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ABSTRACT

Document retrieval for tasks such as search and retrieval-augmented generation
typically involves datasets that are unstructured: free-form text without explicit in-
ternal structure in each document. However, documents can have some structure,
containing fields such as an article title, a message body, or an HTML header. To
address this gap, we introduce Multi-Field Adaptive Retrieval (MFAR), a flexible
framework that accommodates any number and any type of document indices on
semi-structured data. Our framework consists of two main steps: (1) the decom-
position of an existing document into fields, each indexed independently through
dense and lexical methods, and (2) learning a model which adaptively predicts the
importance of a field by conditioning on the document query, allowing on-the-fly
weighting of the most likely field(s). We find that our approach allows for the op-
timized use of dense versus lexical representations across field types, significantly
improves in document ranking over a number of existing retrievers, and achieves
state-of-the-art performance for multi-field semi-structured data.

1 INTRODUCTION

The task of document retrieval has many traditional applications, like web search or question answer-
ing, but there has also been renewed interest as part of LLM workflows, like retrieval-augmented
generation (RAG). An area of study is focused on increasing the complexity and naturalness of
queries (Yang et al., 2018; Qi et al., 2019; Jeong et al., 2024; Lin et al., 2023). Another less stud-
ied area considers the increased complexity of the documents (Jiang et al., 2024; Wu et al., 2024b).
This represents a challenge compared to prior datasets for retrieval, like MS MARCO (Nguyen et al.,
2016), which contain chunks of text that are highly related to the query. Retrieval is done by either
searching over the documents via lexical match (Robertson et al., 1994) or with dense retrievers
that embed text into vector representations (Karpukhin et al., 2020; Ni et al., 2022; Izacard et al.,
2022). Relatedly, some approaches (Gao et al., 2021; Chen et al., 2022) explore the benefits of a
hybrid solution, but these options are not mainstream. In this work, we revisit both hybrid models
and methods for retrieval of more complex documents.

Our motivation for this direction derives from two observations: 1) documents do have structure:
fields like titles, timestamps, headers, authors, etc. and queries can refer directly to this structure; and
2) a different scoring method may be beneficial for each of these fields, as not every field is necessary
to answer each query. More specifically, our goal is to investigate retrieval on semi-structured data.
Existing work on retrieval for semi-structured data with dense representations focus on directly em-
bedding semi-structured knowledge into the model through pretraining approaches (Li et al., 2023;
Su et al., 2024), but we would like a method which can more flexibly combine existing pretrained
models and scorers. Similarly, there has been prior interest in multi-field retrieval, although these
works focused on retrieval with solely lexical or sparse features or early neural models (Robertson
et al., 1994; Zaragoza et al., 2004; Zamani et al., 2018).

In this work, we demonstrate how multi-field documents can be represented through paired views
and on a per-field basis, with a learned mechanism that maps queries to weighted combinations of
these views. Our method, Multi-Field Adaptive Retrieval (MFAR),1 is a retrieval approach that
can accommodate any number of fields and any number of scorers (such as one lexical and one

‡ Work done while at Microsoft
1 https://github.com/microsoft/multifield-adaptive-retrieval
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Dataset Example Query Example Document

MS MARCO aleve maximum dose You should take one tablet every 8 to 10 hours until symptoms abate, . . .
BioASQ What is Piebaldism? Piebaldism is a rare autosomal dominant disorder of melanocyte develop-

ment characterized by a congenital white forelock and multiple . . .

STaRK-
Amazon

Looking for a chess strategy guide from
The House of Staunton that offers tac-
tics against Old Indian and Modern de-
fenses. Any recommendations?

Title: Beating the King’s Indian and Benoni Defense with 5. Bd3
Brand: The House of Staunton
Description: ... This book also tells you how to play against the Old In-
dian and Modern defenses.
Reviews: [{reviewerID: 1234, text:...}, {reviewerID: 1235, text:...}, ...]
. . .

STaRK-MAG Does any research from the Indian
Maritime University touch upon Fe
II energy level transitions within the
scope of Configuration Interaction?

Title: Radiative transition rates for the forbidden lines in Fe II
Abstract: We report electric quadrupole and magnetic dipole transitions
among the levels belonging to 3d 6 4s, 3d 7 and 3d 5 4s 2 configurations
of Fe II in a large scale configuration interaction (CI) calculation. ...
Authors: N.C. Deb, A Hibbert (Indian Maritime University)
. . .

STaRK-Prime What drugs target the CYP3A4 enzyme
and are used to treat strongyloidiasis?

Name: Ivermectin
Entity Type: drug
Details: {Description: Ivermectin is a broad-spectrum anti-parasite medi-
cation. It was first marketed under..., Half Life: 16 hours}
Target: gene/protein
Indication: For the treatment of intestinal strongyloidiasis due to ...
Category: [Cytochrome P-450 CYP3A Inducers, Lactones, ...]
. . .

Figure 1: Traditional documents for retrieval (top), like in MS MARCO (Nguyen et al., 2016) and
BioASQ (Nentidis et al., 2023), are unstructured: free-form text that tends to directly answer the
queries. Documents in the STaRK datasets (bottom) (Wu et al., 2024b), are semi-structured: each
contains multiple fields. The queries require information from some of these fields, so it is important
to both aggregate evidence across multiple fields while ignoring irrelevant ones.

vector-based) for each field. Additionally, we introduce a light-weight component that adaptively
weights the most likely fields, conditioned on the query. This allows us to exhaustively include all
fields and scorers at inference and let the model determine the relative importance. MFAR obtains
significant performance gains over existing state-of-the-art baselines. Unlike prior work, our simple
approach does not require pretraining and offers some controllability at test-time. Concretely, our
contributions are:

1. We introduce a novel framework for document retrieval, MFAR, that is aimed at semi-
structured data with any number of fields. Notably, MFAR is able to mix lexical and vector-
based scorers between the query and the document’s fields.

2. We find that a hybrid mixture of scorers performs better than using dense or lexical-based
scorers alone; we also find that encoding documents with our multi-field approach can
result in better performance than encoding the entire document as a whole. As a result,
MFAR achieves state-of-the-art performance on STaRK, a dataset for semi-structured doc-
ument retrieval.

3. We introduce an adaptive weighting technique that conditions on the query, weighting more
the fields most related to the query and weighting less the fields that are less important.

4. Finally, we analyze the performance of our models trained from our framework; we control
the availability of scorers at test-time in an ablation study to measure the importance of the
individual fields in the corpus.

2 MULTI-FIELD RETRIEVAL

While semi-structured documents is a broad term more generally, in this work, we focus on docu-
ments that can be decomposed into fields, where each field has a name and a value. As an example in
Figure 1, for the STaRK-Prime document, Entity Type would be a field name and its value would be
“drug.” The values themselves can have additional nested structure, like Category has a list of terms
as its value. Note that this formulation of semi-structured multi-field document is broad, as it not
only includes objects like knowledge base entries, but also free-form text (chat messages, emails)
along with their associated metadata (timestamps, sender, etc) and tabular data.
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Abstract: "The CH317OH isotopic form of methanol 
has been investigated as a far-infrared ..."
Institution: {"Michael Jackson": ["Central 
Washington University"], "Andrew J. Nichols": 
["Edmonds Community College"], "D'Artagnon R. 
Womack": ["Edmonds Community College"]}
Area of Study: ["Wavelength", "Center 
frequency", "Laser pumping", "Optoelectronics", 
"Optics", "Physics", "Optical pumping", "Finite 
impulse response", "Laser”], …} 

Standard 
Retriever

Score(Q, D) 
= 0.5

mFAR 
(Ours)

Are there any 
publications from 
Edmonds Community 
College on laser 
pumping methods 

that explore 
various emission 

spectra?

institution sim: 
(0.8, 1.0)

area of study 
sim: (0.5, 0.5)

A B

⊗

abstract sim: 
(0.5, 0)

Score(Q, D) = 
0.57

document sim: 
0.5

Query QDocument D

Field weights:
[(0.3, 0.2), (0.4, 0.0), (0.0, 0.1)]

Figure 2: Document D and query Q are examples from the STaRK-MAG dataset. Parts of the
query (highlighted) correspond with specific fields from D. Traditional retrievers (A) would score
the entire document against the query (e.g. through vector similarity). In (B), our method, mFAR,
first decomposes D into fields and scores each field separately against the query using both lexical-
and vector-based scorers. This yields a pair of field-specific similarity scores, which are combined
using our adaptive query conditioning approach to produce a document-level similarity score.

