
Published as a conference paper at ICLR 2024

SPTNET: AN EFFICIENT ALTERNATIVE FRAMEWORK
FOR GENERALIZED CATEGORY DISCOVERY WITH SPA-
TIAL PROMPT TUNING

Hongjun Wang1 Sagar Vaze2 Kai Han1†
1Visual AI Lab, The University of Hong Kong
2Visual Geometry Group, University of Oxford
hjwang@connect.hku.hk sagar@robots.ox.ac.uk kaihanx@hku.hk

ABSTRACT

Generalized Category Discovery (GCD) aims to classify unlabelled images from
both ‘seen’ and ‘unseen’ classes by transferring knowledge from a set of labelled
‘seen’ class images. A key theme in existing GCD approaches is adapting large-
scale pre-trained models for the GCD task. An alternate perspective, however, is
to adapt the data representation itself for better alignment with the pre-trained
model. As such, in this paper, we introduce a two-stage adaptation approach termed
SPTNet, which iteratively optimizes model parameters (i.e., model-finetuning)
and data parameters (i.e., prompt learning). Furthermore, we propose a novel
spatial prompt tuning method (SPT) which considers the spatial property of image
data, enabling the method to better focus on object parts, which can transfer
between seen and unseen classes. We thoroughly evaluate our SPTNet on standard
benchmarks and demonstrate that our method outperforms existing GCD methods.
Notably, we find our method achieves an average accuracy of 61.4% on the SSB,
surpassing prior state-of-the-art methods by approximately 10%. The improvement
is particularly remarkable as our method yields extra parameters amounting to
only 0.117% of those in the backbone architecture. Project page: https://
visual-ai.github.io/sptnet.

1 INTRODUCTION

Deep learning models have been extensively studied in image recognition He et al. (2016); Krizhevsky
et al. (2017), typically relying on large-scale annotated data, as well as a ‘closed-world’ assumption:
that the data to be classified shares the same classes as the labelled training data. However, this
assumption limits application to real-world scenarios where the target data contains ‘unseen’ classes
images alongside ‘seen’ ones Han et al. (2019; 2020; 2021); Fini et al. (2021); Wen et al. (2023); Jia
et al. (2021); Zhao & Han (2021). Recently, Category Discovery (CD) has emerged as a practical
open-world learning problem, where a model trained using partially labelled data is tasked to
categorize unlabelled data that may originate from unseen categories. Initially, it was studied as
Novel Category Discovery (NCD) Han et al. (2019) focusing on unlabelled data exclusively from
unseen categories. Subsequently, it was extended to Generalized Category Discovery (GCD) Vaze
et al. (2022) encompassing unlabelled data from both seen and unseen categories.
State-of-the-art GCD methods Vaze et al. (2022); Cao et al. (2022); Wen et al. (2023) employ
pre-trained self-supervised models, such as DINO Caron et al. (2021), and partially fine-tune their
parameters on the target task, taking advantage of the strong generalization properties of these
representations. In this paradigm, data remains fixed while iterating over the model. However, fully
fine-tuning a large pre-trained model can lead to overfitting to the labelled data, and is computationally
expensive. Instead of focusing solely on the model, we find that alternatives which manipulate the
data to cater to the model, are both more efficient and can also achieve better GCD performance.
Specifically, visual prompting methods (e.g., Jia et al. (2022); Bahng et al. (2022)), have recently
been explored to improve model capability by modifying the input or intermediate features through
the addition of extra learnable tokens. Although these methods are effective in fully supervised
learning, they do not improve representations for generalization and struggle to achieve satisfactory
performance in the open-world GCD task. A natural approach to integrating both advantages
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is to simultaneously optimize the model and data parameters. However, this non-convex bilevel
optimization often leads to sub-optimal solutions for both sets of parameters.
Inspired by the expectation–maximization (EM) algorithm Dempster et al. (1977) and decomposition
techniques for bilevel optimization Engelmann et al. (2020); Byeon & Van Hentenryck (2022), we
introduce a two-stage iterative learning framework called SPTNet for GCD, optimizing both model
parameters (i.e. model-finetuning) and data parameters (i.e. prompt learning). More specifically, the
framework includes two phases: (1) In the first phase, the backbone model is frozen, and only the
prompts are adjusted. (2) In the second phase, we fix the prompt parameters and update the backbone
model with a contrastive loss, using an augmented data pair constructed by the raw image together
with its prompted version. The prompts and model are alternately trained until convergence. In this
way, our learned prompt can be considered as a learned augmentation, targeted for the downstream
recognition task (see Fig. 1).
Following arguments in the GCD literature Vaze et al. (2022), that object parts are an effective
vehicle to transfer knowledge between ‘seen’ and ‘unseen’ categories, we propose Spatial Prompt
Tuning (SPT), which learns pixel-level prompts around local image regions. Unlike previous methods
(e.g., Jia et al. (2022); Bahng et al. (2022)) that introduce learnable tokens to the hidden model space,
or wrap prompts around the entire image border, SPT divides the original image into patches and
attaches prompts to each patch in pixel space. The objective of SPT is to achieve improved alignment
between the large pre-trained model and discriminative image regions in the target task. We conduct
experiments on seven datasets using the standard evaluation protocol in the GCD setting. Our method
achieves an average accuracy of 61.4%, which is higher than the previous state-of-the-art methods
by around 10%, in proportional terms, on the SSB benchmark Vaze et al. (2021). Remarkably, this
improvement is achieved by introducing only 0.117% extra parameters compared to all ViT-Base
parameters, demonstrating the efficiency and effectiveness of our approach.
Our contributions can be summarized as follows: (1) We introduce a two-stage iterative learning
framework called SPTNet, integrating advantages of both model parameters (i.e., model-finetuning)
and data parameters (i.e., prompt learning) learning for GCD. (2) We propose a new spatial prompt
method (called SPT) to adapt the data representation for better alignment with the pre-trained
model. The method learns independent prompts for different spatial regions and introduces only
0.039% additional parameters compared to all ViT-Base parameters. (3) We conduct comprehensive
evaluations of our method on seven datasets, including three generic (i.e., CIFAR-10, CIFAR-100,
and ImageNet-100) and four fine-grained benchmarks (CUB, Stanford Cars, FGVC-Aircraft, and
Herbarium19). Our method outperforms state-of-the-art methods in most cases.

2 RELATED WORK

Semi-supervised learning (SSL) alleviates the issue of inadequacy of labelled data for training,
which learns from both labelled and unlabelled data from predefined classes to get a strong classifi-
cation model. Consistency-based approaches, including Mean-teacher Tarvainen & Valpola (2017),
Mixmatch Berthelot et al. (2019) and Fixmatch Sohn et al. (2020), operate by enforcing model pre-
diction consistency under various perturbations of the unlabelled data or over the course of training.
Recent methods, such as Chen et al. (2020b;c; 2021), have shown improved SSL performance by
introducing contrastive learning (e.g., Chen et al. (2020a), He et al. (2020)). Several works Wang
et al. (2022b); Rizve et al. (2022); Wang et al. (2024); Sun et al. (2024) extend the standard SSL to an
open-world setting.
Novel category discovery (NCD) aims at categorizing unlabelled images from unseen classes by
transferring knowledge from labelled data of seen classes Han et al. (2019). Various approaches
have been proposed to address NCD, for example, Han et al. (2019) introduces a two-stage training
method, which first utilizes metric learning, followed by learning to cluster the unlabelled data.
Han et al. (2020; 2021); Zhao & Han (2021) utilize ranking statistics to generate pseudo positives
among unlabelled novel classes. Zhong et al. (2021b) transfers semantic knowledge through MixUp
augmentation between seen and novel classes, as well as reliable novel anchors with other examples.
Zhong et al. (2021a) proposes a neighborhood contrastive loss and hard-negative generation process
by mixing novel and seen classes. Fini et al. (2021) reformulates the NCD problem into classification
based on dynamic class assignments using Sinkhorn-Knopp algorithm. Jia et al. (2021) addresses
multi-modal NCD by inter- and intra-modal contrastive learning with permutation-ensembled ranking
statistics. Gu et al. (2023) proposes a novel knowledge distillation framework, which utilizes our
class-relation representation to regularize the learning of novel classes.
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Generalized Category Discovery (GCD) initially introduced in [27], expands on the concept of37

NCD by acknowledging that unlabeled data can come from both known and unknown categories.38

This model is designed to categorize training data based on labeled known classes and differentiate39

between novel and non-novel categories. [27] tackled this issue through semi-supervised contrastive40

learning using a pre-trained visual transformer (ViT) followed by constraint KMeans clustering.41

ORCA [28] proposed an adaptive margin loss to minimize intra-class differences between known and42

novel classes. SimGCD [29] proposed a new method that improves on the previous approaches by43

using entropy regularization.44

Prompt Learning dated from Natural Language Processing (NLP) [30], and has been extended to45

the field of computer vision through Visual Prompt Learning (VPT) [31]. VPT involves optimizing46

pre-existing visual prompts using a pre-trained ViT backbone and downstream objectives to enhance47

transfer performance. [32] added the learnable prompt on the border of the input images for adapting48

foundation models to downstream tasks.49

3 Methods50

3.1 Preliminaries51

Supposing (X ,y) is an instance in the data with the image X 2 R3·H·W and the corresponding class52

label y 2 Y. H, W are the height and width of the image. We parameterize the final predictor F53

as follows: given a feature extractor G0(x) for some parameters that are obtained by training on54

potentially large amounts of data from a distribution that contains unlabeled or weakly supervised55

inputs, and a linear “head” H, we have FH,G(x) = H(G(x)). Specifically, we consider G(·) as a56

Vision Transformer (ViT) [33] model. Given a pre-trained model G(x) with M layers, an input image57

X is divided into a sequence of patches X1:n = [x1, ..., xn] 2 Rn⇥(3·h·w) such that the effective58

sequence length is n = HW/hw and (h, w) is the resolution of each image patch. Because the59

transformer uses constant widths in all of its layers, each patch is then mapped into d-dimensional60

latent space by a trainable linear projection layer e 2 G(x). Together with an extra learnable61

classification token ([CLS]), the whole ViT is formulated as:62

[x1, ..., xn] = �(X)

E0 = {e(x1), ..., e(xn)}
{[CLS]i, Ei} = Li({[CLS]i�1, Ei�1})

ŷ = H([CLS]M ),

(1)

where �(·) denotes the division operation of image patches and Li+1 denotes the i-th layers of ViT.63

{· · · } indicates stacking and concatenation on the collection of image patch or/and the [CLS] token.64

