Under review as a conference paper at ICLR 2023

Table AS: Tensorization shape search space for the query, value, key, and projection weight matrices
with three factorization methods.

Model | Candidate orders .Top—k Candidate ranks Compre§ sion Ratio #Candidates
Candidate shapes Limits
TTM 6,8, 10 3 Multiple of 32 0.35~0.5 3235
Tucker 4,6,8 3 Multiple of 8 0.35~0.5 4754
CP 2,3 3 Multiple of 32 0.35~0.5 44

A1l MEMORY ACCESS TYPES FOR FUSED EINSUM

To implement fused einsum, we separate all nodes in the tensor contraction path p into 4 categories
according to their memory access types, as shown in Fig. 5.

e Type 1: Load dynamic (D) input from DRAM and static (S) weights from the global buffer
(GB), and write the intermediate tensor back to GB for data reuse.

e Type 2: Only read/write from/to GB without costly DRAM transaction.
e Type 3: Load both operands from GB and write the final results back to DRAM.
e Type 4: Load one dynamic input from DRAM and write the final results to DRAM.

Different node types are simulated with corresponding memory access constraints in Timeloop, so
we can implement a fused einsum without unnecessary DRAM access.

A2 HARDWARE COST SIMULATION SETTINGS

To construct the hardware cost table 7, we construct the tensorization shape candidate spaces in
Table AS5. For each shape, we collect all candidate ranks that are multiples of 32 or 8 and satisfy the
compression ratio constraints. We use Timeloop with TSMC 5 nm energy model to simulate the
fused einsum operation corresponding to each shape-rank pair. Our Simba-L architecture has a
2.91 MB global buffer and 32 PEs. Each PE has 32 32-KB weight buffers, one 64-KB input buffer,
32 384-B accumulation buffers, and 1024 8-bit MAC units. The hardware mapping objective of
Timeloop-mapper is to minimize the energy-delay product. Based on the simulated hardware
cost table 7, we use the paretoset library to automatically select the Pareto optimal tensorization
shape for the subsequent rank search flow.

A3 RANK SUPERNET TRAINING SETTINGS

With the searched optimal tensorization shape s*, we construct a Rank SuperNet with maximum
ranks following a ~60% target compression ratio. We use the original fine-tuned BERT-base as the
teacher model and launch the 10-epoch logit distillation flow to train the Rank SuperNet. We use
Adam optimizer with a learning rate of 3e-5 and a linear decay schedule. In the limited difference
technique, we restrict the maximum allowed rank change across iterations to 3. We use a sandwich
rule with one largest SubNet, one smallest SubNet, and two randomly sampled SubNets.

A4 PER-TENSOR RANK SEARCH SETTINGS

With the trained Rank SuperNet, we uniformly sample 2560 SubNets with the largest and smallest
SubNets and evaluate their validation F1 scores on a 5% validation set. We use 95% SubNet
evaluation data to train a random forest ensemble model as the accuracy predictor. The model is an
AdaBoostRegressor with 100 ExtraTreeRegressor, each tree regressor containing 60 decision trees
with a maximum depth of 10.

In the evolutionary search stage, we use 200 populations with 40 parents, 80 mutations with 50%
mutation probability, and 80 crossovers. After 100 steps, we obtain the optimal per-tensor rank
settings.

Al2

https://github.com/tommyod/paretoset

Under review as a conference paper at ICLR 2023

'}% 08 HEAT-a1 Hquery

=

o
= 0.6 = key
'g 0.4 value
o B proj
S0.2 bre!
S m fc1
O L L L ||

0 Layer m fc2
20.8
T HEAT-a2 uquery
o6
0 " key
©0.4 value
5 B proj
2'0.2 proj
8 m fc1

0 L L] L

Layer m fc2
0.8
E HEAT-a3 mquery
= 0.6 key
204 value
2 u proj
g'O.Z u f 1J
5 C
O m fc2
Layer

Figure A13: Compression ratio breakdown on each matrix in our HEAT-variants with TTM decom-
position.

A5 KNOWLEDGE DISTILLATION SETTINGS

We use a two-stage knowledge distillation flow to train the model with the searched (s*, r*) settings.
We use the original BERT-base as the teacher model. We first launch an 8-epoch layer-wise distillation
flow with attention and hidden state mapping with a constant learning rate of 3e-5 for TTM and
Tucker, le-5 for CP. Then, we launch an 8-epoch logit distillation flow with an initial learning rate of
le-5 on SQuAD-v1.1 and 6e-6 on SST-2 and a linear decay rate with 10% warm-up.

A6 BREAKDOWN OF SEARCHED HEAT VARIANTS

Compression Ratio. We plot the compression ratio breakdown of our searched HEAT-variants in
Fig. A13. We can observe that deeper layers tend to have higher redundancy and thus have fewer
parameters. Feedforward networks tend to have a lower compression ratio (fewer parameters) than
query/value/key matrices.

Latency and Energy. In Fig. A14, the fully-connected (FC) layers in FFNs have lower compression
ratios but nearly 4 x higher latency than other linear layers. The batched matrix multiplication (BMM)
in attention operations, i.e., QKT and AVT, only take around 5.3% total latency and 19.5% total
energy in the entire network, which validates that the most costly operations in Transformer are
indeed linear layers.

A7 DECOMPOSITION ON EMBEDDING LLAYERS

Some prior work applies low-rank decomposition on the embedding layer in Transformer models and
claims it can save parameters. However, when off-chip DRAM capacity is not a limiting factor, this
embedding layer decomposition comes with a non-trivial accuracy drop and no hardware efficiency
benefits. Indexing the original look-up table only contains DRAM read without extra computations.
In contrast, indexing factorized tensors is very costly and requires tensor dot-product among all

Al3

Under review as a conference paper at ICLR 2023

2.63% 7.89%
%\28 HEAT-a3 2.63% g0 ™ query
S " key
%40 ‘ 7.71% = value
<30 = proj
> o W
% 20 7 78% " ;g;
w10 = bmm1
) = bmm2
Layer
600
HEAT-a3 9.87% 7.22% = query
q500 a 9.70%, 7:33% = key
2400 712% = value
e
£200 7 16% 4 1o
100 = bmm1
0 = bmm2
Layer

Figure A14: Latency (Top) and energy (Bottom) breakdown of HEAT-a3.

decomposed core tensors. The computation overhead far outweighs the saved storage capacity.
Therefore, we do not decompose the embedding layers.

Al4

	Introduction
	HEAT Automatic Tensor Decomposition Framework
	Understanding Hardware-Efficient Tensor Decomposition
	The Proposed HEAT Framework
	Level 1: Pareto Optimal Tensorization Shape Search
	Level 2: Heterogeneous Per-Tensor Rank Optimization
	Level 3: Re-Training with Two-stage Distillation

	Results
	Experiment setup
	Main Results
	Discussions

	Related Work
	Conclusion
	Memory Access Types for Fused Einsum
	Hardware Cost Simulation Settings
	Rank SuperNet Training Settings
	Per-tensor Rank Search Settings
	Knowledge Distillation Settings
	Breakdown of Searched HEAT Variants
	Decomposition on Embedding Layers