Formally, we consider a corpus of documents C = {𝑑1, 𝑑2, . . . , 𝑑𝑛} and a set of associated fields F
= { 𝑓1, 𝑓2, . . . , 𝑓𝑚} that make up each document 𝑑, i.e., 𝑑 = { 𝑓 : 𝑥 𝑓 | 𝑓 ∈ F }, where 𝑥 𝑓 is the value
for that field. Then, given a natural-language query 𝑞, we would like a scoring function 𝑠(𝑞, 𝑑) that
can be used to rank the documents in C such that the most relevant documents to 𝑞 score highest (or
within the top-𝑘). 𝑞 may ask about values from any subset of fields, either lexically or semantically.

2.1 STANDARD RETRIEVER AND CONTRASTIVE LOSS

Traditionally, 𝑑 is indexed in its entirety. The retriever can employ either a lexical (Robertson et al.,
1994) or dense (embedding-based) (Lee et al., 2019; Karpukhin et al., 2020) scorer. A lexical scorer
like BM25 (Robertson et al., 1994) directly computes 𝑠(𝑞, 𝑑) based on term frequencies. For a dense
scorer, document and query encoders are used to embed 𝑑 and 𝑞, and a simple similarity function,
in our case an unnormalized dot product, is used to compute 𝑠(𝑞, 𝑑).
Document and query encoders can be finetuned by using a contrastive loss (Izacard et al., 2022),
which aims to separate a positive (relevant) document 𝑑+

𝑖
against 𝑘 negative (irrelevant) documents

D−
𝑖

for a given query 𝑞. In prior work, a shared encoder for the documents and queries is trained
using this loss, and a temperature 𝜏 is used for training stability:

L𝑐 = − log
𝑒𝑠 (𝑞𝑖 ,𝑑

+
𝑖
)/𝜏

𝑒𝑠 (𝑞𝑖 ,𝑑
+
𝑖
)/𝜏 +

∑︁
𝑑−
𝑖
∈D−

𝑖

𝑒𝑠 (𝑞𝑖 ,𝑑
−
𝑖
)/𝜏 (1)

L𝑐 is the basic contrastive loss which maximizes 𝑃(𝑑+
𝑖
| 𝑞𝑖). Following Henderson et al. (2017);

Izacard et al. (2022) and Chen et al. (2020a), we employ in-batch negatives to efficiently sample
those negative documents by treating the other positive documents in the batch (of 𝑏 documents),
𝑑+
𝑗
, as negatives and including them into D−

𝑖
, where, 𝑗 ≠ 𝑖 and 1 ≤ 𝑗 ≤ 𝑏. Furthermore, following

prior work (Yang et al., 2019; Ni et al., 2022; Chen et al., 2025), we can include a bi-directional loss
for 𝑃(𝑞𝑖 | 𝑑+𝑖 ). Here, for a given positive document 𝑑+

𝑗
, 𝑞 𝑗 is the positive query and the other queries

𝑞𝑖 , 𝑖 ≠ 𝑗 become negative queries:

L𝑏 = − log
𝑒𝑠 (𝑞𝑖 ,𝑑

+
𝑖
)/𝜏

𝑒𝑠 (𝑞𝑖 ,𝑑
+
𝑖
)/𝜏 +

∑︁
𝑞 𝑗 , 𝑗≠𝑖

𝑒𝑠 (𝑞 𝑗 ,𝑑
+
𝑖
)/𝜏 (2)
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The final loss for the (shared) encoder is L = L𝑐 + L𝑏.

2.2 MFAR: A MULTI-FIELD ADAPTIVE RETRIEVER

Because semi-structured documents can be decomposed into individual fields (𝑑 = {𝑥 𝑓 } 𝑓 ∈F ), we
can score the query 𝑞 against each field separately. This score could be computed via lexical or dense
(vector-based) methods. This motivates a modification to the standard setup above, where 𝑠(𝑞, 𝑑)
can instead be determined as a weighted combination of field-wise scores and scoring methods,

𝑠(𝑞, 𝑑) =
∑︁
𝑓 ∈F

∑︁
𝑚∈M

𝑤𝑚
𝑓 𝑠

𝑚
𝑓 (𝑞, 𝑥 𝑓 ). (3)

Here, 𝑠𝑚
𝑓
(𝑞, 𝑥 𝑓 ) is the score between 𝑞 and field 𝑓 of 𝑑 using scoring method 𝑚 ∈ M, and M is

the set of scoring methods. For a hybrid model, M = {lexical, dense}. 𝑤𝑚
𝑓

is a weight, possibly
learned, that is associated with field 𝑓 and scoring method 𝑚.

Adaptive field selection. As presented, our method uses weights, 𝑤𝑚
𝑓

, that are learned for each
field and scorer. This is useful in practice, as not every field in the corpus is useful or even asked
about, like unrelated numbers or internal identifiers. Additionally, queries usually ask about infor-
mation contained in a small number of fields and these fields change depending on the query.

This motivates conditioning the value of 𝑤𝑚
𝑓

also on 𝑞 so that the weights can adapt to the given
query by using the query text to determine the most important fields. We use an adaptation function
𝐺 and let 𝑤𝑚

𝑓
= 𝐺 (𝑞, 𝑓 , 𝑚). Now, the query-conditioned, or adaptive, weighted sum is:

𝑠(𝑞, 𝑑) =
∑︁
𝑓 ∈F

∑︁
𝑚∈M

𝐺 (𝑞, 𝑓 , 𝑚) · 𝑠𝑚𝑓 (𝑞, 𝑥 𝑓 ). (4)

To implement 𝐺, let q be a dense embedding of 𝑞, and a𝑚
𝑓
∈ R |q | be learnable parameters. Then we

could define 𝐺 (𝑞, 𝑓 , 𝑚) = a𝑚
𝑓
⊤q. We find that learning is more stable with a nonlinearity over all

fields 𝑓 and scorers 𝑚: 𝐺 (𝑞, 𝑓 , 𝑚) = softmax({a𝑚
𝑓
⊤q}), which is what we use in MFAR.

Multiple scorers and normalization. One objective of ours is to seamlessly incorporate scorers
using different methods (lexical and dense). However, the distribution of possible scores per scorer
can be on different scales. While 𝐺 can technically learn to normalize, we want 𝐺 to focus on query-
conditioning. Instead, we experiment with using batch normalization (Ioffe & Szegedy, 2015) per
field that whitens the scores and learns new scalars 𝛾𝑚

𝑓
and 𝛽𝑚

𝑓
for each field and scorer. Because

these scores are ultimately used in the softmax of the contrastive loss, 𝛾𝑚
𝑓

acts like a bias term which
modulates the importance of each score while 𝛽𝑚

𝑓
has no effect.

Note that the score whitening process is not obviously beneficial or necessary, especially if the
scorers already share a similar distribution (i.e. if we only use dense scorers). We leave the inclusion
of normalization as a hyperparameter as part of our grid search.

Inference At test time, the goal is to rank documents by 𝑠(𝑞, 𝑑) such that the relevant (gold)
documents are highest. Because it can be slow to compute |F | |M| |C | scores for the whole corpus,
we use an approximation. We first determine a top-𝑘 shortlist, C𝑚

𝑓
, of documents for each field and

scorer and only compute the full scores for all
⋃

𝑓 ∈F ,𝑚∈M C𝑚
𝑓

, which results in the final ranking.
Note this inexact approximation of the top-𝑘 document is distinct from traditional late-stage re-
ranking methods that rescore the query with each document, which is not the focus of this work.

3 EXPERIMENTS

Our experiments are motivated by the following hypotheses:

1. Taking advantage of the multi-field document structure will lead to better accuracy than
treating the document in its entirely, as a single field.