H maps the [CLS] token to the category prediction ŷ. Each layer Li consists of alternating layers of65

multiheaded self-attention (MSA), MLP blocks, pre-processing Layernorm (LN) and post-processing66

residual connections.67

Many types of methods mainly differ in how to adapt pre-trained models to downstream tasks (Fig. 1),68

discussed as follows:69

Fine-tuning & Linear probes. There are two popular methods to learn a predictor FH,G given a70

specific dataset. Fine-tuning, as shown in Fig. 1(a), adapts the full (or partial) parameters of the71

backbone model. This means all or part of paramters from layers L1,··· ,M in G0 are updated by72

performing gradient descent on the objective function. Linear probe (in Fig. 1(b)) freezes the feature73

extractor G0(·) and trains only the classification head H by minimizing the loss function.74

Prompting. VPT [31] inserts a collection of continuous embeddings of dimension d in the input75

space before each layer L1,··· ,M . Specifically, as shown in Fig. 1(c), VPT stops updating the feature76

extractor G0(·) but trains both the classification head H and prompt tokens PTi in {[CLS]i, PTi, Ei}77

at the i-th layer by minimizing the loss function. Instead of inserting several tunable parameters78

to each ViT encoder layer, [32] attaches learnable parameters p to the border of the raw image79

(in Fig. 1(d)) as [x1, ..., xn] = �(X + p) in Eq. (1).80
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Figure 1: Methods for adapting pre-trained models to downstream tasks.(a) Fine-tuning adapts
the entire model parameters. (b) Linear probes adapt the model outputs (usually activations at the
penultimate layer) by learning a linear layer. (c) Prompting adapts the (downstream) dataset by
reformulating the input and/or output.

3.2 Spatial Prompt Tuning81

We propose Spatial Prompt Tuning (SPT) for adapting pre-trained ViT models. SPT injects a small82

number of learnable parameters into the input patches, as presented in Fig. 1(e), and keeps the83

backbone G0(·) and/or the classification head H frozen during the downstream training stage. The84

main difference from instance-based prompting is that SPT considers all the contiguous regions in85

the image content instead of placing on the border of the entire image.86

Specifically, as [x1, ..., xn] = �(X) is a set of image patches divided from the input image X , for87

each image patch, our proposed algorithm seeks patch-agnostic prompts p̂1:n determined by size s.88

For each prompt patch {pv 2 R3·s·s | v 2 N, 1  v  n}, we have:89

pv(c, d) =

⇢
0 s < c < h � s, s < d < w � s

Learnable Otherwise.
(2)

With the downstream loss function L, we can differentially optimize the prompt patches p̂1:n by90

p̂1:n = arg min
p1:n

L(F(�(X) + p1:n), y). (3)

The algorithm proceeds iteratively over the input images in the entire dataset and gradually builds91

the universal prompts for patches from different samples. At each iteration, the prompts optimized92

in the previous iteration are then added to current images in the mini-batch with batch sizes T :93

X̄batch = {�(X1) + p1:n, · · · ,�(XT ) + p1:n} and prompted images X̄batch are sent to FH,G for94

the next update by backpropagation.95

3.3 SPT++: a new perspective of prompting for optimisation96

The main patch-aware prompting proposed above can help the end user manipulate their inputs to97

adapt GB0 to the specific setting without having control over the model at test time. Nevertheless,98

such a post-processing method does not strengthen the representation ability of FH,G which can99

essentially benefit the downstream classification tasks. To achieve this, we propose a two-stage100

iterative method for better representation learning. The overall framework of proposed method is101

illustrated in Fig. 2.102

Stage1: Fix FH,G , update p̂1:n. Same to Eq. (3), in the first stage, the learnable prompts p̂1:n are103

equally assigned to the raw input X along with its another view X 0. Then we use standard training to104

update the patch prompts p̂1:n with fixed FH,G . Note that the weight decay for optimizing p̂1:n is105

set to zero as we do not want to make prompts sparse to bring together different views of an input.106

Instead, we aim to preserve the diversity of p̂1:n since it would be advantageous in Stage 2.107
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Stage one: Fix F&H, update Ps. Same to Eq. (5), in the first stage, the prompt parameters Ps are
equally assigned to the raw input X along with its another view X 0. We then update the parameters
Ps with fixed F&H following Eq. (4), but replacing X, X 0and X� with �(X) + Ps,�(X 0) +
Psand �(X�) + Ps. Note that the weight decay for optimizing Ps is set to zero to prevent prompts
being sparse for better generalization. Moreover, a wide variation of Ps (i.e., parameter values of the
prompts) can preserve the diversity of the augmented pair designed in Stage two, acting as stronger
image augmentations, thus beneficial to improve representations HaoChen et al. (2021).
Stage two: Fix Ps, update F&H. In the second stage, we freeze prompt parameters Ps and use
them to update the parameters of H and the very top layer in F . The core mechanism of contrastive
learning involves implicitly clustering samples from the same class together.
Different from prior works that apply only hand-crafted augmentations, we propose to consider the
learnable input �(X) + Ps as a new type of augmentation. In this way, Lnce can enjoy a learned
augmentation that varies along different epochs and enforce F to learn meaningful representations by
adopting diverse augmentations. Thus, the different view of the raw input X for both representation
learning and parametric classification in Lun

nce, Lun
cls, Lsup

nce , Lsup
cls can be substituted for �(X) + Ps.

Each stage involves optimizing the parameters for k iterations.

3.3 SPATIAL PROMPT TUNING

Naively applying VPT Jia et al. (2022) does not achieve satisfying performance (as shown in 2th row
in Table 4). Based on empirical results in Fig. 4, we speculate that prompts in the hidden model space
rather than input space make it harder to align inputs within the contrastive framework. Besides, a
key insight in GCD is that object parts are effective in transferring knowledge between old and new
categories Vaze et al. (2022). Therefore, we propose Spatial Prompt Tuning (SPT) for adapting the
data representation for better alignment with pre-trained ViT models, while also serving as learned
data augmentations which enables us to focus on local image object regions. SPT injects a small
number of learnable parameters into the input image patches and keeps the backbone F and the
projection head H frozen during the training stage. Compared with Bahng et al. (2022), SPT considers
all the contiguous batch regions in the query image instead of placing on the border of the entire image.

Figure 2: An illustration of an example image with a fixed height
H and width W for Spatial Prompt Tuning (SPT). For image
patches x1:n with height h and width w, we attach correspond-
ing prompts p1:n with size s to each patch region.

Specifically, (x1, · · · , xn) = �(X) is
a set of image patches divided from
the input image X . For each image
patch, our proposed algorithm seeks
instance-agnostic prompts P̂s deter-
mined by size s. Without loss of gen-
erality, we demonstrate the process by
picking any image patch x 2 R3⇥h⇥w

for simplification. The prompt for
each patch is denoted by pv(c, d) 2
R3⇥s⇥s, where v 2 {1, 2, . . . , n} represents a prompt index and (c, d) denotes its position within the
rectangular region. The positions are constrained by c 2 {0, 1, . . . , h} and d 2 {0, 1, . . . , w}. SPT
sets all prompts located in the region A = {(c, d) | s < c < h � s, s < d < w � s} to zero while
others are learnable parameters, as illustrated by Fig. 2.
With the downstream loss function L, we can optimize the prompt patches Ps by
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Stage one: Fix F&H, update Ps. Same to Eq. (5), in the first stage, the prompt parameters Ps are
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Psand �(X�) + Ps. Note that the weight decay for optimizing Ps is set to zero to prevent prompts
being sparse for better generalization. Moreover, a wide variation of Ps (i.e., parameter values of the
prompts) can preserve the diversity of the augmented pair designed in Stage two, acting as stronger
image augmentations, thus beneficial to improve representations HaoChen et al. (2021).
Stage two: Fix Ps, update F&H. In the second stage, we freeze prompt parameters Ps and use
them to update the parameters of H and the very top layer in F . The core mechanism of contrastive
learning involves implicitly clustering samples from the same class together.
Different from prior works that apply only hand-crafted augmentations, we propose to consider the
learnable input �(X) + Ps as a new type of augmentation. In this way, Lnce can enjoy a learned
augmentation that varies along different epochs and enforce F to learn meaningful representations by
adopting diverse augmentations. Thus, the different view of the raw input X for both representation
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3.3 SPATIAL PROMPT TUNING

Naively applying VPT Jia et al. (2022) does not achieve satisfying performance (as shown in 2th row
in Table 4). Based on empirical results in Fig. 4, we speculate that prompts in the hidden model space
rather than input space make it harder to align inputs within the contrastive framework. Besides, a
key insight in GCD is that object parts are effective in transferring knowledge between old and new
categories Vaze et al. (2022). Therefore, we propose Spatial Prompt Tuning (SPT) for adapting the
data representation for better alignment with pre-trained ViT models, while also serving as learned
data augmentations which enables us to focus on local image object regions. SPT injects a small
number of learnable parameters into the input image patches and keeps the backbone F and the
projection head H frozen during the training stage. Compared with Bahng et al. (2022), SPT considers
all the contiguous batch regions in the query image instead of placing on the border of the entire image.
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minimizing the loss function on a given dataset. Previous GCD methods, such as Vaze et al. (2022);
Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023), fine-tune the final transformer block and
the linear projection layer of a pre-trained ViT model. In our method, the model parameters are in
F and H. Recently, visual prompt learning techniques have been introduced to effectively adapt
pre-trained large-scale models to different downstream tasks, without the need of tuning the model
parameters. We refer to such techniques as optimizing data parameters. Particularly, VPT Jia et al.
(2022) inserts a sequence of learnable embeddings in the input for each Transformer encoder layer Li

of the ViT model. Specifically, VPT freezes the feature extractor F but learns a set of prompt tokens
Pi = {pj

i ; j = 1, · · · , b} with pj
i 2 Rd as part of the input for layer Li. The input can be denoted

as [CLSi; Pi; Ei]. Instead of inserting several tunable parameters to each layer, Bahng et al. (2022)
attaches learnable parameters Pg to the border of the raw input image as (x01, · · · , x0n) = �(X +Pg).
We propose Spatial Prompt Tuning (SPT) for GCD, as will be described in Section 3.3, which attaches
a learnable prompt for each image patch. Namely, we learn a set of prompts Ps = {pj ; j = 1, · · · , n}
and attach the prompts to the input image patches by (x1 + p1, · · · , xn + pn) = �(X) + Ps.

