Published as a conference paper at ICLR 2025

DREAM TO MANIPULATE: COMPOSITIONAL WORLD
MODELS EMPOWERING ROBOT IMITATION LEARNING
WITH IMAGINATION

Leonardo Barcellona''2* Andrii Zadaianchuk® Davide Allegro! Samuele Papa’®
Stefano Ghidoni' Efstratios Gavves>*

University of Padua, Italy 2Politecnico di Torino, Italy
3University of Amsterdam, The Netherlands 4Archimedes/Athena RC, Greece

ABSTRACT

A world model provides an agent with a representation of its environment, en-
abling it to predict the causal consequences of its actions. Current world models
typically cannot directly and explicitly imitate the actual environment in front
of a robot, often resulting in unrealistic behaviors and hallucinations that make
them unsuitable for real-world robotics applications. To overcome those chal-
lenges, we propose to rethink robot world models as learnable digital twins. We
introduce DREMA, a new approach for constructing digital twins automatically
using learned explicit representations of the real world and its dynamics, bridg-
ing the gap between traditional digital twins and world models. DREMA repli-
cates the observed world and its structure by integrating Gaussian Splatting and
physics simulators, allowing robots to imagine novel configurations of objects
and to predict the future consequences of robot actions thanks to its composition-
ality. We leverage this capability to generate new data for imitation learning by
applying equivariant transformations to a small set of demonstrations. Our eval-
uations across various settings demonstrate significant improvements in accuracy
and robustness by incrementing actions and object distributions, reducing the data
needed to learn a policy and improving the generalization of the agents. As a
highlight, we show that a real Franka Emika Panda robot, powered by DREMA’s
imagination, can successfully learn novel physical tasks from just a single exam-
ple per task variation (one-shot policy learning). Our project page can be found
in: https://dreamtomanipulate.github.io/.

1 INTRODUCTION

World models are learnable representations of the real world that an agent can use to predict the
consequences of its actions (Ha & Schmidhuber, 2018). They predict future states given the current
state and an action, empowering the agents to learn new skills from the inferred evolution of the
model (Hafner et al., 2019; 2020; Gumbsch et al., 2024; Hansen et al., 2024; Yang et al., 2023).
Thus, they are a fundamental building block for robots to imagine, a capability that we humans
exploit to interact with new environments (Hawkins et al., 2017; Ha & Schmidhuber, 2018).

Applying world models to real robots implies rendering realistic observations (Yang et al., 2023;
Zhou et al., 2024) while simulating the dynamics (Li et al., 2024). Whereas most of the world
models learn a statistical representation of the dynamics (Hafner et al., 2019; Gumbsch et al.,
2024; Hansen et al., 2024; Yang et al., 2023), it is unrealistic to expect any training distribution
to encompass all possible configurations of the world. This limits the current literature, as agents
need the ability to imagine beyond direct experience. We identify three requirements needed by
an effective world model for a robotic agent. First, it must be inherently compositional, allowing
the generation of novel and valid combinations of learned concepts (Zhou et al., 2024). Second, it
must be object-centric, as the world is primarily composed of objects of varying number, type, and

*Correspondence to: leonardo.barcellona@polito.it, {a.zadaianchuk, e.gavves} @uva.nl

https://dreamtomanipulate.github.io/
mailto:leonardo.barcellona@polito.it, a.zadaianchuk@uva.nl, e.gavves@uva.nl

Published as a conference paper at ICLR 2025

Real Scenario | | Object-centric Reconstruction | | Physics Simulation | | Imagination |

T BN

= AN) |

—
Gaussians Update
] ~

Real Demonstration

| |

L _Ea | SRS Y RSN
(PRGN A N A e B e
Rl)

Figure 1: Overview of imagination with DREMA, which builds a compositional manipulation
world model from environment images using object-centric Gaussian Splatting to generate novel
demonstrations by transforming real ones.

configuration (Spelke, 1990; Kipf et al., 2019). Third, manipulating the model should be simple to
ensure that actions and consequences can be controllably modelled (Li et al., 2024).

In this work, we propose a compositional manipulation world model, named DREMA, that allows
robotic agents to exploit physically reliable predictions to generalize to novel situations. Thus, it
is an interactable physics-constrained representation that bridges robot imagination with real-world
demonstrations following recent advances in learnable digital twins and explicit world models,
which both enable agents to simulate and reason about their environment (discussed in App. E).
We shape DREMA by reconstructing the scene with object-centric Gaussian Splatting (Kerbl
et al., 2023) and by embedding the obtained compositional representation into a physics simulator,
e.g., PyBullet (Coumans & Bai, 2016). Gaussian Splatting reconstructs 3D scenes as a set of
independent Gaussians that can be optimized and rendered, allowing for extremely high resolution
and real-time graphics rendering. We infer compositional properties of rendered Gaussian Splats
using foundational models (Ravi et al., 2024; Ren et al., 2024), allowing the agent to manipulate
the object-centric model to create new scenes.

Through DREMA, it is possible to execute robot policies directly in imagination while rendering
realistic observations. This capability benefits imitation learning, whose objective is to solve
tasks given example demonstrations (James et al., 2022). To ensure a reliable generalization of
the learned policy, demonstrations should contain sufficient variations, which is impractical and
time-consuming with real applications (Mandlekar et al., 2023). We show that imposing equivariant
transformations, namely roto-translation of the demonstrated actions and the objects, DREMA
produces new high-quality data inside the world model and reduces the required demonstrations.
We exploit imagination to generate new demonstrations that augment the original ones, while also
using the proposed world model to verify that the new actions result in successful task execution
and rendering of realistic observations.

Our contributions are: (1) We are the first to propose a compositional manipulation world model,
DREMA, that empowers robots with the ability to imagine in a grounded manner; (2) We propose to
exploit the compositional structure of the world model to generate novel, valid, and realistic training
demonstrations for imitation learning; (3) We empirically demonstrate in simulations and with real
robots that DREMA improves agent generalizability even with a minimal number of demonstrations.

2 RELATED WORK

2.1 WORLD MODELS

World models were originally conceived to improve policy learning in reinforcement learning by
predicting the consequences of actions on the environment (Ha & Schmidhuber, 2018; Hafner et al.,
2019;2020; 2023). State-of-the-art approaches often leverage generative models to build these world
models (Jia et al., 2023; Hu et al., 2023; Yang et al., 2023; Bruce et al., 2024). While initially applied
to game simulations (Ha & Schmidhuber, 2018; Hafner et al., 2019) and navigation tasks (Hu et al.,
2023; Jia et al., 2023), world models are now being extended to robotics (Yang et al., 2023; Wu

Published as a conference paper at ICLR 2025

et al., 2023; Zhou et al., 2024). For example, UniSim (Yang et al., 2023) uses diffusion to generate
possible future frames conditioned on robot actions. DayDreamer (Wu et al., 2023) demonstrates
that skills such as locomotion and manipulation can be learned using Dreamer (Hafner et al., 2019),
while RoboDreamer (Zhou et al., 2024) uses compositionality to generate novel actions. The main
limitation of these approaches is their inability to comprehensively capture the motion dynamics
and physics specific to the robot’s environment, particularly when faced with scenarios outside their
training domain (Yang et al., 2023). By contrast, we propose a compositional manipulation world
model that integrates cutting-edge photorealism with Gaussian Splats and realistic dynamics with
physics engines, showing we can tailor them for efficient imitation learning in real-world scenarios.

2.2 SIMULATION-BASED RECONSTRUCTIONS

Thanks to recent advances in reconstruction (Kerbl et al., 2023) and in physics simula-
tions (Coumans & Bai, 2016; Li et al., 2019), in the last year many have proposed to combine
both for realistic simulations of actual environments (Xie et al., 2024; Jiang et al., 2024; Meyer
et al., 2024; Lou et al., 2024; Abou-Chakra et al., 2024; Ruan et al., 2024; Torne et al., 2024).
Particle-based simulators are capable of modeling more complex dynamics than traditional rigid
body simulators (Li et al., 2019), making them beneficial for robotics (Chen et al., 2024a). Recently,
neural radiance fields have been applied to implicitly learn dynamic systems (Li et al., 2023;
Whitney et al., 2024). The introduction of Gaussian Splatting (Kerbl et al., 2023) has opened
avenues for novel approaches that bridge these simulation techniques with high-quality rendering
methods (Xie et al., 2024; Jiang et al., 2024). However, they are not compositional (Xie et al.,
2024) or object-centric (Xie et al., 2024; Jiang et al., 2024). PEGASUS (Meyer et al., 2024)
combines Gaussian representations with mesh simulations to improve the 6D pose estimation,
while Abou-Chakra et al. (2024) and Lou et al. (2024) show that Gaussian representations can be
adapted to track moving objects. Both approaches do not allow agents to predict future states, rather
focusing more on tracking in observed past trajectories. In contrast, we empirically demonstrate
that our approach predicts useful estimation of future states. While simulating a replica of the
environment can benefit policy evaluation (Li et al., 2024), two recent studies showed that scene
reconstruction can enhance robot policies (Ruan et al., 2024; Torne et al., 2024). Ruan et al. (2024)
reconstruct the environment to deform robot trajectories, while our object-centric approach focuses
on the interaction between objects and the agent. Although being close to our approach, Torne et al.
(2024) requires to manually model the object-centric representation and needs adaptation between
the simulation and the real world. Instead, we leverage the zero-shot capabilities of foundational
models (Kirillov et al., 2023; Ren et al., 2024; Cheng et al., 2023) to automatically create a
compositional world model and show the effectiveness of using transformed demonstrations for
task learning without requiring extensive interaction with the world model.

2.3 IMITATION LEARNING AND DATA AUGMENTATION

Imitation learning involves acquiring task knowledge from a dataset of demonstrations (James
et al., 2022). Vision-based imitation learning focuses on deriving policies directly from RGB or
RGB-D images (Zeng et al., 2021; Shridhar et al., 2023; 2022; Goyal et al., 2024). PerAct (Shridhar
et al., 2023), for instance, voxelizes the environment to infer actions in 3D. However, despite
advancements in generalization, many approaches (Ze et al., 2023; Goyal et al., 2024) still require
hundreds of demonstrations to learn robust policies. MIRA (Lin et al., 2023) employs NeRF’s novel
view synthesis to simulate new camera views of the environment, while Lu et al. (2025) applied
Gaussian Splatting for action inference. In contrast, our approach leverages Gaussian Splatting to
generate not only novel views but also new environmental configurations, enhancing generalization.

