
Accelerating Visual Sparse-Reward Learning with
Latent Nearest-Demonstration-Guided Explorations

Anonymous Author(s)
Affiliation
Address
email

Abstract: Recent progress in deep reinforcement learning (RL) and computer1

vision enables artificial agents to solve complex tasks, including locomotion, ma-2

nipulation, and video games from high-dimensional pixel observations. How-3

ever, RL usually relies on domain-specific reward functions for sufficient learn-4

ing signals, requiring expert knowledge. While vision-based agents could learn5

skills from only sparse rewards, exploration challenges arise. We present Latent6

Nearest-demonstration-guided Exploration (LaNE), a novel and efficient method7

to solve sparse-reward robot manipulation tasks from image observations and a8

few demonstrations. First, LaNE builds on the pre-trained DINOv2 feature extrac-9

tor to learn an embedding space for forward prediction. Next, it rewards the agent10

for exploring near the demos, quantified by quadratic control costs in the embed-11

ding space. Finally, LaNE optimizes the policy for the augmented rewards with12

RL. Experiments demonstrate that our method achieves state-of-the-art sample13

efficiency in Robosuite simulation and enables under-an-hour RL training from14

scratch on a Franka Panda robot, using only a few demonstrations.15

Keywords: Computer Vision, Sparse Reward, RL from Demonstrations16

Reach a Location
1 Demo

21 minutes RL

Lift a Block
5 Demos

45 minutes RL

Insert a Pen
5 Demos

58 minutes RL

Open a Drawer
1 Demo

52 minutes RL

Figure 1: LaNE enables under-an-hour RL training from scratch on a Franka Panda arm from image observa-
tions and sparse rewards, utilizing only a few demonstrations. LaNE achieves unparalleled sample efficiency by
learning an embedding space to quantify state proximity and reward explorations close to the demonstrations.

1 Introduction17

Deep reinforcement learning (RL) is a versatile approach that learns from interaction data, often18

without an explicit, hand-coded dynamics model. Through environmental interactions, RL agents19

can learn optimal policies from dense or sparse reward feedback. State-of-the-art approaches al-20

low learning policies for discrete actions and continuous action spaces while taking either low-21

dimensional state vectors or high-dimensional sensor readings [1, 2, 3, 4].22

However, applying deep RL to real-life domains, including real-hardware robot learning, remains23

difficult. One challenge is the need to reliably track the complete system state [5]. A policy that24

directly maps images to optimal actions could alleviate such engineering challenges: data augmen-25

tation and self-supervised learning have enabled policy learning from image observations with high26

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

sample efficiency [6, 7, 8, 9]. Meanwhile, it is also hard to assign informative rewards in a scalable27

way. Reward engineering requires domain-specific knowledge: popular simulated environments28

provide optional dense reward functions based on heuristics [10, 11] but rely on state readings not29

readily available in the real physical system. Thus, there has been a lot of effort to help RL agents30

explore more effectively in environments with sparse or no rewards [12, 13, 14].31

We present Latent Nearest-demonstration-guided Exploration (LaNE), a novel approach to tackle32

the exploration challenge in image-based control tasks with sparse rewards. LaNE builds on the33

idea of learning from demonstrations (LfD) and draws inspiration from reward shaping [15, 16, 17,34

18, 19, 20, 21, 22, 23]. Our main insight is that each step in the demonstration can be considered35

a subgoal, and the agent should be credited for reaching a similar state (see Fig. 2). Our approach36

presents two main contributions:37

1. We define a distance measure among image observations by learning a lower-dimensional38

latent space. Specifically, we train a Variational Autoencoder (VAE) so that the resulting39

latent space’s forward dynamics are locally linear. A quadratic control cost in this space40

effectively identifies nearby states, whereas pre-trained embeddings from even a state-of-41

the-art computer vision model are insufficient.42

2. We propose a systematic way to provide dense reward signals in sparse-reward tasks un-43

der the LfD paradigm. When exploring near the demonstrations, the RL agent receives44

additional task-progress-informed rewards. The augmented reward function also derives45

bounded value functions, significantly improving training stability.46

LaNE is independent of the underlying RL algorithm, and we use Soft Actor-Critic [1] in this paper.47

In Robosuite simulation [11], our method significantly improves sample efficiency when learning48

long-horizon, sparse-reward visual manipulation tasks. On real hardware, LaNE enables learning49

various manipulation tasks from scratch with a Franka Panda arm, each with under an hour of train-50

ing and only one to five demonstrations (see Fig. 1).51

2 Related Work52

Exploration is a known challenge in deep RL, especially in sparse-reward environments [24]. One53

solution is to guide exploration with domain knowledge. In reward shaping, intermediate rewards54

can be added at important checkpoint locations [11], derived from physics knowledge [25], or55

learned from human annotations [26]. Aside from external guidance, other works aim to improve the56

agents’ intrinsic exploration behavior. Maximum entropy RL balances exploration and exploitation57

by encouraging high policy entropy [1]. Hierarchical RL and intrinsically motivated skill learning58

are also potential remedies [12, 27]. Our work aims to alleviate the need for domain expertise in the59

reward-shaping approach by using a few demonstrations.60

Learning from demonstrations (LfD) has proven helpful in expediting RL, especially in sparse re-61

ward settings. Prior works have introduced various auxiliary training objectives. Behavior cloning62

[21, 23] and supervised Q-value updates [18] can effectively learn from optimal demonstrations.63

[28] employ an information theoretic approach to guide policy distributions. GAIL [29] and AIRL64

[30] perform adversarial training to distinguish expert and policy rollouts. [17] and [20] learn poten-65

tial functions from value estimates, allowing imperfect or mismatched demonstrations to be used.66

CoDER [31] performs contrastive learning to pre-train the image encoders. Other methods perform67

warm start with scripted or behavior-cloned policies [14, 22]. Our method adopts the LfD paradigm68

for efficient learning and is compatible with sub-optimal demonstrations.69

Aside from more efficient exploration and LfD, model-based RL methods aim to improve efficiency70

by generating new synthetic experiences with learned world models. DreamerV2 [6] learns an ac-71

curate discrete world model from high-dimensional image inputs, enabling human-level RL per-72

formance in Atari games. Modem [32] combines model-based learning with demonstrations by73

over-sampling demonstrated data to form a behavior prior. Our method LaNE also learns a forward74