3.2 SPTNET: AN ALTERNATE PROMPT LEARNING FRAMEWORK FOR GCD
Large-scale pretraining (e.g., DINO Caron et al. (2021) self-supervision) is the key ingredient in
existing GCD methods Vaze et al. (2022); Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023).
As GCD requires learning from unlabelled data, contrastive self-supervised learning is the natural
choice, which uses data augmentations to create different views of the same input image. These
augmentations provide and inductive bias as to what is (not) semantically meaningful in an image.
In this context, prompt tuning is a clear but unexplored option that enables efficient adaptation of
pre-trained models. Our insight is that the learned prompt can also be used to generate a novel view,
making it a suitable choice for the contrastive framework. Simultaneously optimizing the model and
prompts seems appealing, but it results in instability and sub-optimal solutions for both data and
model parameters.
To mitigate the issue, inspired by EM algorithm Dempster et al. (1977), we propose a two-stage
iterative method for effective representation learning. The overall framework of proposed method is
illustrated in Fig. 1. The objective function L is designed for representation learning and parametric
classification.
Specifically, in vanilla contrastive learning, two different views, X, X 0, of the same input image
are constructed as a positive pair. A set of other images are drawn from the dataset as negative
samples N (X) = {X�

q ; q = 1, · · · , Q}. Then, the parameters of F can be updated by the InfoNCE
loss Oord et al. (2018) using the augmented data triplet (X, X 0, N (X)):
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where cos(·, ·) is the cosine similarity between embedding feature vectors and ⌧u is a temper-
ature hyperparameter. Analogous to Eq. (2), supervised contrastive loss Khosla et al. (2020)
Lsup

nce (X,X 0, N (X), y; F , ⌧c) utilizes more positive pairs belonging to the same class with label
y.
Next, to assign labels to input instances, we use parametric methods to classify them into seen or
new classes, as commonly done in image recognition. In supervised contrastive learning, this is
achieved through the simultaneous optimization of F and H using cosine cross-entropy loss Wang
et al. (2022), which can be calculated by:
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unsupervised case, X 0 is removed from the input while the ground-truth y is estimated by H(F(X 0))
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lariser Assran et al. (2022), computed by taking the entropy of the mean prediction of all samples in a
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minimizing the loss function on a given dataset. Previous GCD methods, such as Vaze et al. (2022);
Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023), fine-tune the final transformer block and
the linear projection layer of a pre-trained ViT model. In our method, the model parameters are in
F and H. Recently, visual prompt learning techniques have been introduced to effectively adapt
pre-trained large-scale models to different downstream tasks, without the need of tuning the model
parameters. We refer to such techniques as optimizing data parameters. Particularly, VPT Jia et al.
(2022) inserts a sequence of learnable embeddings in the input for each Transformer encoder layer Li

of the ViT model. Specifically, VPT freezes the feature extractor F but learns a set of prompt tokens
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as [CLSi; Pi; Ei]. Instead of inserting several tunable parameters to each layer, Bahng et al. (2022)
attaches learnable parameters Pg to the border of the raw input image as (x01, · · · , x0n) = �(X +Pg).
We propose Spatial Prompt Tuning (SPT) for GCD, as will be described in Section 3.3, which attaches
a learnable prompt for each image patch. Namely, we learn a set of prompts Ps = {pj ; j = 1, · · · , n}
and attach the prompts to the input image patches by (x1 + p1, · · · , xn + pn) = �(X) + Ps.
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existing GCD methods Vaze et al. (2022); Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023).
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choice, which uses data augmentations to create different views of the same input image. These
augmentations provide and inductive bias as to what is (not) semantically meaningful in an image.
In this context, prompt tuning is a clear but unexplored option that enables efficient adaptation of
pre-trained models. Our insight is that the learned prompt can also be used to generate a novel view,
making it a suitable choice for the contrastive framework. Simultaneously optimizing the model and
prompts seems appealing, but it results in instability and sub-optimal solutions for both data and
model parameters.
To mitigate the issue, inspired by EM algorithm Dempster et al. (1977), we propose a two-stage
iterative method for effective representation learning. The overall framework of proposed method is
illustrated in Fig. 1. The objective function L is designed for representation learning and parametric
classification.
Specifically, in vanilla contrastive learning, two different views, X, X 0, of the same input image
are constructed as a positive pair. A set of other images are drawn from the dataset as negative
samples N (X) = {X�

q ; q = 1, · · · , Q}. Then, the parameters of F can be updated by the InfoNCE
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ature hyperparameter. Analogous to Eq. (2), supervised contrastive loss Khosla et al. (2020)
Lsup

nce (X,X 0, N (X), y; F , ⌧c) utilizes more positive pairs belonging to the same class with label
y.
Next, to assign labels to input instances, we use parametric methods to classify them into seen or
new classes, as commonly done in image recognition. In supervised contrastive learning, this is
achieved through the simultaneous optimization of F and H using cosine cross-entropy loss Wang
et al. (2022), which can be calculated by:
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where H(F([X; X 0])), W are the L2-normalized feature and the prototype vector of class . For the
unsupervised case, X 0 is removed from the input while the ground-truth y is estimated by H(F(X 0))
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lariser Assran et al. (2022), computed by taking the entropy of the mean prediction of all samples in a
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Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023), fine-tune the final transformer block and
the linear projection layer of a pre-trained ViT model. In our method, the model parameters are in
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pre-trained large-scale models to different downstream tasks, without the need of tuning the model
parameters. We refer to such techniques as optimizing data parameters. Particularly, VPT Jia et al.
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attaches learnable parameters Pg to the border of the raw input image as (x01, · · · , x0n) = �(X +Pg).
We propose Spatial Prompt Tuning (SPT) for GCD, as will be described in Section 3.3, which attaches
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existing GCD methods Vaze et al. (2022); Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023).
As GCD requires learning from unlabelled data, contrastive self-supervised learning is the natural
choice, which uses data augmentations to create different views of the same input image. These
augmentations provide and inductive bias as to what is (not) semantically meaningful in an image.
In this context, prompt tuning is a clear but unexplored option that enables efficient adaptation of
pre-trained models. Our insight is that the learned prompt can also be used to generate a novel view,
making it a suitable choice for the contrastive framework. Simultaneously optimizing the model and
prompts seems appealing, but it results in instability and sub-optimal solutions for both data and
model parameters.
To mitigate the issue, inspired by EM algorithm Dempster et al. (1977), we propose a two-stage
iterative method for effective representation learning. The overall framework of proposed method is
illustrated in Fig. 1. The objective function L is designed for representation learning and parametric
classification.
Specifically, in vanilla contrastive learning, two different views, X, X 0, of the same input image
are constructed as a positive pair. A set of other images are drawn from the dataset as negative
samples N (X) = {X�

q ; q = 1, · · · , Q}. Then, the parameters of F can be updated by the InfoNCE
loss Oord et al. (2018) using the augmented data triplet (X, X 0, N (X)):
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where cos(·, ·) is the cosine similarity between embedding feature vectors and ⌧u is a temper-
ature hyperparameter. Analogous to Eq. (2), supervised contrastive loss Khosla et al. (2020)
Lsup

nce (X,X 0, N (X), y; F , ⌧c) utilizes more positive pairs belonging to the same class with label
y.
Next, to assign labels to input instances, we use parametric methods to classify them into seen or
new classes, as commonly done in image recognition. In supervised contrastive learning, this is
achieved through the simultaneous optimization of F and H using cosine cross-entropy loss Wang
et al. (2022), which can be calculated by:
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where H(F([X; X 0])), W are the L2-normalized feature and the prototype vector of class . For the
unsupervised case, X 0 is removed from the input while the ground-truth y is estimated by H(F(X 0))
for self-distillation, written as Lun
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Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023), fine-tune the final transformer block and
the linear projection layer of a pre-trained ViT model. In our method, the model parameters are in
F and H. Recently, visual prompt learning techniques have been introduced to effectively adapt
pre-trained large-scale models to different downstream tasks, without the need of tuning the model
parameters. We refer to such techniques as optimizing data parameters. Particularly, VPT Jia et al.
(2022) inserts a sequence of learnable embeddings in the input for each Transformer encoder layer Li

of the ViT model. Specifically, VPT freezes the feature extractor F but learns a set of prompt tokens
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i 2 Rd as part of the input for layer Li. The input can be denoted

as [CLSi; Pi; Ei]. Instead of inserting several tunable parameters to each layer, Bahng et al. (2022)
attaches learnable parameters Pg to the border of the raw input image as (x01, · · · , x0n) = �(X +Pg).
We propose Spatial Prompt Tuning (SPT) for GCD, as will be described in Section 3.3, which attaches
a learnable prompt for each image patch. Namely, we learn a set of prompts Ps = {pj ; j = 1, · · · , n}
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existing GCD methods Vaze et al. (2022); Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023).
As GCD requires learning from unlabelled data, contrastive self-supervised learning is the natural
choice, which uses data augmentations to create different views of the same input image. These
augmentations provide and inductive bias as to what is (not) semantically meaningful in an image.
In this context, prompt tuning is a clear but unexplored option that enables efficient adaptation of
pre-trained models. Our insight is that the learned prompt can also be used to generate a novel view,
making it a suitable choice for the contrastive framework. Simultaneously optimizing the model and
prompts seems appealing, but it results in instability and sub-optimal solutions for both data and
model parameters.
To mitigate the issue, inspired by EM algorithm Dempster et al. (1977), we propose a two-stage
iterative method for effective representation learning. The overall framework of proposed method is
illustrated in Fig. 1. The objective function L is designed for representation learning and parametric
classification.
Specifically, in vanilla contrastive learning, two different views, X, X 0, of the same input image
are constructed as a positive pair. A set of other images are drawn from the dataset as negative
samples N (X) = {X�

q ; q = 1, · · · , Q}. Then, the parameters of F can be updated by the InfoNCE
loss Oord et al. (2018) using the augmented data triplet (X, X 0, N (X)):
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where cos(·, ·) is the cosine similarity between embedding feature vectors and ⌧u is a temper-
ature hyperparameter. Analogous to Eq. (2), supervised contrastive loss Khosla et al. (2020)
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nce (X,X 0, N (X), y; F , ⌧c) utilizes more positive pairs belonging to the same class with label
y.
Next, to assign labels to input instances, we use parametric methods to classify them into seen or
new classes, as commonly done in image recognition. In supervised contrastive learning, this is
achieved through the simultaneous optimization of F and H using cosine cross-entropy loss Wang
et al. (2022), which can be calculated by:
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where H(F([X; X 0])), W are the L2-normalized feature and the prototype vector of class . For the
unsupervised case, X 0 is removed from the input while the ground-truth y is estimated by H(F(X 0))
for self-distillation, written as Lun
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Figure 1: The overall framework of SPTNet. SPTNet alternates between data parameter tuning (stage
one) and model parameter tuning (stage two). The data parameters are learnable prompts, for which
we introduce spatial prompts Ps. The model parameters include the parameters of the top layer of the
Transformer backbone F and a projection head H.