Data augmentation is an established technique (Krizhevsky et al., 2012; He et al., 2016). However,
its application in robotics is challenging, as altering robot actions can unpredictably affect envi-
ronments and tasks (Pitis et al., 2022). Despite this, Laskin et al. (2020) demonstrated that even
simple augmentations can improve robot policies. Approaches such as generating counterfactual
transitions (Pitis et al., 2022) and applying invariant transformations (Corrado & Hanna, 2024)
enhance learning by expanding training datasets. However, these methods primarily recombine
existing trajectories rather than generate entirely new configurations. In contrast, our approach
imagines novel equivariant configurations of objects and actions, enabling more diverse and effec-
tive data augmentation. A related method, MimicGen (Mandlekar et al., 2023), uses object-centric

Published as a conference paper at ICLR 2025

Scene decomposition: Representation extractions: Future prediction:
Open-vocabulary segmentation + tracking Gaussians Training Physics-powered Imagination

V] = :;‘ @ ~ »
v’ ‘ /)

- ™

A .
v R Replay Imagined
Demonstration Demonstration

Figure 2: Steps to create the compositional world model with DREMA: observation of the
environment and scene decomposition, representation extraction and future predictions.

segments for compositional data generation but requires multiple demonstrations. Our method
achieves comparable benefits while working effectively with as few as one demonstration. Whereas
some authors argue that imagining various object configurations is unrealistic (Zeng et al., 2021),
we demonstrate that this is achievable in real-world scenarios.

3 DREAM-TO-MANIPULATE WITH GAUSSIAN SPLATS & PHYSICS ENGINES

We want to construct a compositional manipulation world model M, that is (i) explicitly composi-
tional, (ii) object-centric, and (iii) controllable, allowing the agent to control all the objects inside
M. The model M = (Ot, A, D, 'T) comprises a set of K object assets in 3D, O, = {0k7t}kK:1
at time ¢; the model of the agent .4; that manipulates the objects in the world; the dynamics D of
the world in the form of an operator function, (Oy41, A1) = D - (Oy, A¢), which —given the
actions of the agent A at time t— transforms the states of object assets O; and agent’s state .A;; the
manipulation tasks 7~ expected from the agent. For clarity, we drop the time index ¢ from o, ; when
this can be inferred from the context. The input to the algorithm that constructs the compositional
manipulation world model is simply an RGB-D video X = (1, ...,2x) of N frames.

In the following, we first discuss our compositional 3D scene representation based on Gaussian
Splats, which forms the basis for our world model. Afterward, we detail how we obtain each
component of the world model given our 3D scene representation.

3.1 REPRESENTING 3D OBJECTS WITH GAUSSIAN SPLATTING

Central to the compositional manipulation world model is the inverse graphics function G = h(X)
using Gaussian Splatting (Kerbl et al., 2023). The inverse graphics function returns a 3D rep-
resentation of the world G given a sequence of n images X = (z1,...,2,), collected as a
video (Kerbl et al., 2023). The key idea behind Gaussian Splatting is to ground many Gaussian
blobs g = (p,7, s, ¢),Vg € G physically in the 3D space. Per Gaussian, we have p = [p, py, p-]
as its center , its orientation r and scale s = (su, sv) (the covariance), the encoded color ¢, and the
opacity « of the color. That is, given any arbitrary 3D location and angle in space (corresponding to a
2D camera plane), Gaussian Splats can render a projected 2D image that resembles the true observed
object (or scene). For rendering the appearance onto the 2D image, one simply a-blends the colors
of the Gaussians along each of the rays that connect the 3D point to the points on the 2D projected
image. In the end, the Gaussian Splatting algorithm optimizes the Gaussian parameters in g to ren-
der the objects and the scene photorealistically for both known and unknown 3D locations (named
novel view synthesis). Gaussian Splats have taken the graphics community by storm (Huang et al.,
2024; Xie et al., 2024; Meyer et al., 2024) not only for their exceptional photorealism but also for
their real-time computation. For further details, we refer to the seminal work of Kerbl et al. (2023).

Object-centric Gaussian Splats. Gaussian Splats generate photorealistic renderings of the 3D
scene that are unstructured in terms of object semantics. Instead, we are interested in object-centric
representations. To obtain object-centric Gaussian Splats, together with the input 2D images in X for
our K objects in our world, we introduce sets of segmentation masks, Y, € Y,k =1,..., K. We
consider k to be varying so that not constrain in advance the number of objects in our world. Each
object-set of segmentations Y = (yLk, s ymk) contains the 2D masks for the k-th object in all V

images in X. With segmentation masks Y, = (y1 k, ..., Yn,i) for each object k and for all n frames,

Published as a conference paper at ICLR 2025

we can simply mask the respective video frames, ¥, 1 © , i, to obtain the object-centric instances,
which we can then feed to the Gaussian Splatting. Since in our setting the robot is also equipped with
depth sensors, we further strengthen the original Gaussian Splatting optimization by including the
depth measurements z%P" € X oo for additional supervision, £ = Lyec + AnLn + Adepth Ldeptn-Here
L. and L,, are the reconstruction and normal losses defined in the original 2DGS. The extra depth
regularization, Lgepmn = ||:2(§psth — x%Pth|; “uses the 1 norm to penalize Gaussians that have outlier
depth. We set the hyperparameters Apormar and Agepn for all experiments empirically as in Huang

et al. (2024). Our object-centric inverse graphics function takes the form G = h(X, Xdepths Yk).

Deformable and articulated objects. It is important to note that since the standard Gaussian
Splats only work with (static) scenes, we cannot account for deformable or articulated objects. An
exciting future direction is to bootstrap on the significant progress in Dynamic Gaussian Splat-
ting (Luiten et al., 2023) to automatically model also articulation (see App. G) and deformation.

Next, we describe how to decompose the scene into k sets of regions defined by segmentation
masks) to obtain object assets and model dynamics.

3.2 DECOMPOSING THE SCENE INTO OBJECT-CENTRIC REGIONS

Decomposing the high-dimensional scene representation into objects (Locatello et al., 2020; Seitzer
et al., 2023; Wu et al., 2024) that are independently controllable greatly simplifies control and the
manipulation of the dynamics in the environment (Zadaianchuk et al., 2021; 2022). Inspired by re-
cent work on embeddable 3D assets (Deitke et al., 2023; Wu et al., 2024), we ideally want to learn
Gaussian Splats that belong to the same object. We take advantage of the zero-shot capabilities
of open-vocabulary tracking models (Cheng et al., 2023; Wang et al., 2023; Ravi et al., 2024) to
ensure that we obtain consistent predictions. Our compositional world model uses the DEVA open-
vocabulary tracker to extract the objects and their segmentation masks) in the video A" of the
scene. Since DEVA discovers objects given prompts, we use general and minimal prompts: object
for all the objects and t able for segmenting the table of our table-top robot. Having computed the
segmentation masks Vi = (yl,k, e yn,k) object k and for all n frames, we can learn object-centric
Gaussian Splats as described in Sec. 3.1. Advances in the object-centric (Didolkar et al., 2024;
Zadaianchuk et al., 2024; Wu et al., 2024) and open-vocabulary (Ravi et al., 2024; Bianchi et al.,
2024) literature can be seamlessly integrated into our compositional manipulation world model.

3.3 MODELLING ROBOT-OBJECT DYNAMICS WITH OBJECT ASSETS

To be able to predict the consequences of the actions of the robot, we must model the dynamics D.
We can directly use external physics engines (Todorov et al., 2012; Coumans & Bai, 2016) for the dy-
namic operator D. For our model, we rely on PyBullet (Coumans & Bai, 2016) for its simplicity.

While object-centric Gaussian Splat representations G are good for photorealistic renderings of
objects, they are not designed for physics simulations. Instead, physics engines —including
PyBullet— typically operate on object meshes. We thus need to convert Gy into object mesh
grids, My, = (px,., Pk,., Uk,), with mesh centers py ., orientations py ., and appearances uy,., to
obtain our world object assets, o, = (Qk, My, w). With w we explicitly denote the relevant physical
parameters of the world, such as the masses of objects or the friction coefficient. In the robot simula-
tor, these are in the URDF files (Villasevil et al., 2024). During learning the policies, the parameters
w can be either given or inferred (Memmel et al., 2024). The physics engine acts as an operator on
the positional and orientation parameters of the mesh grid of all objects in the world, that is

<M~,t+1> _ (M.,t + A,UL..K) (1)
P41 Apr.k-pt)’

using standard Newtonian mechanics as the dynamics operator. Note that any object in the world,
including the robot arm, can interact with any other object. This is why in Equation 1 we drop the
object subscript k, and why in the differential A we add all objects 1... K. Knowing the forces
that the robot exerts on the environment at any moment, our compositional manipulation world
model can easily imagine the future states of the world and the consequences of the robot’s actions.

Finally, we apply the change in mesh center A, and mesh orientation Ap* to all Gaussians g € Gy,
by updating their centers p’ = p + Apy, and their orientations ' = Apy, - 7.

Published as a conference paper at ICLR 2025

Modelling the agent. In the above, we focused on the objects or our world. The robot is also
an object that is self-visible, thus it can be just as easily represented as an object-centric mesh grid
from the corresponding Gaussian Splat reconstruction. A difference of the robot arm compared to
other objects is that it is articulated. However, the robot joints are known in advance, and we can
use their associated segmentation masks to link the different robot parts, ensuring accurate Gaussian
representation for rendering purposes. Regarding the dynamics of the robot arm, our assumption is
that the robot can model its own dynamics perfectly, similarly as humans have an accurate internal
model (Wolpert et al., 1998). This is a reasonable assumption, since most manipulation robots have
the corresponding URDF file, allowing for the instantiation of a simulator with the robot model.

World model verification from demonstrations. So far we assumed that the physical parameters
are fixed. With this assumption, we cannot guarantee that the manipulation world model will lead
to correct predictions for arbitrary actions, as errors in the Gaussian Splat reconstructions and
their mesh grids, or misalignment in the physical parameters, could result in cumulative errors
when applying the dynamics. That said, our undertaking in this work is that by adopting explicitly
grounded appearance and dynamics models for the world and its objects, we can still obtain a
useful model. Suppose that the model predictions for replaying the sequence of actions in the
demonstration result in a final state similar to the final state of the demonstration. In that case, we
can still use the world model as an interactive and compositional representation of the demonstration
itself. In the next section, we show that such an interactive representation allows us to augment the
original demonstrations with imagined ones to train a more robust imitation learning policy.