2

Slice

Replay
Buffer

Demo
Storage

Off Policy RL

Nearest

New Experience

(a) Demonstrations (b) Nearest-Demo Matching (c) RL Updates

Figure 2: Latent Nearest-demonstration-guided Exploration (LaNE) augments the sparse task reward with a
dense exploration reward in vision-based RL. (Left) We utilize variable-length demonstrations, each consisting
of observations oit and actions ait. (Middle) A dense exploration reward re is given when a transition lands
sufficiently close to a demonstration and is discounted based on its distance to the goal. (Right) Using the
combined reward signal, the RL agent learns to map a sensor observation o to an action a.

dynamics model but only as an auxiliary task for representation learning. Hence, it can be integrated75

with both model-based and model-free RL methods.76

Finally, a rich collection of prior work has studied ways to learn better representations for RL from77

high-dimensional image observations. RAD and DrQ [8, 9, 33] perform data augmentation on image78

observations to promote task-relevant features. CURL and CoDER [7, 31] use contrastive learning79

as a self-supervised auxiliary objective for feature learning. Recently, using foundation models as80

feature extractors has also shown to be beneficial for learning generalizable agents [34]. Our method81

builds on a state-of-the-art foundation model, DINOv2 [35], and uses data augmentation to learn a82

robust embedding space.83

3 Problem Setting84

We tackle the challenges of vision-based RL in long-horizon, sparse reward tasks, where the agent85

only receives a positive reward rdone at task completion while getting a constant negative reward86

rlive everywhere else. The interpretation of such a reward function is that the agent gets a high87

reward only at task completion but is penalized for the trajectory length. Formally, letting G denote88

the set of goal states, we define the reward function as follows:89

r(s, a, s′) =

{
rdone > 0 s′ ∈ G
rlive < 0 otherwise.

(1)

The sparse reward function reduces the need for expert knowledge or human intervention, making it90

much easier to implement in a real-world environment, but makes exploration hard in training.91

4 Method92

We present Latent Nearest-demonstration-guided Exploration, an efficient RL algorithm centered93

around a few demonstrations to tackle the exploration challenge with sparse-reward learning. The94

core idea is to provide additional task-progress-aware dense rewards when the agent is close to the95

demonstrations. We learn a structured embedding space to quantify state proximity from image96

observations by learning a latent dynamics model as an auxiliary task. The cleverly designed aug-97

mented reward function also derives bounded value functions, enabling us to perform value clipping98

and greatly enhance training stability.99

4.1 Reinforcement Learning from Demonstrations100

LaNE utilizes a demonstration set D consisting of n successful trajectories of observations and101

actions. Each demonstration trajectory i may have a different length Ti, but must terminate in the102

goal set G. We assume the demonstrations to come from a human operator or a heuristic controller103

3

and, thus, can be sub-optimal. We formalize the notations as follows: T i denotes the trajectory104

for demonstration i. st is the underlying true environment state, and ot is the high-dimensional105

observation, such as images. at is the action taken by the demonstrator. Note that the RL algorithm106

cannot access the ground truth state st in the demonstrations, but only observations, as shown below:107

D = {T 1, T 2 · · · T n}
T i = (oi0, a

i
0, o

i
1, a

i
1, · · · oiTi−1, a

i
Ti−1, o

i
Ti) (2)

∀i, siTi ∈ G.
The demonstrations are stored in two forms. First, the trajectory form records the steps to success108

from each state, allowing us to discount the exploration reward according to task progress, as detailed109

in Section 4.3. Next, they are sliced into experience tuples (o, a, o′, r, d) and placed in a replay buffer110

B for representation learning and off-policy RL updates. Here, o′ denotes the next observation after111

o. r is the sparse reward as defined in Equation 1, and d is a Boolean variable indicating episode112

termination. LaNE uses a first-in-first-out replay buffer B with capacity for a limited number of113

transitions, but the demonstrations are always retained to ensure sufficient reward signal.114

4.2 Augmentation-Invariant Distance Measure115
D
IN

O
v2

D
IN

O
v2

Frozen Frozen

Predict

Figure 3: LaNE learns a latent space with locally linear
dynamics. Given a transition tuple (o, a, o′), the ob-
servations are first encoded by a frozen DINOv2 model
into w and w′. Next, the encoder Eϕ further embeds
w into a low-dimensional latent state z. The forward
model Mψ predicts the transition matrices A, B and
offset c. Finally, the decoder Dθ reconstructs w′ from
the predicted ẑ′, where ẑ′ = Az + Ba + c. The train-
able modules Eϕ, Mψ , and Dθ are colored in orange.

The key technical challenge behind LaNE is to116

find a demonstration state closest to the agent’s117

current state and quantify its proximity. Com-118

puting the distance between two states from119

their respective image observations is nontriv-120

ial: two drastically different states might only121

differ by a few pixels. Conversely, the same122

underlying state might appear very different in123

two images due to task-irrelevant background124

features. To solve this, we embed the images125

into a low-dimensional latent space to obtain a126

viable distance measure. Inspired by Embed127

to Control (E2C) [36], we train a VAE [37]128

and enforce a locally linear dynamics model129

to regularize the structure of the latent space.130

The locally-linear dynamics model captures our131

goal for the latent space to be temporally con-132

sistent since we have a multi-step control task.133

Our method differs from E2C in three key ways: 1. LaNE leverages the feature extractor from a134

strong pre-trained image model by embedding and predicting the frozen DINOv2 [35] features. As135

we find with ablation studies in Section 5.2, learning on top of DINOv2 features w is superior to136

learning directly from pixels o. 2. We learn a latent space robust to pixel-space perturbations. It137

has been shown that data augmentation is crucial for efficient and robust image-based reinforcement138

learning [8, 9, 31, 33]. Hence, we apply a random data-augmentation function f(·) during represen-139

tation learning. 3. Our RL policy network uses a separate CNN encoder to learn in an unconstrained140

embedding space and benefit from low inference latency. Overall, the trainable components include141

the encoder Eϕ, the decoder Dθ, and the transition model Mψ .142

LaNE optimizes a variational lower bound (ELBO) objective across transition tuples (o, a, o′)i sam-143

pled from the replay buffer. We assume the latent states z form a unit Gaussian prior p(z) ∼144