Generalized Category Discovery (GCD) extends NCD by categorizing unlabelled images from
both seen and unseen categories (Vaze et al. (2022)). Vaze et al. (2022) tackles this issue by
tuning the representation of the pre-trained ViT model with DINO (Caron et al. (2021); Oquab et al.
(2024)) with contrastive learning, followed by semi-supervised k-means clustering. ORCA Cao
et al. (2022) considers the problem from a semi-supervised learning perspective and introduces an
adaptive margin loss for better intra-class separability for both seen and unseen classes. CiPR Hao
et al. (2024) introduces a method for more effective contrastive learning and a hierarchical clustering
method for GCD without requiring the category number in the unlabelled data to be known a priori.
SimGCD Wen et al. (2023) proposes a parametric method with entropy regularization to improve
performance. DCCL Pu et al. (2023) improves clustering accuracy by alternating between estimating
underlying visual conceptions and learning conceptional representations. They also introduce a
dynamic conception generation and update mechanism to ensure consistent conception learning.
PromptCAL Zhang et al. (2023) introduces a two-stage framework that iteratively generates and
refines affinity graphs based on the model’s current understanding of the data to enhance the semantic
discriminativeness of pre-trained vision transformers. GPC Zhao et al. (2023) proposes a GMM-based
method that can jointly learn robust representation for GCD and estimate the unknown category
number. We also note the concurrent work Vaze et al. (2023) which improves GCD performance with
a student-teacher mechanism.
Prompt learning, as the representative of data parameters learning methods, targets at simply
prepending a few extra tokens to the input and provides an effective and efficient solution that
matches the performance of fully fine-tuning, commonly used in Natural Language Processing
(NLP). Recently, prompting learning has been used in vision tasks. Particularly, Visual Prompt
Learning (VPT) Jia et al. (2022) has been introduced to optimize extra visual prompts on top of a
pre-trained ViT backbone to achieve strong object recognition performance. Bahng et al. (2022)
learns an additional “border” of input images as prompts to adapt large-scale pre-trained models,
which improves the models’ classification accuracy. There are also some works which utilize prompts
to deal with different tasks, such as classification with imbalanced data Dong et al. (2022) or domain
shift Wang et al. (2022a). Shtedritski et al. (2023); Khattak et al. (2023) offer the possibility of
manipulating both textual and visual modalities through prompting.

3 METHODS

3.1 PRELIMINARIES

Problem statement. Assume that we have the open-world dataset D, comprising two subsets: a
labelled set Dl = {(Xi, yi)}Nl

i=1 ⊂ Xl × Yl and an unlabelled set Du = {Xi}Nu
i=1 ⊂ Xu, where

Xi ∈ R3×H×W . H and W are the height and width of the image. Yl = C1 and Yu = C = C1 ∪ C2
are the label space of labelled and the unlabelled samples. C, C1, and C2 denote the label set for ‘All’,
‘Old’, and ‘New’ categories, respectively. The objective of GCD is to categorize all the unlabelled
images in Du, having access to labels only in Dl. For simplicity, hereafter we omit the subscript for
each image Xi.
Architecture. We consider a parametric model consisting of a feature extractor F and a projection
head H. For an image X from D, we can obtain its class prediction by ŷ = H(F(X)). Specifically,
we employ a Vision Transformer (ViT) Dosovitskiy et al. (2020) as the architecture. We consider
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the Transformer encoder as F and a simple multilayer perceptron (MLP) as H. In ViT, an image
X is first divided into n patches (x1, · · · , xn), where xi ∈ R3×h×w and n = (H ×W )/(h × w).
The patches are then mapped into d-dimensional latent space by a shared linear projection layer e.
Together with an extra learnable classification token CLS, the full model is formulated as:

(x1, · · · , xn) = ϕ(X)

E0 = [e(x1); ...; e(xn)]

[CLSi;Ei] = Li([CLSi−1;Ei−1])

ŷ = H(CLSM ),

(1)

where ϕ(·) denotes the “pathcify” operator to divide the input image X into patches (x1, · · · , xn),
Li denotes the i-th layer of the ViT and [·] denotes concatenation.
Model/Data parameters. We consider optimizing both model parameters and data parameters for
GCD. Optimizing the model parameters is the most common way to train or fine-tune a model by
minimizing the loss function on a given dataset. Previous GCD methods, such as Vaze et al. (2022);
Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023), fine-tune the final transformer block and
the linear projection layer of a pre-trained ViT model. In our method, the model parameters are in
F and H. Recently, visual prompt learning techniques have been introduced to effectively adapt
pre-trained large-scale models to different downstream tasks, without the need of tuning the model
parameters. We refer to such techniques as optimizing data parameters. Particularly, VPT Jia et al.
(2022) inserts a sequence of learnable embeddings in the input for each Transformer encoder layer Li

of the ViT model. Specifically, VPT freezes the feature extractor F but learns a set of prompt tokens
Pi = {pji ; j = 1, · · · , b} with pji ∈ Rd as part of the input for layer Li. The input can be denoted
as [CLSi;Pi;Ei]. Instead of inserting several tunable parameters to each layer, Bahng et al. (2022)
attaches learnable parameters Pg to the border of the raw input image as (x′1, · · · , x′n) = ϕ(X+Pg).
We propose Spatial Prompt Tuning (SPT) for GCD, as will be described in Section 3.3, which attaches
a learnable prompt for each image patch. Namely, we learn a set of prompts Ps = {pj ; j = 1, · · · , n}
and attach the prompts to the input image patches by (x1 + p1, · · · , xn + pn) = ϕ(X) + Ps.

3.2 SPTNET: AN ALTERNATE PROMPT LEARNING FRAMEWORK FOR GCD
Large-scale pretraining (e.g., DINO Caron et al. (2021) self-supervision) is the key ingredient in
existing GCD methods Vaze et al. (2022); Wen et al. (2023); Pu et al. (2023); Zhang et al. (2023).
As GCD requires learning from unlabelled data, contrastive self-supervised learning is the natural
choice, which uses data augmentations to create different views of the same input image. These
augmentations provide an inductive bias as to what is (not) semantically meaningful in an image.
In this context, prompt tuning is a clear but unexplored option that enables efficient adaptation of
pre-trained models. Our insight is that the learned prompt can also be used to generate a novel view,
making it a suitable choice for the contrastive framework. Simultaneously optimizing the model and
prompts seems appealing, but it results in instability and sub-optimal solutions for both data and
model parameters.
To mitigate the issue, inspired by EM algorithm Dempster et al. (1977), we propose SPTNet, a
two-stage alternative learning framework for GCD. The overall framework is illustrated in Fig. 1.
The learning objective includes both representation learning and parametric classification, while our
framework alternates between data parameter and model parameter optimization using the same
learning objective.
Specifically, in vanilla contrastive learning, two different views, X and X ′, of the same input image
are constructed as a positive pair. A set of other images are drawn from the dataset as negative
samples N (X) = {X−

q ; q = 1, · · · , Q}. Then, the parameters of F can be updated by the InfoNCE
loss Oord et al. (2018) using the data triplet (X,X ′,N (X)):

Lun
nce(X,X ′,N (X);F , τu) = − log

exp(cos(F(X),F(X ′))/τu)∑Q
q=1 exp(cos(F(X),F(X−

q ))/τu)
, (2)

where cos(·, ·) is the cosine similarity between embedding feature vectors and τu is a temper-
ature hyperparameter. Analogous to Eq. (2), supervised contrastive loss Khosla et al. (2020)
Lsup
nce(X,P(X),N (X), y;F , τc) utilizes a set of positive samples P(X) having the same class

label y in the mini-batch.
Next, to assign labels to input instances, we use parametric methods to classify them into seen or
new classes, as commonly done in image recognition. In supervised contrastive learning, this is
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achieved through the simultaneous optimization of F and H using the cosine-softmax cross-entropy
loss Gidaris & Komodakis (2018):

Lsup
cls (X, y;H,F , τs) = −

∑

κ

yκ log
exp(cos(H(F(X)),Wκ)/τs)∑|C|

κ′=1 exp(cos(H(F(X)),Wκ′)/τs)
, (3)

where H(F(X)) and Wκ are the ℓ2-normalized feature and the prototype vector of class κ respectively.
X ′ is also used in the above loss, as an additional augmented version of X . For the unsupervised
counterpart, X ′ is removed from the input while the prediction ŷ = H(F(X ′)) is used as a pseudo
label for self-distillation. The loss can be denoted as Lun

cls(X,X ′;H,F , τt). Therefore, the overall
loss L can be written as:

L = (1− λ)(Lun
nce + Lun

cls) + λ(Lsup
nce + Lsup

cls )− ϵ∆, (4)

where λ, ϵ are the balance factors, and ∆ represents the the mean-entropy-maximisation regu-
lariser Assran et al. (2022), computed by taking the entropy of the mean prediction of all samples in a
mini-batch.
Our SPTNet alternates between optimizing data parameters and model parameters as follows:
Stage one: Fix F&H and update Ps. In the first stage, we attach the same set of spatial prompts Ps

to the input images, X , X ′, and N (X). The framework is trained with the loss in Eq. (4), while the
image patches are replaced by their ‘prompted’ version. For example, ϕ(X) in Eq. (1) is replaced
by ϕ(X) + Ps, and the same applies to X ′ and N (X). During training, we freeze the parameters
of F&H and only update the prompt parameters of Ps. It is worth noting that, to facilitate the
generalization, the weight decay for optimizing Ps is set to zero to prevent prompts from being
sparse. Meanwhile, during the learning in Stage two, our spatial prompting acts as a strong data
augmentation. Increasing the variation in the parameters of Ps leads to more diverse ‘prompted’
image pairs to benefit the representation learning. It was also noted in the literature that more diverse
data augmentation is helpful for representation learning based on contrastive learning (e.g., HaoChen
et al. (2021)).
Stage two: Fix Ps and update F&H. In the second stage, we freeze prompt parameters Ps and
learn the parameters of H and the top layer in F , again, with the loss in Eq. (4). With our spatial
prompt learning as a strong augmentation, we aim to obtain a representation that can better distinguish
samples from different classes, as the core mechanism of contrastive learning involves implicitly
clustering samples from the same class together.
Different from prior works that apply only hand-crafted augmentations, we propose to consider
prompting the input with learnable prompts, i.e., ϕ(X) + Ps, as a new type of augmentation. The
‘prompted’ version of the input can be adopted by all loss terms. In this way, our framework can enjoy
a learned augmentation that varies throughout the training process, enabling F to learn discriminative
representations. Each stage optimizes the parameters for k iterations.

