploration reward 7gepnse- As shown by the left half of Figure 6, importance
sampling and value clipping are helpful, but r4.,sc makes the most significant difference, allowing
the robot to complete the long-horizon task reliably much earlier in training.

For question 2, we experiment with two variants of LaNE, one without DINOv2 and one without
fine-tuning. When LaNE trains without DINOv2, it initializes the encoder and decoder from scratch
and learns to predict the images directly. When LaNE uses the pre-trained model and skips the fine-
tuning steps, we directly use the Euclidean distance between their respective DINOv2 embedding
vectors. The results in the right side of Figure 6 demonstrate that performing reward augmentation
without pre-trained DINOV2 or fine-tuning is useful, but combining both allows the agent to explore
the most efficiently.

242

243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264
265

267
268
269
270
271
272
273

Figure 7: We deploy LaNE on four tasks with the Franka Panda robot: reach a fixed location, lift a block, open
a drawer, and insert a pen. The RL agent observes two RGB images, one in front of the robot and one on its
wrist. Trained from scratch, the robot achieves a 10/10 evaluation success rate with only a few demonstrations
and less than one hour of learning.

5.3 Real Robot Experiments

As Figure 7 illustrates, LaNE enables efficient RL in four diverse tasks with the Franka Panda robot.
From the easiest to the hardest, the tasks are Reaching a Fixed Goal, Opening a Drawer, Lifting a
Block (random location), and Inserting a Pen. Demonstrations are collected via teleoperation from
an iPhone app, which uses inside-out tracking to stream the device’s pose.

Results show that our method is extremely

. . . Task Reach Drawer Lift Insert
data-efficient, leading to task success with

- Episodes 1 1 5 5
under an hour of training. Table 1 shpws Demos Steps 12 18 103 135
the number of demonstrations provided Time 0:20 025 2:00 3:00
and training performance. For the most CoDER Steps N/A N/A N/A N/A
iohtf d 1- hi k. LaNE First Success Time > 1h > 1h > 1h > 1h
straightforward goal-reaching task, La

uses only one demo and completes the task LaNE (Ours) Steps 476 1054 1109 1854
. . . First Success Time 13:10 31:51 30:07 38:01

for the first time in only 13 minutes. The
find . | ful ol LaNE (Ours) Steps 806 1929 1820 2927
agent finds a consistently successtul pol- Convergence Time 20:55 51:40 44:16 57:58

icy quickly, only 8 minutes later. With five
demonstrations, LaNE can learn more chal- Table 1: We deploy LaNE on a Franka Panda arm to learn
lenging tasks with high stochasticity or re- manipulation tasks requiring up to 7 degrees of freedom.

. p Human demonstrations are provided via teleoperation, tak-
qum?g pr?CISlon’ including lifting a block ing only a few minutes. LaNE trains every task to a 10/10
and inserting a pen. Overall, the results gyccess rate from scratch under one hour of wall clock time.
prove that our approach is outstanding in In comparison, our strongest baseline CoDER [31] fails to

simulation and practical in the real world. succeed even once during the first hour of training.

6 Conclusion

This paper presents LaNE, a data-efficient RL algorithm to learn sparse reward tasks from image
observations by utilizing a few demonstrations. LaNE outperforms state-of-the-art benchmarks and
enables under-an-hour RL training with a real robot. Our key innovation is to learn a latent dy-
namics model, which provides a temporally consistent embedding space. When a transition lands
sufficiently close to a demonstration, we assign an extra task-progress-informed reward modulated
by the distance to the goal. As such, we convert a sparse reward task to a task with dense proxy
rewards, dramatically improving learning efficiency. Our work lends itself to exciting future direc-
tions. For example, we can leverage recent advancements in causal RL and counterfactual analysis
[39, 40, 41] to determine the state in an expert demonstration that directly caused task success. This
might further improve our search for the nearest demonstration and overall learning.