N (0, I). The encoded distributions q(z |w) and decoded distribution p(w | z) are also modeled145

with Gaussian distributions. During training, the data-augmented observation features are encoded146

into their latent distributions whose mean µ and diagonal covariance matrix Σ are predicted by the147

encoder network Eϕ:148

z ∼ qϕ(z |w) = N (µ,Σ), where (µ,Σ) = Eϕ(w), w = DINOv2(f(o))

z′ ∼ qϕ(z
′ |w′) = N (µ′,Σ′), where (µ′,Σ′) = Eϕ(w

′), w′ = DINOv2(f(o′)).
(3)

4

The one-step forward model in the latent space is locally linear in the state and action, whose param-149

eters (matrices A, B and offset c) depend on the starting state, as predicted by the latent transition150

model Mψ . Prior work shows that a latent linear dynamics model is tractable to learn but provides151

modeling flexibility through local linearity [36]. The linear transition model allows the prediction152

of the next step latent distribution using the current distribution and action as follows:153

ẑ′ = Az +Ba+ c, where (A,B, c) = Mψ(z) (4)

qψ(ẑ′ | z, a) = N (µ̂′, Σ̂′), where µ̂′ = Aµ+Ba+ c, Σ̂′ = AΣAT . (5)

Finally, the decoder Dθ reconstructs the next step observation embedding from the predicted next154

step latent vector:155

ŵ′ = Dθ(ẑ′). (6)

The encoder Eϕ, decoder Dθ, and transition model Mψ are updated jointly using a combined loss156

with three terms. First, we want the sampled starting latent state z to be reconstructed back to157

the original image features w. Similarly, as we pass the sample through the dynamics model, the158

resulting latent state prediction ẑ′ should be reconstructed back to w′. Finally, to ensure the latent159

dynamics model is consistent over multiple steps, we want the predicted distribution qψ(ẑ′|w, a)160

and encoded distribution qϕ(z
′|w′) to be similar. Formally, we write the overall training objective L161

as follows, where λ is a hyper-parameter for weighing the two loss terms:162

LELBO = E
z∼qϕ, ẑ′∼qψ

[
− log p(w|z)− log p(w′|ẑ′)

]
+DKL

(
qϕ(z |w)

∥∥∥∥ p(z)

)
(7)

Ldynamics = E
z∼qϕ

[
DKL

(
qψ(ẑ′ | z, a)

∥∥∥∥ qϕ(z
′ |w′)

)]
(8)

L = E
(o,a,o′)∈B

[
LELBO + λLdynamics

]
. (9)

In essence, we minimize the reconstruction error for the VAE using the ELBO objective (term 1)163

and the forward prediction error in the latent space using KL divergence (term 2).164

The learned latent space allows us to define a dynamics-aware distance measure between observa-165

tions. Specifically, for two observations o1 and o2, we define the Augmentation-invariant Distance166

Measure (ADM) to be the root quadratic cost between the augmented and encoded states z1 and z2:167

d(o1, o2) := ((z1 − z2)
T Q (z1 − z2))

1
2 . (10)

Our design echoes the quadratic cost function commonly used in optimal control. Using an identity168

weighting matrix Q = I further simplifies ADM to the Euclidean distance in the latent space. We169

apply this simplification in our experiments, but other weighting matrices could be useful when the170

agent observes both images and proprioceptive states.171

4.3 Demonstration-Guided Exploration172

We propose a systematic reward-engineering approach to credit the agent for staying close to demon-173

strations. Given an experience tuple (o, a, o′, r, d), we assign an additional exploration reward r∗e if174

o′ is sufficiently close to a demonstrated state, up to a distance threshold ϵ, which is dynamically175

computed. We define ϵ as the average distance between consecutive demonstration observations:176

ϵ := E
i,t

[
d(oit, o

i
t+1)

]
, oit, o

i
t+1 ∈ D. (11)

The threshold ϵ approximates the distance of one environment step. As the agent gathers new ex-177

periences, we re-compute ϵ. This is necessary because the encoder Eϕ, decoder Dθ, and dynamics178

model parameters Mψ are constantly updated with the latest experience to ensure that ADM is not179

overfitted to only the demonstration data. In addition, we find the trajectory index i and time step t180

of the nearest demonstration using the ADM d:181

i∗, t∗ = argmin
i,t

d(o′, oit), oit ∈ D. (12)

5

Lift a Block
5 demos

Open a Door
10 demos

Stack Blocks
10 demos

Move a Can
20 demos

Figure 4: LaNE achieves state-of-the-art sample efficiency in four Robosuite visual manipulation tasks. The
RL agent observes RGB images from 2 cameras, one in the front (shown above) and the other on the gripper.

After we compute ϵ, i∗, and t∗, we assign a dense reward rdense by augmenting the environment182

reward with a task-progress-informed exploration reward:183

rdense =

{
r + αTi∗−t

∗
re [d(o′, oi

∗

t∗) ≤ ϵ] ∧ [o′ /∈ G]
r otherwise.

(13)

Here, the exploration reward r∗e = αTi∗−t
∗
re is modulated by the expected step to success, which184

is the difference between the demo trajectory length Ti∗ and t∗. In the context of LfD, r∗e can be185

interpreted as a point estimate of the potential function at o′, echoing prior work in this domain [17,186

20]. The discounting factor α is a hyper-parameter chosen independently from the RL discounting187

factor γ, and the nominal exploration reward re is a constant.188

Inspecting the augmented reward rdense, we see that when o′ finds its nearest neighbor close to one189

of the successful terminal states, o′ is awarded almost the full nominal exploration reward re. When190

o′ is close to one of the earlier steps in a demonstration, re is heavily discounted. Finally, if we are191

very far from any demonstration observation (relative to the distance threshold ϵ), or if we are at the192

goal, the RL agent gets only the environment reward r (case 2 in Eq. 13). LaNE is versatile because193

we can train a control policy to maximize rdense using any off-the-shelf RL algorithm.194

4.4 Prioritized Replay and Value Clipping195

We improve training efficiency and stability by performing prioritized replay and Q-value clipping.196

