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APPENDIX

A BASIC FACTS

In this section, we present some basic facts that are used in proofs presented in this paper. We use
notation [A : B] to denotes the concatenation of matrices A and B that have the same number of
rows.
Lemma A.1. A T ⇥ T matrix S⌘ defined as S⌘ = M1 + ⌘P1 for a real number ⌘ satisfies that

rank(S⌘) =

⇢
T � 1 if ⌘ = 0
T if ⌘ 6= 0.

Proof. Since P1 and M1 are idempotent matrices and M1 = IT � P1, we have that rank(P1) =
tr(P1) = 1 and that rank(M1) = T � rank(P1) = T � 1 (Lütkepohl, 1996).

If ⌘ = 0, rank(S⌘) = rank(M1) = T � 1. Now, suppose that ⌘ 6= 0. Since M1 is a symmetric
matrix, its eigen-decomposition can be written as

M1 = ULU
>

where the orthonormal matrix U = [u1 : u2 : · · · : uT�1] 2 RT⇥(T�1) consists of the eigenvectors
of M1 in its columns and L = diag(�1,�2, · · · ,�T�1) 2 R(T�1)⇥(T�1) is a diagonal matrix of the
associated (nonzero) eigenvalues. It is clear that 1>

T ut = 0 for all t 2 {1, 2, · · · , T � 1}. Thus, we
can write the eigen-decomposition of the matrix S⌘ as

S⌘ = M1 + ⌘P1 = ULU
> + ⌘

✓
1p
T

1T

◆✓
1p
T

1T

◆>
= Ũ L̃Ũ

where Ũ and ⇤̃ can be written as

Ũ =


U :

1p
T

1T

�
2 RT⇥T and L̃ = diag(�1,�2, · · · ,�T�1, ⌘) 2 RT⇥T

.

Ũ is orthonormal and all of the diagonal entries of L̃ are nonzero, implying that rank(S⌘) = T .

Lemma A.2. For any m,n 2 N and A 2 Rm⇥n
, we have

rowsp(A>
A)

(a)
= colsp(A>

A)
(b)
= colsp(A>)

(c)
= rowsp(A).

Proof. (a) Let x 2 colsp(A>
A) be given. Then, there exists an y 2 Rn such that x = A

0
Ay.

Now, we have that x> = y
>
A

>
A, which implies that x 2 rowsp(A>

A). Thus, colsp(A>
A) ⇢

rowsp(A>
A). Similarly, it can be proved that rowsp(A>

A) ⇢ colsp(A>
A). (b) We refer to

Magnus & Neudecker (2019, Chapter 1.7). (c) is clear from the definition of column spaces and row
spaces.

Lemma A.3. Let m,n 2 N, A 2 Rm⇥n
and V 2 Rm⇥m

. If V is symmetric and non-singular, then

colsp(A>
V A) = colsp(A>

A).

Proof. To see colsp(A>
V A) ⇢ colsp(A>

A), let x 2 colsp(A>
V A) be given. ) 9y 2 Rn such

that x = (A>
V A)y = A

>(V Ay). ) x 2 colsp(A>). ) By Lemma A.2, x 2 colsp(A>
A).

To see colsp(A>
V A) � colsp(A>

A), consider the eigen-decomposition of V = ULU
>. Put Q =

L
1/2

U
>. ) Q is an m ⇥m invertible matrix and satisfies V = Q

>
Q. Now, let x 2 colsp(A>

A).
) By Lemma A.2, x 2 colsp(A>), i.e., 9z 2 Rm such that

x = A
>
z = A

>
Q

> �
(Q>)�1

z
�
.

) x 2 colsp(A>
Q

>). By Lemma A.2, x 2 colsp(A>
Q

>
QA) = colsp(A>

V A).

Lemma A.4. Let m,n 2 N, A 2 Rm⇥n
and V 2 Rm⇥m

. If V is symmetric, then

colsp(A>
V A) = colsp(A>

V ).
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Proof. Let rank(V ) = r  m. Without loss of generality, we can assume that r � 1, as the
case when r = 0 is clear. Consider the eigen-decomposition of V = ULU

>, where L 2 Rr⇥r

is a diagonal matrix of real eigenvalues and U 2 Rm⇥r consists of r orthogonal eigenvectors, i.e.,
U

>
U = Ir. Then, we have that

colsp(A>
V A) = colsp(A>

ULU
>
A) = colsp(A>

UL
1/2

L
1/2

U
>
A)

(a)
= colsp(A>

UL
1/2

LL
1/2

U
>
A) = colsp(A>

ULLU
>
A)

(b)
= colsp(A>

ULU
>
ULU

>
A) = colsp(A>

V V A)

(c)
= colsp(A>

V ),

where (a) and (b) are true since L and U
>
U = Ir are symmetric non-singular matrices in conjunc-

tion with Lemma A.3. (c) holds true due to Lemma A.2.