274

275
276
277
278
279

280
281
282
283
284

285
286

287
288
289

291

292

294
295
296

297
298
299

300
301
302

303
304
305
306
307

308
309
310

311
312

314

315

317
318

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 1861-1870. PMLR, 10-15 Jul 2018. URL
https://proceedings.mlr.press/v80/haarnojal8b.html.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533, Feb. 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

Y. Wang, H. He, X. Tan, and Y. Gan. Trust region-guided proximal policy optimiza-
tion. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
a666587afda6e89aec274a3657558a27-Paper . pdf.

O. M. Andrychowicz, B. Baker, M. Chociej, R. Jézefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3-20, 2020. doi:10.1177/0278364919887447. URL
https://doi.org/10.1177/0278364919887447.

D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=0oabwyZb0u.

M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for re-
inforcement learning. Proceedings of the 37th International Conference on Machine Learning,
Vienna, Austria, PMLR 119, 2020. arXiv:2004.04136.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 19884—19895.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/e615c82aba461681ade82da2da38004a-Paper. pdf.

D. Yarats, 1. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

Y. Zhu, J. Wong, A. Mandlekar, and R. Martin-Martin. robosuite: A modular simulation
framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function, 2018.

K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control, 2016. URL https:
//arxiv.org/abs/1611.07507.

https://proceedings.mlr.press/v80/haarnoja18b.html
http://dx.doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
http://dx.doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://openreview.net/forum?id=GY6-6sTvGaf
https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507

319
320
321
322

323
324
325

326
327
328

329
330
331

332
333
334
335

336
337
338

339
340
341

342
343
344
345

346
347
348
349

350
351
352
353
354
355

356
357
358

359
360

361
362
363
364

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learn-
ing for vision-based robotic manipulation. CoRL, abs/1806.10293, 2018. URL http:
//arxiv.org/abs/1806.10293.

G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist,
O. Pietquin, and R. Dadashi. Get back here: Robust imitation by return-to-distribution plan-
ning, 05 2023.

R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learn-
ing. ArXiv, abs/2006.04678, 2020. URL https://api.semanticscholar.org/CorpusID:
219531578.

Y. Guo, J. Gao, Z. Wu, C. Shi, and J. Chen. Reinforcement learning with demonstrations
from mismatched task under sparse reward. In Conference on Robot Learning, 2022. URL
https://api.semanticscholar.org/CorpusID:254246549.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, 1. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A. Gruslys. Deep
g-learning from demonstrations. AAAI’ 18/IAAT’ 18/EAAT’ 18. AAAI Press, 2018. ISBN 978-
1-57735-800-8.

M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. 07 2017.

Y. Wu, M. Mozifian, and F. Shkurti. Shaping rewards for reinforcement learning with imperfect
demonstrations using generative models. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 6628—6634, 2021. doi:10.1109/ICRA48506.2021.9561333.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration
in reinforcement learning with demonstrations. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), page 6292-6299. IEEE Press, 2018. doi:10.1109/ICRA.
2018.8463162. URL https://doi.org/10.1109/ICRA.2018.8463162.

I.-C. A. Liu, S. Uppal, G. S. Sukhatme, J. J. Lim, P. Englert, and Y. Lee. Distilling motion
planner augmented policies into visual control policies for robot manipulation. In 5th An-
nual Conference on Robot Learning, 2021. URL https://openreview.net/forum?id=
NZnz3cExrDW.

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demon-
strations. In H. Kress-Gazit, S. S. Srinivasa, T. Howard, and N. Atanasov, editors,
Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, USA, June 26-30, 2018, 2018. doi:10.15607/RSS.2018.X1V.049. URL http://www.
roboticsproceedings.org/rss14/p49.html.

P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.
Inf. Fusion, 85(C):1-22, sep 2022. ISSN 1566-2535. doi:10.1016/j.inffus.2022.03.003. URL
https://doi.org/10.1016/j.inffus.2022.03.003.