3.3 SPATIAL PROMPT TUNING

Naively applying existing prompt tuning methods does not lead to satisfying performance (see
2nd and 3rd rows in Table 4). We speculate that prompts in the hidden model space rather
than input space make it harder to align inputs within the contrastive framework, as evi-
denced by our empirical results in Fig. 5. Besides, a key insight in GCD is that object parts
are effective in transferring knowledge between old and new categories Vaze et al. (2022).

h

w
m

H

W
(b) SPT & Global(a) SPT

Figure 2: (a) An example of applying Spatial Prompt Tuning
(SPT) to an image with a height H and width W . For each image
patch xj with a height h and width w, we attach spatial prompts
Ps of size m to it. (b) Joint spatial and global prompts for SPTNet.

Therefore, we propose Spatial
Prompt Tuning (SPT) to serve
as a learned data augmentation
that enables the model to focus
on local image object regions,
while adapting the data represen-
tation from the pre-trained ViT
model and maintaining the align-
ment with it. In SPT, we inject a
small number of learnable param-
eters into the input image patches
and keep the backbone F and the
projection head H frozen during
training. Unlike existing methods that introduce learnable tokens to hidden model space Jia et al.
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(2022) or wrap prompts around the entire image border Bahng et al. (2022), SPT divides the image
into patches and attaches learnable prompts to each partch. Specifically, let (x1, · · · , xn) = ϕ(X)
be the set of image patches divided from image X . For each patch xj ∈ R3×h×w, SPT wraps
instance-agnostic prompts Ps around it in a rectangular shape with a width of m, as illustrated
in Fig. 2 (a). Thus, there are 6m(h+ w − 2m) learnable parameters for the prompts of each patch.
Our SPTNet proceeds alternatively between the two stages and gradually learns the spatial prompts
shared across all images. As revealed in Zhao & Han (2021), both global and local spatial information
benefits novel category discovery. Therefore, apart from SPT tokens, SPTNet also wraps an additional
global prompt around the entire image like Bahng et al. (2022), as illustrated in Fig. 2 (b).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the effectiveness of SPT on three generic image recognition datasets (i.e.,
CIFAR-10/100 Krizhevsky et al. (2009) and ImageNet-100 Tian et al. (2020)), three fine-grained
datasets (i.e., CUB Welinder et al. (2010), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji
et al. (2013)) contained in Semantic Shift Benchmark (SSB) Vaze et al. (2021), and the challenging
large-scale fine-grained dataset Herbarium-19 Tan et al. (2019). For each dataset, we first subsample
|C1| seen (labelled) classes from all classes. Following Vaze et al. (2022), we subsample 80% samples
in CIFAR-100 and 50% samples in all other datasets from the seen classes to construct Dl, while the
remaining images are treated as Du. The statistics of the datasets can be found in Table 1.

Table 1: Dataset statistics and training configurations.
Labelled Unlabelled Configs

Dataset #Num #Class #Num #Class lrb wdb lrp wdp k m

CIFAR10 Krizhevsky et al. (2009) 12.5K 5 37.5K 10 3e-3 5e-4 1.0 0 20 1
CIFAR100 Krizhevsky et al. (2009) 20.0K 80 30.0K 100 1e-3 5e-4 1.0 0 20 1
ImageNet-100 Tian et al. (2020) 31.9K 50 95.3K 100 3e-3 5e-4 10.0 0 20 1
Herbarium 19 Tan et al. (2019) 8.9K 341 25.4K 683 3e-3 5e-4 10.0 0 20 1
CUB Welinder et al. (2010) 1.5K 100 4.5K 200 0.05 5e-4 25.0 0 20 1
Stanford Cars Krause et al. (2013) 2.0K 98 6.1K 196 0.05 5e-4 25.0 0 20 1
FGVC-Aircraft Maji et al. (2013) 1.7K 50 5.0K 50 0.05 5e-4 25.0 0 20 1

Evaluation protocol. We use clustering accuracy (ACC) to evaluate the model performance, as per
standard practice. During the evaluation, we compare the ground-truth labels yi with the predicted
labels ŷi and measure the ACC by ACC = 1

|Du|
∑|Du|

i=1 1(yi = G(ŷi)), where G represents the
optimal permutation that gives the matching between the predicted labels with the ground truth.
Implementation details. We develop our SPTNet upon the SimGCD Wen et al. (2023) baseline and
apply the spatial prompt tuning on the pre-trained ViT-B/16 backbone Caron et al. (2021). Specifically,
we take the final feature corresponding to the CLS token from the backbone as the image feature,
which has a dimension of 768. For the feature extractor F , we only fine-tune the last block. We set the
spatial prompt size m to 1, while the globe prompt size to 30 which is the default value in Bahng et al.
(2022). It is worth noting that our method yields extra parameters amounting to only 0.117% of those
in the backbone architecture (see Appendix A for details). The two stages alternate every k = 20
iterations. All prompts are trained for 1,000 epochs with a batch size of 128. We utilize SGD as the
optimizer for training, employing different learning rates (lrp, lrb) and weight decay parameters
(wdp, wdb) to update prompts and the model. The training hyper-parameters, determined on the
validation data splits, are shown in Table 1. We set the balancing factor λ to 0.35 and the temperature
values τu and τc to 0.07 and 1.0, respectively, following Wen et al. (2023). For the temperature values
τt and τs in the classification losses, we also set them to 0.07 and 0.1. All experiments are conducted
using an NVIDIA GeForce RTX 3090 GPU.

4.2 MAIN RESULTS

Evaluation on generic datasets. We evaluate SPTNet on three generic datasets, CIFAR-10, CIFAR-
100 and ImageNet-100. We compare SPTNet with previous state-of-the-art methods and two concur-
rent methods (DCCL Pu et al. (2023) and PromptCAL Zhang et al. (2023)). The results are shown
in Table 2. We can see that our method consistently outperforms previous state-of-the-art methods.
Specifically, SPTNet surpasses the baseline SimGCD by 0.4% on CIFAR-10, 1.9% on CIFAR-100,
and 2.5% on ImageNet-100 for ‘All’ classes; it also outperforms concurrent methods on both CIFAR-
100 and ImageNet-100. SPTNet performs on par with PromptCAL on CIFAR-10 but with much
fewer learnable parameters and shorter training time (see Table 13). Note that for CIFAR-10 and
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CIFAR-100, the images are of extremely low-resolution (32× 32). As such, limited information is
provided in each patch, leading to limited gains from our proposed (local) spatial prompting. On
ImageNet-100, performance boosts are difficult to yield, as the original DINO backbone is already
highly tuned for this dataset. This is evidenced by the gains (usually) being substantially less between
the previous state-of-the-art and the simple k-means on raw DINO features Vaze et al. (2022).
Table 2: Evaluation on three generic image recognition datasets. Bold values represent the best
results, while underlined values represent the second best results.

CIFAR-10 CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New

k-means Arthur & Vassilvitskii (2006) 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ Han et al. (2021) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ Fini et al. (2021) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
GCD Vaze et al. (2022) 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3
ORCA Cao et al. (2022) 96.9 95.1 97.8 74.2 82.1 67.2 79.2 93.2 72.1
SimGCD Wen et al. (2023) 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
DCCL Pu et al. (2023) 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2
PromptCAL Zhang et al. (2023) 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3

SPTNet (Ours) 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4

Evaluation on fine-grained datasets. Table 3 presents the results on fine-grained datasets including
the SSB benchmark and Herbarium 19 dataset. The unsatisfactory performance of k-means and
ORCA highlights the difficulty in discovering fine-grained categories due to large intra-class and small
inter-class variations. In contrast, SPTNet demonstrates superior performance to SimGCD, DCCL,
and PromptCAL, achieving an average absolute improvement of ∼5% and an average proportional
improvement of ∼10% across all evaluated datasets in SSB, specifically on ‘All’ classes. As there
is a clear semantic axis in SSB benchmark, and data augmentations implicitly define this ‘semantic
axis’ or taxonomy in contrastive learning, SPT as a learned data augmentation ultimately enhances
the GCD performance. This indicates that global and local prompts assist the model in focusing on
details that dominate correctness in fine-grained recognition in GCD.
Table 3: Evaluation on the Semantic Shift Benchmark (SSB) and Herbarium 19. Bold values represent
the best results, while underlined values represent the second best results.

CUB Stanford Cars FGVC-Aircraft Herbarium19

Method All Old New All Old New All Old New All Old New

k-means Arthur & Vassilvitskii (2006) 34.3 38.9 32.1 12.8 10.6 13.8 12.9 12.9 12.8 13.0 12.2 13.4
RankStats+ Han et al. (2021) 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8 27.9 55.8 12.8
UNO+ Fini et al. (2021) 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7 28.3 53.7 14.7
GCD Vaze et al. (2022) 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0
ORCA Cao et al. (2022) 36.3 43.8 32.6 31.9 42.2 26.9 31.6 32.0 31.4 20.9 30.9 15.5
SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 43.0 58.0 35.1
DCCL Pu et al. (2023) 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - -
PromptCAL Zhang et al. (2023) 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 37.0 52.0 28.9

SPTNet (Ours) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 43.4 58.7 35.2

4.3 ABLATION STUDY

In this part, we primarily focus on the challenging SSB to assess the effectiveness of different
components and report the averaged results among CUB, Stanford Cars, and FGVC-Aircraft. As
our method employs the same pre-trained model and objective function as SimGCD, we consider
SimGCD as the baseline method for comparison.
Effect of prompt-related techniques. We first experiment with the strong SimGCD baseline using
the recommended configuration in Wen et al. (2023). Table 4 presents the results of the ablation study
on the components of our SPT. The 2nd row shows the performance of adopting the VPT method on
the pre-trained SimGCD. Comparing with the raw SimGCD base in the 1st row, the performance after
adopting VPT is dropped. After adopting the global prompt (3rd row) on the pre-trained SimGCD,
the performance is increased by 0.6% on ‘All’ classes. This indicates that naively applying existing
prompt tuning methods does not yield satisfactory performance on GCD; the improvement by the
global prompt, though marginal, is still encouraging, as it suggests that the pixel-level prompt method
is suitable for the GCD setting when compared with VPT. Adopting our SPT (4th row) on pre-trained
SimGCD gives a relatively larger improvement of 1.8% on ‘All’ classes. The effectiveness of our
proposed method may be attributed to the spatial design for exploring semantic discrimination in local
regions. Our alternate training strategy (5th & 7th rows) can effectively improve the performance,
demonstrating its effectiveness. We also explore a variant of SPT by using shared prompts across all
patches (6th row), which also demonstrates promising performance. After further introducing the
global prompts (7th & 8th row), the performance is further improved. The 8th row corresponds to
our default SPTNet, which achieves the best performance. We refer to the variant in the 5th row as
SPTNet-S (Shared), and the variant in the 6th row as SPTNet-P (Patch). Both of these variants are
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Table 4: Comparison on effectiveness of different prompting methods on SSB. We report the average
test accuracy score over all component datasets of SSB (i.e., CUB, Stanford Cars and FGVC-Aircraft).
‘Shared’ and ‘Alter’ refer to a single shared prompt for all patches and alternative learning. Row (9)
represents SPTNet and rows (5) and (6) represent its two variants SPTNet-S and SPTNet-P.