2. Hybrid (a combination of lexical and dense) approaches to modeling will perform better
than using only one or other.
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3.1 DATA

We use STaRK (Wu et al., 2024b), a collection of three retrieval datasets in the domains of prod-
uct reviews (Amazon), academic articles (MAG), and biomedical knowledge (Prime), each derived
from knowledge graphs. Amazon contains queries and documents from Amazon Product Reviews
(He & McAuley, 2016) and Amazon Question and Answer Data (McAuley et al., 2015). MAG con-
tains queries and documents about academic papers, sourced from the Microsoft Academic Graph
(Wang et al., 2020), obgn-MAG, and obgn-papers100M (Hu et al., 2020). Prime contains queries
and documents regarding biomedicine from PrimeKG (Chandak et al., 2022). These datasets are
formulated as knowledge graphs in STaRK and are accompanied by complex queries.

In the retrieval baselines (Wu et al., 2024b), node (corresponding to an entity in the knowledge
graph) information is linearized into documents that can be encoded and retrieved via dense meth-
ods. We likewise treat each node as a document. In our work, we preserve each node property or
relation as a distinct field for our multi-field models or likewise reformat to a human-readable doc-
ument for our single-field models. Compared to Amazon and MAG, we notice that Prime contains
a higher number of relation types, i.e. relatively more fields in Prime are derived from knowledge-
graph relations than in either Amazon or MAG, where document content is derived from a node’s
properties. In total, there are 22, 8, and 5 fields for Prime, Amazon, and MAG respectively; more
details on dataset sizes, preprocessing, exact fields are described in Appendix A.

We use trec eval2 for evaluation and follow Wu et al. (2024b) by reporting Hit@1, Recall@20,
and mean reciprocal rank (MRR). Hit@5 is reported in Appendix C.1 due to space limitations here.

3.2 BASELINES AND PRIOR WORK

We compare primarily to prior work on STaRK, which is a set of baselines established by Wu et al.
(2024b) and more recent work by Wu et al. (2024a). Specifically, they include two vector similarity
search methods that use OpenAI’s text-embedding-ada-002 model, ada-002 and multi-ada-
002. Notably, the latter is also a multi-vector approach, although it only uses two vectors per docu-
ment: one to capture node properties and one for relational information. We also include their two
LLM-based re-ranking baselines (Claude3 and GPT4 rerankers) on top of ada-002. Although our
work does not perform re-ranking, we add these results to show the superiority of finetuning smaller
retrievers over using generalist LLMs for reranking.

More recently, AvaTaR (Wu et al., 2024a) is an agent-based method which iteratively generates
prompts to improve reasoning and scoring of documents. While not comparable with our work,
which does not focus on agents nor use models as large, it is the state-of-the-art method for STaRK.

Finally, we use an off-the-shelf pretrained retrieval encoder, Contriever finetuned on MS
MARCO3(Izacard et al., 2022), as a baseline for our dense scorer, which we subsequently con-
tinue finetuning on STaRK. Early experiments showed that Contriever performed better than other
dense retrievers. We use BM25 (Robertson et al., 1994; Lù, 2024) as a lexical baseline. These use
the single-field formatting described Section 3.1.

3.3 EXPERIMENTAL SETUP

MFAR affords a combination of lexical and dense scorers across experiments. Similarly to our
baselines, we use BM25 as our lexical scorer and the dot product of Contriever embeddings as our
dense scorer. We use a shared embedding model for both the query and document and for creating
q when computing the adaptation function 𝐺. Because of potential differences across datasets,
we initially consider four configurations that take advantage of MFAR’s ability to accommodate
multiple fields or scorers: MFARDense uses all fields and the dense scorer, MFARLexical uses all
fields and the lexical scorer, MFARAll uses all fields and both scorers, and MFAR2 uses both scorers
but the single-field (Sec. 3.1) document representation. Based on our final results and analysis, we
additionally create and evaluate MFARAll+2, which consists of both a single-document and multi-
field representation for both lexical and dense scoring methods. This results in five MFAR models
that use |F |, |F |, 2|F |, 2, and 2|F | + 2 scorers respectively. For each dataset (and across models),

2 https://github.com/usnistgov/trec_eval.
3 https://huggingface.co/facebook/contriever-msmarco.
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Table 1: Comparing our method (MFAR) against baselines and state-of-the-art methods on the
STaRK test sets. ada-002 and multi-ada-002 are based on vector similarity; +{Claude3, GPT4}
further adds an LLM reranking step on top of ada-002. AvaTaR is an agent-based iterative frame-
work. Contriever-FT is a finetuned Contriever model, which is also the encoder finetuned in MFAR.
MFAR is superior against prior methods and datasets, and earns a substantial margin on average
across the benchmark. ♦ In Wu et al. (2024b), these are reranker models that are only run on a
random 10% subset of queries.

Amazon MAG Prime Average

Model H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR

ada-002 0.392 0.533 0.542 0.291 0.484 0.386 0.126 0.360 0.214 0.270 0.459 0.381
multi-ada-002 0.401 0.551 0.516 0.259 0.508 0.369 0.151 0.381 0.235 0.270 0.480 0.373
Claude3♦ 0.455 0.538 0.559 0.365 0.484 0.442 0.178 0.356 0.263 0.333 0.459 0.421
GPT4♦ 0.448 0.554 0.557 0.409 0.486 0.490 0.183 0.341 0.266 0.347 0.460 0.465
AvaTaR agent 0.499 0.606 0.587 0.444 0.506 0.512 0.184 0.393 0.267 0.376 0.502 0.455
BM25 0.483 0.584 0.589 0.471 0.689 0.572 0.167 0.410 0.255 0.374 0.561 0.462
Contriever-FT 0.383 0.530 0.497 0.371 0.578 0.475 0.325 0.600 0.427 0.360 0.569 0.467

MFARLexical 0.332 0.491 0.443 0.429 0.657 0.522 0.257 0.500 0.347 0.339 0.549 0.437
MFARDense 0.390 0.555 0.512 0.467 0.669 0.564 0.375 0.698 0.485 0.411 0.641 0.520
MFAR2 0.574 0.663 0.681 0.503 0.721 0.603 0.227 0.495 0.327 0.435 0.626 0.537
MFARAll 0.412 0.585 0.542 0.490 0.717 0.582 0.409 0.683 0.512 0.437 0.662 0.545
MFARAll+2 0.530 0.663 0.643 0.559 0.741 0.643 0.400 0.726 0.520 0.496 0.710 0.602

we run a grid search over learning rates and whether to normalize and select the best model based
on the development set.

Because Contriever has a 512-token context window, we prioritize maximizing this window size for
each field, which ultimately reduces the batch size we can select for each dataset, resulting in 96 for
Amazon and Prime, and 192 for MAG. More details on the exact hyperparameters for each run are
in Appendix B.

4 RESULTS

We report the results from our MFAR models in Table 1, compared against against prior methods and
baselines. Our best models—both make use of both scorers—perform significantly better than prior
work and baselines: MFAR2 on Amazon, and MFARAll and MFARAll+2 on the other datasets. This
includes surpassing re-ranking based methods and the strongest agentic method, AvaTaR. MFARAll
performs particularly well on Prime (+20% for H@1). Comparatively, all models based on ada-002
have extended context windows of 2K tokens, but MFAR, using an encoder that has a much smaller
context window size (512), still performs significantly better. Furthermore, our gains cannot be only
attributed to finetuning or full reliance on lexical scorers since the MFAR models perform better
against the already competitive BM25 and finetuned Contriever baselines.

We find that the adoption of a hybrid approach benefits recall, which we can attribute to successful
integration of BM25’s scores. Individually, BM25 already achieves higher R@20 than most vector-
based methods. The MFAR models retain and further improve on that performance. Recall is
especially salient for tasks such as RAG where collecting documents in the top-𝑘 are more important
than surfacing the correct result at the top.