A. D. Laud. Theory and Application of Reward Shaping in Reinforcement Learning. PhD
thesis, USA, 2004. AAI3130966.

S. Cabi, S. Gémez, A. Novikov, K. Konyushova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Bud-
den, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. Freitas, and Z. Wang. Scaling
data-driven robotics with reward sketching and batch reinforcement learning. In Robotics:
Science and Systems, 07 2020. doi:10.15607/RSS.2020.XVI.076.

10

http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:254246549
http://dx.doi.org/10.1109/ICRA48506.2021.9561333
http://dx.doi.org/10.1109/ICRA.2018.8463162
http://dx.doi.org/10.1109/ICRA.2018.8463162
http://dx.doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
https://openreview.net/forum?id=NZnz3cExrDW
https://openreview.net/forum?id=NZnz3cExrDW
https://openreview.net/forum?id=NZnz3cExrDW
http://dx.doi.org/10.15607/RSS.2018.XIV.049
http://www.roboticsproceedings.org/rss14/p49.html
http://www.roboticsproceedings.org/rss14/p49.html
http://www.roboticsproceedings.org/rss14/p49.html
http://dx.doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
http://dx.doi.org/10.15607/RSS.2020.XVI.076

365
366

367
368
369

370
371

372
373
374

375
376
377

378
379
380

382
383

384
385
386
387

388
389
390
391
392

393
394
395
396
397

398
399
400

401
402
403

404
405

407
408

[27] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017.

[28] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Reinforcement learning
with sparse rewards using guidance from offline demonstration. International Conference on
Learning Representations (ICLR), 2022. URL https://par.nsf.gov/biblio/10327543.

[29] J. Ho and S. Ermon. Generative adversarial imitation learning. In Neural Information Process-
ing Systems, 2016. URL https://api.semanticscholar.org/CorpusID:16153365.

[30] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. ArXiv, abs/1710.11248, 2017. URL https://api.semanticscholar.org/
CorpusID:21529792.

[31] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. Learning visual robotic control effi-
ciently with contrastive pre-training and data augmentation. In International Conference on
Robotics and Automation, 2022. URL https://arxiv.org/abs/2012.07975.

[32] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerat-
ing visual model-based reinforcement learning with demonstrations. In International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
JdTnc9gjVLJ.

[33] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[34] Z. Yuan, Z. Xue, B. Yuan, X. Wang, Y. Wu, Y. Gao, and H. Xu. Pre-trained image encoder
for generalizable visual reinforcement learning. In A. H. Oh, A. Agarwal, D. Belgrave, and
K. Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=FQtku8rkp3.

[35] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li,
W. Galuba, M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, 1. Misra, H. Jegou, J. Mairal,
P. Labatut, A. Joulin, and P. Bojanowski. Dinov2: Learning robust visual features without
supervision, 2023.

[36] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/alafc58c6ca9540d057299ec3016d726-Paper . pdf.

[37] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings, 2014.

[38] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page
2094-2100. AAAI Press, 2016.

[39] E. Bareinboim and J. Pearl. Causal inference and the data-fusion problem. Proceedings of the
National Academy of Sciences, 113(27):7345-7352, 2016.

[40] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney, T. Steple-
ton, N. Heess, A. Guez, et al. Counterfactual credit assignment in model-free reinforcement
learning. arXiv preprint arXiv:2011.09464, 2020.

11

https://par.nsf.gov/biblio/10327543
https://api.semanticscholar.org/CorpusID:16153365
https://api.semanticscholar.org/CorpusID:21529792
https://api.semanticscholar.org/CorpusID:21529792
https://api.semanticscholar.org/CorpusID:21529792
https://arxiv.org/abs/2012.07975
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=FQtku8rkp3
https://openreview.net/forum?id=FQtku8rkp3
https://openreview.net/forum?id=FQtku8rkp3
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf

409
410

411
412

413
414

415
416
417
418

419
420

421
422

[41] S. Zhu, 1. Ng, and Z. Chen. Causal discovery with reinforcement learning. arXiv preprint
arXiv:1906.04477, 2019.

