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APPENDIX

A BASIC FACTS

In this section, we present some basic facts that are used in proofs presented in this paper. We use
notation [A : B] to denotes the concatenation of matrices A and B that have the same number of
rOWS.

Lemma A.1. AT x T matrix S, defined as S,y = My + 1P, for a real number n satisfies that

T—-1 1§ =0
rcmk‘(S,,):{T Z Z#O.

Proof. Since P, and M; are idempotent matrices and M, = It — P;, we have that rank(P;) =
tr(P;) = 1and that rank(M,) = T — rank(Py) = T — 1 (Liitkepohl, |[1996).

If n = 0, rank(S,) = rank(M,) = T — 1. Now, suppose that  # 0. Since M; is a symmetric
matrix, its eigen-decomposition can be written as

M, =ULU"
where the orthonormal matrix U = [uy : ug : - - : up_1] € RT*(T=1 consists of the eigenvectors
of Mj in its columns and L = diag(A1, Aa, -+ ,Ar—1) € R(T-Dx(T-1) jg 4 diagonal matrix of the
associated (nonzero) eigenvalues. It is clear that 1;ut =0forallt € {1,2,---,T — 1}. Thus, we

can write the eigen-decomposition of the matrix S,, as
. 1 1 T
Sy =M +nPi=ULU" 417 <\/T1T> (\/T1T> =ULU
where U and A can be written as
1
VT

U is orthonormal and all of the diagonal entries of L are nonzero, implying that rank(S,) =T. O

U= [U : 1T] eR™T and L= diag(M, Moy -+, Ar_1,m) € RTXT,

Lemma A.2. Forany m,n € Nand A € R™*", we have
rowsp(AT A) @ colsp(AT A) © colsp(A™) © rowsp(A).

Proof. (a) Let z € colsp(AT A) be given. Then, there exists an y € R™ such that z = A’ Ay.
Now, we have that #7 = yT AT A, which implies that € rowsp(AT A). Thus, colsp(AT A) C
rowsp(A ' A). Similarly, it can be proved that rowsp(AT A) C colsp(AT A). (b) We refer to
Magnus & Neudecker|(2019} Chapter 1.7). (¢) is clear from the definition of column spaces and row
spaces. O

Lemma A.3. Letm,n € N, A € R™"*" and V' € R™*™_IfV is symmetric and non-singular, then
colsp(ATV A) = colsp(AT A).

Proof. To see colsp(ATV A) C colsp(AT A), let x € colsp(ATV A) be given. = Jy € R" such

thatz = (ATVA)y = AT(VAy). = 2 € colsp(AT). = By Lemma|A.2| 2 € colsp(AT A).

To see colsp(A TV A) D colsp(AT A), consider the eigen-decomposition of V = ULU . Put Q =
LY2UT. = Qis an m x m invertible matrix and satisfies V = Q' Q. Now, let z € colsp(AT A).
= By Lemma T € colsp(AT), i.e., 32 € R™ such that

r=ATz=ATQ" (Q")™'2).
=z € colsp(ATQT). By Lemma x € colsp(ATQTQA) = colsp(ATV A). O
Lemma A4. Letm,n € N, A € R™*" and V € R™*™, If V is symmetric, then

colsp(ATV A) = colsp(AT V).
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Proof. Let rank(V) = r < m. Without loss of generality, we can assume that r > 1, as the

case when = 0 is clear. Consider the eigen-decomposition of V' = ULU ", where L € R"™*"
is a diagonal matrix of real eigenvalues and U € R™*" consists of r orthogonal eigenvectors, i.e.,
UTU = I,. Then, we have that

colsp(ATV A) = colsp(ATULU T A) = colsp(ATULY2LY2UT A)

@ colsp(ATULY2LLY2UT A) = colsp(ATULLU T A)

Y olsp(ATULUTULUT A) = colsp(ATVV A)

© colsp(ATV),

where (@) and (b) are true since L and U " U = I, are symmetric non-singular matrices in conjunc-
tion with LemmalA.3] (c) holds true due to LemmalA.2] O

B DERIVATIONS OF THE FIRST-ORDER OPTIMALITY CONDITIONS

In this section, we derive the first-order optimality conditions for our proposed optimization prob-
lem based on basic facts of matrix calculus (Liitkepohl, |1996; Magnus & Neudecker,|2019). We
use the symbol d f to denote the differential of a function f of matrices. In this section, we assume
that an N x N matrix V is symmetric and do not assume singularity nor positive-definiteness.