Revisiting our hypotheses from Section 3, we can compare the various configurations of MFAR.
Noting that BM25 is akin to a single-field, lexical baseline and Contriever-FT is a single-field, dense
baseline, we can observe the following:

Multi-field vs. Single-field. A side-by-side comparison of the single-field models against their
multi-field counterparts shows mixed results. If we only consider dense scorers, MFARDense pro-
duces the better results than Contriever-FT across all datasets. To our knowledge, this is the first pos-
itive evidence in favor of multi-field methods in dense retrieval. For MFARLexical, in both Amazon
and MAG, the BM25 baseline performs especially well, and we do not see consistent improvements.
This specific phenomenon has been previously noted by Robertson et al. (2004), who describe
BM25F, a variant of BM25 that aggregates multi-field information in a more principled manner.
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Specifically in BM25, the scores are length normalized. For some fields, like institution, repetition
does not imply a stronger match, and so treating the institution field separately (and predicting high
weights for it) could lead to high scores for negative documents. A multi-field sparse representation,
then, may not always be the best solution, depending on the dataset. We further try using BM25F
instead but find lackluster performance likely due to undertuned weights (Appendix D). Given the
number of fields in STaRK datasets, tuning field weights is a challenging and open problem that
appears less tractable for BM25F than for MFAR. Finally, we note that combining multi-field with
single-field can lead to further gains, as demonstrated by MFARAll+2 (and Appendix C.2).

Hybrid is best. Across both multi-field (MFARAll vs. MFARDense or MFARLexical) and single-
field models (MFAR2 vs. BM25 or Contriever-FT), and across almost every dataset, there is an
increase in performance when using both scorers over a single scorer type, validating our earlier
hypothesis. This reinforces findings from prior work (Gao et al., 2021; Kuzi et al., 2020) that hybrid
methods work well. The one exception (Prime, single-field) may be challenging for single-field
models, possibly due to the relatively higher number of fields in the dataset and the semantics of the
fields, as we investigate more in Section 5.3. However, in the multi-field setting for Prime, we again
see hybrid perform best. This provides evidence for our original motivation: that hybrid models are
suitable for and positively benefits certain semi-structured, multi-field documents.

5 ANALYSIS

Next, we take a deeper look into why MFAR leads to improvements. We first verify that model
is indeed adaptive to the queries by showing that query conditioning is a necessary component of
MFAR. Because the field weights are naturally interpretable and controllable, we can manually set
the weights to perform a post-hoc analysis of the model, which both shows us which fields of the
dataset are important for the given queries and whether the model is benefiting from the dense or
lexical scorers, or both, for each field. Finally, we conduct qualitative analysis to posit reasons why
MFAR holds an advantage.

Our analyses, along with the quantitative results, lead us to experiment with a combination of single-
field and multi-field document representations in Appendix C.2, like MFARAll+2. We find that these
combinations offer additional gains over MFARAll, and that even just a combination of single-field
lexical and multi-field dense improves over only MFARAll or MFAR2.

5.1 IS QUERY-CONDITIONED ADAPTATION NECESSARY?

We designed MFAR with a mechanism for adaptive field selection: for a test-time query, the model
makes a weighted prediction over the fields to determine which ones are important. In this sec-
tion, we analyze whether this adaptation is necessary to achieve good performance. To do so, we
MFAR against an ablated version which does not have the ability to predict query-specific weights
but can still predict global, field-specific weights by directly learning 𝑤𝑚

𝑓
from Equation 3. This

allows the model to still emphasize (or de-emphasize) certain fields globally if they are deemed
important (or unimportant).

Table 2: The test scores of MFARAll without query conditioning (QC) and the % relative change
without it.

Amazon MAG Prime STaRK Avg.

H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR

MFARAll 0.412 0.585 0.542 0.490 0.717 0.582 0.409 0.683 0.512 0.437 0.662 0.545
No QC 0.346 0.547 0.473 0.428 0.662 0.528 0.241 0.596 0.368 0.338 0.602 0.456
Loss (%) -16.0 -6.5 -12.7 -12.7 -7.7 -9.3 -41.1 -12.7 -28.1 -22.6 -9.1 -16.3

In Table 2, we present the details for MFARAll and find that query conditioning is indeed necessary
for performance gains across all datasets. Omitting it results in substantial losses on the metrics
on each dataset and for the STaRK average. This extends to the other models too. We also find
lower scores on STaRK average across the 3 metrics (H@1, R@20, MRR): -10%, -6%, -8% for
MFARDense and -17%, -13%, -14% for the MFARLexical.
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5.2 WHICH FIELDS AND SCORERS ARE IMPORTANT?

The interpretable design of our MFAR framework enables us to easily control the used fields and
scorers after a model has been trained. Specifically, we can mask (zero) out any subset of the weights
𝑤𝑚

𝑓
used to compute 𝑠(𝑞, 𝑑) (Equation 4). For example, setting 𝑤lexical

𝑓
= 0 for each 𝑓 would force

the model to only use the dense scores for each field. We can interpret a drop in performance as a
direct result of excluding certain fields or scorers, and thus we can measure their contribution (or
lack thereof). In this deep-dive analysis, we re-evaluate MFARAll’s performance on each dataset
after masking out entire scoring methods (lexical or dense), specific fields (title, abstract, etc), and
even specific field and scoring method (e.g. title with dense scorer).

Scorers We present results on the three STaRK datasets in Table 3. We see the performance of
MFARAll on Amazon is heavily reliant on the dense scores. Knowing the results from Table 1, this
may be unsurprising because MFARLexical did perform the worst. While the model leans similarly
towards dense scores for Prime, on MAG, it relies more on the lexical scores. This shows that each
dataset may benefit from a different scorer. Further, this may not be expected a priori: we would
have expected Prime to benefit most from the lexical scores, as that biomedical dataset contains many
initialisms and IDs that are not clearly semantically meaningful. This demonstrates the flexibility
and adaptivity of MFAR to multiple scoring strategies.

From Table 1, we observe that MFARAll outperforms MFARDense by a small margin (0.435 vs.
0.411 for average H@1), and so one may suspect MFARAll is heavily relying on the dense scores.
However, MFARAll with 𝑤lexical

𝑓
masked out performs substantially worse on each dataset (Table 3;

0.326 average) than MFARDense, suggesting that a nontrivial amount of the performance on MFARAll
is attributable to lexical scores. Thus, unlike late-stage reranking or routing models for retrieval, the
coexistence of dense and lexical scorers (or even individual fields) during training likely influences
what the model and encoder learns.

Table 3: Performance of MFARAll with entire scoring methods masked out at test-time.

Amazon MAG Prime

Masking H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR

None 0.412 0.586 0.542 0.490 0.717 0.582 0.409 0.683 0.512
Dense only: 𝑤lexical

𝑓
= 0 0.389 0.553 0.512 0.257 0.481 0.355 0.331 0.635 0.352

Lexical only: 𝑤dense
𝑓

= 0 0.271 0.452 0.386 0.352 0.602 0.446 0.267 0.500 0.442

Fields By performing similar analysis at a fine-grained field-level, we can identify which parts of
the document are asked about or useful. For each field 𝑓𝑖 , we can set 𝑤lexical

𝑓𝑖
= 0, 𝑤dense

𝑓𝑖
= 0, or both.

We collect a few interesting fields from each dataset into Table 4, with all fields in Appendix E.

We find that behaviors vary depending on the field. For some fields (MAG’s authors, Amazon’s
title), masking out one of the scorers results in almost no change. However, masking out the other
one results in a sizeable drop of similar magnitude to masking out both scorers for that field. In this
case, one interpretation is that 𝑠dense

author (𝑞, 𝑑) and 𝑠lexical
title (𝑞, 𝑑) are not useful within MFARAll.

To simplify the model, one may suggest removing any 𝑠𝑚
𝑓
(𝑞, 𝑑) where setting 𝑤𝑚

𝑓
= 0 results in

no drop. However, we cannot do this without hurting the model. In other words, low deltas do not
signify low importance. For some fields (e.g. Amazon’s qa, MAG’s title, or Prime’s phenotype ab-
sent), when the lexical or dense scorers are zeroed out individually, the scores are largely unaffected.
However, completely removing the field by zeroing both types of scorers results in a noticeable drop.
In many cases, we observe that masking out entire fields yields a larger drop than masking out either
one individually. This type of behavior could be a result of MFAR redundantly obtaining the same
similarity information using different scorers. On the contrary, there is also information overlap
across fields, and so in some cases, it is possible in some cases to remove entire fields, especially in
Prime (e.g. enzyme) and Amazon, without substantial drops.
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Table 4: For each dataset, the absolute change (delta) of masking out certain fields and scorers from
MFARAll for H@1 and R@20. For each field, we zero out either the lexical scorer, the dense scorer,
or both. The raw scores on all metrics for all fields in each dataset are in Appendix E.