[42] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

[43] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

[44] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger. Cartesian impedance control of redundant
robots: recent results with the dlr-light-weight-arms. In 2003 IEEE International Conference
on Robotics and Automation (Cat. No.03CH37422), volume 3, pages 3704—3709 vol.3, 2003.
doi:10.1109/ROBOT.2003.1242165.

[45] S.Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped
least squares methods. IEEE Transactions in Robotics and Automation, 17, 05 2004.

[46] J. Linowes and K. Babilinski. Augmented reality for developers: Build practical augmented
reality applications with unity, ARCore, ARKit, and Vuforia. Packt Publishing Ltd, 2017.

12

http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1109/ROBOT.2003.1242165

423

424

425
426
427
428
429

430
431
432

434
435

436
437
438
439

7 Appendix

7.1 Motivating Example

We motivate the need to learn a dynamics-aware embedding space: finding a good distance measure
between states from their respective high-dimensional image observations is non-trivial. We use
the PointMaze environment from the D4RL benchmark [42] to provide a clear illustration. In this
environment, the controllable point mass is marked in green. As shown in Figure 8, we place the
point at three positions in the maze such that state (a) is much closer to state (b) than state (c).

@s=(-1,1) (b) s = (—0.5,1) (©)s=(1,1)
Figure 8: Observations from the PointMaze environment. The point mass in green is the controllable agent,
whose location is indicated by s. As indicated by the agent’s location, state b is closer to state a than c.

Distance Measure d ~ d(a,b) d(a,c) d(a,c)/d(a,b)
Pixel L? 2.835 3.303 1.165
DINOvV2 L? 0.004 0.003 0.75
Ground Truth L* 0.5 1.5 3
ADM (Ours) 0.046 0.135 2.935

Table 2: Comparison across different distance measures in PointMaze. Distance in the pixel space and DI-
NOv2 embedding space cannot capture the true relations of the underlying states. Whereas our proposed ADM
can estimate the relative distance the most accurately.

le—2 le-2 15

1 e oe .. .g oo o 3 17 i .g L] +4
1.0

2
0 0
wow 1 333 0228 3 0.5
-1 - o' -1 *200

gost 0. od ' S0 543088 - 107 0 - 00

-1 0 1 0 -1 o 1 0.0

Figure 9: Left: ADM (Ours). Right: DINOv2. We plot the L2 distance in ADM and DINOv2 embedding
space from each location in the maze to the pink location. In the ADM embedding space, computed distances
match the environment dynamics, showing the lower left corner as the farthest due to the turn. In contrast,
DINOV2 cannot identify the differences between states.

Table 2 compares two baseline distance measures with our proposed method ADM, trained from
10000 random interactions in the environment. For Pixel L2, we directly compute the Euclidean
distance. As expected, d(a,b) and d(a,c) are not distinguishable from the pixel-wise distance.
Similarly, the pre-trained DINOv2 embeddings do not capture the transition information and fail to
estimate the distance between states. ADM is the only method to capture the relative proportions of
the ground-truth distances.

In addition, we visualize the quality of the learned embeddings in Fig. 9. We show that the learned
embeddings respect the dynamics of the maze, understanding that the point must go around the
corner instead of through the wall. This simple experiment illustrates the benefits of using our latent
space distance measure to quantify the task-relevant similarity between image observations.

13

440

441
442
443
444
445
446

447

448
449
450
451

452

454

456
457
458
459

461
462

7.2 Visualization of Embedded Robot Trajectories

This section aims to provide a better intuitive understanding of the learned ADM embedding space.
We visualize the learned embeddings in the real robot Reach task by plotting their 2-D projections
in Fig. 10. Specifically, we plot a demonstration, a random successful, and a random unsuccessful
episode. Unsurprisingly, we find a clear separation between successful and failed episodes: the
successful episode closely follows the demonstration. In addition, we observe that the latent states
move linearly as the agent progresses in the task.

Sa e e WA
S ﬂﬂﬂﬂ@
:Z B Fail 7 ﬂ@@

-20 0 20

Figure 10: 2-D t-SNE of a demonstration, a successful and an unsuccessful trajectory on the Reach task.
Colors change from light to dark as the episodes progress. The successful episode is mapped closer to the
demonstration than the failed episode.