3.4 ENGINEERING

The proposed compositional manipulation world model is a significant undertaking, requiring
extensive engineering to ultimately be effective with real-world robots. However, one of the key
advantages of this approach is that it enables a real robot to learn novel policies using only a
single example. We describe the most critical engineering components in detail, with additional
information provided in App. J. While Gaussian Splatting is primarily designed for novel view
synthesis, we observed unexpected behavior at low resolutions, leading to incorrect action pre-
dictions by the robot. Additionally, depth information rendered was inaccurate, as the original
Gaussian Splatting method does not ensure that Gaussians align with surfaces. To address this, we
implemented 2DGS Gaussian Splatting (Huang et al., 2024). For successful real-world deployment
of DREMA, properly aligning the reconstruction and the simulator is crucial, which we achieved
using a calibrated camera mounted on the robot (Allegro et al., 2024). Also, estimating physical
parameters is a complex field in its own right (Mehra, 1974; Chebotar et al., 2019; Gao et al.,
2022; Huang et al., 2023), and methods such as ASID (Memmel et al., 2024) or AdaptSim (Ren
et al., 2023) can be applied for this purpose. In this paper, for simplicity we pick constant physical
parameters that seemed to work well in the validation sets.

4 EQUIVARIANT TRANSFORMATIONS FOR IMITATION LEARNING

In computer vision, many data augmentations preserve the semantic information of an image,
enabling robust recognition and self-supervised representation learning. However, augmenting
demonstration data for imitation learning presents a greater challenge (Pitis et al., 2020; Urpi et al.,
2024). When altering an observation sequence (e.g., by changing an object’s initial position), it is
necessary to also modify the corresponding action sequence to maintain a semantically consistent
demonstration—one that still solves the intended task. Therefore, generating valid augmentations
in imitation learning requires equivariant transformations that simultaneously adjust both the
high-dimensional observations and the associated actions.

In imitation learning, the agent learns from a dataset Z = {(1, ..., (as} consisting of M demonstra-
tions, each paired with a corresponding task encoding 7 = {t1, ..., ¢as }. When tasks are described
by language-based goals, the task ¢,, is represented by a language embedding (e.g., pre-trained
CLIP embeddings) corresponding to the phase that describes the task. Each demonstration (,,
consists of a sequence of continuous actions A = (a1, ...,a;), which are encoded as end-effector
poses and gripper states. These actions are paired with observations Q = (g1, - . . , g), which in our
case can be the object assets from the compositional manipulation world model.

Published as a conference paper at ICLR 2025

Translation Rotation Object Rotation

Original demonstration

Transformed xS LF Transformed
Environment:» 5 : Environment:
Objects: v ‘ Objects:

Original trajectory: Transformed trajectory: €=s==rssssrsmarmmsnnnas

Figure 3: The effect of equivariant translation, equivariant rotation, and the object rotation transfor-
mations. Top row: start of demonstration. Bottom row: target of demonstration.

Equivariant transformations for imagining novel demonstrations. Finding equivariant
transformations for high-dimensional observations Q and actions A is typically challenging, but
DREMA simplifies this by using explicit representations for object assets . In our world model,
both the robot’s actions A (the 3D positions of the end-effector and gripper) and the 3D positions
of the objects, including initial and target locations, are transformed equivariantly under any rigid
transformation. As a result, these transformations preserve task success in the imagined demon-
strations. This allows us to generate novel “imaginations” by applying geometric transformations
to the objects’ positions and the robot’s actions, without changing the robot’s internal state. By
executing these transformed actions A and rendering the corresponding observations Q in DREMA,

we generate new demonstrations é € Z,ew NOt present in the original dataset Z. In the following,
we describe several such transformations applicable to manipulation tasks (see Fig. 3).

Roto-translation of the environment and objects. Given the roto-translation R, and the
point of application P,,, we transform each object asset oy, at time ¢ = 0 (the beginning of the
demonstration) and the Gaussians of the environment. To adapt the same demonstration to the
transformed environment R, is applied to the end-effector translation et; and the end-effector
rotation er; of each action a; = (et;,er;, ga;). Consequently, the agent (fixed) is required to
execute the transformed set of actions in the new environment.

Object rotation. This transformation involves rotating the objects around the final position
of the action sequence A. The transformation R is applied to both the object poses and the
action trajectory A, keeping the demonstration consistent with the original task. In this second
transformation we fixed P, = et; (the last position of the end-effector). We then rotate the objects
assets oy at time ¢t = 0 and the actions a; similarly to the previous approach. In this transformation
we do not change the environment since the trajectory brings the object to a similar position.

Verification of transformed demonstrations. Although these transformations can generate novel
demonstrations, there is a risk of producing invalid outcomes due to factors like the robot’s inability
to execute the entire sequence or inaccuracies in the world model dynamics. Therefore, it is crucial
to verify that the generated demonstrations still solve the intended task. In a general setting, a
success detector would be required to ensure task completion. However, for goal-based tasks where
equivariant transformations are applied, it is sufficient to confirm that the final positions of the
objects in the transformed trajectory remain close to their expected transformed goal positions l;:
HZAZ — R;(l; — P ;) + P.|| < 7, where R; represents the transformation applied, P, ; is the center
of the transformation, and 7 = 0.015 meters is the empirical threshold for positional accuracy.

5 EXPERIMENTS

We evaluate the performance of DREMA in both simulated and real-world environments, comparing
the effectiveness of imagination-generated data to imitation learning agents trained only on original
demonstrations. For this evaluation, we use PerAct (Shridhar et al., 2023), a common baseline for
imitation learning. Our study addresses the following key questions: 1. How does DREMA perform
with only a few demonstrations available, in single- and multi-task settings? Does our manipulation

Published as a conference paper at ICLR 2025

Table 1: Comparison of trained on original, augmented, and DREMA with imagined and all
demonstrations, reporting mean + std and max success over 5 runs on 50 test environments.

Single-task

close jar insert peg lift pick cup sort shape

mean £+ std max mean+std max mean+std max mean+std max mean+std max
PerAct (Original data) 384+080 40 0.0£0.00 00 228+1.6 26 132+204 16 6.4+ 1.50 8
Random patches (Laskin et al., 2020) 4524+349 48 20x179 4 204 +£265 24 3724325 42 3.6+294 8
Random table color (Chen et al., 2023) 45.0£1.73 46 1.6 +1.50 4 23.6+080 24 2564294 30 8.0£1.26 10
Distractors (Bharadhwaj et al., 2024) 36.4+080 38 0.4+0.80 2 228+1.60 24 41.2+299 44 444233 8
DREMA (imagination) 4124240 46 1.2 +£0.98 2 172+ 1.6 20 28.0+420 36 9.6 + 1.50 12
DREMA + Original (All data) 51.2+1.60 54 24+233 6 236+150 26 344+388 40 11.2+1.60 12

place wine put in cupboard slide block stack blocks avg single-task

mean £+ std max mean=+std max mean=+std max mean=+std max mean max
PerAct (Original data) 100+£1.79 12 2.0£0.00 2 484+320 50 2.8+098 4 16.0 17.6
Random patches (Laskin et al., 2020) 128+240 16 24+£1.50 4 36.8+098 38 0.0+ 0.0 0.0 17.8 20.4
Random table color (Chen et al., 2023) 10.0 £2.83 14 1.6 +0.80 2 40.8+4.32 46 724204 10 18.2 20.7
Distractors (Bharadhwaj et al., 2024) 148+449 22 324098 4 4924098 50 8.4 £294 12 20.1 22.7
DREMA (imagination) 160219 18 04+£0.80 2 544 +215 62 40+0 4 19.1 224
DREMA + Original (All data) 268 +430 32 284098 4 620+219 66 11.6+19 14 25.1 28.2

world model still provide an advantage when more demonstrations are available? 2. How do the
different components of DREMA contribute to overall performance? 3. How well does DREMA
scale to real-world tasks, where both imitation learning and world model training are more complex?

5.1 ONE-SHOT POLICY LEARNING: SINGLE- AND MULTI-TASK

We test DREMA with a minimal number of demonstrations per task, i.e., one example per task
variation up to five maximum examples (five examples for each task except for slide block and place
wine that have 4 and 3 variations). We compare PerAct trained with original demonstrations, PerAct
trained with DREMA’s imagined ones, and PerAct trained with imagined and original combined.
All simulation experiments are conducted on 50 environment configurations, with the test repeated
five times to account for variability introduced by the motion planner.

Data collection in simulation. We replicate the experimental setup of PerAct (Shridhar et al.,
2023) using RLBench (James et al., 2020), which involves a Franka Emika Panda robot with a
parallel jaw gripper, placed on a table with objects that vary in color and position. We focus on
tasks excluding articulated objects, as our current object-centric priors do not handle articulations.
The experiments cover 1) non-prehensile tasks and 2) pick-and-place tasks (nine tasks in total).
Following Ze et al. (2023), we collect a sequence, X, of 200 images by simulating a rotating camera
around the scene. PerAct supports multi-task training, where a single policy adapts to multiple tasks
based on prompts. We train both PerAct and DREMA on three tasks using the same demonstrations
as in the single-task setup. Hyperparameters are consistent with the original paper (Shridhar et al.,
2023), except for the training iterations and batch size (see App. L). To prevent overfitting, we
validate all models performance on a separate set for each 10k training iterations for multi-task and
5k for single-task and select the best-performing model.

One-shot single- and multi-task results (Table 1 & Table A.5). Since the limited number of
demonstrations is insufficient to learn a general policy, the PerAct model trained solely on original
demonstrations performs the worst. In contrast, DREMA, exploiting around 800 demonstrations
(see App. L), significantly outperforms PerAct with the original data in single-task settings
(Table 1), achieving an average accuracy improvement of +9.1%. This result highlights that
additional imagination-based demonstrations help create more robust policies, even when the
original dataset is small. When DREMA is compared to invariant augmentations —namely, random
patches, random table color, and random distractors— it achieves the best performance, with a 5.0%
average improvement over the best invariant augmentation (see App. A). Additionally, DREMA
improves performance in all tasks compared to PerAct, differently from invariant augmentations.
In multi-task settings (Table A.5), DREMA is tested on close jar, slide block, and sort shape
simultaneously. It achieves an average accuracy of 35.5%, representing a +13.1% improvement
over PerAct, demonstrating that even this setting can significantly benefit from imagination-based

Published as a conference paper at ICLR 2025

Table 2: The mean + std and maximum success rate of DREMA trained on single-task demonstra-
tions from different types of transformations over 5 test runs on 50 examples.

close jar sort shape slide block
mean £+ std max mean +std max mean =+ std max
Replay 10.0 £3.10 16 1.2 +0.98 2 26.0 £0.00 26
Object Rotation 252+098 26 104+265 14 4204000 42
Roto-translation 4124+240 44 100+£253 14 504+1.50 52

DREMA + Original (All data) 51.2+1.60 54 11.2+160 12 62.0E£2.19 66

demonstrations. DREMA trained on only imagination demonstrations and evaluated in the original
environment still performs significantly better than PerAct (43.1 on single task +9.1 on multi-task).