Prioritized replay is a standard tool when learning from demonstrations [19]: in each batch of b197

transitions, we sample at least pd fraction from the demonstrations, where b and pd are hyper-198

parameters. Conservative q-value estimates are also widely used to stabilize training [1, 38]. LaNE199

stands out because rdense derives upper and lower bounds on the q-value landscape, allowing us to200

use a clipped value target when performing temporal difference updates.201

The definition of rdense in Eq. 13 contains the nominal exploration reward re, a constant hyper-202

parameter. We pick |re| ≤ |rlive| to obtain bounded Q-values. Under rdense, a transition either203

receives a positive reward rdone and terminates the episode or receives a non-positive reward rlive +204

1 · r∗e . The highest Q-value is achieved at task completion. On the other hand, in the worst case205

where the agent receives rlive all the time and never succeeds, the Q-value is bounded below by206 ∑∞
t=0 γ

trlive = (1− γ)rlive. Thus, we obtain the following bound:207

(1− γ)rlive ≤ Q(o, a) ≤ rdone.

5 Experiments208

5.1 Simulated Manipulation Tasks209

We solve four robot manipulation tasks from the Robosuite simulator [11]: lifting a block, opening210

a door, stacking blocks, and moving a soda can. The RL agent observes 128 × 128 RGB images211

from two cameras, one mounted on the robot gripper and one in front of the robot. The robot uses212

Operational Space Control – the agent predicts actions to change the robot’s hand displacement,213

6

E2C-MPC MoDem CoDER LaNE

0 1 2 3 4 5
environment steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Lift a Block

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Open a Door

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 5: We compare LaNE with optimal control and state-of-the-art RL methods: E2C [36], MoDem [32]
and CoDER [31]. Our method (red) consistently learns faster and converges to higher success rates than all
three baseline methods.

RAD RAD+PR RAD+PR+VC LaNE No re No DINO DINO Only LaNE

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Move a Can

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 6: Left: Starting from RAD [8], we add PR (prioritized replay), VC (value clipping), and exploration
reward re to understand their contributions. PR and VC are necessary for efficient learning, but the exploration
reward is the most crucial and significantly improves. Right: We experiment with LaNE variants without pre-
training (No DINO) or fine-tuning (DINO Only). While either variant improves from the baseline where no
exploration reward is given, combining both results in the quickest exploration.

rotation, and gripper width for 7 degrees of freedom. Figure 4 shows one of the camera angles.214

The demonstrations come from a hand-coded controller that utilizes state information. The state is215

unavailable for the RL agent, who must learn from images alone.216

We compare LaNE with optimal control, model-free, and model-based RL. For E2C [36], we run217

an MPC controller in the latent space to minimize a quadratic state cost towards the demonstrated218

goal state. CoDER [31] and MoDem [32] are state-of-the-art vision-based RL algorithms in the LfD219

setting. We initiate all methods with the same demonstrations and measure the evaluation success220

rates during training. Figure 5 shows the mean and standard deviation across five random seeds as a221

function of training environment steps. Our method outperforms all three baselines across all tasks222

while showing major advantages in the two more challenging tasks.223

5.2 Ablation Studies224

Our approach utilizes multiple techniques to maximize the utility of demonstrations and to speed225

up learning. We perform ablation studies to answer two key questions: 1. Is reward augmentation226

really necessary, or are regularization tricks like prioritized replay (PR) and value clipping (VC) by227

themselves sufficient? 2. LaNE learns an embedding space by fine-tuning a pre-trained computer228

vision model. Are both the fine-tuning step and the pre-trained DINOv2 model necessary?229

For question 1, we start from a standard image-based RL algorithm RAD [8] (initialized with demon-230

strations) and introduce our key components one at a time, namely prioritized replay (PR), value231

clipping (VC), and the exploration reward rdense. As shown by the left half of Figure 6, importance232

sampling and value clipping are helpful, but rdense makes the most significant difference, allowing233

the robot to complete the long-horizon task reliably much earlier in training.234

For question 2, we experiment with two variants of LaNE, one without DINOv2 and one without235

fine-tuning. When LaNE trains without DINOv2, it initializes the encoder and decoder from scratch236

and learns to predict the images directly. When LaNE uses the pre-trained model and skips the fine-237

tuning steps, we directly use the Euclidean distance between their respective DINOv2 embedding238

vectors. The results in the right side of Figure 6 demonstrate that performing reward augmentation239

without pre-trained DINOv2 or fine-tuning is useful, but combining both allows the agent to explore240

the most efficiently.241

7

Figure 7: We deploy LaNE on four tasks with the Franka Panda robot: reach a fixed location, lift a block, open
a drawer, and insert a pen. The RL agent observes two RGB images, one in front of the robot and one on its
wrist. Trained from scratch, the robot achieves a 10/10 evaluation success rate with only a few demonstrations
and less than one hour of learning.

5.3 Real Robot Experiments242

As Figure 7 illustrates, LaNE enables efficient RL in four diverse tasks with the Franka Panda robot.243

From the easiest to the hardest, the tasks are Reaching a Fixed Goal, Opening a Drawer, Lifting a244

Block (random location), and Inserting a Pen. Demonstrations are collected via teleoperation from245

an iPhone app, which uses inside-out tracking to stream the device’s pose.246

Task Reach Drawer Lift Insert

Demos
Episodes 1 1 5 5

Steps 12 18 103 135
Time 0:20 0:25 2:00 3:00

CoDER Steps N/A N/A N/A N/A
First Success Time > 1h > 1h > 1h > 1h

LaNE (Ours) Steps 476 1054 1109 1854
First Success Time 13:10 31:51 30:07 38:01

LaNE (Ours) Steps 806 1929 1820 2927
Convergence Time 20:55 51:40 44:16 57:58

Table 1: We deploy LaNE on a Franka Panda arm to learn
manipulation tasks requiring up to 7 degrees of freedom.
Human demonstrations are provided via teleoperation, tak-
ing only a few minutes. LaNE trains every task to a 10/10
success rate from scratch under one hour of wall clock time.
In comparison, our strongest baseline CoDER [31] fails to
succeed even once during the first hour of training.