No Method config Prompt config All Old New

(1)

SimGCD Wen et al. (2023)

None (baseline) 56.1 65.5 51.5
(2) +VPT Jia et al. (2022) 54.4-1.7 64.7-0.8 49.1-2.4

(3) +Global Bahng et al. (2022) 56.7+0.6 64.6-0.9 53.5+2.0

(4) +SPT 57.9+1.8 67.2+1.7 53.3+1.8

(4)
+Alter

+Global Bahng et al. (2022) 57.8+1.7 66.3+0.8 53.8+2.3

(5) +Shared 60.5+4.4 68.6+3.1 56.5+5.0

(6) +SPT 59.1+3.0 68.5+3.0 54.5+3.0

(7) +Alter +Shared & Global Bahng et al. (2022) 60.9+4.8 69.0+3.5 57.3+5.8

(8) +SPT & Global Bahng et al. (2022) 61.4+5.3 69.9+4.4 57.5+6.0

relatively more parameter efficient (see Appendix A for details), spatially SPTNet-S, while obtaining
superior performance (more results of these two variants can be found in Appendix C).
Effect of different training strategies. To investigate the impact of different training strategies,
we conduct additional experiments on both generic and fine-grained datasets. We consider two
different training strategies, namely, (i) end-to-end (3rd row): both the data parameters and the
model parameters are jointly trained in an end-to-end fashion; (ii) data first (4th row): the prompt
parameters are optimized first, followed by the model parameters; (iii) model first (5th row): the
model parameters are optimized first, followed by the prompt parameters; and (iv) alternative (6th
row): our alternative training strategy, which optimizes model and data parameters alternatively, every
other k iterations. The results are presented in Table 5. Comparing rows (3)-(6) with the SimGCD
baseline in row (1), we can see that SPTNet consistently outperforms SimGCD and our alternative
training strategy leads to the best performance. Since the SPTNet is built upon the pre-trained
SimGCD, one might wonder about the performance of further fine-tuning SimGCD. In the 2nd

row, we show the results after further fine-tuning the pre-trained SimGCD. An improvement can
be achieved, while the margin is significantly smaller compared with the improvement achieved by
SPTNet. This suggests that both our SPT and alternate training strategy are beneficial for GCD.

Table 5: Evaluation on ImageNet-100 and SSB using different training strategies.
ImageNet-100 SSB

No Methods All Old New All Old New

(1) SimGCD Wen et al. (2023) 83.0 93.1 77.9 56.1 65.5 51.5
(2) SimGCD (further fine-tune) 84.3 93.1 79.7 57.0 66.0 52.3

(3) SPTNet (end-to-end) 84.1 92.8 80.0 58.6 67.4 53.2
(4) SPTNet (data first) 83.5 92.9 77.7 58.0 66.4 51.9
(5) SPTNet (model first) 84.8 93.3 80.6 59.2 67.8 54.9
(6) SPTNet (alternative) 85.4 93.2 81.4 61.4 69.9 57.5

Effects of alternating frequency and prompt size. In our alternative training strategy, we alternate
between the data and model parameter optimization every other k iterations. Meanwhile, we also need
to determine the spatial prompt size m. In Fig. 3, we present the average ACC on SSB with varying
k and m respectively. For k, we do not observe significant differences among different choices, and
thus use a moderate value of 20 as our default choice. For m, we find that a smaller value generally
leads to better performance. When m is too large, the image content might be over-occluded, causing
difficulty for the model to properly recognize the object. We also show the effects of global prompt
size in Appendix D.

(a) Alternating frequency (b) Prompt size
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Figure 3: Effects of different choices of alternating frequency (a) and prompt size (b) on SSB (i.e.,
CUB, Stanford Cars and FGVC-Aircraft). We report the averaged results and show the influence on
‘All’, ‘Old’ and ‘New’ classes.
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SimGCD SimGCD+VPT SPTNet-P SPTNet

dogfrog horseshiptruckdeer airplane bird cat automobileSeen Unseen

Figure 4: t-SNE visualization of representations on CIFAR-10. SPTNet produces the most discrimi-
native representations among all compared methods.

4.4 QUALITATIVE COMPARISON

How do prompts affect the representations? To investigate the influence of different visual prompts,
we visualize representations on CIFAR-10 through t-SNE Van der Maaten & Hinton (2008) in Fig. 4.
We compare representations of the SimGCD baseline, SimGCD+VPT, SPTNet, as well as SPTNet-P
(which contains only the spatial prompts). They correspond to the models in row (1), row (2), row
(8), and row (6) in Table 4. Comparing the representations of SimGCD and SimGCD+VPT, VPT
appears to have a negative impact on the representation, leading to clutter between seen and unseen
classes (e.g., bird and dog) in the GCD setting. This is also aligned with the deteriorated performance
of SimGCD+VPT in Table 4. Both SPTNet-P and SPTNet produce more discriminative features and
more compact clusters than SimGCD. Thanks to the global prompt, SPTNet further improves the
representation over STPNet-P.
How do prompts affect the model’s attention? The attention map provides very helpful clues to
understanding the Transformer-based models’ focus on the input. We extract the attention maps for
the CLS token from different attention heads in the last layer of the ViT backbone and show the top
10% most attended patches in Fig. 5. We observe that for SimGCD and SimGCD+Global (i.e., row (4)
in Table 4), different heads may focus on the same region (e.g., in the ‘seen’ example, h2/h3/h10 of
SimGCD and h4/h5/h9 of SimGCD+Global) and some heads may attend to the background regions
(e.g., in the ‘unseen’ example, h2/h4/h7 for SimGCD and h1/h5 for SimGCD+Global). In contrast,
SPT and SPT&Global attend to more diverse regions of the object and focus more on the foreground
object regions, with the latter performing better.
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Figure 5: Attention visualization of different heads (numbered as h1 to h12). The top 10% attended
patches are shown in red.

More results and analysis can be found in the Appendix.

5 CONCLUSION

In conclusion, we have introduced SPTNet, an efficient framework for Generalized Category Discov-
ery (GCD). We propose a two-stage alternative optimization scheme, optimizing both model and data
parameters, to enhance alignment between the pre-trained model and the target task. Additionally, we
introduce spatial prompt tuning (SPT) as a method to focus on object parts and facilitate knowledge
transfer between seen and unseen classes. Experimental evaluations demonstrate the superiority of
SPTNet over existing methods.
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A DISCUSSION ON DIFFERENT VARIANTS OF SPTNET

As discussed in Section 3.3, our default SPTNet has both spatial and global prompts. In Section 4.3,
we also introduce two variants of SPTNet with reduced prompt parameters, SPTNet-P (Patch) and
SPTNet-S (Shared). SPTNet-P attaches only the spatial prompts without the global prompt to the
input (row 6 in Table 4). The spatial prompts vary for different patches. SPTNet-S attaches a single
shared spatial prompt without the global prompt to the input (row 7 in Table 4). In Figure 6, we
compare the prompts of SPTNet, SPTNet-P and SPTNet-S.
As SPT wraps a small number of parameters around the raw input image in a rectangular shape with
a width of m. As also discussed in Section 3.3, the number of parameters for the spatial prompt of
each patch is 6m(h + w − 2m). Let h = w = 16, m = 1, and the number of patches n = 196.
The number of parameters for a single spatial prompt is 6× 1× (16 + 16− 2) = 5, 880. 196 such
prompts give 196× 5, 880 = 35, 280 ≈ 0.034M parameters. As for the global padding, the number
of parameters is 6m+(H + W − 2m+). Let H = W = 224. The number of parameters for the
global prompt is 6× 30× (224+224− 60) = 69, 840. Therefore, the total number of parameters for
SPT & Global is 35, 280+ 69, 840 = 105, 120. As the backbone model, ViT-B, has 86M parameters,
SPTNet, SPTNet-P, and SPTNet-S only introduce 0.117%, 0.039%, and 0.0002% extra parameters
compared to ViT-B, respectively.

(a) SPTNet

HH

W W
(c) SPTNet-S

m+
m

H

W
(b) SPTNet-P

m

Figure 6: Prompts of SPTNet, SPTNet-P and SPTNet-S. SPTNet has both distinct spatial prompts
and a global prompt; SPTNet-P has multiple distinct spatial prompts; SPTNet-S has a single shared
spatial prompt.
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B TRAINING CONFIGURATIONS FOR SPTNET-P AND SPTNET-S
We show the training configurations for SPTNet-P and SPTNet-S in Table 6 and Table 7 respectively.
The prompt size of SPT m is set to 1 by default for both SPTNet-P and SPTNet-S. We set the global
prompt size m+ in SPTNet to 30 (see Appendix D). For the ViT model, specifically, we resize all
the input images into 224× 224, so we have h× w = 14× 14 = 196 patches with a resolution of
16× 16 pixels.

Table 6: Training configurations for SPTNet-P / SPTNet-S.
Configs

Dataset lrb wdb lrp wdp k m

CIFAR10 Krizhevsky et al. (2009) 3e-3 5e-4 20.0 0 20 1
CIFAR100 Krizhevsky et al. (2009) 1e-3 5e-4 1.0 0 20 1
ImageNet-100 Tian et al. (2020) 3e-3 5e-4 10.0 0 20 1
Herbarium 19 Tan et al. (2019) 5e-3 5e-4 1.0 0 20 1
CUB Welinder et al. (2010) 0.05 5e-4 25.0 0 20 1
Stanford Cars Krause et al. (2013) 0.05 5e-4 10.0 0 20 1
FGVC-Aircraft Maji et al. (2013) 0.05 5e-4 1.0 0 20 1

Table 7: Training configurations for SPTNet.
Configs

Dataset lrb wdb lrp wdp k m m+

CIFAR10 Krizhevsky et al. (2009) 3e-3 5e-4 1.0 0 20 1 30
CIFAR100 Krizhevsky et al. (2009) 3e-3 5e-4 5.0 0 20 1 30
ImageNet-100 Tian et al. (2020) 3e-3 5e-4 5.0 0 20 1 30
Herbarium 19 Tan et al. (2019) 5e-3 5e-4 1.0 0 20 1 30
CUB Welinder et al. (2010) 0.05 5e-4 25.0 0 20 1 30
Stanford Cars Krause et al. (2013) 0.05 5e-4 10.0 0 20 1 30
FGVC-Aircraft Maji et al. (2013) 0.05 5e-4 1.0 0 20 1 30
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C BENCHMARKING RESULTS OF SPTNET-P AND SPTNET-S
We further evaluate the performance of the more parameter-efficient SPTNet variants, SPTNet-P and
SPTNet-S, in Table 8 and Table 9. As can be seen, SPTNet, SPTNet-P and SPTNet-S consistently
outperform the baseline in all cases.
Table 8: Evaluation on three generic image recognition datasets. Bold values represent the best
results, while underlined values represent the second best results.