5.2 ANALYSIS AND ABLATIONS

Varying dataset size (Figure 4 & Figure C.6). We analyze the effectiveness of DREMA’s imag-
ined demonstrations based on the number of original demonstrations provided. Specifically, we
vary the dataset size |D| € {4, 10,20} for the slide block and and |D| € {5, 10, 20} sort shape tasks
(see App. L for training details). Figure 4 shows the average success rate of DREMA and PerAct as
a function of the original dataset size. Increasing the training examples to 20 improves performance
in both tasks. PerAct trained on 20 examples matches DREMA trained with imagined data from just
5 demonstrations (81 and 61 imagined demos for sort shape and slide block, respectively). However,
when using the same 20 examples to generate imagined data (437 and 391 imagined demonstrations
for sort shape and slide block, respectively), the model improves by 6.4% and 10.4%. This shows
that generating novel configurations and actions remains beneficial, even with more demonstrations.
Figure C.6 in the appendix shows how augmented data cover a wider portion of the robot’s
workspace, enabling the agent to handle configurations beyond those in the original demonstrations.

Ablating transformations (Table 2). Place Shape Task Slide Block Task
We compare the equivariant transforma- 17.51
tions and include a baseline called Replay, 15.01 70
which replays the original demonstrations. 60
The Object Rotation and Roto-translation 5 12.51 >50
augmentations generate entirely imagined £ 10.0 €40
data. Both Object Rotation and Roto- g ;5| v
S < 7 <30
translation increase the coverage of the
state space and improve the generaliza- >.01 20
tion of the learned policy, with Roto- 2.51 10
translation having the greatest impact. 0.0 0
Combining these transformations results 5> 10 20 4 10 = 20
Demonstrations Demonstrations

in even more general policies, yielding
a 10.4% improvement in mean accuracy.
This h]ghhghts the importance of]earning Figure 4. Imagined demonstrations keep improving
a good world model and using it to explore imitation learning even with increasing number of

and apply valid data augmentations. original data.

I PerAct (original only) I DreMa (imagination only)

5.3 EXPERIMENTS WITH A REAL ROBOT

Real robot setup. We verify the effectiveness of our approach in real-world environments. Our
setup includes a Franka Emika Panda on a table, with a calibrated Kinect Azure mounted on
the end-effector and a Kinect V2 positioned in front of the table, replicating the setup used in
PerAct. We collect five tasks (number of demonstrations in Table 4). We train two models per
task —one using only the original demonstrations and another combining original and imagined
demonstrations— and do model selection as in PerAct (see App. L for details). The models are
tested in 20 different environment configurations: 10 with object positions similar to the training
set and 10 with positions outside the distribution (OOD), to assess generalization.

Verification of the learned world model (Table 3). To assess the accuracy of DREMA in
modeling demonstrations, we compare the final object positions at the end of the demonstration

Published as a conference paper at ICLR 2025

Table 3: Localization er- Table 4: In- and out-of-distribution evaluation with real robots.
rors. pick block pick shape push place obj erase Average
e 4 examples 5 pl 3 pl 4 pl 4 ex I
Task Error (m) Indist. OOD Indist.. OOD Indistt OOD Indistr OOD Indistr OOD avg. OOD
pick block 0.010 PerAct 55 50 30 10 40 10 20 10 30 20 317 250
pick shape 0.050 DREMA (All) 920 9 35 30 80 60 65 40 50 50 629 583
push 0.049

Average 0.038

Figure 5: Original (top) and imagined demonstration (bottom) after a 90° rotation transformation.

with those predicted by the world model. Results show that the world model aligns well with the
collected data for simpler demonstrations. For more complex examples, errors could increase. This
discrepancy could be addressed using real demonstrations to adapt the world model’s parameters.

Real robot results (Table 4 & Table B.6). The imagined demonstrations double the model’s task
performance (62.9% for DREMA vs 31.7% for PerAct on average). Moreover, PerAct, trained only
on original demonstrations, struggled when the object distribution differed from the training data.
In contrast, DREMA performs robustly in- and out-of-distribution environment configurations. The
pick shape task had the lowest accuracy, likely due to the small size of the shapes and the model’s
difficulty in accurately recognizing them. Finally, in Table B.6, we also confirm that DREMA with
only imagined trajectories can outperform original PerAct training (+25% on pick block task) when
more examples are available, showing the usefulness of the imagined trajectories on their own.

6 CONCLUSIONS

We introduce a novel framework for constructing manipulation world models. By integrating
real-time photorealism with Gaussian Splatting and physics simulators, DREMA enables robots to
accurately predict the consequences of their actions and learn from minimal data. Our evaluations
show significant improvements in policy learning, demonstrating the model’s robustness and
efficiency in real-world applications. We believe DREMA can influence other research areas, such
as augmenting task variations with VLMs or enabling policy evaluation through imagination.

Limitations. Although DREMA demonstrates several strengths, it has limitations. First, it requires
full observability of the environment to model physics and appearances. Second, it currently
handles only simple objects, but recent advances in automatic URDF estimation could address
this issue (see App. G). Third, we construct it with an open-loop approach without feedbacks;
incorporating them into the world model construction could improve both prediction accuracy and
policy learning. Finally, scaling the world model to large and diverse environments may increase
simulation complexity. Overall, we believe that future research can address these issues, particularly
the second and the third. Another interesting future direction is to study the effect of DREMA with
more recent models (such as RVT2 (Goyal et al., 2024) or Diffusion Policy (Chi et al., 2023)) or
approaches that directly exploit RGB images to show the benefit of Gaussian Splatting.

10

Published as a conference paper at ICLR 2025

Reproducibility statement. We are committed to ensuring the reproducibility of our research
findings. In our paper and in the appendix, we have provided comprehensive details about our
methodologies, experimental setups, and hyperparameter configurations. In addition, details about
inference and training runtime of both DREMA and corresponding agent trained with data generated
by DREMA are presented in Appendix D. Furthermore, we will share the code and the synthetic
datasets used for our simulation experiments. This will enable researchers to replicate our experi-
ments and verify our results.

Acknowledgments. This work is supported by ERC Starting Grant EVA 950086. Andrii Zada-
ianchuk is funded by the European Union (ERC, EVA, 950086). Leonardo Barcellona was supported
by a scholarship from Fondazione Ing. Aldo Gini (University of Padova) during part of the project.

REFERENCES

Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Siinderhauf. Physically embodied gaus-
sian splatting: A realtime correctable world model for robotics. In 8th Annual Conference on
Robot Learning, 2024.

Davide Allegro, Matteo Terreran, and Stefano Ghidoni. Multi-camera hand-eye calibration for
human-robot collaboration in industrial robotic workcells. IEEE Robotics and Automation Let-
ters, pp. 1-8, 2024. doi: 10.1109/LRA.2024.3468089.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
tions and action chunking. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4788-4795. IEEE, 2024.

Lorenzo Bianchi, Fabio Carrara, Nicola Messina, Claudio Gennaro, and Fabrizio Falchi. The devil
is in the fine-grained details: Evaluating open-vocabulary object detectors for fine-grained under-
standing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 22520-22529, 2024.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dol-
lar. Benchmarking in manipulation research: The ycb object and model set and benchmarking
protocols. arXiv preprint arXiv:1502.03143, 2015.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8973—
8979. IEEE, 2019.

Siwei Chen, Yiqing Xu, Cunjun Yu, Linfeng Li, and David Hsu. Differentiable particles for general-
purpose deformable object manipulation. arXiv preprint arXiv:2405.01044, 2024a.

Zoey Chen, Sho Kiami, Abhishek Gupta, and Vikash Kumar. Genaug: Retargeting behaviors to
unseen situations via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.

Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo, Alex Fang, Karthikeya Vemuri, Alan
Wau, Dieter Fox, and Abhishek Gupta. Urdformer: A pipeline for constructing articulated simula-
tion environments from real-world images. arXiv preprint arXiv:2405.11656, 2024b.

Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking
anything with decoupled video segmentation. In /CCV, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

11

Published as a conference paper at ICLR 2025

Nicholas Corrado and Josiah P. Hanna. Understanding when dynamics-invariant data augmenta-
tions benefit model-free reinforcement learning updates. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
sVEu295070.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142-13153, 2023.

Aniket Didolkar, Andrii Zadaianchuk, Anirudh Goyal, Mike Mozer, Yoshua Bengio, Georg Mar-
tius, and Maximilian Seitzer. Zero-shot object-centric representation learning. arXiv preprint
arXiv:2408.09162, 2024.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM, 24
(6):381-395, 1981.

Ziyan Gao, Armagan Elibol, and Nak Young Chong. Estimating the center of mass of an unknown
object for nonprehensile manipulation. In 2022 IEEE International Conference on Mechatronics
and Automation (ICMA), pp. 1755-1760. IEEE, 2022.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694-710. PMLR,
2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
manipulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5354-5363, 2024.

Christian Gumbsch, Noor Sajid, Georg Martius, and Martin V. Butz. Learning hierarchical world
models with adaptive temporal abstractions from discrete latent dynamics. In The Twelfth In-
ternational Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=T jCDNssXKU.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for contin-
uous control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=0xh5CstDJU.

Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A theory of how columns in the neocortex enable
learning the structure of the world. Frontiers in Neural Circuits, 11, 2017. ISSN 1662-5110.
doi: 10.3389/fncir.2017.00081. URL https://www.frontiersin.org/journals/
neural-circuits/articles/10.3389/fncir.2017.00081.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

12

https://openreview.net/forum?id=sVEu295o70
https://openreview.net/forum?id=sVEu295o70
http://pybullet.org
https://openreview.net/forum?id=TjCDNssXKU
https://openreview.net/forum?id=TjCDNssXKU
https://openreview.net/forum?id=Oxh5CstDJU
https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2017.00081
https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2017.00081

Published as a conference paper at ICLR 2025

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shot-
ton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv
preprint arXiv:2309.17080, 2023.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH 2024 Conference Papers, pp.
1-11, 2024.

Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu, Mengdi Xu, Wenhao Ding, Jonathan Francis,
Bingqing Chen, and Ding Zhao. What went wrong? closing the sim-to-real gap via differentiable
causal discovery. In Conference on Robot Learning, pp. 734-760. PMLR, 2023.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. /EEE Robotics and Automation Letters, 5(2):3019—
3026, 2020.

Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J Davison. Coarse-to-fine g-attention:
Efficient learning for visual robotic manipulation via discretisation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13739-13748, 2022.

Fan Jia, Weixin Mao, Yingfei Liu, Yucheng Zhao, Yuqing Wen, Chi Zhang, Xiangyu Zhang,
and Tiancai Wang. Adriver-i: A general world model for autonomous driving. arXiv preprint
arXiv:2311.13549, 2023.

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
Feng Gao, Yin Yang, et al. Vr-gs: a physical dynamics-aware interactive gaussian splatting system
in virtual reality. In ACM SIGGRAPH 2024 Conference Papers, pp. 1-1, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qiangian Wang, Ken Goldberg, and Angjoo
Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular 4d
reconstruction. arXiv preprint arXiv:2409.18121, 2024.

Thomas Kipf, Elise Van der Pol, and Max Welling. Contrastive learning of structured world models.
arXiv preprint arXiv:1911.12247, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015-4026, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
1988419895, 2020.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
Jiang, and Chuang Gan. PAC-neRF: Physics augmented continuum neural radiance fields for
geometry-agnostic system identification. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tVkrbkz42vc.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJgbsSn09Ym.

13

https://openreview.net/forum?id=tVkrbkz42vc
https://openreview.net/forum?id=rJgbSn09Ym
https://openreview.net/forum?id=rJgbSn09Ym

Published as a conference paper at ICLR 2025

Yen-Chen Lin, Pete Florence, Andy Zeng, Jonathan T Barron, Yilun Du, Wei-Chiu Ma, Anthony
Simeonov, Alberto Rodriguez Garcia, and Phillip Isola. Mira: Mental imagery for robotic affor-
dances. In Conference on Robot Learning, pp. 1916-1927. PMLR, 2023.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion
analysis for articulated objects. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 352-363, 2023.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot At-
tention. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/
file/8511df98c02ab60acalb2356c013bcO0f-Paper.pdf.

Haozhe Lou, Yurong Liu, Yike Pan, Yiran Geng, Jianteng Chen, Wenlong Ma, Chenglong Li, Lin
Wang, Hengzhen Feng, Lu Shi, et al. Robo-gs: A physics consistent spatial-temporal model for
robotic arm with hybrid representation. arXiv preprint arXiv:2408.14873, 2024.

Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Manigaussian:
Dynamic gaussian splatting for multi-task robotic manipulation. In European Conference on
Computer Vision, pp. 349-366. Springer, 2025.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. arXiv preprint arXiv:2310.17596, 2023.

Raman Mehra. Optimal input signals for parameter estimation in dynamic systems—survey and new
results. IEEE transactions on automatic control, 19(6):753-768, 1974.

Marius Memmel, Andrew Wagenmaker, Chuning Zhu, Dieter Fox, and Abhishek Gupta. Asid:
Active exploration for system identification in robotic manipulation. In The Twelfth International
Conference on Learning Representations, 2024.

Lukas Meyer, Floris Erich, Yusuke Yoshiyasu, Marc Stamminger, Noriaki Ando, and Yukiyasu
Domae. Pegasus: Physically enhanced gaussian splatting simulation system for 6dof object pose
dataset generation. arXiv preprint arXiv:2401.02281, 2024.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976-3990, 2020.

Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based counterfac-
tual data augmentation. Advances in Neural Information Processing Systems, 35:18143-18156,
2022.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
Andrew Y Ng, et al. Ros: an open-source robot operating system. In /CRA workshop on open
source software. Kobe, Japan, 2009.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Allen Z Ren, Hongkai Dai, Benjamin Burchfiel, and Anirudha Majumdar. Adaptsim: Task-driven
simulation adaptation for sim-to-real transfer. In Conference on Robot Learning, pp. 3434-3452.
PMLR, 2023.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,

Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

14

https://proceedings.neurips.cc/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf

Published as a conference paper at ICLR 2025

Sipu Ruan, Weixiao Liu, Xiaoli Wang, Xin Meng, and Gregory S Chirikjian. Primp:
Probabilistically-informed motion primitives for efficient affordance learning from demonstra-
tion. /[EEE Transactions on Robotics, 2024.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Scholkopf, Thomas Brox, and Francesco
Locatello. Bridging the gap to real-world object-centric learning. In ICLR, 2023. URL
https://openreview.net/forum?id=b9tUk-f_aG.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on robot learning, pp. 894-906. PMLR, 2022.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785-799. PMLR, 2023.

Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 1990. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1207/s15516709co0gl401_3.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. arXiv preprint arXiv:2403.03949, 2024.

Nuria Armengol Urpi, Marco Bagatella, Marin Vlastelica, and Georg Martius. Causal action influ-
ence aware counterfactual data augmentation. arXiv preprint arXiv:2405.18917, 2024.

Marcel Torne Villasevil, Arhan Jain, Vidyaaranya Macha, Jiayi Yuan, Lars Lien Ankile, Anthony
Simeonov, Pulkit Agrawal, and Abhishek Gupta. Scaling robot-learning by crowdsourcing simu-
lation environments. In RSS 2024 Workshop: Data Generation for Robotics, 2024.

Haochen Wang, Cilin Yan, Shuai Wang, Xiaolong Jiang, Xu Tang, Yao Hu, Weidi Xie, and Efstratios
Gavves. Towards open-vocabulary video instance segmentation. In proceedings of the IEEE/CVF
international conference on computer vision, pp. 4057-4066, 2023.

Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis, Dieter Fox, Leonidas Guibas, and Stan
Birchfield. Neural implicit representation for building digital twins of unknown articulated ob-
jects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3141-3150, 2024.

William F Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kim
Stachenfeld, and Kelsey R Allen. Learning 3d particle-based simulators from RGB-d videos.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=4rBEgZCubP.

Daniel M Wolpert, R.Chris Miall, and Mitsuo Kawato. Internal models in the cerebellum.
Trends in Cognitive Sciences, 2(9):338-347, 1998. ISSN 1364-6613. doi: https://doi.org/10.
1016/S1364-6613(98)01221-2. URL https://www.sciencedirect.com/science/
article/pii/S1364661398012212.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on robot learning, pp. 2226-2240.
PMLR, 2023.

Ziyi Wu, Yulia Rubanova, Rishabh Kabra, Drew A Hudson, Igor Gilitschenski, Yusuf Aytar, Sjoerd
van Steenkiste, Kelsey R Allen, and Thomas Kipf. Neural assets: 3d-aware multi-object scene
synthesis with image diffusion models. arXiv preprint arXiv:2406.09292, 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389—-4398, 2024.

15

https://openreview.net/forum?id=b9tUk-f_aG
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1401_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1401_3
https://openreview.net/forum?id=4rBEgZCubP
https://openreview.net/forum?id=4rBEgZCubP
https://www.sciencedirect.com/science/article/pii/S1364661398012212
https://www.sciencedirect.com/science/article/pii/S1364661398012212

Published as a conference paper at ICLR 2025

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 2023.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
learning with object-centric representations. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=xppLmXCbOwl.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals. In Conference on Robot Learning, pp. 384-394. PMLR,
2022.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-centric learning for real-world
videos by predicting temporal feature similarities. Advances in Neural Information Processing
Systems, 36, 2024.

Yanjie Ze, Ge Yan, Yueh-Hua Wu, Annabella Macaluso, Yuying Ge, Jianglong Ye, Nicklas Hansen,
Li Erran Li, and Xiaolong Wang. Gnfactor: Multi-task real robot learning with generalizable
neural feature fields. In Conference on Robot Learning, pp. 284-301. PMLR, 2023.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Re-
arranging the visual world for robotic manipulation. In Conference on Robot Learning, pp. 726—
747. PMLR, 2021.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing.
arXiv preprint arXiv:1801.09847, 2018.

Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
Learning compositional world models for robot imagination. In arXiv preprint arXiv:2404.12377,
2024.

16

https://openreview.net/forum?id=xppLmXCbOw1

Published as a conference paper at ICLR 2025

APPENDIX

A EXTENDED SINGLE TASK AND MULTI-TASK RESULTS

Comparing with other augmentations. In the single-task setting, we compare DREMA to Per-
Act trained with three invariant augmentation techniques: generating random patches on RGB-D
images (Laskin et al., 2020), randomly altering the table color (Chen et al., 2023), and introducing
random objects into the scene (Chen et al., 2023; Bharadhwaj et al., 2024). For each approach, we
generate 80 augmented examples and combine them with the original data to train the policy.

To mask the table, we use ground-truth images provided by RLBench. Random distractors are
introduced by embedding the point clouds of objects into the original re-projected point cloud and
projecting them back onto the original views. The objects are randomly selected from 18 scans
of the YCB dataset (Calli et al., 2015). We believe that combining invariant augmentations with
equivariant augmentations has the potential to yield more robust and generalizable policies.

Multi-task results. In multi-task settings, DREMA is tested on close jar, slide block, and sort
shape simultaneously. The agent trained with both imagined and real data achieves the highest
accuracy, except in the sort shape task, likely because shape matching is more refined and requires
additional original training data.

Consistent with findings by Shridhar et al. (2023), we observe that while multi-task learning enables
the agent to handle diverse tasks, it comes at the cost of lower accuracy for each individual task. The
same three tasks achieved an average accuracy of 41.5% in the single-task setting.

Table A.5: Comparison of PerAct (Shridhar et al., 2023) trained on original demonstrations to
DREMA trained on only imagination demonstrations and the combination of both in the multi-task
setting. The table reports the mean + std and maximum success rate over 5 test runs.

Multi-task
close jar sort shape slide block avg multi-task
mean + std max mean+std max mean +std max mean max
PerAct (Original data) 26.0£3.10 28 7.2 £ 1.60 10 34.0+506 38 22.4 25.3
DREMA (PerAct with imagined data) 28.0 =335 32 18.0+283 22 480+1.79 50 31.3 34.7
DREMA (PerAct with all data) 46.0 +3.58 52 6.4 +£3.20 12 54.0+219 58 35.5 40.7

B IMAGINATION RESULTS IN THE REAL EXPERIMENT

In Table B.6, we present the complete results for the pick block task in the real-world experiment.
This experiment aimed to verify whether the robot can learn purely through imagination, as demon-
strated by the simulation results. We observe that with only four original examples, the learned
policy performed worse than the initial policy. However, its performance improved significantly as
more original examples were added.

Table B.6: Results of the pick block task with original and imagination demonstrations.