Results show that our method is extremely247

data-efficient, leading to task success with248

under an hour of training. Table 1 shows249

the number of demonstrations provided250

and training performance. For the most251

straightforward goal-reaching task, LaNE252

uses only one demo and completes the task253

for the first time in only 13 minutes. The254

agent finds a consistently successful pol-255

icy quickly, only 8 minutes later. With five256

demonstrations, LaNE can learn more chal-257

lenging tasks with high stochasticity or re-258

quiring precision, including lifting a block259

and inserting a pen. Overall, the results260

prove that our approach is outstanding in261

simulation and practical in the real world.262

6 Conclusion263

This paper presents LaNE, a data-efficient RL algorithm to learn sparse reward tasks from image264

observations by utilizing a few demonstrations. LaNE outperforms state-of-the-art benchmarks and265

enables under-an-hour RL training with a real robot. Our key innovation is to learn a latent dy-266

namics model, which provides a temporally consistent embedding space. When a transition lands267

sufficiently close to a demonstration, we assign an extra task-progress-informed reward modulated268

by the distance to the goal. As such, we convert a sparse reward task to a task with dense proxy269

rewards, dramatically improving learning efficiency. Our work lends itself to exciting future direc-270

tions. For example, we can leverage recent advancements in causal RL and counterfactual analysis271

[39, 40, 41] to determine the state in an expert demonstration that directly caused task success. This272

might further improve our search for the nearest demonstration and overall learning.273

8

References274

[1] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum en-275

tropy deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause, editors,276

Proceedings of the 35th International Conference on Machine Learning, volume 80 of Pro-277

ceedings of Machine Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018. URL278

https://proceedings.mlr.press/v80/haarnoja18b.html.279

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,280

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,281

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through282

deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015. ISSN 00280836. URL283

http://dx.doi.org/10.1038/nature14236.284

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization285

algorithms, 2017.286

[4] Y. Wang, H. He, X. Tan, and Y. Gan. Trust region-guided proximal policy optimiza-287

tion. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-288

nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran289

Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/290

a666587afda6e89aec274a3657558a27-Paper.pdf.291

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,292

A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,293

L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation. The International294

Journal of Robotics Research, 39(1):3–20, 2020. doi:10.1177/0278364919887447. URL295

https://doi.org/10.1177/0278364919887447.296

[6] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. In297

International Conference on Learning Representations, 2021. URL https://openreview.298

net/forum?id=0oabwyZbOu.299

[7] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for re-300

inforcement learning. Proceedings of the 37th International Conference on Machine Learning,301

Vienna, Austria, PMLR 119, 2020. arXiv:2004.04136.302

[8] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning303

with augmented data. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,304

editors, Advances in Neural Information Processing Systems, volume 33, pages 19884–19895.305

Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/306

file/e615c82aba461681ade82da2da38004a-Paper.pdf.307

[9] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep308

reinforcement learning from pixels. In International Conference on Learning Representations,309

2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.310

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.311

Openai gym, 2016.312

[11] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation313

framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.314

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills315

without a reward function, 2018.316

[13] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control, 2016. URL https:317

//arxiv.org/abs/1611.07507.318

9

https://proceedings.mlr.press/v80/haarnoja18b.html
http://dx.doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a666587afda6e89aec274a3657558a27-Paper.pdf
http://dx.doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://openreview.net/forum?id=GY6-6sTvGaf
https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507

[14] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,319

M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learn-320

ing for vision-based robotic manipulation. CoRL, abs/1806.10293, 2018. URL http:321

//arxiv.org/abs/1806.10293.322

[15] G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist,323

O. Pietquin, and R. Dadashi. Get back here: Robust imitation by return-to-distribution plan-324

ning, 05 2023.325

[16] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learn-326

ing. ArXiv, abs/2006.04678, 2020. URL https://api.semanticscholar.org/CorpusID:327

219531578.328

[17] Y. Guo, J. Gao, Z. Wu, C. Shi, and J. Chen. Reinforcement learning with demonstrations329

from mismatched task under sparse reward. In Conference on Robot Learning, 2022. URL330

https://api.semanticscholar.org/CorpusID:254246549.331

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,332

A. Sendonaris, I. Osband, G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A. Gruslys. Deep333

q-learning from demonstrations. AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-334

1-57735-800-8.335

[19] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,336

and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics337

problems with sparse rewards. 07 2017.338

[20] Y. Wu, M. Mozifian, and F. Shkurti. Shaping rewards for reinforcement learning with imperfect339

demonstrations using generative models. In 2021 IEEE International Conference on Robotics340

and Automation (ICRA), pages 6628–6634, 2021. doi:10.1109/ICRA48506.2021.9561333.341

[21] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration342

in reinforcement learning with demonstrations. In 2018 IEEE International Conference on343

Robotics and Automation (ICRA), page 6292–6299. IEEE Press, 2018. doi:10.1109/ICRA.344

2018.8463162. URL https://doi.org/10.1109/ICRA.2018.8463162.345

[22] I.-C. A. Liu, S. Uppal, G. S. Sukhatme, J. J. Lim, P. Englert, and Y. Lee. Distilling motion346

planner augmented policies into visual control policies for robot manipulation. In 5th An-347

nual Conference on Robot Learning, 2021. URL https://openreview.net/forum?id=348

NZnz3cExrDW.349

[23] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.350

Learning complex dexterous manipulation with deep reinforcement learning and demon-351

strations. In H. Kress-Gazit, S. S. Srinivasa, T. Howard, and N. Atanasov, editors,352

Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylva-353

nia, USA, June 26-30, 2018, 2018. doi:10.15607/RSS.2018.XIV.049. URL http://www.354

roboticsproceedings.org/rss14/p49.html.355

[24] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.356

Inf. Fusion, 85(C):1–22, sep 2022. ISSN 1566-2535. doi:10.1016/j.inffus.2022.03.003. URL357

https://doi.org/10.1016/j.inffus.2022.03.003.358

[25] A. D. Laud. Theory and Application of Reward Shaping in Reinforcement Learning. PhD359

thesis, USA, 2004. AAI3130966.360

[26] S. Cabi, S. Gómez, A. Novikov, K. Konyushova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Bud-361

den, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. Freitas, and Z. Wang. Scaling362

data-driven robotics with reward sketching and batch reinforcement learning. In Robotics:363