CIFAR-10 CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New

SimGCD Wen et al. (2023) 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9

SPTNet-P (Ours) 97.5 95.2 98.5 82.0 85.5 75.0 85.5 93.9 81.2
SPTNet-S (Ours) 97.5 95.9 98.3 81.0 83.8 75.4 85.5 94.1 81.2
SPTNet (Ours) 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4

Table 9: Evaluation on the Semantic Shift Benchmark (SSB) and Herbarium 19. Bold values represent
the best results, while underlined values represent the second best results.

CUB Stanford Cars FGVC-Aircraft Herbarium19

Method All Old New All Old New All Old New All Old New

SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 43.0 58.0 35.1

SPTNet-P (Ours) 64.6 70.5 61.6 55.6 74.4 46.5 57.2 60.6 55.5 43.3 58.0 35.5
SPTNet-S (Ours) 65.0 69.1 62.9 60.1 75.3 52.8 56.3 61.4 53.8 43.4 58.6 35.2
SPTNet (Ours) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 43.4 58.7 35.2
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D EFFECTS OF GLOBAL PROMPT SIZE m+

As the global prompt size m+ may affect the performance of SPTNet, we experiment with different
global prompt sizes, namely m+ = 1, 10, 20, 30, 40, 50. We measure accuracy on the CUB dataset
using the same architecture and configurations in the main paper. Fig. 7 demonstrates that m+ = 30
yields the best overall performance, which is the default setting in our main paper.

CUB

A
C

C
 (%

)

59.0

63.0

67.0

71.0

75.0

m+

1 10 20 30 40 50

59.6

64.765.165.0

62.8
61.5

64.3

68.0
68.868.7

69.3
70.5

62.1

65.1
65.865.765.2

64.6

All Old New

Figure 7: Performance of SPTNet with different global prompt sizes m+ on CUB. We show the
influence on ‘All’, ‘Old’ and ‘New’ classes. When m+ is set to 30, SPTNet achieves the best
performance on ‘All’ categories.
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E VISUALIZATION OF LEARNED PROMPTS

We visualize different prompts after convergence in Fig. 8. Except for the end-to-end strategy,
SPT and its variants commonly exhibit active parameters in prompts. This is attributed to their
instance-agnostic nature, which enables them to handle variations in object locations across the
dataset. Consequently, parameter values do not degrade to zero for a region patch that is background
in one input but foreground in another. It is also worth noting that most prompts (particularly located
at the borders) are deactivated when employing the end-to-end strategy. We hypothesize that this
is due to the network unintentionally adopting a “shortcut" approach, where it only updates model
parameters to achieve invariance to learned augmentation while optimizing both model and data
(prompt) parameters simultaneously. This also validates the need for alternate training when learned
augmentation is applied.

SPTNetSPTNet-PSPTNet-S
SPTNet 


(end-to-end)

Figure 8: Visualization of different learned prompts. Parameters of SPT and its variants are mostly
active, while most prompts are much less active when employing the end-to-end strategy.
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F RESULTS BASED ON DINOV2
Here, we replace the pre-trained DINO model with the recently improved DINOv2 model Oquab
et al. (2024) which is empowered with stronger representation capacity from unlabelled data. Results
are shown in Table 10. We can observe that the stronger DINOv2 representation indeed enhances
model performance as expected, especially in the ‘New’ categories, and SPTNet and the two variants
still consistently outperform SimGCD.
Table 10: Evaluation on CUB and ImageNet-100 using the pre-trained DINOv2 model. Bold values
represent the best results, while underlined values represent the second best results.

CUB ImageNet-100

Method All Old New All Old New

DINO+SimGCD Wen et al. (2023) 60.3 65.6 57.7 83.0 93.1 77.9
DINO+SPTNet-P (Ours) 64.6 70.5 61.6 85.5 93.9 81.2
DINO+SPTNet-S (Ours) 65.0 69.1 62.9 85.5 94.1 81.2
DINO+SPTNet (Ours) 65.8 68.8 65.1 85.4 93.2 81.4

DINOv2+SimGCD Wen et al. (2023) 67.4 69.5 66.3 88.5 96.2 84.6
DINOv2+SPTNet-P (Ours) 69.0 69.7 68.7 90.5 96.3 87.5
DINOv2+SPTNet-S (Ours) 69.0 70.3 68.3 90.6 96.4 87.6
DINOv2+SPTNet (Ours) 69.2 69.0 69.3 90.1 96.1 87.1
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G ROBUSTNESS OF SPTNET FOR GCD WITH DOMAIN SHIFTS

To validate the robustness of SPTNet, we test our method in a more challenging setting, GCD with
domain shifts. We conduct experiments on the largest UDA dataset DomainNet Peng et al. (2019),
containing about 0.6 million images with 345 categories distributed among six domains. We apply
the data construction process in Vaze et al. (2022) to construct the‘Old’, ‘New’ and ‘All’ splits based
on DomainNet and evaluate different methods on our constructed data. To account for domain shifts
that were not considered in Vaze et al. (2022), we construct the partially labelled data by using images
from both the ‘real’ domain and the ’painting’ domain to train the model. Specifically, we utilise
a subset of labelled images from select classes in the ‘real’ domain, along with unlabelled images
from all classes in the ‘painting’ domain. We assess the model’s performance on both the ‘real’ and
‘painting’ domains. Additionally, we evaluate the model on images from other previously unseen
domains, including ‘quickdraw’, ‘sketch’, ‘infograph’, and ‘clipart’. Results are shown in Table 11.
Compared with other baseline methods in the vanilla GCD setting, we find that SPTNet can perform
well on (i) labelled and seen domain (i.e., ‘real’), (ii) unlabelled but seen domains (i.e., ‘painting’)
and (iii) unseen domains (i.e., others, including ‘quickdraw’, ‘sketch’, ‘infograph’, and ‘clipart’).
Table 11: Evaluation on the DomainNet benchmark. The model is trained on the ‘real’ and ‘painting’
domains and we report the respective results on real, painting and the remaining four domains (i.e.,
others). Bold values represent the best results, while underlined values represent the second best
results.

Real Painting Others

Methods All Old New All Old New All Old New

RankStats+ 34.1 61.9 19.7 29.7 49.7 9.6 14.3 25.5 5.5
UNO+ 44.2 72.2 29.7 30.1 45.1 17.2 14.0 23.4 7.4
ORCA 31.9 49.8 23.5 28.7 38.5 7.1 10.4 19.5 8.1
GCD 47.3 53.6 44.1 32.9 41.8 23.0 15.2 22.0 11.1
SimGCD 61.3 77.8 52.9 34.5 35.6 33.5 16.7 22.5 12.2

SPTNet (Ours) 63.1 75.9 56.4 39.2 43.1 35.2 17.4 22.2 13.6
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H UNKNOWN CATEGORY NUMBER

As the total number of categories (GT) cannot be accessed in the real-world setting, we evaluate
our SPTNet-P with an estimated number of categories using an off-the-shelf method Vaze et al.
(2022) (see Table 12) We also evaluate our method with varying category numbers (see Fig. 9). Our
evaluation includes two representative datasets: CUB for fine-grained and ImageNet-100 for generic
classification tasks. We find that our method consistently outperforms SimGCD on both datasets
when the exact number of categories is unknown.
Table 12: Performance of SPTNet-P and the baseline method SimGCD with an estimated number of
categories on CUB and ImageNet-100. Bold values represent the best results.

CUB ImageNet-100

Method |C| All Old New All Old New

SimGCD Wen et al. (2023) GT (200/100) 60.3 65.6 57.7 83.0 93.1 77.9
SPTNet-P (Ours) GT (200/100) 64.6 70.5 61.6 85.5 93.9 81.2
SimGCD Wen et al. (2023) Est. (231/109) 61.0 66.0 58.6 81.1 90.9 76.1
SPTNet-P (Ours) Est. (231/109) 65.2 71.0 62.3 83.4 91.8 74.6
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Figure 9: Performance with varying category numbers. We experiment with category numbers
obtained by multiplying the GT number with different factors C ′ = {0.1, 0.5, 1.0, 2.0, 10.0}.

We also evaluate our SPTNet-P on CIFAR-100 dataset with fewer known categories. The results are
shown in Fig. 10, where 50% of the samples from known classes are labelled. The results indicate that
SPTNet is robust in few-class scenarios and outperforms the concurrent method, PromptCal Zhang
et al. (2023). It is more challenging for models to infer novel semantic clustering when fewer classes
are known due to semantic shifts, resulting in decreased performance for all methods. This further
demonstrates the effectiveness of our proposed method.
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Figure 10: Performance with a varying number of known classes |C1|.
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I PERFORMANCE AND TIME EFFICIENCY

To assess the practicality of different methods, we conducted further comparisons in terms of accuracy,
training time per epoch, and inference time. The results are presented in Table 13. Our proposed
SPTNet demonstrates superior accuracy while obtaining mostly the best time efficiency.
Table 13: Time efficiency of different methods on ImageNet-100 and SSB. Bold values represent the
best results.