7.3 Exploration Reward Ablation Studies

To justify our choice of the exploration reward shown in Eqn. 13, we conduct ablation studies on
variants of the exploration reward. 1. We set @ = 1 to make sure the discounting is necessary. 2.
Alternatively, we use a simpler reward based on the L2 distance between the observation and its
nearest-neighbor demonstration: r, = max(1, ool)) This simplified reward is the inverse L2,
scaled to the average distance between demonstratlon states, and clipped to make the g-value bound
hold. Our method holds a clear advantage in the long-horizon can-moving task.

- a=1 L2 inverse reward . Ours

Lift a Block Open a Door Stack Blocks Move a Can
1.0

)
o
)

o
@
o
®
o
@
o
@

o 92
Y
S ¢
=Y

e o

S

S 9O <

@

FS

)
=
Success Rate

Success Rate

o
o
o
o
o
N
o
o

Success Rate
Success Rate

o
o
o
o
o
o
o
o

0 1 2 3 4 5 0.0 0.2 04 0.6 0.8 1.0 0.0 05 1.0 1.5 0.0 05 1.0 15 20 2.
environment steps le4 # environment steps 1e5 # environment steps 1e5 # environment steps 1e5

Figure 11: We conduct ablation studies on 2 other exploration rewards. We observe a clear advantage of our
proposed reward in the long-horizon task and similar performance in shorter-horizon tasks.

7.4 Comparison with DreamerV2

We compare LaNE with DreamerV2, another state-of-the-art model-based RL method. Because
DreamerV2 does not explicitly take demonstrations, we pre-fill its replay buffer with demonstration
trajectories. In addition, we allow DreamerV2 to run for longer to get a better sense of its perfor-
mance. As shown in Fig. 12 below, it takes at least 5 times the environment steps for DreamerV2
to learn the Robosuite block-lifting task compared to LaNE. We point out that DreamerV2 does
not distinguish the pre-filled demonstrations from the regular episodes and thus fails to sample the
sparse reward often enough. Nevertheless, LaNE can also integrate with model-based RL methods
to boost their sample efficiency in sparse-reward settings.

14

464

470

471
472
473
474
475

476
477
478
479
480
481

482

483
484
485
486
487
488

Lift a Block
10 —— DreamerV2
0.8 —— LaNE

©
0.6

0

]

0 0.4

o

=1

V0.2
0.0

0.0 0.5 1.0 15 20 25
environment steps le5

Figure 12: DreamerV2 takes over 5 times samples to learn the Robosuite Lift a Block task compared to LaNE
because it does not distinguish between demonstration and regular episodes.

7.5 Robustness of LaNE Policies

We evaluate the out-of-distribution robustness of trained LaNE policies. Specifically, we push the
block and the pen with a stick during policy execution, as illustrated below in Fig. 13. We find that
the policies are robust to small perturbations. For example, the agent can lift the yellow block when
pushed, even when the stick and the operator’s arm enter the camera view. Additionally, when the
pen is pushed to unseen locations, the robot can still pick it up.

1

BN

Figure 13: The learned LaNE policies are robust to small perturbations during evaluation, including moving
objects, unseen initialization locations, and foreign objects.

7.6 Real Robot Setup
7.6.1 Highly Compliant Real-time Controller

Because reinforcement learning requires a trial-and-error process [43], we expect the robot to make
frequent physical contact with the environment. To eliminate safety hazards, the controller must be
compliant with external forces. On the other hand, we want the robot to move swiftly so that each
RL step takes less time to execute. We develop a highly compliant real-time controller extended
from the Cartesian Impedance Controller [44, 45].

At a high level, the end-effector tracks an equilibrium pose following a mass-spring-damper model.
The robot asserts higher torque in the opposite direction as the current pose deviates further from
the equilibrium. In the Cartesian space, we limit the maximum force exerted on the end effector by
the robot, preventing it from causing damage. In the joint space, we apply a counter torque when a
joint gets close to its hardware limit. Combining these control rules builds a safety net around the
robot for smoother RL training.