B DERIVATIONS OF THE FIRST-ORDER OPTIMALITY CONDITIONS

In this section, we derive the first-order optimality conditions for our proposed optimization prob-
lem (P) based on basic facts of matrix calculus (Lütkepohl, 1996; Magnus & Neudecker, 2019). We
use the symbol df to denote the differential of a function f of matrices. In this section, we assume
that an N ⇥N matrix V is symmetric and do not assume singularity nor positive-definiteness.

Reformulation of the proposed objective function To simplify notations, we multiply the objec-
tive function � by NT and rewrite it as follows.

NT�(⇤, F )

=
���X̃ � F̃⇤>

���
2

F
+ T⌘

��X̄ � ⇤F̄
��2
V

=
��M1

�
X � F⇤>���2

F
+ T⌘

����X
>
✓
1

T
1T

◆
� ⇤F>

✓
1

T
1T

◆����
2

V

=
��M1

�
X � F⇤>���2

F
+ T⌘

����(X � F⇤>)>
✓
1

T
1T

◆����
2

V

= tr
�
M1(X � F⇤>)(X � F⇤>)>M1

�
+ T⌘ tr

✓
1

T
1>
T (X � F⇤>)V (X � F⇤>)>

1

T
1T

◆

= tr
�
M1(X � F⇤>)(X � F⇤>)>M1

�
+ ⌘ tr

�
P1(X � F⇤>)V (X � F⇤>)>P1

�
.

(13)

Differentials of the proposed objective function In order to compute the derivatives of �, we
first derive differentials of a matrix-valued function (⇤, F ) 7! (X � F⇤>)W (X � F⇤>)>, where
W is assumed to be an N ⇥N symmetric matrix, as follows.

d
�
(X � F⇤>)W (X � F⇤>)>

�

(a)
=

�
d(X � F⇤>)

�
W (X � F⇤>)> + (X � F⇤>)W

�
d(X � F⇤>)

�>

(b)
=

⇥�
�(dF )⇤> � F (d⇤)>

�
W (X � F⇤>)>

⇤
+ (X � F⇤>)W

�
�(dF )⇤> � F (d⇤>)

�>

= �
⇥
(X � F⇤>)W>⇤(dF )> + (X � F⇤>)W>(d⇤)F>⇤>

�
⇥
(X � F⇤>)W⇤(dF )> + (X � F⇤>)W (d⇤)F>⇤
| {z }

=AW

= �A
>
W �AW ,

(14)
where AW := (X � F⇤>)W⇤(dF )> + (X � F⇤>)W (d⇤)F>. Here, (a) holds true since
d(UWV ) = (dU)WV + U(dW )V + UW (dV ) and dW = 0 for arbitrary variables U, V and
an arbitrary constant W , and (b) holds since

d(X � F⇤>) = �(dF )⇤> � F (d⇤>) = �(dF )⇤> � F (d⇤)>.
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The last two are just rearrangement that uses the assumption that W is symmetric.

Using Eq. (14), we derive the differential of each term of NT� in Eq. (13) as follows. The first
term:

d

✓���X̃ � F̃⇤>
���
2

F

◆
= dtr

�
M1(X � F⇤>)(X � F⇤>)>M1

�

(a)
= tr

�
M1d

�
(X � F⇤>)(X � F⇤>)>

�
M1

�

(b)
= �tr

�
M1

�
A

>
IN +AIN

�
M1

�

= �2tr (M1AINM1)

= �2tr
�
M1

�
(X � F⇤>)⇤(dF )> + (X � F⇤>)(d⇤)F>�

M1

�

= �2tr
�
M1(X � F⇤>)⇤(dF )>M1

�
� 2tr

�
M1(X � F⇤>)(d⇤)F>

M1

�

= �2tr
�
M1(X � F⇤>)⇤(dF )>

�
� 2tr

�
F

>
M1(X � F⇤>)(d⇤)

�
.