𝑤lexical
𝑓

= 0 𝑤dense
𝑓

= 0 Both

Field H@1 R@20 H@1 R@20 H@1 R@20

Amazon qa 0 0 0 0 -0.031 -0.041
title 0.002 -0.003 -0.022 -0.031 -0.023 -0.024
authors -0.152 -0.117 0 0 -0.101 -0.086MAG
title -0.011 -0.003 -0.017 -0.014 -0.076 0.063

Prime phenotype absent -0.001 -0.002 0 0 -0.033 -0.030
enzyme 0 0 0 0 -0.004 -0.006

Query: Which gene or protein is not expressed in female gonadal tissue?
MFAR2: MFARAll:
name: NUDT19P5
type: gene/protein
expression present: {anatomy: female gonad }

name: HSP90AB3P
type: gene/protein
expression absent: {anatomy: [cerebellum, female gonad]}

Query: Does Arxiv have any research papers from Eckerd College on the neutron scattering of 6He in Neutron physics?
MFARLexical: MFARDense: MFARAll:
Abstract: Abstract A new pin-
hole small-angle neutron scattering
(SANS) spectrometer, installed at the
cold neutron source of the 20 MW
China Mianyang Research Reactor
(CMRR) in the Institute of Nuclear
Physics . . .
Authors: Mei Peng (China Academy
of Engineering Physics), Guanyun
Yan (China Academy of Engineering
Physics), Qiang Tian (China Academy
of Engineering Physics), . . .

Abstract: Abstract Measurements of neu-
tron elastic and inelastic scattering cross
sections from 54Fe were performed for
nine incident neutron energies between 2
and 6 MeV . . .
Cited Papers: Neutron scattering differ-
ential cross sections for 23 Na from 1.5 to
4.5 MeV, Neutron inelastic scattering on
54Fe
Area of Study: [Elastic scattering,
Physics, Inelastic scattering, Neutron,
Direct coupling, Atomic physics, Scatter-
ing, . . . ]

Abstract: . . . scattering of 6He from a proton
target using a microscopic folding optical po-
tential, in which the 6He nucleus is described
in terms of a 4He-core with two additional neu-
trons in the valence p-shell. In contrast to the
previous work of that nature, all contributions
from the interaction of the valence neutrons
. . .
Authors: P. Weppner (Eckerd College), A.
Orazbayev (Ohio University), Ch. Elster (Ohio
University)
Area of Study: [elastic scattering, physics,
neutron, . . . , atomic physics, scattering]

Figure 3: Snippets from the highest-scoring document selected by various MFAR. Top: a single-
field hybrid model (MFAR2) vs. MFARAll. MFARAll picks correctly while MFAR2 is possibly
confused by negation in the query. Bottom: Snippets from configurations of MFAR with access to
different scorers. Only MFARAll correctly makes use of both lexical and semantic matching across
fields.

5.3 QUALITATIVE ANALYSIS

Multi-field gives semantic meaning for a choice of field, as compared to single-field. In Figure
3 (top), the query is looking for either a gene or protein that is not expressed. With MFARAll, the
retriever matches a longer text more accurately than MFAR2 does. Both MFARAll and MFAR2
correctly match female gonad. However, MFARAll selects the field that refers to the absence of an
expression, which is learned by the model. In MFAR2, because the lexical scorer cannot distinguish
between present and absent, MFAR2 incorrectly ranks the negative document higher.

Hybrid excels when both lexical matching and semantic similarity is required. In Figure 3
(bottom), MFARAll has the advantage over MFARDense by having the ability to lexically match Eck-
erd College. Furthermore, MFARAll is still able to semantically match the abstract of the document.
While MFARDense also finds a close fit, it is unable to distinguish this incorrect but similar example
from the correct one.

We likewise observe the drawbacks of a lexical-only scoring. One limitation of BM25 is that the
frequency of successive term matching results in increased scores. Because Physics is a keyword
with high frequency in the authors list, it results in a high score for this document even though it is
not used in the same sense semantically. On the other hand, MFARAll correctly matches the specific
institution because the final scores are based on a weighted combination of lexical and dense scorers,
which may reduce or the impact of high lexical scores.
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6 RELATED WORK

Structured and Semi-structured Retrieval Forms of structured and semi-structured retrieval
have been explored in a variety of tasks and domains. In particular, we focus on multi-field re-
trieval, a form of semi-structured retrieval (Zaragoza et al., 2004) for which prior sparse approaches
include the aforementioned BM25F (Robertson et al., 2004), learned sparse representations (Zamani
et al., 2018), and Bayesian approaches (Piwowarski & Gallinari, 2003). Lin et al. (2023) approach
a similar task using dense retrievers and with a primary focus on query decomposition to support a
weighted combination of “expert” retrievers. In contrast to their system in which weights are hand-
picked and each retriever is independently trained, our MFAR model is learned end-to-end with a
single shared encoder and learned weights, which aids scalability.

Table retrieval (Zhang & Balog, 2021; Bhagavatula et al., 2015; Pasupat & Liang, 2015; Herzig
et al., 2021; Shraga et al., 2020; Chen et al., 2020b) is a structured retrieval task which adopts similar
methods as multi-field retrieval (see Appendix F for an evaluation of MFAR for this task). Table
retrieval does not necessarily require table-specific model design, as linearized forms of the table
can be adequate for competitive performance (Wang et al., 2022) and many table retrieval datasets
have been seen during encoder pretraining (e.g. DPR (Karpukhin et al., 2020) has been trained on
Wikipedia). Beyond tabular data, other structured retrieval tasks include code search (Husain et al.,
2020) and knowledge graph datasets like shopping (Reddy et al., 2022). The latter is similar to the
Amazon subset of STaRK. Separately, a books QA dataset used by Lin et al. (2023) is multimodal,
which is not our focus.

Besides decomposition, which targets parts of the structure, like fields, with specialized parameters,
prior work has also investigated modifying the training process through generating pseudo-queries
based on Wikipedia formatting (Su et al., 2024) and incorporating auxiliary alignment objectives
between the document and a natural language description (Li et al., 2023). These methods generally
assume that there exist semantically repetitive information (e.g. table and description of table). We
do not make this assumption and focus on post-training methods that can use off-the-shelf encoders.

Hybrid Methods The combination of both types of lexical and dense scorers has previously been
found to be complementary, leading to performance gains (Gao et al., 2021; Kuzi et al., 2020;
Lee et al., 2023). Notably, Kuzi et al. (2020) points out that long documents are challenging for
lexical-based methods and suggests document chunking as a possible remedy in future work. We
implicitly segment the document by taking advantage of the multi-field structure inherently present
in documents, and unlike those past works, our work is the first to demonstrate the strength of
hybrid-based methods in a multi-field setting. Alternative hybrid retrieval setups combine both
dense and lexical features with a dense encoder, trained end-to-end (Lin & Lin, 2023; Shen et al.,
2023), whereas we explicitly use existing lexical scorers.

7 CONCLUSION

We present MFAR, a novel framework for retrieval over multi-field data by using multiple scorers,
each independently scoring the query against a part (field) of a semi-structured document. These
scorers can be lexical-based or dense-based, and each field can be scored by both types. We in-
troduce an interpretable and controllable query-conditioned predictor of weights used to adaptively
sum over these scores. On three large-scale datasets, we find that MFAR can achieve significant
performance gains over existing methods due to multi-field advantages and the inclusion of a hy-
brid combination of scorers, leading to state-of-the-art performance. Through our analysis, we find
that the best models benefit from both access to both scorers and the ability to weight each field
conditioned on the query, further verifying our method.