Reformulation of the proposed objective function To simplify notations, we multiply the objec-
tive function ¢ by NT' and rewrite it as follows.

NTo(A, F)
=% - FATHi + T ||X = AF|[},

2 1 1 ?
= ||My (X = FAT)|, +Tn HXT <T1T> —AFT <T1T>

14
2

= ||My (X — FAT) |3+ T H(X —FAT)T (;h)

14

= tr (Mi(X = FAT)(X = FAT) ' My) + T tr (;Q(X ~ PATDV(X - FAT)T}1T>
=tr (My(X — FAT)(X — FAT)"My) +ntr (P(X - FA))V(X - FAT)"P).

13)

Differentials of the proposed objective function In order to compute the derivatives of ¢, we
first derive differentials of a matrix-valued function (A, F) + (X — FAT)W (X — FAT)T, where
W is assumed to be an N x N symmetric matrix, as follows.

d((X = FAHW(X — FAT)T)

W @ — FAT) W(X = FAT)T 4 (X — FAT)W (d(X — FAT))"

2 [(~(dF)AT ~ FA)T) W(X — FAT)T] + (X — FAT)W (~(dF)AT — F(dAT)) '
=~ [(X = FAT)WTAWF)" + (X — FAT)WT(dA)FT] "
— [(X = FAT)YWAWF)" + (X — FAT)W(dA)F ']

=Aw

= —Ay, — Aw,

(14
where Ay == (X — FAT)WAF)" + (X — FAT)W(dA)FT. Here, (a) holds true since
dUWV) = (dUWV + U(dW)V + UW(dV) and dW = 0 for arbitrary variables U,V and
an arbitrary constant W, and (b) holds since

d(X — FAT) = —(dF)AT — F(dAT) = —(dF)AT — F(dA) .

13
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The last two are just rearrangement that uses the assumption that W is symmetric.

Using Eq. (14), we derive the differential of each term of NT'¢ in Eq. (13) as follows. The first
term:

d (HX - FATHD = dtr (My(X — FAT)(X — FAT)T M)
W (Myd (X — FAT)(X — FAT)T) My)

O (M, (AL, + Ar) M)

= —2tr (M1 A5, M)
= =2tr (M; (X — FAT)AAF)" + (X — FAT)(dA)F") M)
= —=2tr (My(X — FAT)A(dF) " M) — 2tr (My(X — FAT)(dA)F T M;)
= —=2tr (My(X — FAT)A(dF)") — 2tr (F"T My (X — FAT)(dA)).
Here, (a) holds since dtr(AX B) = tr(A(dX)B) for an arbitrary variable X and constants A(alrf(;
B, (b) is due to Eq. , and other equalities are clear from properties of the trace operator, namely,

tr(A) = tr(A") and tr(AB) = tr(BA) for matrices A, B with appropriate order and the fact that
Mj is a symmetric and idempotent matrix.

(
(

The differential of the second term of Eq. is derived similarly to the derivation for the first term:

d (T X = AF[;,) = dir (Pi(X — FAT)V(X = FAT) 1)
=tr(Pd (X —FA")V(X —FAT)") )
=—tr (P, (4} + Av) 1)
= —2tr (P, Ay P))
= =2tr (P, (X — FAT)VAWF)" + (X = FAT)V(dA)FT) Py)
= =2tr (Py(X — FAT)VA(F)"Py) — 2tr (P/(X — FAT)V(dA)FT Py)
(P (X — FAT

= 2tr (P, WAE)") —2tr (FT P (X — FAT)V(dA)) .
(16)

Combining Egs. (15)) and (16)), we obtain the differential of NT'¢ as follows.

d(NT$(A, F)) = —2tr (M1(X — FAT)A(AF)") — 2tr (FT My (X — FAT)(dA))
—2ntr (PL(X — FAT)VAWF)") = 2ntr (FTP (X — FAT)V(dA)). (17)
The first-order optimality condition underlying the update step for pricing factors Based on

the differential of NT'¢ in Eq. (17), we can write the first-order optimality condition for F, i.e.,
Vro(A, F) =0, as follows.