(15)
Here, (a) holds since dtr(AXB) = tr(A(dX)B) for an arbitrary variable X and constants A and
B, (b) is due to Eq. (14), and other equalities are clear from properties of the trace operator, namely,
tr(A) = tr(A>) and tr(AB) = tr(BA) for matrices A,B with appropriate order and the fact that
M1 is a symmetric and idempotent matrix.

The differential of the second term of Eq. (13) is derived similarly to the derivation for the first term:

d
⇣
T
��X̄ � ⇤F̄

��2
V

⌘
= dtr

�
P1(X � F⇤>)V (X � F⇤>)>P1

�

= tr
�
P1d

�
(X � F⇤>)V (X � F⇤>)>

�
P1

�

= �tr
�
P1

�
A

>
V +AV

�
P1

�

= �2tr (P1AV P1)

= �2tr
�
P1

�
(X � F⇤>)V ⇤(dF )> + (X � F⇤>)V (d⇤)F>�

P1

�

= �2tr
�
P1(X � F⇤>)V ⇤(dF )>P1

�
� 2tr

�
P1(X � F⇤>)V (d⇤)F>

P1

�

= �2tr
�
P1(X � F⇤>)V ⇤(dF )>

�
� 2tr

�
F

>
P1(X � F⇤>)V (d⇤)

�
.

(16)

Combining Eqs. (15) and (16), we obtain the differential of NT� as follows.

d(NT�(⇤, F )) = �2tr
�
M1(X � F⇤>)⇤(dF )>

�
� 2tr

�
F

>
M1(X � F⇤>)(d⇤)

�

� 2⌘ tr
�
P1(X � F⇤>)V ⇤(dF )>

�
� 2⌘ tr

�
F

>
P1(X � F⇤>)V (d⇤)

�
. (17)

The first-order optimality condition underlying the update step for pricing factors Based on
the differential of NT� in Eq. (17), we can write the first-order optimality condition for F , i.e.,
rF�(⇤, F ) = 0, as follows.

M1(X � F⇤>)⇤+ ⌘P1(X � F⇤>)V ⇤ = 0

, M1X⇤+ ⌘P1XV ⇤ = M1F⇤>⇤+ ⌘P1F⇤>
V ⇤

, [X + P1X(⌘V � IN )]⇤ =
⇥
F⇤> + P1F⇤>(⌘V � IN )

⇤
⇤

,
⇥
⇤> ⌦M1 + ⌘(⇤>

V )⌦ P1

⇤
vec(X) =

⇥
⇤> ⌦M1 + ⌘(⇤>

V ⌦ P1)
⇤
vec(F⇤>)

=
⇥
⇤> ⌦M1 + ⌘(⇤>

V ⌦ P1)
⇤
(⇤⌦ IT )vec(F )

, (⇤> ⌦ IT ) [IN ⌦M1 + ⌘(V ⌦ P1)] vec(X)

= (⇤> ⌦ IT ) [IN ⌦M1 + ⌘(V ⌦ P1)] (⇤⌦ IT )vec(F ),
(18)

where the first three lines are simple reformulations from Eq. (17), and the last four lines are due to
the assumption that V is a symmetric matrix and the fact that vec(ABC) = (C> ⌦ A)vec(B) for
matrices A,B and C of proper orders.
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The optimality condition for F when V = IN and ⌘ > 0 For the case when V = IN and ⌘ > 0,
we have that the relation

F = X⇤>(⇤>⇤)�1

derived from the first-order optimality condition that allows substituting for F . Indeed, substituting
V = IN to the second line in Eq. (18) leads to

M1F⇤>⇤+ ⌘P1F⇤>⇤ = M1X⇤+ ⌘P1X⇤

, (M1 + ⌘P1)F⇤>⇤ = (M1 + ⌘P1)X⇤

, F = X⇤(⇤>⇤)�1

(19)

where second line is a simple reformulation of the equation and the last line is satisfied due to the
assumption that ⌘ > 0 and Lemma A.1.