4 examples 8 examples

Real 55 55
Imagination 50 80
Imagination + Real 90 85

C DATA GENERATION ANALYSIS

As mentioned in the work, a common problem of imitation learning, and particularly behavior
cloning, is generalizing outside the given configuration of the environment. The ability of DREMA

17

Published as a conference paper at ICLR 2025

to generate high-quality data by imagining new configurations of the environment allows us to in-
crease the training distribution. Figure C.6 shows this effect by plotting the location of the keypoints
(robot actions) in the original demonstration and in the generated imagination. This results in bet-
ter and more robust policies. Gaussian Splatting guarantees that the domain gap is small while the
simulator allows us to recreate a reasonable interaction between the robot and the objects.

x o« «

0.4 L« B B 0.4x s L 0.4

02 . x » xx . 02 M oS 02
oxx B

> 0.0 L N > 0.0

-0.2 x R -0.2- -0.2

-0.4 —0.4- xox -0.4

-03 =02 -0.1 00 01 02 03 04 05 06 -03 -02 -01 00 01 02 03 04 05 06 -03 -02 -061 00 01 02 03 04 05 06
X X X

Figure C.6: Keypoints distribution of original (blue dots) and generated data (red cross) for the sort
shape task. Data is generated from one examples (left), five examples (middle) and twenty examples
(right).

D RUNTIME ANALYSIS

The data generation approach is performed offline, as its runtime scales linearly with the number of
objects. Training PerAct in single-task configurations takes approximately two days on an Nvidia
A40 for 100k iterations with batch size 4, so adopting an online approach would have minimal im-
pact. Using an Nvidia RTX 4090, DEVA-tracking segments 5 images per second, while generating
the Gaussian model and mesh for a single object takes about 4 minutes. Replaying trajectories is
significantly faster, as it only involves applying roto-translations to the Gaussians. In our tests, the
average time to reach a waypoint in tasks like close jar, slide block, and sort shape was 1.715 sec-
onds without rendering and 1.883 seconds with rendering. Rendering required 0.168 seconds on
average to update Gaussian positions, render five 128 x 128 RGB-D images, and filter them. The
PerAct inference time is comparable to the one reported in the original paper (around 2 frames per
second), as DREMA does not modify the model architecture but only generates training data.

E EXPLICIT WORLD MODELS AND LEARNABLE DIGITAL TWINS

Typically, an implicit world model (Ha & Schmidhuber, 2018; Hafner et al., 2019) would consist
of the encoder that maps observations into a latent state, a latent dynamics prediction (including
reward prediction) and a decoder to reconstruct original observations for a latent state. Using such a
model after training, an agent can imagine the possible future trajectory and use it to learn a policy.

In our work, the encoder is a neural network masking the RGB inputs, mapping onto a Gaussian
Splat Object Asset representation. Gaussian Splats can be seen as shallow (1-layer) Neural Field
networks. The decoder is the Gaussian Splatting reconstruction, per object.

The representation function of the world relies on (i) the Gaussian Splat Object Assets, and (ii) the
physics simulator to generate, aka “imagine”, new RGB-D representations of novel future world
states never seen before. We can use the imagined states to train our policies. This aligns with Ha
and Schmidhuber’s idea of an agent being trained entirely within “its own hallucinated dream” (Ha
& Schmidhuber, 2018).

Similarly, in our experiments, the PerAct agent was trained using imagined sensory data (RGB
and depth images rendered via Gaussian Splatting). The results in Table 1 demonstrate the agent’s
ability to use this generated data, while Table 4 highlights its effectiveness in a real-world setting.
By integrating this generated data with the original data, we demonstrate improved performance,
further validating the predictive power of the constructed world model.

In summary, our approach satisfies key components of an explicit world model:

18

Published as a conference paper at ICLR 2025

» Latent State: Represented as implicit latent vectors in traditional models, while in our
case, it corresponds to explicit compositional representations that consist of the position of
Gaussian splats, meshes, and other environment parameters.

* Observations Reconstructions: Traditionally inferred by a neural network, here derived
from Gaussian Splatting renderings.

* Dynamics Prediction: Traditionally learned by reconstruction of the observation, while in
our work, constructed using explicit representation and physics engine.

World models and learnable digital twins. We further highlight the connection between world
models and learnable digital twins, as in Abou-Chakra et al. (2024). When an agent learns a digital
twin from observations and exploits it for decision-making or policy learning, the boundary between
the two becomes blurred. Learnable digital twins can be seen as explicit models of the environment.
While standard world models are typically implicit, both they and the more explicit digital twins
serve the shared purpose of enabling agents to simulate and reason about their surroundings. This
connection is further supported by Yang et al. (2023), which uses implicit and interactive world
models as simulators.

In conclusion, while our work incorporates elements of real2sim and data augmentation, we be-
lieve it fundamentally adheres to and extends the principles of world models. The growing overlap
between these areas underscores the convergence of these methodologies, and we believe our con-
tribution aligns with this evolution.

F TASKS DESCRIPTIONS

We give more details about the imitation learning tasks described in the experiments. The simula-
tion tasks are chosen from those defined in PerAct by Shridhar et al. (2023) without modifications
(see Figure F.7 and Figure F.8). The real tasks have been designed to be similar to those used in the
simulation (see Figure F.9).

F.1 SIMULATION TASKS

Close jar. Place the lid on the jar with the specified color, sampled from a set of 20 color instances.
In each scene, there is a target lid and a distractor lid. The task is considered correct when the robot
releases the lid on the jar.

Insert peg. Insert a small square inside a colored peg. The size of the square has been slightly
increased to improve reconstruction. The task is successful when the square is inside the correct

peg.

Lift. Pick a colored cube identified by the prompt and move it to the red spot. Since the colored
spot is not collidable in RLBench, it was manually set as non-collidable. The task is successful
when the correct cube reaches the target.

Pick cup. Pick a target cup from two color variations and lift it. The task is successful when the
correct cup is lifted.

Sort shape. Pick the prompted shape and place it inside the correct hole in the sorter box. In each
scene, there are four distractor shapes and one correct shape to place. The task is considered correct
when the correct shape is inside the box.

Place wine. Pick a bottle and place it on the rack. The task is successful when the bottle is released
in the correct location on the rack.

Put in cupboard. Pick an object identified by the prompt and place it inside a cupboard. Since
the cupboard is floating in RLBench, it was manually set as non-collidable.

19

Published as a conference paper at ICLR 2025

Close jar

Insert peg

Lift

Pick cup

Sort shape

-
2
-

Figure F.7: Visualization of the simulation tasks. From top to bottom: close jar, insert peg, lift, pick
cup, sort shape

Slide block. The task involves sliding a red block onto one colored spot. The target colors are
limited to red, blue, pink, and yellow (four variations). The task is considered successful when part
of the block is inside the specified colored area.

Stack blocks. Stack a given number of blocks with colors selected by the user. The task is suc-
cessful when the desired number of blocks are correctly identified and stacked.

F.2 REAL WORLD TASKS

Pick Block. The task consists of picking a green block and putting it on top of one bigger blue or
red block. In each scene, both the possible targets are on the table. The task is considered correct if
the robot releases the green cube on the right block and touches the correct place. We do not require
the green block to stay on the block since we do not wish to show high accuracy in position, but the
robot learned to distinguish the two correct positions. Training demonstrations: the cube is never
moved from the position while the two target blocks are equally distant from it and symmetric to the
x axis of the robot base. We swapped the two blocks in each recorded demonstration. Test out of
domain: the blocks are placed asymmetrically with respect to the x axis, and the cube is placed in a
random position.

20

Published as a conference paper at ICLR 2025

Place wine

Put in cupboard

Slide block

Stack blocks

Figure F.8: Visualization of the simulation tasks. From top to bottom: place wine, put in cupboard,
slide block, stack blocks

Pick Shape. The task consists of picking a colored shape and putting it inside a red box. In each
scene, there is an orange star, a blue cube and a pink cross. All the shapes are visible in the scene.
The task is considered correct if the robot releases the right shape inside the red box. Training
demonstrations: The shapes are randomly placed in the scene, while the red box is always on the
left side of the robot, close to the base. Test out of domain: the shapes are randomly placed in the
scene, but the box is positioned on the other side or in a position far from the (fixed) training one.

Push. The agent is required to pick a screwdriver and use it to push a green cube. We considered
the task correct if the robot touched the green cube with the screwdriver. Training demonstrations:
the cube is never moved from the position while the screwdriver is placed on the left, on the right
and in front of the cube. Test out of domain: the blocks and the screwdriver are randomly placed in
the scene.

Place Object. The task consists of picking an object selected by the user and put it inside a box. In
each scene, there is a tape, a stapler and a yellow duck (that is a distractor). All the shapes are visible
in the scene. The task is considered correct if the robot releases the right object inside the brown
box. Training demonstrations: The objects are randomly placed in the scene, while box is always
on the left side of the robot. Test out of domain: the objects are randomly placed in the scene, but
the box is positioned on the other side or in a position far from the training one.

Erase. The agent is required to pick an eraser and use it to erase a colored spot among two vari-
ations. We considered the task correct if the robot can erase slide the object on the right color.
Training demonstrations: eraser is in the middle and the two colored spot in a fixed position. Test
out of domain: the eraser is randomly placed.

21

Published as a conference paper at ICLR 2025

-

Place object Push block . Sort shape ‘ Place block

Erase

Figure F.9: Visualization of the real tasks. From top to bottom: place block, sort shape, push block,
place object, erase.

G EXTENDING THE WORLD MODEL TO ARTICULATED OBJECTS

Automatic modeling of articulated objects remains an open challenge (Kerr et al., 2024; Liu et al.,
2023; Weng et al., 2024). While DREMA does not currently identify articulated objects, it does
support their simulation (for instance, the robotic arm itself is an articulated object). To model
articulated objects, three key steps are required: (1) recognizing the object’s components, (2) iden-
tifying joint types and parameters (e.g., rotational about a point or translational along an axis), and
(3) determining the joint’s location. Once these aspects are defined, a URDF can be generated for
simulation (Chen et al., 2024b).

Several promising directions could help address these challenges. One possible approach would
leverages a robot’s or human motion to infer object movement and joint properties, as demonstrated
by Kerr et al. (2024) that used foundation models such as SAM (Kirillov et al., 2023) to identify
object parts, while an optimization-based approach improves joint movement. Extracting the meshes
of the parts and encoding their movement within a URDF would enable the automatic creation of
articulated objects for DreMa. Alternatively, the articulated structure could be inferred directly from
semantic information, as demonstrated by Chen et al. (2024b), where a model could be trained to
reconstruct articulated objects directly.