Our primary goal is to study the challenging and emerging problem of retrieval for multi-field semi-
structured data and to introduce a flexible framework to approach it. Having laid the groundwork,
future work can include more specialized individual scorers, scale up to more scorers in other modal-
ities like vision or audio, and add other algorithmic improvements to the weighted integration of
scores across scorers. Then, MFAR would be a step towards retrieval of any type of content, which
can further aid applications for general search or agent-based RAG.
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A DATASET

Table 5: The corpus size, number of fields, and queries (by split) for each of the STaRK datasets.
For field information, refer to Table 6 in the Appendix.

Dataset Domain Num. Documents Num. Fields Train Dev. Test.

Amazon products, product reviews 950K 8 6K 1.5K 1.5K
MAG science papers, authors 700K 5 8K 2.6K 2.6K
Prime biomedical entities 130K 22 6.1K 2.2K 2.8K

A.1 PREPROCESSING

Technically, STaRK is a dataset of queries over knowledge graphs. The full dataset details are
in Table 5. The baselines (Wu et al., 2024b) create a linearized document for each node, which
omits some edge and multi-hop information that is available in the knowledge graph. AvaTaR (Wu
et al., 2024a) operates directly on the knowledge graph. As we want to operate over semi-structured
documents, we need a preprocessing step either on the linearized documents or by processing the
graph.

Because parsing documents is error-prone, we decide to reproduce the document creation process
from (Wu et al., 2024b). We start with all of the original dataset from STaRK, which come in
the form of queries and the associated answer ids in the knowledge graph. Each query requires a
combination of entity information and relation information from their dataset to answer. However,
each dataset handles the entity types differently. The answer to every query for Amazon is the
product entity. For MAG, the answer is the paper entity. However, Prime has a list of ten
possible entities that can answer the query, so we include all ten as documents.

We create our set of documents based on the directional paths taken in their knowledge graph; if
there are more than single hop relations, then we take at most two hops for additional entities and
relations. For Amazon, since the queries are at most one hop, we do not include additional node
information. MAG and Prime, however, can include more queries with more than two hops, so we
include information about additional relations and nodes for each document in our dataset.

A.2 FIELDS

We include the list of fields that we used in this work in Table 6. Not every single field available in
the STaRK knowledge graph (Wu et al., 2024b) is used because some are not used in the baseline
and so we try to match the baselines as closely as possible. We make some cosmetic changes for
space and clarity in the examples in the main body of this paper, including uppercasing field names
and replacing underscore with spaces. We also shorten “author affiliated with institution”, “pa-
per cites paper” to “Papers Cited”, “paper has topic field of study” to “Area of Study” and
expand “type” to “Entity Type.”

Table 6 also lists some information about the length distribution of each field, as measured by the
Contriever tokenizer. This is useful to know how much information might be lost to the limited
window size of Contriever. Furthermore, we list the maximum sequence length used by the dense
scorer of MFAR both during training and at test-time. The trade off for sequence length is batch size
with respect to GPU memory usage. Our lexical baseline (BM25) does not perform any truncation.

B IMPLEMENTATION DETAILS

During training, we sample 𝑘 = 1 negative example per query. Along with in-batch negatives,
this results in 2𝑏 − 1 negative samples for a batch size of 𝑏. This negative document is sampled
using Pyserini Lucene4: 100 nearest documents are retrieved, of which the postive documents are
removed. The top negative document is then sampled among that remaining set. We apply early

4https://github.com/castorini/pyserini
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Table 6: The datasets and list of fields, F , used in this work, along with basic length statistics of
the content of those fields. The length of the 𝑘th-%ile longest value is listed. For example, 𝑘 = 50
would be the median length. The MSL is the maximum sequence length threshold we chose for that
field in MFAR based on either the maximum window size of the encoder (512) or based on covering
most (> 99%) documents within the corpus..

Length in Contriever tokens (𝑘 th%-ile)
Dataset Field 90 95 99 99.9 Max MSL

Amazon

also buy 64 217 908 3864 50176 512
also view 86 189 557 1808 21888 512
brand 7 8 10 12 35 16
description 207 289 446 1020 5038 512
feature 130 171 305 566 1587 512
qa 4 4 5 698 1873 512
review 1123 2593 12066 58946 630546 512
title 28 34 48 75 918 128

MAG

abstract 354 410 546 775 2329 512
author affiliated with institution 90 121 341 18908 46791 512
paper cites paper 581 863 1785 4412 79414 512
paper has topic field of study 49 52 57 63 90 64
title 31 34 44 62 9934 64

Prime

associated with 10 35 173 706 4985 256
carrier 3 4 4 13 2140 8
contraindication 4 4 66 586 3481 128
details 329 823 2446 5005 12319 512
enzyme 4 4 12 63 5318 64
expression absent 4 8 29 77 12196 64
expression present 204 510 670 18306 81931 512
indication 4 4 25 146 1202 32
interacts with 93 169 446 1324 55110 512
linked to 3 4 4 57 544 8
name 17 21 38 74 133 64
off-label use 3 4 4 56 727 8
parent-child 49 70 168 714 18585 256
phenotype absent 3 4 4 33 1057 8
phenotype present 20 82 372 1931 28920 512
ppi 36 125 438 1563 22432 512
side effect 4 4 93 968 5279 128
source 5 6 6 7 8 8
synergistic interaction 4 4 4800 9495 13570 512
target 4 9 33 312 5852 64
transporter 3 4 4 41 2721 8
type 7 8 8 9 9 8

stopping on validation loss with a patience of 5. We set 𝜏 = 0.05 and train with DDP on 8x NVIDIA
A100s. Contriever is a 110M parameter model, and the additional parameters added through 𝐺 is
negligible (768|F |), scaling linearly in the number of fields.

We use separate learning rates (LRs) for finetuning the encoder and for the other parameters. Specif-
ically, we searched over learning rates [5e-6, 1e-5, 5e-5, 1e-4] for the encoder and [1e-3, 5e-3, 1e-2,
5e-2, 1e-1] for the parameters in 𝐺 (𝑞, 𝑓 , 𝑚) which consist of a𝑚

𝑓
and 𝛾𝑚

𝑓
and 𝛽𝑚

𝑓
from batch normal-

ization. The main grid search was conducted over the bolded values, although we found 5e-3 to be
effective for 𝐺 (𝑞, 𝑓 , 𝑚) for Amazon. We otherwise follow the default settings for both the optimizer
(AdamW, dropout, etc.) and batch normalization (PyTorch 2.4.0). As mentioned, whether to apply
batch normalization at all was also a hyperparameter searched over: we found it useful in the hybrid
setting.
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Our implementation uses Pytorch Lightning5 and sentence-transformers 2.2.2 (Reimers &
Gurevych, 2019). We use a fast, python-based implementation of BM25 as our lexical scorer (Lù,
2024).6 The best hyperparameters for each of our models in this work are listed in Table 7. In the
case where there is only a single field (last two sections), the adaptive query conditioning is not
needed.

At inference, we retrieve the top-100 results per field to form a candidate set, and we compute the
full scores over this candidate set to obtain our final ranking.

Table 7: The hyperparameters used for each of the runs in this work.

Model Dataset Mainly referenced in Encoder LR 𝐺 () LR Batch norm?

MFARAll

Amazon
Table 1, most tables/figures

1e-5 5e-3 no
MAG 5e-5 1e-2 yes
Prime 5e-5 1e-2 yes

MFARDense

Amazon
Table 1, Figure 3

1e-5 5e-3 no
MAG 5e-5 5e-2 no
Prime 1e-5 1e-2 no

MFARLexical

Amazon
Table 1, Figure 3

1e-5 5e-3 yes
MAG 1e-5 1e-2 yes
Prime 5e-5 1e-1 yes

MFAR2

Amazon
Table 1, Figure 3

1e-5 1e-2 no
MAG 5e-5 5e-3 yes
Prime 5e-5 5e-3 yes

MFARDense&1

Amazon
Table 10 (appendix only)

1e-5 1e-2 no
MAG 5e-5 5e-3 yes
Prime 1e-5 5e-3 yes

Contriever-FT
Amazon

Table 1
5e-5 n/a n/a

MAG 1e-5 n/a n/a
Prime 5e-5 n/a n/a

C DETAILED RESULTS ON STARK

We present comprehensive results on the test split of Amazon, MAG, and Prime.