The first-order optimality condition underlying the update step for factor loadings Similarly
to the way of deriving the optimality condition for pricing factors, the first-order optimality condition
for ⇤, i.e., r⇤�(⇤, F ) = 0, is given by

F
>
M1(X � F⇤>) + ⌘F

>
P1(X � F⇤>)V = 0

,F
>
M1X + ⌘F

>
P1XV = F

>
M1F⇤> + ⌘F

>
P1F⇤>

V

,F
> [X + P1X(⌘V � IN )] = F

> ⇥
F⇤> + P1F⇤>(⌘V � IN )

⇤

,
⇥
IN ⌦ F

>
M1 + ⌘(V ⌦ F

>
P1)

⇤
vec(X) =

⇥
IN ⌦ F

>
M1 + ⌘(V ⌦ F

>
P1)

⇤
vec(F⇤>)

=
⇥
IN ⌦ F

>
M1 + ⌘(V ⌦ F

>
P1)

⇤
(IN ⌦ F )vec(⇤>)

,(IN ⌦ F
>) [IN ⌦M1 + ⌘(V ⌦ P1)] vec(X)

= (IN ⌦ F
>) [IN ⌦M1 + ⌘(V ⌦ P1)] (IN ⌦ F )vec(⇤>).

(20)

C PROOF OF PROPOSITION 4.1

The goal of this section is to prove Proposition 4.1. To this end, we first prove the following lemma.

Lemma C.1. Assume that V 2 RN⇥N
is symmetric and has the eigen-decomposition V = Ũ L̃Ũ

>

where Ũ 2 RN⇥r0
, L̃ = diag(�1, · · · ,�r0) 2 Rr0⇥r0

with �1, · · · ,�r0 6= 0, and rank(V ) = r
0 

N . Let ⌘ be any real number. Then, the following matrix diagonalization is true.

P := IN ⌦M1 + ⌘(V ⌦ P1)

= (U ⌦ U1)D(U> ⌦ U
>
1 ).

(21)

Here, D is an NT ⇥ NT diagonal matrix consisting of entries of 0, 1, and ⌘�i on its diagonal.

Specifically, the number of 0s is N � r
0
, the number of 1s is N(T � 1), and the number of ⌘�i is r

0
.

U = [Ũ : Ũ?] for some matrix Ũ
? 2 RN⇥(N�r0)

such that U
>
U = IN and U1 =

h
1p
T

1T : Ũ?
1

i

for some matrix Ũ
?
1 2 RT⇥(T�1)

such that U
>
1 U1 = IT .

Proof. Without loss of generality, we assume that r0 < N . We can choose an orthogonal basis of
the null space of V to construct Ũ?. Then we have that U>

U = IN . In the same way, from the fact
that 1p

T
1T is the eigenvector of the rank-1 matrix P1 corresponding to the eigenvalue of 1, we can

find Ũ
?
1 that satisfies U>

1 U1 = IT . Then, the following equalities are satisfied.

V = ULU
>
, P1 = U1L1U

>
1 , UU

> = U
>
U = IN , U1U

>
1 = U

>
1 U1 = IT ,
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where L = diag(�1, · · · ,�r0 , 0, · · · , 0) 2 RN⇥N , �1, · · · ,�r0 > 0, and L1 = diag(1, 0, · · · , 0) 2
RT⇥T . Then, we have that

P = IN ⌦M1 + ⌘(V ⌦ P1)

= IN ⌦ IT � IN ⌦ P1 + ⌘(V ⌦ P1)

= IN ⌦ IT + (⌘V � IN )⌦ P1

= (UU
>)⌦ (U1U

>
1 ) + (⌘ULU

> � UU
>)⌦ (U1L1U

>
1 )

= (U ⌦ U1)(U
> ⌦ U

>
1 ) + (U(⌘L� IN )U>)⌦ (U1L1U

>
1 )

= (U ⌦ U1)(IN ⌦ IT )(U
> ⌦ U

>
1 ) + (U ⌦ U1)((⌘L� IN )⌦ L1)(U

> ⌦ U
>
1 )

= (U ⌦ U1) [(IN ⌦ IT ) + ((⌘L� IN )⌦ L1)] (U
> ⌦ U

>
1 ).

Now, define an NT ⇥NT diagonal matrix D as

D = (IN ⌦ IT ) + ((⌘L� IN )⌦ L1). (22)

It is diagonal since a Kronecker product of diagonal matrices is diagonal and sum of diagonal ma-
trices is diagonal. It has N blocks of T ⇥ T diagonal matrices on its diagonal, and the i-th block,
for i 2 {1, · · · , N}, is

IT + (⌘�i � 1)L1 = diag(⌘�i, 1, · · · , 1) if i  r
0
,

IT � L1 = diag(0, 1, · · · , 1) otherwise.