My(X —FAT)A+nP (X —FAT)VA=0
& MXA+nPIXVA=MFATA+nP,FATVA
(X +PX(nV —IN)]A = [FAT + PLFAT (nV — In)| A
& [AT@M +nATV)® P]vec(X) =[AT @ My +n(ATV ® P;)] vec(FAT)
=[AT @ My +n(ATV & P1)] (A ® Ir)vec(F)
& (AT®Ir) Iy @ My +n(V ® Pr)]vec(X)
= (AT @I7)[In ® My +n(V @ P1)] (A ® Ir)vec(F),

¢

(18)
where the first three lines are simple reformulations from Eq. (I7), and the last four lines are due to
the assumption that V' is a symmetric matrix and the fact that vec(ABC) = (C'T ® A)vec(B) for
matrices A, B and C' of proper orders.

14
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The optimality condition for " when V' = Iy and n > 0 For the case when V = Iy and np > 0,
we have that the relation

F=XAT(ATA)!

derived from the first-order optimality condition that allows substituting for F'. Indeed, substituting
V' = I to the second line in Eq. (I8) leads to

MFATA4+nP,FATA = Mi XA+ nP XA
& (My+nP)FATA = (M 4+ nP) XA (19)
& F=XAATA)™!
where second line is a simple reformulation of the equation and the last line is satisfied due to the
assumption that 7 > 0 and Lemmal[A.T]

The first-order optimality condition underlying the update step for factor loadings Similarly
to the way of deriving the optimality condition for pricing factors, the first-order optimality condition
for A, ie., Vao(A, F) =0, is given by

FTM(X —FAT)+nF TP (X —FAT)V =0
SF'MiX +nFT"PXV =F M{FAT +nF"PLFATV
SFT[X+P XV —In)]=FT [FAT + PLFAT(nV — Iy)]
S[IN@F M +n(VeF P)]vee(X)=[In® FTM; +n(V®F"P)] vee(FAT)
=[IN®F M +09(V@F"P)| (In ® F)vec(A")
S(INy@ F") Iy ® M +n(V @ Py)] vec(X)

=(IN®FN[In® M, +n(V e P)|(Iy @ F)vec(AT). 0

C PROOF OF PROPOSITION [4.1]

The goal of this section is to prove Proposition[d.1] To this end, we first prove the following lemma.

Lemma C.1. Assume that V € RNXN is symmetric and has the eigen-decomposition V = ULUT
where U € RN*"' | L = diag(M, -, Ap) € R”%" with Ay, -+, A\ # 0, and rank(V) = 1/ <
N. Let n be any real number. Then, the following matrix diagonalization is true.

PZ:IN®M1 +’I7(V®P1)

21
= UeU)DU"2U]). 1)

Here, D is an NT x NT diagonal matrix consisting of entries of 0,1, and n\; on its diagonal.
Specifically, the number of Os is N — 1/, the number of 1s is N(T — 1), and the number of n\; is r’.

U = [U : Ul]for some matrix ULt € RNXN="") such that UTU = I and Uy = [ L, ﬁf}

VT
for some matrix Ui~ € RT*T=Y) such that U U, = Ir.

Proof. Without loss of generality, we assume that 7’ < N. We can choose an orthogonal basis of
the null space of V' to construct U~. Then we have that U ' U = I. In the same way, from the fact
that %17‘ is the eigenvector of the rank-1 matrix P; corresponding to the eigenvalue of 1, we can

find U i that satisfies U}’ U; = Ir. Then, the following equalities are satisfied.

V=ULU", P =ULU/, UU =U"U=1Iy, UU/ =UU, =Ir,

15
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where L = dlag()\lv 7)‘7"707"' 70) S RNXN’ )\17"' 7)\7"’ > Os andLl = dzag(l,O, 70) €
RTXT  Then, we have that

P=Ix® M, +n(V®P)
=In®Ir—INn®@ P +3(V&P)
=INQIr+(nV —IN)® P
=WUUN e WU )+ @ULUT —UUT) @ (U L UY)
=UeU)UT U )+ (UMnL - InUT)® (UL LU))
=UU)INIP)UT U )+ UeU)((nL —In) @ L) (U @U,")
=UeU)[(Iy@Ir)+((nL - In) @ L) (UT @ U)).