Science and Systems, 07 2020. doi:10.15607/RSS.2020.XVI.076.364

10

http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:219531578
https://api.semanticscholar.org/CorpusID:254246549
http://dx.doi.org/10.1109/ICRA48506.2021.9561333
http://dx.doi.org/10.1109/ICRA.2018.8463162
http://dx.doi.org/10.1109/ICRA.2018.8463162
http://dx.doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
https://openreview.net/forum?id=NZnz3cExrDW
https://openreview.net/forum?id=NZnz3cExrDW
https://openreview.net/forum?id=NZnz3cExrDW
http://dx.doi.org/10.15607/RSS.2018.XIV.049
http://www.roboticsproceedings.org/rss14/p49.html
http://www.roboticsproceedings.org/rss14/p49.html
http://www.roboticsproceedings.org/rss14/p49.html
http://dx.doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
http://dx.doi.org/10.15607/RSS.2020.XVI.076

[27] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-365

supervised prediction. In ICML, 2017.366

[28] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Reinforcement learning367

with sparse rewards using guidance from offline demonstration. International Conference on368

Learning Representations (ICLR), 2022. URL https://par.nsf.gov/biblio/10327543.369

[29] J. Ho and S. Ermon. Generative adversarial imitation learning. In Neural Information Process-370

ing Systems, 2016. URL https://api.semanticscholar.org/CorpusID:16153365.371

[30] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforce-372

ment learning. ArXiv, abs/1710.11248, 2017. URL https://api.semanticscholar.org/373

CorpusID:21529792.374

[31] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. Learning visual robotic control effi-375

ciently with contrastive pre-training and data augmentation. In International Conference on376

Robotics and Automation, 2022. URL https://arxiv.org/abs/2012.07975.377

[32] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerat-378

ing visual model-based reinforcement learning with demonstrations. In International Con-379

ference on Learning Representations, 2023. URL https://openreview.net/forum?id=380

JdTnc9gjVfJ.381

[33] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved382

data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.383

[34] Z. Yuan, Z. Xue, B. Yuan, X. Wang, Y. Wu, Y. Gao, and H. Xu. Pre-trained image encoder384

for generalizable visual reinforcement learning. In A. H. Oh, A. Agarwal, D. Belgrave, and385

K. Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:386

//openreview.net/forum?id=FQtku8rkp3.387

[35] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,388

D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li,389

W. Galuba, M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal,390

P. Labatut, A. Joulin, and P. Bojanowski. Dinov2: Learning robust visual features without391

supervision, 2023.392

[36] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally393

linear latent dynamics model for control from raw images. In C. Cortes, N. Lawrence, D. Lee,394

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,395

volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/396

paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf.397

[37] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International Con-398

ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con-399

ference Track Proceedings, 2014.400

[38] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.401

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page402

2094–2100. AAAI Press, 2016.403

[39] E. Bareinboim and J. Pearl. Causal inference and the data-fusion problem. Proceedings of the404

National Academy of Sciences, 113(27):7345–7352, 2016.405

[40] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney, T. Steple-406

ton, N. Heess, A. Guez, et al. Counterfactual credit assignment in model-free reinforcement407

learning. arXiv preprint arXiv:2011.09464, 2020.408

11

https://par.nsf.gov/biblio/10327543
https://api.semanticscholar.org/CorpusID:16153365
https://api.semanticscholar.org/CorpusID:21529792
https://api.semanticscholar.org/CorpusID:21529792
https://api.semanticscholar.org/CorpusID:21529792
https://arxiv.org/abs/2012.07975
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=FQtku8rkp3
https://openreview.net/forum?id=FQtku8rkp3
https://openreview.net/forum?id=FQtku8rkp3
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf

[41] S. Zhu, I. Ng, and Z. Chen. Causal discovery with reinforcement learning. arXiv preprint409

arXiv:1906.04477, 2019.410

[42] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven411

reinforcement learning, 2020.412

[43] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,413

second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.414

[44] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger. Cartesian impedance control of redundant415

robots: recent results with the dlr-light-weight-arms. In 2003 IEEE International Conference416

on Robotics and Automation (Cat. No.03CH37422), volume 3, pages 3704–3709 vol.3, 2003.417

doi:10.1109/ROBOT.2003.1242165.418

[45] S. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped419

least squares methods. IEEE Transactions in Robotics and Automation, 17, 05 2004.420

[46] J. Linowes and K. Babilinski. Augmented reality for developers: Build practical augmented421

reality applications with unity, ARCore, ARKit, and Vuforia. Packt Publishing Ltd, 2017.422

12

http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1109/ROBOT.2003.1242165

7 Appendix423

7.1 Motivating Example424

We motivate the need to learn a dynamics-aware embedding space: finding a good distance measure425

between states from their respective high-dimensional image observations is non-trivial. We use426

the PointMaze environment from the D4RL benchmark [42] to provide a clear illustration. In this427

environment, the controllable point mass is marked in green. As shown in Figure 8, we place the428

point at three positions in the maze such that state (a) is much closer to state (b) than state (c).429

(a) s = (−1, 1) (b) s = (−0.5, 1) (c) s = (1, 1)

Figure 8: Observations from the PointMaze environment. The point mass in green is the controllable agent,
whose location is indicated by s. As indicated by the agent’s location, state b is closer to state a than c.

Distance Measure d d(a, b) d(a, c) d(a, c)/d(a, b)

Pixel L2 2.835 3.303 1.165
DINOv2 L2 0.004 0.003 0.75

Ground Truth L2 0.5 1.5 3
ADM (Ours) 0.046 0.135 2.935

Table 2: Comparison across different distance measures in PointMaze. Distance in the pixel space and DI-
NOv2 embedding space cannot capture the true relations of the underlying states. Whereas our proposed ADM
can estimate the relative distance the most accurately.

1 0 1

1

0

1

0

1

2

3

1e 2

1 0 1

1

0

1

0.0

0.5

1.0

1.51e 2

Figure 9: Left: ADM (Ours). Right: DINOv2. We plot the L2 distance in ADM and DINOv2 embedding
space from each location in the maze to the pink location. In the ADM embedding space, computed distances
match the environment dynamics, showing the lower left corner as the farthest due to the turn. In contrast,
DINOv2 cannot identify the differences between states.

