
Under review as a conference paper at ICLR 2023

Table A5: Tensorization shape search space for the query, value, key, and projection weight matrices
with three factorization methods.

Model Candidate orders Top-k
Candidate shapes Candidate ranks Compression Ratio

Limits #Candidates

TTM 6, 8, 10 3 Multiple of 32 0.35∼0.5 3235
Tucker 4, 6, 8 3 Multiple of 8 0.35∼0.5 4754

CP 2, 3 3 Multiple of 32 0.35∼0.5 44

A1 MEMORY ACCESS TYPES FOR FUSED EINSUM

To implement fused einsum, we separate all nodes in the tensor contraction path p into 4 categories
according to their memory access types, as shown in Fig. 5.

• Type 1: Load dynamic (D) input from DRAM and static (S) weights from the global buffer
(GB), and write the intermediate tensor back to GB for data reuse.

• Type 2: Only read/write from/to GB without costly DRAM transaction.
• Type 3: Load both operands from GB and write the final results back to DRAM.
• Type 4: Load one dynamic input from DRAM and write the final results to DRAM.

Different node types are simulated with corresponding memory access constraints in Timeloop, so
we can implement a fused einsum without unnecessary DRAM access.

A2 HARDWARE COST SIMULATION SETTINGS

To construct the hardware cost table T , we construct the tensorization shape candidate spaces in
Table A5. For each shape, we collect all candidate ranks that are multiples of 32 or 8 and satisfy the
compression ratio constraints. We use Timeloop with TSMC 5 nm energy model to simulate the
fused einsum operation corresponding to each shape-rank pair. Our Simba-L architecture has a
2.91 MB global buffer and 32 PEs. Each PE has 32 32-KB weight buffers, one 64-KB input buffer,
32 384-B accumulation buffers, and 1024 8-bit MAC units. The hardware mapping objective of
Timeloop-mapper is to minimize the energy-delay product. Based on the simulated hardware
cost table T , we use the paretoset library to automatically select the Pareto optimal tensorization
shape for the subsequent rank search flow.

A3 RANK SUPERNET TRAINING SETTINGS

With the searched optimal tensorization shape s∗, we construct a Rank SuperNet with maximum
ranks following a ∼60% target compression ratio. We use the original fine-tuned BERT-base as the
teacher model and launch the 10-epoch logit distillation flow to train the Rank SuperNet. We use
Adam optimizer with a learning rate of 3e-5 and a linear decay schedule. In the limited difference
technique, we restrict the maximum allowed rank change across iterations to 3. We use a sandwich
rule with one largest SubNet, one smallest SubNet, and two randomly sampled SubNets.

A4 PER-TENSOR RANK SEARCH SETTINGS

With the trained Rank SuperNet, we uniformly sample 2560 SubNets with the largest and smallest
SubNets and evaluate their validation F1 scores on a 5% validation set. We use 95% SubNet
evaluation data to train a random forest ensemble model as the accuracy predictor. The model is an
AdaBoostRegressor with 100 ExtraTreeRegressor, each tree regressor containing 60 decision trees
with a maximum depth of 10.

In the evolutionary search stage, we use 200 populations with 40 parents, 80 mutations with 50%
mutation probability, and 80 crossovers. After 100 steps, we obtain the optimal per-tensor rank
settings.
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Figure A13: Compression ratio breakdown on each matrix in our HEAT-variants with TTM decom-
position.

A5 KNOWLEDGE DISTILLATION SETTINGS

We use a two-stage knowledge distillation flow to train the model with the searched (s∗, r∗) settings.
We use the original BERT-base as the teacher model. We first launch an 8-epoch layer-wise distillation
flow with attention and hidden state mapping with a constant learning rate of 3e-5 for TTM and
Tucker, 1e-5 for CP. Then, we launch an 8-epoch logit distillation flow with an initial learning rate of
1e-5 on SQuAD-v1.1 and 6e-6 on SST-2 and a linear decay rate with 10% warm-up.

A6 BREAKDOWN OF SEARCHED HEAT VARIANTS

Compression Ratio. We plot the compression ratio breakdown of our searched HEAT-variants in
Fig. A13. We can observe that deeper layers tend to have higher redundancy and thus have fewer
parameters. Feedforward networks tend to have a lower compression ratio (fewer parameters) than
query/value/key matrices.

Latency and Energy. In Fig. A14, the fully-connected (FC) layers in FFNs have lower compression
ratios but nearly 4× higher latency than other linear layers. The batched matrix multiplication (BMM)
in attention operations, i.e., QKT and AVT , only take around 5.3% total latency and 19.5% total
energy in the entire network, which validates that the most costly operations in Transformer are
indeed linear layers.

A7 DECOMPOSITION ON EMBEDDING LAYERS

Some prior work applies low-rank decomposition on the embedding layer in Transformer models and
claims it can save parameters. However, when off-chip DRAM capacity is not a limiting factor, this
embedding layer decomposition comes with a non-trivial accuracy drop and no hardware efficiency
benefits. Indexing the original look-up table only contains DRAM read without extra computations.
In contrast, indexing factorized tensors is very costly and requires tensor dot-product among all
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Figure A14: Latency (Top) and energy (Bottom) breakdown of HEAT-a3.

decomposed core tensors. The computation overhead far outweighs the saved storage capacity.
Therefore, we do not decompose the embedding layers.
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