7.6.2 System Architecture

The robot uses two Intel Realsense cameras — one mounted on the end-effector and another in front
of the robot. Our method only utilizes color images. Both cameras are connected via USB to an
Nvidia GPU desktop, which runs inference and training for the RL agent. Specifically, the GPU
desktop runs an OpenAl gym interface [10], with which the RL agent interacts. At each timestep,
the agent chooses its action based on its policy: a = 7(0). The action a consists of a displacement
of the end effector position, change in roll/pitch/yaw, and open/close of the gripper. Next, the action

15

489
490
491

492

493
494
495

497
498

499
500
501
502
503
504

505

506
507
508
509
510
511
512
513
514

515
516
517
518

519

520
521
522

selected by the RL agent is sent via ethernet to an Intel NUC, which directly interfaces with the
Panda Robot. Specifically, the Intel NUC runs the Robot Operating System (ROS), where our real-
time controller communicates with the FRANKA_ROS library.

7.6.3 Demonstration Collection via Tele-Operation

A key aspect of our approach is to learn from a small set of hu-
man demonstrations efficiently. We build an application where

a user can tele-operate the robot by moving and rotating an o
AR Pose

iPhone. Our iPhone application utilizes primitives from Ap-
ple’s ARKit [46] to stream the position and orientation of the
device to the PC controlling the robot.

During demonstration collection, a Python script translates the
tracking data into gym actions and executes them on the real
robot. The gym environment updates the robot’s equilibrium
pose to follow the movement of the iPhone. These demon-
stration trajectories are stored on the Nvidia GPU desktop and
used during training.

Connect Recovery

O,

7.7 Environment Details stop

Maximum Episode Length: For our simulated experiments in él%
Robosuite, we set maximum episode lengths based on the dif- open
ficulty of each task, as shown in Table 3. Note that these num-
bers are slightly over the average steps the demonstrator takes
to complete each task, leaving the RL agent plenty of time to
finish. For our real robot experiments, all three tasks share the
same maximum episode length of 30 steps. The episodes are
terminated if the maximum length is reached or when the task
is completed.

Figure 14: We develop an iOS app to
stream the device pose to the PC.

Task Lift | Door | Stack | Move a Can
Max Episode Length | 40 80 80 120

Table 3: We choose the maximum episode length of each task slightly over the average steps the demonstrator
took, giving the RL agent ample time to finish.

Task-specific Settings: The block-lifting, door-opening, and block-stacking tasks are all taken di-
rectly from the Robosuite simulator. The move-a-can task is a single-object version of the pick-and-
place task where only the soda can is included. The robot’s base is placed in the middle of the two
bins for the move-a-can task.

7.8 Hyper-parameters and Training Scheduling

We use discounting factor v = 0.99 and exploration reward discount o = 0.98 for all our ex-
periments. Actor and critic learning rates are 10~3. The latent dynamics model learning rate is
4-1073. Batch size B = 128. We choose different fractions of demonstrations p; when we perform
prioritized replay, as shown in the table below.

Task | Lift | Door | Stack | Move a Can | Real Robot
Pd 0.15 | 0.15 0.15 0.2 0.2

Table 4: We vary the fraction pg of demonstration interactions within each batch depending on the task we are
training.

16

524
525
526
527
528

529

530
531
532
533
534

535
536
537
538
539
540
541
542
543

544
545
546
547

549
550

551
552
553
554
555
556
557
558
559
560

561
562
563
564
565
566
567
568
569
570
571
572
573

574
575
576
577
578
579
580

581
582
583
584
585
586
587
588
589

For simulated environments, we perform one Actor-Critic update for each environment step. After
loading the demonstrations, we update the latent dynamics model for every 5000 environment steps
until convergence. For real robot experiments, we update the latent dynamics model for every 30
steps the robot takes. Since each step takes about 0.5 seconds to execute on the real robot, we keep
performing SAC updates while the robot is in motion.