Table 2 compares two baseline distance measures with our proposed method ADM, trained from430

10000 random interactions in the environment. For Pixel L2, we directly compute the Euclidean431

distance. As expected, d(a, b) and d(a, c) are not distinguishable from the pixel-wise distance.432

Similarly, the pre-trained DINOv2 embeddings do not capture the transition information and fail to433

estimate the distance between states. ADM is the only method to capture the relative proportions of434

the ground-truth distances.435

In addition, we visualize the quality of the learned embeddings in Fig. 9. We show that the learned436

embeddings respect the dynamics of the maze, understanding that the point must go around the437

corner instead of through the wall. This simple experiment illustrates the benefits of using our latent438

space distance measure to quantify the task-relevant similarity between image observations.439

13

7.2 Visualization of Embedded Robot Trajectories440

This section aims to provide a better intuitive understanding of the learned ADM embedding space.441

We visualize the learned embeddings in the real robot Reach task by plotting their 2-D projections442

in Fig. 10. Specifically, we plot a demonstration, a random successful, and a random unsuccessful443

episode. Unsurprisingly, we find a clear separation between successful and failed episodes: the444

successful episode closely follows the demonstration. In addition, we observe that the latent states445

move linearly as the agent progresses in the task.446

Figure 10: 2-D t-SNE of a demonstration, a successful and an unsuccessful trajectory on the Reach task.
Colors change from light to dark as the episodes progress. The successful episode is mapped closer to the
demonstration than the failed episode.

7.3 Exploration Reward Ablation Studies447

To justify our choice of the exploration reward shown in Eqn. 13, we conduct ablation studies on448

variants of the exploration reward. 1. We set α = 1 to make sure the discounting is necessary. 2.449

Alternatively, we use a simpler reward based on the L2 distance between the observation and its450

nearest-neighbor demonstration: re = max(1, ϵ
d(o′,oi

∗
t∗)

). This simplified reward is the inverse L2,451

scaled to the average distance between demonstration states, and clipped to make the q-value bound452

hold. Our method holds a clear advantage in the long-horizon can-moving task.453

= 1 L2 inverse reward Ours

0 1 2 3 4 5
environment steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift a Block

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Open a Door

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Move a Can

Figure 11: We conduct ablation studies on 2 other exploration rewards. We observe a clear advantage of our
proposed reward in the long-horizon task and similar performance in shorter-horizon tasks.

7.4 Comparison with DreamerV2454

We compare LaNE with DreamerV2, another state-of-the-art model-based RL method. Because455

DreamerV2 does not explicitly take demonstrations, we pre-fill its replay buffer with demonstration456

trajectories. In addition, we allow DreamerV2 to run for longer to get a better sense of its perfor-457

mance. As shown in Fig. 12 below, it takes at least 5 times the environment steps for DreamerV2458

to learn the Robosuite block-lifting task compared to LaNE. We point out that DreamerV2 does459

not distinguish the pre-filled demonstrations from the regular episodes and thus fails to sample the460

sparse reward often enough. Nevertheless, LaNE can also integrate with model-based RL methods461

to boost their sample efficiency in sparse-reward settings.462

14

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Lift a Block
DreamerV2
LaNE

Figure 12: DreamerV2 takes over 5 times samples to learn the Robosuite Lift a Block task compared to LaNE
because it does not distinguish between demonstration and regular episodes.

7.5 Robustness of LaNE Policies463

We evaluate the out-of-distribution robustness of trained LaNE policies. Specifically, we push the464

block and the pen with a stick during policy execution, as illustrated below in Fig. 13. We find that465

the policies are robust to small perturbations. For example, the agent can lift the yellow block when466

pushed, even when the stick and the operator’s arm enter the camera view. Additionally, when the467

pen is pushed to unseen locations, the robot can still pick it up.468

Figure 13: The learned LaNE policies are robust to small perturbations during evaluation, including moving
objects, unseen initialization locations, and foreign objects.

7.6 Real Robot Setup469

7.6.1 Highly Compliant Real-time Controller470

Because reinforcement learning requires a trial-and-error process [43], we expect the robot to make471

frequent physical contact with the environment. To eliminate safety hazards, the controller must be472

compliant with external forces. On the other hand, we want the robot to move swiftly so that each473

RL step takes less time to execute. We develop a highly compliant real-time controller extended474

from the Cartesian Impedance Controller [44, 45].475

At a high level, the end-effector tracks an equilibrium pose following a mass-spring-damper model.476

The robot asserts higher torque in the opposite direction as the current pose deviates further from477

the equilibrium. In the Cartesian space, we limit the maximum force exerted on the end effector by478

the robot, preventing it from causing damage. In the joint space, we apply a counter torque when a479

joint gets close to its hardware limit. Combining these control rules builds a safety net around the480

robot for smoother RL training.481

7.6.2 System Architecture482

The robot uses two Intel Realsense cameras – one mounted on the end-effector and another in front483

of the robot. Our method only utilizes color images. Both cameras are connected via USB to an484

Nvidia GPU desktop, which runs inference and training for the RL agent. Specifically, the GPU485

desktop runs an OpenAI gym interface [10], with which the RL agent interacts. At each timestep,486

the agent chooses its action based on its policy: a = π(o). The action a consists of a displacement487

of the end effector position, change in roll/pitch/yaw, and open/close of the gripper. Next, the action488

15

selected by the RL agent is sent via ethernet to an Intel NUC, which directly interfaces with the489

Panda Robot. Specifically, the Intel NUC runs the Robot Operating System (ROS), where our real-490

time controller communicates with the FRANKA ROS library.491

7.6.3 Demonstration Collection via Tele-Operation492

Figure 14: We develop an iOS app to
stream the device pose to the PC.