22

Published as a conference paper at ICLR 2025

In the current version, robot links are segmented manually, while the model is assumed to be given.
Automating this process could be achieved by segmenting links using a foundation model (Kirillov
et al., 2023) or a trained segmentation model for this task.

H DISCUSSION ON FAILURE SOURCES

The current implementation of DREMA is highly dependent on the segmentation mask. As shown
in Figure H.10, if the segmentation mask for the objects is incorrect, the robot cannot interact with
them. Similar issues may arise from incorrect mesh predictions, which PyBullet uses to detect
collisions. Inaccurate meshes can lead to unexpected collisions or missed collisions.

The verification process prevents generating incomplete or incorrect demonstrations. Incomplete
demonstrations can result from singularities in the trajectory or from trajectories that require
unattainable robot configurations. Incorrect demonstrations often occur when object rotations move
them outside the table, causing them to fall.

When PerAct is trained with such faulty demonstrations, its performance is significantly impacted.
Even a small number of problematic demonstrations can make the model incapable of executing the
task.

Figure H.10: From top to bottom consequences of wrong segmentation, consequences of wrong
mesh prediction, consequence of no check of correct execution. In the first two rows the robot
cannot pick the objects, while in the last row, it can’t perform the actions they requires unreachable
configurations.

I EXTENDED RELATED WORKS FOR IMITATION LEARNING

I.1 IMITATION LEARNING

Imitation learning involves collecting a dataset of demonstrations and learning a task from this data.
Recent research has focused on vision-based imitation learning, where the policy is learned and ex-
ecuted directly from RGB or RGB-D images (Zeng et al., 2021; Shridhar et al., 2023; 2022; Goyal
et al., 2024). A significant advancement in this area was Transporter (Zeng et al., 2021), which in-
troduced a network for executing pick-conditioned placing. The authors analyze data augmentation
and demonstrate its benefits for learning tasks, but argue that imagining various object configura-

23

Published as a conference paper at ICLR 2025

tions is unrealistic. However, we show that generating new demonstrations is feasible, thanks to
recent advances in foundation models, Gaussian splatting, and physics simulation.

CLIPort (Shridhar et al., 2022) adapts Transporter for multi-task object manipulation by incorpo-
rating CLIP features into the action computations. However, it is limited to simple pick-and-place
tasks in 2D top-down settings. C2F-ARM (James et al., 2022) and PerAct (Shridhar et al., 2023)
voxelized the environment and inferred actions directly in 3D. RVT (Goyal et al., 2023) builds on
PerAct and uses the point cloud to render images from an optimal viewpoint to predict subsequent
actions. All of these models require around one hundred demonstrations to learn a task. Recently,
GNFactor (Ze et al., 2023) and RVT2 (Goyal et al., 2024) reduced the number of examples needed
using NeRF and a coarse-to-fine inference, respectively. However, they still require many examples
to perform tasks accurately. In this work, we demonstrate that by reconstructing a physics-powered
simulation of the scene and imposing equivariant constraints on the data, we can generate new data
and further reduce the number of demonstrations needed.

1.2 DATA AUGMENTATION FOR IMITATION LEARNING

Data augmentation is a well-established practice in Computer Vision. Early milestone
works (Krizhevsky et al., 2012; He et al., 2016) applied random flipping and cropping to improve
model robustness. However, data augmentation in robotics presents unique challenges, as the robot’s
actions directly affect the environment. Thus, augmenting data is not always straightforward. Laskin
et al. (2020) demonstrated that image augmentations, such as cropping or color jittering, can help
agents learn better policies. However, their approach does not address augmenting robot actions. In
contrast, our approach generates new trajectories.

In MoCoDa (Pitis et al., 2022), data generation is achieved by creating counterfactual transitions
between states and actions. Recently, Corrado & Hanna (2024) proposed dynamic invariant aug-
mentations, showing that expanding the state-action coverage of the training data is more effective
than increasing transitions.

The recently introduced MimicGen (Mandlekar et al., 2023) demonstrated that imitation learning
can benefit from data augmentation by composing different object-centric segments. The main lim-
itation of these approaches is that they can only generate data by composing known states. In
contrast, our approach generates new data by imagining novel equivariant configurations of objects
and trajectories.

J ENGINEERING THE WORLD MODEL

The proposed compositional manipulation world model is a significant undertaking, requiring care-
ful engineering to ensure its utility with real-world robots. However, the advantage of this approach
is that, with the compositional manipulation world model we have developed, we can learn novel
policies on a real robot with just a single example. For transparency and reproducibility, we provide
a detailed description of the key engineering efforts involved.

Low-resolution rendering. While Gaussian Splatting is designed for novel view synthesis, we
observed unexpected behavior with low-resolution images, such as those in RLBench (James et al.,
2020). Initially, we collected images at the original resolution of 1280 x 720 and rendered them at
128 x 128, the resolution required by PerAct. However, this change in resolution led to incorrect
renderings of RGB images, and, more notably, depth images with inaccurate distance estimates from
the cameras. As a result, the robot incorrectly predicted the consequences of its actions. To address
this issue, we simply render the images at a higher resolution and then down-sample them to the
desired resolution.

Point cloud re-projection from 2D Gaussian Spatting. PerAct uses depth images to re-project
the point cloud in 3D. Unfortunately, we noticed that the depths rendered from the Gaussians repre-
sentation along the edges of the robot and the objects were not accurate enough. The consequence
was to have noisy point clouds that affected the learning of the agent. We solve this problem by fil-
tering out Gaussians near edges using the radius outlier removal from Open3D (Zhou et al., 2018).

24

Published as a conference paper at ICLR 2025

Mesh extraction and physics engines. As motivated earlier, to model the object assets and their
dynamics, physics engines require objects to be represented by mesh grids and not Gaussian blobs.
We therefore adopt the 2DGS Gaussian Splatting (Huang et al., 2024) with TSDF to extract high-
quality meshes, since the original Gaussian Splatting does not guarantee that the Gaussians align
with the surfaces. Sugar (Guédon & Lepetit, 2024) proposes additional regularizations to improve
mesh extraction. However, we found that their meshes were not accurate enough for reliable simu-
lations. As a physics engine, we use PyBullet as a core component.

Flat surfaces. To avoid falling objects in the simulator, the table is extracted by filtering the depth
by using the segmentation mask. RANSAC (Fischler & Bolles, 1981) is used to estimate a plane
necessary to create a fixed convex hull that functions as a playground for the robot.

Camera Calibration. Unlike the graphics literature, which primarily focuses on the visual quality
of reconstruction, and physics simulators designed for general or manually specified scenes, our goal
is to integrate automated scene reconstruction with physics simulators. This requires aligning the
geometry of the scene reconstruction with the geometry of the physics simulator. We achieve this
by leveraging the calibrated camera mounted on top of the robot (Allegro et al., 2024). Additionally,
since the robot agent is aware of its own dynamics, we can use its kinematics to estimate the extrinsic
camera parameters as the robot moves. For more details on the real experiment, see Sec. 5.3, and
for further information on camera calibration, refer to App. M.

End-effector manipulations. To move the robot inside the simulator, we specify a target pose that
uniquely identifies the position and orientation of the end-effector. The robot is then controlled in
position until the target is reached. Using the robot’s kinematic model, expressed in the URDF, we
can locate the different links and update the Gaussian accordingly.

Background. Once we have the Gaussian representation of the objects, we then extract the repre-
sentation of the table surface and the surrounding environment. This is done by removing the object
Gaussians from the rest of the scene to avoid duplicates.

Physical parameters. For the physics simulator, the geometry of the objects is not enough; various
physical parameters are also required. Some physical parameters can be assumed to be constant,
such as the gravitational constant or air resistance, while others are not, including the masses of
objects, object elasticity, or the friction coefficient. In general, estimating physical parameters is
a whole exciting field on its own (Mehra, 1974; Chebotar et al., 2019; Gao et al., 2022; Huang
et al., 2023) and some of these methods, such as ASID (Memmel et al., 2024) or AdaptSim (Ren
et al., 2023), can be applied to identify them. In this paper, we focus on learning a photo-realistic
representation of the world powered by a physics simulator, and its usefulness for compositional
manipulation world models and imitation learning. Keeping in mind the overall complexity, we
consider physical parameter identification to be out of scope, yet an important direction for future
work.

K OPEN-VOCABULARY SEGMENTATION IN SIMULATION AND IN REAL
WORLD

Segmenting simulation images with Grounded-SAM (Ren et al., 2024) proved challenging due to
the domain gap. While the typical gap occurs from simulation to the real world, in our case, we
encountered the opposite issue. The open-vocabulary segmenter, which was primarily trained on real
data, struggled to accurately detect objects, the table, and the robot in the simulation. We observed
that while SAM could identify objects, grounded-DINO misclassified instances, assigning incorrect
labels. Figure K.11 shows examples of predicted masks in the simple environment with a cube in the
center. In contrast, using only simple prompts such as “table” and “object”, and filtering out masks
not on the table, the segmenter could correctly identify objects in the real data. Figure K.12 displays
examples from the real setting. One possible solution to improve recognition in the simulation is
to fine-tune the segmenter to align the two domains. However, since our goal is to develop a world
model with real-world applicability, we chose to focus on enhancing the zero-shot capabilities for
the real world.

25

Published as a conference paper at ICLR 2025

Figure K.11: Segmentation masks in simulation. The middle column was generated with the prompt
“object”, whereas the right column was generated with the prompt “green cube”.

B = -
: y
A
| 4

Figure K.12: Examples of segmentation masks from the real images. These were generated by
prompting “object” and “table”.

L WORLD MODEL LEARNING DETAILS

To avoid falling objects in the simulator, the table is extracted by filtering the depth using the seg-
mentation mask. RANSAC (Fischler & Bolles, 1981) is used to estimate the plane necessary to
create a fixed convex hull. Finally, the entire scene is reconstructed, and the Gaussians of the objects
are removed from the reconstruction. The procedure produced a set of Gaussians paired with the
mesh for each object and the Gaussians of the scene without the extracted objects.

World Model Learning. The set of images X is collected using a similar approach of Ze et al.
(2023) collecting 200 images from a rotating camera. We set the resolution of the camera to
1280 x 720, mimicking a real one. To avoid falling objects in the simulator, the table is extracted by
re-projecting the depth filtered by the segmentation mask of this particular object. RANSAC (Fis-
chler & Bolles, 1981) is used to estimate a plane, necessary to create a fixed convex hull used as a
workspace. The Gaussians of each object are trained for 7000 iterations. The meshes are extracted
starting from the Gaussians using TSDF and the hull. The table is used to remove the parts of the
mesh penetrating the table. Without this filtering, PyBullet may detect collisions creating problems
in the simulation. A similar operation should be also done in case of touching objects. The entire
scene is reconstructed. The Gaussians of each object are matched with their counterpart in the entire
scene using KNN and then removed to avoid duplications. The procedure produced a set of Gaus-
sians paired with the mesh for each object, and the Gaussians of the scene without the extracted
objects.