7.9 Neural Network Architectures

Our method consists of 6 components parameterized by neural networks, namely: model encoder
E4, model decoder Dy, locally-linear dynamics model M., RL encoder Egy,, Actor gy, and Critic
QrL- The numbers below correspond to our specific setting where the latent space has 16 dimen-
sions, and the action space has 7 dimensions. Our locally linear dynamics model predicts a low-rank
approximation of 16 x 16 matrix A using two 16-dimensional vectors v and v, where A = I +uv?.

Model Encoder (with DINOv2):

Input: 2 of 3x112x112 randomly cropped images
Pretrained DINOv2 variant: dinov2_vitsl4_reg
Concatenate 2 of DINOv2 embeddings
ReLU(Linear (out_features=512))

RelLU(Linear (out_features=512))

ReLU(Linear (out_features=512))

Linear (out_features=32)

Output: 16-dim mean + 16-dim log-std

Model Decoder (with DINOv2):

Input: 16-dim latent vectors

ReLU(Linear (out_features=512))
RelLU(Linear (out_features=512))
ReLU(Linear (out_features=512))

Linear (out_features=2 * 768)

Output: 2 of predicted DINOv2 embeddings

Model Encoder (No DINOv2):

Input: 6x112x112 randomly cropped images
ReLU(LayerNorm(Conv2D (6, 32, kernel=3, stride=2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3))

Flatten ()

ReLU(Linear (out_features=128))

RelLU(Linear (out_features=128))

Linear (out_features=32)

Output: 16-dim mean + 16-dim log-std

Model Decoder (No DINOv2):

Input: 16-dim latent vectors

ReLU(Linear (out_features=128))

ReLU(Linear (out_features=128))

ReLU(Linear (out_features=32768))

Reshape into 128x16x16

Upsample into 128x32x32

ReLU(Conv2D (128, 128, kernel=3, stride=1, pad=1)))
Upsample into 128x64x64

ReLU(Conv2D (128, 128, kernel=3, stride=1, pad=1)))
Upsample into 128x128x128

Conv2D (128, 6, kernel=3, stride=1, pad=1))

Output: 6x128x128 images

Locally-Linear Dynamics model:
Input: 16-dim latent vectors
ReLU(Linear (out_features=512))
RelLU(Linear (out_features=512))
ReLU(Linear (out_features=160))
Output: 16-dim vector u + 16-dim vector

+ 16x7 matrix B + 16-dim offset c

RL Encoder:

Input: 6x112x112 randomly cropped images
ReLU(LayerNorm(Conv2D (6, 32, kernel=3, stride=2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride=2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride=2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride=2)))
Flatten ()

LayerNorm(Linear (out_features=32))

Output: 32-dim feature

17

590
591
592
593
594
595

596
597
598
599
600
601

Actor:

Input: 32-dim feature

ReLU(Linear (out_features=1024))
ReLU(Linear (out_features=1024))
Linear (out_features=14)

Output: 7-dim mean + 7-dim log-std

Critic:

Input: 32-dim feature + 7-dim action
ReLU(Linear (out_features=1024))
ReLU(Linear (out_features=1024))
Linear (out_features=1)

Output: Q-value

18

	Introduction
	Related Work
	Problem Setting
	Method
	Reinforcement Learning from Demonstrations
	Augmentation-Invariant Distance Measure
	Demonstration-Guided Exploration
	Prioritized Replay and Value Clipping

	Experiments
	Simulated Manipulation Tasks
	Ablation Studies
	Real Robot Experiments

	Conclusion
	Appendix
	Motivating Example
	Visualization of Embedded Robot Trajectories
	Exploration Reward Ablation Studies
	Comparison with DreamerV2
	Robustness of LaNE Policies
	Real Robot Setup
	Highly Compliant Real-time Controller
	System Architecture
	Demonstration Collection via Tele-Operation

	Environment Details
	Hyper-parameters and Training Scheduling
	Neural Network Architectures