A key aspect of our approach is to learn from a small set of hu-493

man demonstrations efficiently. We build an application where494

a user can tele-operate the robot by moving and rotating an495

iPhone. Our iPhone application utilizes primitives from Ap-496

ple’s ARKit [46] to stream the position and orientation of the497

device to the PC controlling the robot.498

During demonstration collection, a Python script translates the499

tracking data into gym actions and executes them on the real500

robot. The gym environment updates the robot’s equilibrium501

pose to follow the movement of the iPhone. These demon-502

stration trajectories are stored on the Nvidia GPU desktop and503

used during training.504

7.7 Environment Details505

Maximum Episode Length: For our simulated experiments in506

Robosuite, we set maximum episode lengths based on the dif-507

ficulty of each task, as shown in Table 3. Note that these num-508

bers are slightly over the average steps the demonstrator takes509

to complete each task, leaving the RL agent plenty of time to510

finish. For our real robot experiments, all three tasks share the511

same maximum episode length of 30 steps. The episodes are512

terminated if the maximum length is reached or when the task513

is completed.514

Task Lift Door Stack Move a Can
Max Episode Length 40 80 80 120

Table 3: We choose the maximum episode length of each task slightly over the average steps the demonstrator
took, giving the RL agent ample time to finish.

Task-specific Settings: The block-lifting, door-opening, and block-stacking tasks are all taken di-515

rectly from the Robosuite simulator. The move-a-can task is a single-object version of the pick-and-516

place task where only the soda can is included. The robot’s base is placed in the middle of the two517

bins for the move-a-can task.518

7.8 Hyper-parameters and Training Scheduling519

We use discounting factor γ = 0.99 and exploration reward discount α = 0.98 for all our ex-520

periments. Actor and critic learning rates are 10−3. The latent dynamics model learning rate is521

4 ·10−3. Batch size B = 128. We choose different fractions of demonstrations pd when we perform522

prioritized replay, as shown in the table below.523

Task Lift Door Stack Move a Can Real Robot
pd 0.15 0.15 0.15 0.2 0.2

Table 4: We vary the fraction pd of demonstration interactions within each batch depending on the task we are
training.

16

For simulated environments, we perform one Actor-Critic update for each environment step. After524

loading the demonstrations, we update the latent dynamics model for every 5000 environment steps525

until convergence. For real robot experiments, we update the latent dynamics model for every 30526

steps the robot takes. Since each step takes about 0.5 seconds to execute on the real robot, we keep527

performing SAC updates while the robot is in motion.528

7.9 Neural Network Architectures529

Our method consists of 6 components parameterized by neural networks, namely: model encoder530

Eϕ, model decoder Dθ, locally-linear dynamics model Mψ , RL encoder ERL, Actor πRL and Critic531

QRL. The numbers below correspond to our specific setting where the latent space has 16 dimen-532

sions, and the action space has 7 dimensions. Our locally linear dynamics model predicts a low-rank533

approximation of 16× 16 matrix A using two 16-dimensional vectors u and v, where A = I+uvT .534

Model Encoder (with DINOv2):535
Input: 2 of 3x112x112 randomly cropped images536
Pretrained DINOv2 variant: dinov2_vits14_reg537
Concatenate 2 of DINOv2 embeddings538
ReLU(Linear(out_features =512))539
ReLU(Linear(out_features =512))540
ReLU(Linear(out_features =512))541
Linear(out_features =32)542
Output: 16-dim mean + 16-dim log -std543

Model Decoder (with DINOv2):544
Input: 16-dim latent vectors545
ReLU(Linear(out_features =512))546
ReLU(Linear(out_features =512))547
ReLU(Linear(out_features =512))548
Linear(out_features =2 * 768)549
Output: 2 of predicted DINOv2 embeddings550

Model Encoder (No DINOv2):551
Input: 6x112x112 randomly cropped images552
ReLU(LayerNorm(Conv2D(6, 32, kernel=3, stride =2)))553
ReLU(LayerNorm(Conv2D (32, 32, kernel =3))554
ReLU(LayerNorm(Conv2D (32, 32, kernel =3))555
Flatten ()556
ReLU(Linear(out_features =128))557
ReLU(Linear(out_features =128))558
Linear(out_features =32)559
Output: 16-dim mean + 16-dim log -std560

Model Decoder (No DINOv2):561
Input: 16-dim latent vectors562
ReLU(Linear(out_features =128))563
ReLU(Linear(out_features =128))564
ReLU(Linear(out_features =32768))565
Reshape into 128 x16x16566
Upsample into 128 x32x32567
ReLU(Conv2D (128, 128, kernel=3, stride=1, pad =1)))568
Upsample into 128 x64x64569
ReLU(Conv2D (128, 128, kernel=3, stride=1, pad =1)))570
Upsample into 128 x128x128571
Conv2D (128, 6, kernel=3, stride=1, pad =1))572
Output: 6x128x128 images573

Locally -Linear Dynamics model:574
Input: 16-dim latent vectors575
ReLU(Linear(out_features =512))576
ReLU(Linear(out_features =512))577
ReLU(Linear(out_features =160))578
Output: 16-dim vector u + 16-dim vector579

+ 16x7 matrix B + 16-dim offset c580

RL Encoder:581
Input: 6x112x112 randomly cropped images582
ReLU(LayerNorm(Conv2D(6, 32, kernel=3, stride =2)))583
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))584
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))585
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))586
Flatten ()587
LayerNorm(Linear(out_features =32))588
Output: 32-dim feature589

17

Actor:590
Input: 32-dim feature591
ReLU(Linear(out_features =1024))592
ReLU(Linear(out_features =1024))593
Linear(out_features =14)594
Output: 7-dim mean + 7-dim log -std595

Critic:596
Input: 32-dim feature + 7-dim action597
ReLU(Linear(out_features =1024))598
ReLU(Linear(out_features =1024))599
Linear(out_features =1)600
Output: Q-value601

18

	Introduction
	Related Work
	Problem Setting
	Method
	Reinforcement Learning from Demonstrations
	Augmentation-Invariant Distance Measure
	Demonstration-Guided Exploration
	Prioritized Replay and Value Clipping

	Experiments
	Simulated Manipulation Tasks
	Ablation Studies
	Real Robot Experiments

	Conclusion
	Appendix
	Motivating Example
	Visualization of Embedded Robot Trajectories
	Exploration Reward Ablation Studies
	Comparison with DreamerV2
	Robustness of LaNE Policies
	Real Robot Setup
	Highly Compliant Real-time Controller
	System Architecture
	Demonstration Collection via Tele-Operation

	Environment Details
	Hyper-parameters and Training Scheduling
	Neural Network Architectures