Proposition 4.1 which is given below is proved using Lemmas A.4 and C.1.
Proposition C.2 (Proposition 4.1 in the main text). Suppose that V 2 SN

+ . Then, there exist solu-

tions to equations (9) and (10). If it is additionally assumed that V is positive-definite, ⌘ > 0 and

⇤⇤ and F⇤ have full column rank, i.e., rank(⇤⇤) = rank(F⇤) = K, then the solutions are unique.

Proof. Eqs. (9) and (10) can be rewritten as

A
>
P vec(X) = A

>
PA vec(F ),

B
>
P vec(X) = B

>
PB vec(⇤>)

(23)

where P is defined in Eq. (21), A := ⇤⇤ ⌦ IT and B := IN ⌦ F⇤. Clearly, P is a symmetric
matrix. Using Lemma A.4, we have that A>

P vec(X) 2 colsp(A>
P ) = colsp(A>

PA) and
B

>
P vec(X) 2 colsp(B>

P ) = colsp(B>
PB), which, in turn, implies that solutions to Eq. (23)

exist.

Let us additionally assume that V is positive-definite, ⌘ > 0 and ⇤⇤ and F⇤ have full column rank.
Note that, if V is a symmetric positive-definite matrix and ⌘ > 0, then Eq. (21) in Lemma C.1 is the
eigen-decomposition of P whose eigenvalue is either 1 or

p
⌘�i, both of which are positive. This

implies that P is positive-definite. Furthermore, if ⇤⇤ and F⇤ have full column rank, then so are A

and B. This implies that A>
PA 2 RKT⇥KT and B

>
PB 2 RKT⇥KT have full rank, i.e., they are

invertible, implying that the solutions are unique.

Furthermore, Lemma C.1 implies the following corollary that is not used in the paper, but might be
useful for sanity checks when implementing Algorithm 1.
Corollary C.3. Assume V 2 RN⇥N

is a symmetric matrix and rank(V ) = r
0  N . Then, the rank

of the matrix P 2 RNT⇥NT
defined in Eq. (21) satisfies

rank(P ) =

⇢
N(T � 1), if ⌘ = 0.

N(T � 1) + r
0
, if ⌘ 6= 0,

(24)

Furthermore, P is non-singular if and only if V is non-singular and ⌘ 6= 0.
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Proof. By counting the number of nonzero entries on the diagonal of D in Eq. (22), we can see that
the equality in Eq. (24) is true.

Next, suppose that P is non-singular. Assume, to arrive at a contradiction, that V is singular or
⌘ = 0. First, suppose that V is singular. ) r

0
< N . Then, we have that rank(P )  max{N(T �

1), N(T � 1) + r
0} = N(T � 1) + r

0 = NT � (N � r
0) < NT , which contradicts that P is

non-singular. Second, suppose that ⌘ = 0. ) rank(P ) = N(T � 1) < NT , which contradicts
that P is non-singular. Conversely, suppose that V is non-singular and ⌘ 6= 0. Then, we have that
r
0 = N , implying rank(P ) = N(T � 1) + r

0 = NT . Thus, P is non-singular.

D NUMERICAL PROPERTIES FOR LARGER DATA SETS

We present convergence results of the algorithm for K = 4 and ⌘ = 10 when applied to larger real-
world data sets in Figures 6 and 7. We consider two cross-sectional dimension N 2 {25, 370} and
three time-series dimension T 2 {60, 240, 600}. Figure 6 illustrates the results for the data set with
N = 25, which consists of the 5x5 Size-B/M portfolios. In Figure 7, we present the results for the
data set with N = 370, consisting of portfolios formed from sorts on 37 anomalies widely utilized
in the finance literature, e.g., (Kelly et al., 2019; Lettau & Pelger, 2020a). Our findings demonstrate
that the algorithm performs effectively across a range of realistic scenarios as shown for the smaller
data set in the main text.

Figure 6: Convergence of Algorithm 1 when N = 25. Each curve represents one random initializa-
tion for (F0,⇤0).
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Figure 7: Convergence of Algorithm 1 when N = 370. Each curve represents one random initial-
ization for (F0,⇤0).
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