In imitation learning, the agent learns from a dataset Z = {(1, ..., (s} consisting of M demonstra-
tions, each paired with a corresponding task encoding 7 = {¢1, ..., tas }. When tasks are described

26

Published as a conference paper at ICLR 2025

by language-based goals, the task ¢,, is represented by a language embedding (e.g., pre-trained CLIP
embeddings) corresponding to the phase that describes the task. Each demonstration (,,, consists of
a sequence of continuous actions A = (aq,...,a;), which are encoded as end-effector poses and
gripper states. These actions are paired with observations Q = (qu, ..., ¢:), which in our case can
be the object assets from the compositional manipulation world model.

Data Generation. Following PerAct (Shridhar et al., 2023), we use a dataset Z = (1, (o, ..., (, of
n demonstrations, each paired with a corresponding task encoding 7 = ¢4, to, ..., t,,. For language-
based goals, the task ¢; is the language embedding (e.g., a pre-trained CLIP embedding) of the phrase
describing the task. Each demonstration (is a sequence of continuous actions A = aq,as, ..., as
paired with observations Q = (¢i1,...,¢:). An action a consists of the 6-DoF pose, gripper open
state, and whether collision avoidance was used by the motion planner to reach an intermediate pose:
@ = Upose; Gopen; Ocollide- AN Observation ¢ consists of RGB-D images from any number of cameras.
We use three cameras for simulated experiments, Gsim = Gfront; Qleft, dright» and a single camera for
real-world experiments, Greal = ¢ront- Each image in Q has dimensions 128 x 128.

To generate the data, the robot executes A in PyBullet and renders a new set of observations using
simulated cameras located at the same positions as Gsim- When the robot successfully completes
a;, the corresponding simulated observation is rendered, and the robot proceeds to execute a;1. It
is important to note that the set of cameras ggont, Gleft, Gright 1 not used for optimizing the Gaussian
representations. Instead, the novel-view synthesis capability of Gaussian Splatting is utilized. At the
end of the execution, the objects’ locations are saved. This data is then used to verify if the actions
in the new environmental configurations can successfully complete the task.

The new configuration of the environment is generated by translating and rotating objects and the
trajectory, while keeping the robot in the same position. We translate the environment along the
x and y axes using combinations of [0.0,0.15, —0.15]. The z-axis is not augmented, as the test
environments do not involve different table heights. However, such augmentation could be beneficial
if the test environment includes varying heights. The rotation of the table and objects is performed
around the position [0.30,0.0, 0.0], with a complete rotation around the z-axis in steps of 30°. For
the trajectory rotation, the step size is reduced to 20°. For object picking, no specific operations
are applied since the demonstration provides the correct picking locations. However, reconstruction
errors could impact the simulation and prevent correct object picking.

In single-task settings, PerAct is evaluated on nine tasks. For these tasks, DREMA generates n
valid examples, where n is as follows: 112 for close jar, 136 for insert peg, 142 for lift, 142 for
pick cup, 81 for sort shape, 36 for place wine, 58 for put in cupboard, 61 for slide block, and 63
for stack blocks. These demonstrations correspond to cases where the goal position was correctly
reached in the augmented environment, as verified in Sec. 4. Each original demonstration allows
for a maximum of 37 generated trajectories, with 37 original demonstrations used across the nine
tasks. This results in a theoretical maximum of 1369 demonstrations, but filtering reduces this to
831, retaining approximately 60% of the generated data.

We noticed that the jars and shape sorter are fixed in the simulator, so we also fixed them in the
experiments. Similarly, the cupboard, which is floating in the simulator, was adjusted accordingly
in the reconstruction. Our goal is to create a representation that the robot can manipulate and use to
learn tasks that visually resemble the real-world scene.

Training. In the single-task setting, PerAct is trained using the same parameters as the original
implementation, except for a reduced batch size of 4 and a decreased number of iterations to 100k.
We also trained PerAct on slide block, close jar, and sort shape tasks with the original batch size
and found minimal differences in accuracy compared to the reduced batch size (close jar: +1.5, slide
block: +1.2, sort shape : -2.8). For the multi-task setting, we follow the single task setting while
increasing the number of iterations to 600k. All training and testing experiments with PerAct are
conducted on an Nvidia A40 GPU.

Validating and Testing. Model selection is crucial to avoid deploying suboptimal policies (Shrid-
har et al., 2023). Compared to the original study, the number of validation examples was increased
from 25 to 40 to improve the selection of models. Similarly, the size of the test set was increased
from 25 to 50 to accommodate a wider range of evaluation scenarios. In addition, the test was re-

27

Published as a conference paper at ICLR 2025

peated five times to incorporate the variability introduced by motion planning and environmental
interactions.

Rendering problems. Gaussian Splatting is designed for novel view synthesis. However, we no-
ticed strange renderings when it is trained with high-resolution images and deployed to generate
low-resolution ones, that are needed for the experiments in RLBench (James et al., 2020). Fig-
ure L..13 shows how these problems affected the rendering of RGB and depth images. In particular,
depth images must be carefully estimated since PerAct uses them to create a voxel representation
of the environment. The rendering problem caused the robot to predict the actions incorrectly. To
overcome this problem, we rendered a higher-resolution image and down-sampled it to the desired
resolution.

Point Cloud re-projection from 2D Gaussian Spatting. PerAct uses depth images to re-project
the point clouds in 3D. We noticed that the depth images rendered by the Gaussians are inaccurate
along the edges of the robot and the objects. This created noisy point clouds that affected the agent.
Figure L.14 shows a point cloud re-projected from the generated depth. We solve it by filtering using
the radius outlier removal from Open3D (Zhou et al., 2018). This was particularly effective with far
cameras but less effective with the wrist camera. Therefore, we used three cameras instead of four
for the experiments.

N sesed
T B N . A
LW | N T |

Figure L.13: Three left images show the rendered RGB, the same RGB rendered with a higher
resolution, and the original image. On the right, the original point cloud (red) does not align with
the rendered one (green) when the image is directly rendered in low resolution.

Figure L.14: Re-projected point clouds before (left) and after (right) the filter.

M MORE INFORMATION ON THE REAL EXPERIMENT

In this section, we provide a more detailed description of how we learned the world model and
deployed imitation learning in a real robot setup. Moreover, we add some brief discussions on
problems we encountered.

Collecting demonstration in the real world. One of the most essential parts of imitation learn-
ing is data collection. At the beginning and the end of the demonstration, we recorded the images
used to reconstruct the world model and checked that with the physical parameters used, the robot
could replay the same trajectory. The demonstrations are collected only from the external Kinect
V2 camera, positioned to resemble the front camera of RLBench as in the real experiment of Per-
Act (Shridhar et al., 2023). The keypoints to execute were manually saved through the RVIZ inter-
face in ROS1 (Quigley et al., 2009). When the keypoints were established, we used sampling-based
motion planning to generate the execution trajectory. During the execution, we recorded a Ros bag

28

Published as a conference paper at ICLR 2025

later processed to create data in RLBench format'. In collecting the data, we noticed that quality is
essential for correctly training the model. Sometimes formatted data contained more keypoints in
similar positions, creating loops in the agent that could not exit. We encountered problems when the
same task in a similar position had a different number of keypoints. We believe that these problems
are reduced by increasing the batch size, but due to time constraints, we could not verify this as-
sumption. To avoid these issues, we collected demonstrations with a constant number of keypoints,
and manually cleaned the data when we noticed unwanted keypoints.

World model creation and data generation. The images needed to construct the world model
were collected with the camera on the robot. The camera was calibrated, and the inverse kinematics
was used to retrieve the camera pose. However, we noticed that Gaussian Splatting requires accurate
poses. Sometimes, the movements of the robot or the interactions with the objects made the camera
move. Consequently, we had to calibrate the camera again. The alignment between the world
model and the real world played another important role. We observe that this should be accurately
estimated. Otherwise, the replayed trajectory would miss the objects.

Training and testing PerAct. We trained PerAct with the original parameters but with a batch
size of 4 for 100k iterations. This was constrained by the training time required since we wanted
to test policies with different training data. The original implementation saves a model every 10k
iterations. We reduced this to 5k to keep more models close to the final part of the training. Model
selection in the real world was not straightforward. We noticed that choosing the wrong model
highly impacts the accuracy. While collecting a validation set and checking the loss is possible, this
is not the best solution because the only way to understand the best model is by making the agent
interact with the environment. Consequently, we tested the last five models with a minimal number
of configurations. We think that model selection in the real world is a crucial problem that opens the
way to possible future works for our world model.

"https://github.com/baldeeb/rosbag_data.utils/tree/main

29

Published as a conference paper at ICLR 2025

N EXAMPLES OF GENERATED DATA

Figure N.15: Visualization of the close jar task

30

Published as a conference paper at ICLR 2025

Figure N.16: Visualization of the sort shape task

31

Published as a conference paper at ICLR 2025

Figure N.17: Visualization of the slide block task

32

Published as a conference paper at ICLR 2025

Figure N.18: Visualization of the pick block task

33

Published as a conference paper at ICLR 2025

Figure N.19: Visualization of the pick shape task

34

Published as a conference paper at ICLR 2025

Figure N.20: Visualization of the push task

35

	Introduction
	Related Work
	World Models
	Simulation-based reconstructions
	Imitation learning and data augmentation

	Dream-to-Manipulate with Gaussian Splats & Physics Engines
	Representing 3D Objects with Gaussian Splatting
	Decomposing the Scene into Object-centric Regions
	Modelling Robot-Object Dynamics with Object Assets
	Engineering

	Equivariant Transformations for Imitation Learning
	Experiments
	One-shot Policy Learning: Single- and Multi-task
	Analysis and ablations
	Experiments with a Real Robot

	Conclusions
	Extended single task and multi-task results
	Imagination results in the real experiment
	Data Generation Analysis
	Runtime analysis
	Explicit World Models and Learnable Digital Twins
	Tasks descriptions
	Simulation tasks
	Real world tasks

	Extending the world model to articulated objects
	Discussion on failure sources
	Extended Related Works for Imitation Learning
	Imitation learning
	Data augmentation for Imitation learning

	Engineering the world model
	Open-vocabulary segmentation in simulation and in real world
	World model learning details
	More information on the real experiment
	Examples of generated data