C.1 FULL TEST RESULTS AND COMPARISON

Here, we report the same results as in the main section, but we also include H@5, to be exhaustive
with STaRK, in addition to our existing metrics. In Table 8, we show the test results with the
included additional metric. In Table 9, we also include the average as a separate table. Here, we find
that MFAR still does on average better than the other baselines on the semi-structured datasets, even
against the strong lexical BM25 baseline.

C.2 MERGING FULL WITH PER-FIELD REPRESENTATIONS

We evaluate additional models that make combine both multi-field (|F | scorers) with a single-field
(one concatenated document) document representation for either or both lexical and dense retrievers.
For example, BM25 could be interpreted as a lexical retriever over a (single-field) full-document text
which concatenates all the fields. We extend our earlier experiments with 4 additional experiments:
MFARLexical+1 is MFARLexical with an additional scorer (field) that scores the full document by
using the single-document BM25 score; MFARDense+1 is MFARDense with an additional scorer that
embeds and scores the full document (using finetuned Contriever); MFARAll+2 is a hybrid model,
like MFARAll, which combines MFARLexical+1 and MFARDense+1, i.e. this contains the most scorers.

5https://lightning.ai/
6https://github.com/xhluca/bm25s
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Table 8: Similar to Table 1, we instead include H@5 and show the average as a separate table, over
the test split. We include the same baselines and generally find that H@5 also follows the same
trends. The average over all datasets can be seen in Table 9.

Amazon MAG Prime

Model H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

ada-002 0.392 0.627 0.533 0.542 0.291 0.496 0.484 0.386 0.126 0.315 0.360 0.214
multi-ada-002 0.401 0.650 0.551 0.516 0.259 0.504 0.508 0.369 0.151 0.336 0.381 0.235
Claude3 0.455 0.711 0.538 0.559 0.365 0.532 0.484 0.442 0.178 0.369 0.356 0.263
GPT4 0.448 0.712 0.554 0.557 0.409 0.582 0.486 0.490 0.183 0.373 0.341 0.266
BM25 0.483 0.721 0.584 0.589 0.471 0.693 0.689 0.572 0.167 0.355 0.410 0.255
Contriever-FT 0.383 0.639 0.530 0.497 0.371 0.594 0.578 0.475 0.325 0.548 0.600 0.427
AvaTaR (agent) 0.499 0.692 0.606 0.587 0.444 0.567 0.506 0.512 0.184 0.367 0.393 0.267

MFARLexical 0.332 0.569 0.491 0.443 0.429 0.634 0.657 0.522 0.257 0.455 0.500 0.347
MFARDense 0.390 0.659 0.555 0.512 0.467 0.678 0.669 0.564 0.375 0.620 0.698 0.485
MFAR2 0.574 0.814 0.663 0.681 0.503 0.717 0.721 0.603 0.227 0.439 0.495 0.327
MFARAll 0.412 0.700 0.585 0.542 0.490 0.696 0.717 0.582 0.409 0.628 0.683 0.512
MFARAll+2 0.530 0.785 0.663 0.643 0.559 0.742 0.741 0.643 0.400 0.659 0.726 0.520

Table 9: The averages for Table 8.

Averages

Model H@1 H@5 R@20 MRR

ada-002 0.270 0.479 0.459 0.381
multi-ada-002 0.270 0.497 0.480 0.373
Claude3* 0.333 0.537 0.459 0.421
GPT4* 0.347 0.556 0.460 0.465
BM25 0.374 0.590 0.561 0.462
Contriever-FT 0.360 0.594 0.569 0.467
AvaTaR (agent) 0.376 0.542 0.502 0.455

MFARLexical 0.339 0.553 0.549 0.437
MFARDense 0.411 0.652 0.641 0.520
MFAR2 0.435 0.656 0.626 0.537
MFARAll 0.437 0.675 0.662 0.545
MFARAll+2 0.496 0.729 0.710 0.602

Finally, MFARDense&1 is a hybrid model that combines MFARDense with an additional BM25 score
over the full single-document representation. We separately experiment with this combination due
to the promising results from the BM25 baseline (compared to MFARLexical) over certain datasets,
the relative strength of MFARDense compared to MFARAll, and our qualitative analysis.

Each of these models re-used the hyperparameters from their corresponding base version. The one
exception is MFARDense&1, for which we performed an additional grid search like the earlier models
as there is no clear corresponding base model.

Comparing these scores against the base model scores (from Table 1), we find that there is consid-
erable benefit to including a single-document representation in addition to the multi-field one.

C.3 VARIANCE ACROSS RANDOM SEEDS

For each trained model in Table 1, we select 3 additional random seeds and retrain those models
to establish the variation of the scores across runs. Note that none of these seeds are the same as
the one used in our main experiments. Notably, MFARDense&1 outperforms MFARAll despite having
fewer scorers (|F | + 1 vs. 2|F |)

D BM25F

BM25F is included as a point of comparison in our work, but there exists no public implementation
in Python, so we manually implement BM25F using an existing codebase 7. We do not exhaustively

7https://github.com/jxmorris12/bm25_pt
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Table 10: Scores of models that consider a combination of single-field and multi-field document
representations.

Amazon MAG Prime

Model H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

MFARLexical 0.332 0.569 0.491 0.443 0.429 0.634 0.657 0.522 0.257 0.455 0.500 0.347
MFARLexical+1 0.471 0.728 0.605 0.588 0.470 0.675 0.690 0.564 0.271 0.479 0.541 0.367

MFARDense 0.390 0.659 0.555 0.512 0.467 0.678 0.669 0.564 0.375 0.620 0.698 0.485
MFARDense+1 0.453 0.704 0.594 0.570 0.472 0.703 0.679 0.576 0.384 0.636 0.707 0.498

MFARAll 0.412 0.700 0.585 0.542 0.490 0.696 0.717 0.582 0.409 0.628 0.683 0.512
MFARDense&1 0.530 0.785 0.663 0.643 0.559 0.742 0.741 0.643 0.400 0.659 0.726 0.520
MFARAll+2 0.562 0.808 0.672 0.674 0.507 0.721 0.717 0.605 0.342 0.615 0.669 0.464

Table 11: Standard Deviation of each metric for each dataset and model. These are typically between
0 to 0.015, which gives a sense of how significant differences between models are.

Amazon MAG Prime

Model H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

MFARLexical 0.009 0.007 0.004 0.008 0.014 0.008 0.002 0.001 0.013 0.009 0.016 0.013
MFARDense 0.007 0.004 0.004 0.003 0.008 0.005 0.001 0.001 0.005 0.003 0.004 0.002
MFAR2 0.004 0.003 0.004 0.003 0.010 0.007 0.007 0.001 0.010 0.014 0.012 0.002
MFARAll 0.001 0.002 0.002 0.001 0.026 0.020 0.020 0.007 0.014 0.011 0.011 0.012
MFARDense&1 0.001 0.002 0.001 0.001 0.011 0.009 0.009 0.002 0.004 0.002 0.002 0.003
MFARAll+2 0.012 0.007 0.007 0.001 0.005 0.009 0.009 0.005 0.006 0.012 0.012 0.008

search across weights to set, as it would require as many as 2|F | +1 independent parameter searches
(Zaragoza et al., 2004). As a result, an exhaustive BM25F baseline with optimal weights is difficult
without large amounts of compute8, whereas MFAR does not require such a grid search that scales
in the number of fields of the dataset.

Below, we present BM25F with uniform weights for each field, setting all weights to 1, compared
to regular BM25 and MFARAll. Though there may be more optimal settings, the weight selection is
entirely dataset-dependent.

Table 12: A uniformly-weighted BM25F against BM25 and MFARAll.