ImageNet-100 SSB

Method Accuracy (All) Training time (Sec) Inference time (Sec) Accuracy (All) Training time (Sec) Inference time (Sec)

GCD Vaze et al. (2022) 74.1 803 2289 51.3 58 552
SimGCD Wen et al. (2023) 83.0 847 591 56.1 64 17
PromptCAL Zhang et al. (2023) 83.1 1817 893 55.1 492 103
SPTNet (Ours) 85.4 483 601 61.4 32 17
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J THEORETICAL ANALYSIS ON OUR ALTERNATE TRAINING

To estimate the model parameters θ, it is common to introduce the log-likelihood function L(θ) =
lnP(X | θ). This function quantifies the likelihood of the parameter θ given the data X . As the
natural logarithm function, lnX , is monotonically increasing, maximizing P(X | θ) is equivalent to
maximizing L(θ). In other words, maximizing the log-likelihood function L(θ) achieves the same
objective.
The EM algorithm is an iterative procedure designed to maximize L(θ). Let θt denote the current
estimate for θ after the t-th iteration. Our goal is to calculate an updated estimate θ that maximizes
L(θ):

L(θ)− L (θt) = lnP (X | θ)− lnP (X | θt)

= ln


∑

p1:n

P(X | p1:n, θ)P(p1:n | θ)


− lnP (X | θt)

= ln
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∑
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)

≜ H (θ | θt) .

(5)

Let l (θ | θt) = L (θt) +H (θt | θt) which is bounded above by the likelihood function L (θ). Let
θ = θt, we observe that:

l (θt | θt) = L (θt) +H (θt | θt)

= L (θt) +
∑

p1:n

P
(
p1:n | X, θt

)
ln
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ln 1
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(6)

Note that in general, P(X | p1:n, θt)P(p1:n | θt) cannot be equal to P(X, p1:n | θt) since p1:n is
conditioned on both X and θ. Consequently, the factorized form does not equal the joint distribution.
As a result, for θ = θt, the functions l (θ | θt) and L(θ) are not equal.
Our objective is to find the θ that maximizes the function L(θ). While l(θ|θt) and L(θ) may not
be equal for the current estimate θ = θt, it still holds that l(θ|θt) is bounded by L(θ). Therefore,
increasing l(θ|θt) will also increase L(θ). To achieve the greatest increase in L(θ), the EM algorithm
selects an updated θt+1 that maximizes l(θ|θt):

θt+1 = argmax
θ

{l (θ | θt)}

= argmax
θ


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L (θt) +

∑
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(7)
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Ignoring terms which are constant w.r.t. θ, the equation can be further deduced:

θt+1 = argmax
θ




∑

p1:n

P
(
p1:n | X, θt

)
lnP(X | p1:n, θ)P(p1:n | θ)





= argmax
θ




∑

p1:n

P
(
p1:n | X, θt

)
ln

P(X, p1:n, θ)

P(p1:n, θ)

P(p1:n, θ)

P(θ)





= argmax
θ




∑

p1:n

P
(
p1:n | X, θt

)
lnP(X, p1:n | θ)





= argmax
θ

{
Ep1:n|X,θt{lnP(X, p1:n | θ)}

}
.

(8)

The alternate training algorithm thus consists of iterating (1) E-step: Determine the conditional
expectation Ep1:n|X,θt{lnP(X, p1:n | θ)}. (2) M-step: Maximize this expression with respect to θ.
It is evident that end-to-end training for maximizing L(θ) is not equivalent to two-stage learning
l(θ|θt) in the converged state, as verified in Eq. (6). Another advantage of two-stage learning is
that it provides a framework for better estimation for both model and data parameters. This is
further supported by the evidence presented in Fig. 8, where end-to-end training leads to sub-optimal
solutions for p1:n.

24



Published as a conference paper at ICLR 2024

K MORE VISUALIZATION AND ANALYSIS OF ATTENTION MAPS

We visualize attention maps from different heads in the last layer of the ViT backbone for multiple
datasets. The query position is selected either as the CLS token (in Fig. 11, Fig. 12, Fig. 13) or the
local region on the edge of the foreground object (in Fig. 14, Fig. 15, Fig. 16, Fig. 17). We show the
top 60% most attended patches in red for different attention heads. We observe that SPTNet-P and
SPTNet can attend to more salient object regions, likely due to their ability to learn local invariance.
Besides, SPTNet-P and SPTNet cover more diverse regions of the salient object regardless of query
positions, illustrating more diverse attention patterns across heads. A similar phenomenon can be
found in Stanford Cars and FGVC-Aircraft in Fig. 11 and Fig. 12 for the CLS token and Fig. 15 and
Fig. 16 for the edge position, as well as in the generic dataset (e.g., ImageNet) in Fig. 13 and Fig. 17.
We also investigate the impact of our proposed SPT by separating the prompt and backbone from
SPTNet-P. We remove the prompt component from a well-trained SPTNet-P and visualize the
attention maps by feeding raw images to the backbone only, referred to as SPTNet-P (w/o prompt)’.
Upon comparing the attention maps with and without patch-wise prompts, we observe that SPTNet-P
with prompts (i.e., the 3rd column) exhibits clearer attention on foreground objects compared to
SPTNet-P without prompts (i.e., the 2nd column). This indicates that the learned prompts help elicit
critical features for recognition. Additionally, when considering a generic dataset like ImageNet-100,
we notice that there is no significant difference between the attention maps of models with and
without prompts, resulting in an inferior performance boost compared to the fine-grained datasets.

SimGCD SPTNet-P SPTNet

S
ee

n 
cl

as
s

U
ns

ee
n 

cl
as

s

SPTNet-P 
(w/o prompt)

Figure 11: Attention visualization on Stanford Cars, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token.

To explore the difference of performance boost between generic and fine-grained datasets, we transfer
a pre-trained model from a fine-grained dataset to a generic one in Fig. 22. Since the overlap between
ImageNet-100 and fine-grained datasets only contains various types of birds, we select some bird
samples from ImageNet-100 as inputs and visualize the attention map of two models: (1) trained on
ImageNet-100 and (2) trained on CUB. The model trained on CUB appears to focus more on local
regions, while the one trained on ImageNet-100 pays more attention to the entire object. Furthermore,
based on the quantitative comparison presented in Section 4.3 and Appendix C, we observe that
SPTNet-P outperforms SPTNet on the ImageNet-100 dataset but performs worse than SPTNet on
CUB. Additionally, as depicted in Figure 22, we can observe that when more diverse attention is
focused on different regions of the object, it corresponds to improved performance. This indicates that
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Figure 12: Attention visualization on FGVC-Aircraft, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token.

the ability of the model to concentrate attention on various object regions is beneficial for achieving
better results. For instance, when comparing ‘SPTNet-P’ and ‘SPTNet’ trained on the ImageNet-
100 dataset, we observe that ‘SPTNet-P’ exhibits a higher concentration on the objects compared
to ‘SPTNet.’ This observation aligns with the qualitative comparison, indicating that ‘SPTNet-P"
performs better than ‘SPTNet’ on ImageNet-100. Similarly, when considering ‘SPTNet-P (from
CUB)’ and ‘SPTNet (from CUB)’ trained on the CUB dataset, we notice that ‘SPTNet’ demonstrates
a stronger focus on the objects compared to ‘SPTNet-P’. This observation is consistent with the
qualitative comparison, suggesting that ‘SPTNet’ outperforms ‘SPTNet-P’ on CUB.
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Figure 13: Attention visualization on ImageNet-100, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token.
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Figure 14: Attention visualization on CUB, for 12 different attention heads in the last layer of the
ViT backbone, by querying the point marked as green.

28



Published as a conference paper at ICLR 2024

SimGCD SPTNet-P SPTNet

S
ee

n 
cl

as
s

U
ns

ee
n 

cl
as

s

Figure 15: Attention visualization on Stanford Cars, for 12 different attention heads in the last layer
of the ViT backbone, by querying the point marked as green.
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Figure 16: Attention visualization on FGVC-Aircraft, for 12 different attention heads in the last layer
of the ViT backbone, by querying the point marked as green.
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Figure 17: Attention visualization on ImageNet-100, for 12 different attention heads in the last layer
of the ViT backbone, by querying the point marked as green.
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Figure 18: Attention visualization on CUB, for 12 different attention heads in the last layer of the
ViT backbone, by querying the CLS token. SPTNet-P and SPTNet can automatically identify salient
objects, likely due to their ability to learn local invariance. Upon comparing the attention maps with
and without patch-wise prompts, we observe that SPTNet with prompts (i.e., the 3rd column) exhibits
more concentrated attention on the salient object compared to SPTNet without prompts (i.e., the 2nd

column). This indicates that our learned prompts help elicit critical features for recognition.
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Figure 19: Attention visualization on Stanford Cars, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token. SPTNet-P and SPTNet can automatically identify
salient objects, likely due to their ability to learn local invariance. Upon comparing the attention maps
with and without patch-wise prompts, we observe that SPTNet with prompts (i.e., the 3rd column)
exhibits more concentrated attention on the salient object compared to SPTNet without prompts (i.e.,
the 2nd column). This indicates that our learned prompts help elicit critical features for recognition.
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Figure 20: Attention visualization on FGVC-Aircraft, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token. SPTNet-P and SPTNet can automatically identify
salient objects, likely due to their ability to learn local invariance. Upon comparing the attention maps
with and without patch-wise prompts, we observe that SPTNet with prompts (i.e., the 3rd column)
exhibits more concentrated attention on the salient object compared to SPTNet without prompts (i.e.,
the 2nd column). This indicates that our learned prompts help elicit critical features for recognition.
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Figure 21: Attention visualization on ImageNet-100, for 12 different attention heads in the last layer
of the ViT backbone, by querying the CLS token. SPTNet-P and SPTNet can automatically identify
salient objects, likely due to their ability to learn local invariance. Upon comparing the attention maps
with and without patch-wise prompts, we observe that SPTNet with prompts (i.e., the 3rd column)
exhibits more concentrated attention on the salient object compared to SPTNet without prompts (i.e.,
the 2nd column). This indicates that our learned prompts help elicit critical features for recognition.

SPTNet-P SPTNet-P (from CUB) SPTNet SPTNet (from CUB)

Figure 22: Attention visualization for models trained on ImageNet-100 and CUB by applying them
to bird images from ImageNet-100. The models trained on CUB are marked as ‘(from CUB)’.
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L BROADER IMPACTS

Our study is among the efforts to extend the capability of AI systems from the closed world to the
open world. Particularly, it will play a positive role in fostering next-generation AI systems with the
capability of categorizing and organizing open-world data automatically. However, our method still
has several limitations. First, though we have achieved encouraging results on the public datasets,
the interpretability still needs improvement, as the underlying principles of how the decisions are
made by the systems remain not crystal clear. Second, the cross-domain robustness is not satisfactory,
as can be seen from the results on the setting of GCD with domain shifts, though our method has
achieved the best overall results and new class discovery results, the performance still has significant
room to improve. Additionally, in the vanilla GCD setting, methods typically rely on a pre-trained
model (e.g., DINO) as a feature extractor, which may inherit its drawbacks (e.g., discrimination and
privacy issues).
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