Now, define an NT' x NT diagonal matrix D as

D=(In®Ir)+ ((nL — Iy) ® Ly). (22)

It is diagonal since a Kronecker product of diagonal matrices is diagonal and sum of diagonal ma-
trices is diagonal. It has IV blocks of 7' x T' diagonal matrices on its diagonal, and the ¢-th block,
fori e {1,---,N},is
IT+<’I'])\Z‘ — 1)L1 :diag(n)\i,l,~-~ ,1) if ¢ S’I‘l,
Ir — Ly = diag(0,1,--- ,1) otherwise.

Proposition[d.1]which is given below is proved using Lemmas[A.4]and [C.T.
Proposition C.2 (Proposition in the main text). Suppose that V &€ Sf . Then, there exist solu-
tions to equations (9) and (I0)."If it is additionally assumed that V' is positive-definite, n > 0 and
A and F have full column rank, i.e., rank(A.) = rank(F,) = K, then the solutions are unique.
Proof. Egs. (9) and (I0) can be rewritten as
AT P vec(X) = AT PA vec(F),
B'Pvec(X)=B"PBvec(A")
where P is defined in E, A=A, ®Ir and B := Iy ® F,. Clearly, P is a symmetric
A.4]

(23)

matrix. Using Lemma |[A.4] we have that AT P vec(X) € colsp(ATP) = colsp(A" PA) and
BT P vec(X) € colsp(BTP) = colsp(B ' PB), which, in turn, implies that solutions to Eq.
exist.

Let us additionally assume that V' is positive-definite, 7 > 0 and A, and F) have full column rank.
Note that, if V' is a symmetric positive-definite matrix and n > 0, then Eq. (ZI)) in Lemmal[C.T is the
eigen-decomposition of P whose eigenvalue is either 1 or v/7;, both of which are positive. This
implies that P is positive-definite. Furthermore, if A, and F, have full column rank, then so are A
and B. This implies that AT PA € RET*KT and BT PB € RET>KT have full rank, i.e., they are
invertible, implying that the solutions are unique. O

Furthermore, Lemma [C.T] implies the following corollary that is not used in the paper, but might be
useful for sanity checks when implementing Algorithm [T

Corollary C.3. Assume V € RV*N is a symmetric matrix and rank(V') = r' < N. Then, the rank
of the matrix P € RNTXNT defined in Eq. satisfies
N(T - 1)7 if n=0.

N(T 1) ++, if n#0, 4

rank(P) = {

Furthermore, P is non-singular if and only if V' is non-singular and n # 0.

16
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Proof. By counting the number of nonzero entries on the diagonal of D in Eq. (22), we can see that
the equality in Eq. (24) is true.

Next, suppose that P is non-singular. Assume, to arrive at a contradiction, that V' is singular or
71 = 0. First, suppose that V' is singular. = r’ < N. Then, we have that rank(P) < maz{N(T —
1),N(T —1)+7r'} = NT —-1)+r = NT — (N —r') < NT, which contradicts that P is
non-singular. Second, suppose that n = 0. = rank(P) = N(T — 1) < NT, which contradicts
that P is non-singular. Conversely, suppose that V' is non-singular and 1 # 0. Then, we have that
r’ = N, implying rank(P) = N(T — 1) + r' = NT. Thus, P is non-singular. O

D NUMERICAL PROPERTIES FOR LARGER DATA SETS

We present convergence results of the algorithm for K = 4 and = 10 when applied to larger real-
world data sets in Figures |§| and We consider two cross-sectional dimension N € {25,370} and
three time-series dimension T € {60, 240, 600}. Figure@illustrates the results for the data set with
N = 25, which consists of the 5x5 Size-B/M portfolios. In Figure|/| we present the results for the
data set with N = 370, consisting of portfolios formed from sorts on 37 anomalies widely utilized
in the finance literature, e.g., (Kelly et al., 2019} [Lettau & Pelger,[2020a). Our findings demonstrate
that the algorithm performs effectively across a range of realistic scenarios as shown for the smaller
data set in the main text.
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Figure 6: Convergence of Algorithm[I|when NV = 25. Each curve represents one random initializa-
tion for (Fp, Ao).
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Figure 7: Convergence of Algorithm [[|when N = 370. Each curve represents one random initial-
ization for (Fp, Ag).
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