Amazon MAG Prime

Model H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR

BM25 0.483 0.584 0.589 0.471 0.689 0.472 0.167 0.410 0.255
BM25F 0.183 0.332 0.264 0.451 0.671 0.551 0.142 0.244 0.214
MFARAll 0.412 0.585 0.542 0.490 0.717 0.582 0.409 0.683 0.512

We find that using uniform weights, BM25F performs even worse than BM25. This highlights the
importance of choosing appropriate weights, which is nontrivial. In contrast, the relative importance
(or weights) assigned to each field is learned in MFAR.

8There exist methods such as RankLib (John Foley, 2019), a learning-to-rank algorithm, and coordinate
ascent, that can also be used for searching weights, but we find that this still requires a large amount of compute
to fully realize. For each query and document pair, one must generate a set of features to be used for RankLib.
These features scale with the number of documents. Therefore, if the combination of queries and documents is
large, then generating all possible features may become intractable. Additionally, if one chooses to add more
samples, it is nontrivial to then use RankLib again (one would have to search again from scratch).
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E FULL RESULTS FOR FIELD MASKING

We include full scores for masking each field and scorer for Amazon in Table 13, MAG in Table 14,
and Prime in Table 15. The first row “—” is MFARAll without any masking and repeated three times
as a reference. The final row “all” is the result of masking out all the lexical scores (or all the dense
scores). It does not make sense to mask out all scores, as that would result in no scorer.

Based on our findings in Table 14, all fields in MAG are generally useful, as all instances of zeroing
out the respect fields results in a performance drop. Despite this finding with MAG, not all fields are
as obviously important in other datasets. For Table 15, Prime has a notable number of fields that do
not contribute to the final ranking when both scorers are masked out. And for Amazon, in Table 13,
we surprisingly find that fields like “description” and “brand” have little effect. This is a reflection
on both the dataset (and any redundancies contained within) and on the distribution of queries and
what they ask about.

Table 13: Test scores on Amazon after masking out each field and scorer of the MFARAll at test-time.

Amazon 𝑤lexical
𝑓

= 0 𝑤dense
𝑓

= 0 Both

Masked field H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

— 0.412 0.700 0.586 0.542 0.412 0.700 0.586 0.542 0.412 0.700 0.586 0.542

also buy 0.407 0.690 0.578 0.534 0.410 0.696 0.586 0.540 0.403 0.678 0.578 0.530
also view 0.420 0.695 0.576 0.542 0.414 0.696 0.581 0.542 0.395 0.677 0.565 0.522
brand 0.410 0.699 0.585 0.540 0.397 0.692 0.575 0.528 0.400 0.686 0.570 0.526
description 0.417 0.699 0.587 0.542 0.410 0.692 0.580 0.540 0.413 0.680 0.576 0.535
feature 0.412 0.700 0.581 0.537 0.398 0.680 0.570 0.524 0.410 0.680 0.562 0.531
qa 0.412 0.700 0.586 0.542 0.412 0.700 0.586 0.542 0.381 0.636 0.545 0.499
review 0.410 0.696 0.583 0.541 0.398 0.680 0.575 0.526 0.384 0.666 0.548 0.510
title 0.414 0.685 0.583 0.535 0.390 0.650 0.555 0.508 0.389 0.672 0.562 0.516

all 0.389 0.660 0.553 0.512 0.271 0.518 0.452 0.386 — — — —

Table 14: Test scores on MAG after masking out each field and scorer of the MFARAll at test-time.
Due to space, we truncate some field names, refer to Table 6 for the full names.

MAG 𝑤lexical
𝑓

= 0 𝑤dense
𝑓

= 0 Both

Masked field H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

— 0.490 0.696 0.717 0.582 0.490 0.696 0.717 0.582 0.490 0.696 0.717 0.582

abstract 0.469 0.681 0.707 0.565 0.393 0.616 0.651 0.494 0.430 0.636 0.659 0.526
author affil... 0.338 0.555 0.600 0.439 0.490 0.696 0.717 0.582 0.389 0.595 0.631 0.485
paper cites... 0.458 0.660 0.655 0.551 0.484 0.685 0.708 0.576 0.424 0.650 0.668 0.526
paper topic... 0.459 0.671 0.695 0.554 0.491 0.695 0.717 0.582 0.398 0.617 0.650 0.499
title 0.479 0.686 0.714 0.573 0.473 0.676 0.703 0.565 0.414 0.633 0.654 0.513

all 0.257 0.462 0.481 0.355 0.352 0.561 0.602 0.446 — — — —

F TABLE RETRIEVAL

In Table 16, we demonstrate MFAR on table retrieval, specifically on NQ-Tables (Herzig et al., 2021)
which consists of 170K tables along with their titles. We note the dataset has generally short inputs
(with limited decomposition of fields into title, column headers, and table content), where fine-tuned
full-context models may excel over MFAR. The dataset is sourced from Wikipedia, which contains
knowledge seen in pretraining data. Finally, we did not sweep hyperparameters - instead re-using
those from earlier. We compare to DPR-table, a model of similar size finetuned over tables (Wang
et al., 2022). DPR-table outperforms MFAR by at large margin at Hit@1. However, we find that
MFAR has improved recall over the table retrieval model when considering top-10 or top-20 results.
This shows that even in mismatched tasks (where there are few fields and a competitive baseline
designed for those fields), MFAR can show promise.
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Table 15: Test scores on Prime after masking out each field and scorer of the MFARAll at test-time.
Due to space, we shorten some field names, so refer to Table 6 for the full names.

Prime 𝑤lexical
𝑓

= 0 𝑤dense
𝑓

= 0 Both

Masked field H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

— 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512

associated with 0.392 0.610 0.670 0.495 0.407 0.624 0.680 0.510 0.399 0.618 0.672 0.502
carrier 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.403 0.621 0.678 0.506
contraindication 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.380 0.587 0.652 0.479
details 0.386 0.606 0.670 0.488 0.363 0.569 0.619 0.458 0.388 0.601 0.661 0.489
enzyme 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.405 0.623 0.677 0.508
expression abs. 0.408 0.627 0.683 0.511 0.392 0.607 0.664 0.494 0.403 0.622 0.678 0.506
expression pres. 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.400 0.617 0.675 0.502
indication 0.407 0.627 0.682 0.511 0.398 0.613 0.663 0.498 0.392 0.611 0.665 0.495
interacts with 0.403 0.624 0.681 0.507 0.406 0.626 0.682 0.510 0.403 0.622 0.674 0.506
linked to 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.383 0.601 0.661 0.486
name 0.410 0.628 0.684 0.513 0.407 0.627 0.681 0.510 0.407 0.622 0.674 0.507
off-label use 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.379 0.602 0.662 0.482
parent-child 0.385 0.619 0.680 0.494 0.391 0.613 0.663 0.495 0.386 0.601 0.663 0.487
phenotype abs. 0.408 0.625 0.681 0.511 0.409 0.627 0.683 0.512 0.376 0.591 0.653 0.477
phenotype pres. 0.405 0.619 0.675 0.506 0.409 0.627 0.683 0.512 0.393 0.609 0.669 0.495
ppi 0.403 0.622 0.678 0.506 0.409 0.627 0.683 0.512 0.399 0.617 0.671 0.502
side effect 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.405 0.624 0.680 0.508
source 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.397 0.614 0.671 0.499
synergistic int. 0.408 0.627 0.682 0.511 0.409 0.627 0.683 0.512 0.381 0.597 0.659 0.483
target 0.407 0.627 0.683 0.511 0.394 0.613 0.662 0.497 0.397 0.617 0.671 0.501
transporter 0.409 0.627 0.683 0.512 0.409 0.627 0.683 0.512 0.406 0.624 0.679 0.509
type 0.409 0.627 0.683 0.512 0.403 0.625 0.681 0.507 0.396 0.615 0.669 0.498

all 0.342 0.554 0.624 0.442 0.267 0.450 0.500 0.352 — — — —

Table 16: Table retrieval results on NQ-Tables (Herzig et al., 2021). We report recall, since there is
only one gold document per query.

Model R@1 R@5 R@10 R@20

MFAR2 0.497 0.812 0.878 0.930
MFARAll 0.498 0.829 0.900 0.949
DPR-table 110M 0.679 0.849 0.889 0.906
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