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A DETAILS OF PDEOC PROBLEMS

A.1 THE LAPLACE PROBLEM

Consider the Laplace equation in the unit square Ω with Dirichlet boundary conditions
∂2u
∂x2 + ∂2u

∂y2 = 0 x ∈ [0, 1], y ∈ [0, 1],

u(x, 1) = c(x)

u(x, 0) = sinπx

u(0, y) = u(1, y) = 0,

(17)

where c is the control applied to the top wall. We seek to solve the convex optimal control problem

c∗ = argmin
c
J (u, c) subject to equation (17), (18)

with

J (u, c) =
∫ 1

0

∣∣∣∣∂u∂y (x, 1)− ua(x, 1)

∣∣∣∣2 dx. (19)

In other words, we want to find the optimal control solution c∗(x) at the top wall that produces the
desired flux ua(x, 1) = −π

2 sin(πx). This problem has the analytical optimal solution

c∗(x) = sech(π) sin(πx)− 1

2
tanh(π) sin(πx), (20)

corresponding to the state solution

u∗(x, y) =
1

2
sech(π) sin(πx)

(
eπ(y−1) + eπ(1−y)

)
− 1

4
sech(π) sin(πx)

(
eπy − e−πy

)
. (21)

The linearity of the Laplace equation implies that any PDEOC problems defined by a quadratic cost
objective will be convex (Tröltzsch, 2010). Therefore, in Appendix B.1 we only need compare the
optimal control c(x) with analytical optimal solutin c∗(x).

In Figure 2, we present the state solution(Fig2 a) and the system state under the control of the PDE-
GAN method for this problem(Fig2 b). In this problem, we utilized the finite element method to
compute the cost objective of the three methods, thereby evaluating the advantages and disadvan-
tages of each approach.

(a) (b)

Figure 2: Laplace: (a) PDEOC problems analytical solution; (b) The system state under the control
of the PDE-GAN method (Simulated using high fidelity Gauss-Seidel Iterative Method with Central
Difference Scheme).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 3: Inviscid Burgers: (a) PDEOC problems analytical solution; (b) The system state under
the control of the PDE-GAN method (Simulated using high fidelity Forward Euler Method (FEM)
method).

A.2 THE INVISCID BURGERS PROBLEM

We then consider the one-dimensional Inviscid-Burgers equation with Dirichlet boundary condi-
tions, a prototypical nonlinear hyperbolic PDEs that takes the form

∂u
∂t + u∂u

∂x = c(t) x ∈ [0, 1], t ∈ [0, 1]

u(0, t) = 1
t+1 + (t+1)2

3

u(1, t) = 2
t+1 + (t+1)2

3

u(x, 0) = x+ 4/3,

(22)

where c(t), the control signal, is a function c(t) ∈ R depends on time t but does not depend on
spatial coordinates x. We seek to solve this optimal control problem

c∗ = argmin
c
J (c) subject to equation (22), (23)

with

J (u, c) =
∫ 1

0

|u(x, 1)− ua(x, 1)|2dx, (24)

where

ua(x, 1) =
x+ 1

2
+

4

3
. (25)

In other words, we seek the optimal control c(x) that results in the same final state as equation 25.
This problem has an analytical optimal control given by equation 26.

c∗(t) = t+ 1, (26)

corresponding to the state solution

ua(x, t) =
x+ 1

t+ 1
+

(t+ 1)2

3
. (27)

To evaluate the quality of the optimal control found by the three methods, we use the Forward Euler
Method to compute the final state u(x, 1) corresponding to the optimal initial condition c∗(x), where
the difference step sizes are dx = 1e-3, dy = 5e-6.

In Figure 3, we present the state solution(Fig3 a) and the system state under the control of the
PDE-GAN method for this problem(Fig3 b).

13
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(a) (b)

Figure 4: Viscous Burgers (Initial value control): (a) PDEOC problems analytical solution; (b) The
system state under the control of the PDE-GAN method (Simulated using high fidelity 128-order
fourier spectral method).

A.3 THE VISCOUS BURGERS PROBLEM (INITIAL VALUE CONTROL)

We then consider the one-dimensional Viscous Burgers equation with Dirichlet boundary conditions,
a prototypical nonlinear hyperbolic PDEs that takes the form

∂u
∂t + u∂u

∂x = v ∂2u
∂2x x ∈ [−1, 1], t ∈ [0, 1]

u(−1, t) = 0

u(1, t) = 0

u(x, 0) = c(x),

(28)

where c(x) is the initial condition. We seek to solve the non-convex optimal control problem

c∗ = argmin
c
J (c) subject to equation (28), (29)

with

J (u, c) =
∫ 1

−1

|u(x, 1)− ua(x, 1)|2dx, (30)

where

ua(x, 1) =
2νπ sin(πx)

2 + cos(πx)
. (31)

In other words, we seek the optimal initial condition c(x) that results in the same final state as
equation (31). This problem has an analytical optimal initial condition given by equation 32.

ua(x, 0) =
2νπeπ

2ν sin(πx)

2 + eπ2ν cos(πx)
, (32)

corresponding to the state solution

ua(x, t) =
2νπe−π2ν(t−1) sin(πx)

2 + e−π2ν(t−1) cos(πx)
. (33)

To evaluate the quality of the optimal solutions found by the three methods, we use a spectral solver
to compute the final state u(x, 1) corresponding to the optimal initial condition c∗(x) in the frame-
work of the three methods, where we selected 128 equally spaced nodes. In Figure 4, we present
the state solution(Fig4 a) and the system state under the control of the PDE-GAN method for this
problem(Fig4 b).
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(a) (b)

Figure 5: Viscous Burgers (Distributed control): (a) The system state under the control of the PDE-
GAN method (Simulated using high fidelity Forward Euler Method (FEM) method); (b) PDE-GAN
distributed optimal control f(x, t).

A.4 THE VISCOUS BURGERS PROBLEM (DISTRIBUTED CONTROL)

Finally, we consider the one-dimensional non-homogeneous Viscous Burgers equation with Dirich-
let boundary conditions, which has the following form

∂u
∂t + u∂u

∂x − v ∂2u
∂2x = f(x, t) x ∈ [−1, 1], t ∈ [0, 1]

u(−1, t) = 0

u(1, t) = 0

u(x, 0) = sin(πx),

(34)

where f(x, t) is the distributed control. We seek to solve the optimal control problem

c∗ = argmin
c
J (c) subject to equation (34), (35)

with

J (u, c) =
∫ 1

−1

|u(x, 1)|2dx+ σ

∫ 1

−1

∫ 1

0

|f(x, t)|2dtdx, (36)

In other words, we seek the optimal distributed control f(x, t) that minimizes the energy, such that
the PDEs system trends toward the unstable zero solution at the final time. We select σ as 0.001.

To evaluate the quality of the optimal solutions found by the three methods, we use Forward Euler
Method to compute the cost objective corresponding to the optimal distributed control f(x, t) in the
framework of the three methods, where the difference step sizes of FEM are dx = 4e-3, dy = 2.5e-4.

We present the system state under the control of the PDE-GAN method for this problem(Fig5 a) and
the distributed control of the PDE-GAN method (Fig5 b).

B RESULTS ANALYSIS

In this section, we will analyze the advantages of the PDE-GAN method in four PDEOC prob-
lems. Moreover, we will take the Laplace equation as an example to explain in detail the symbolic
definition and image implications of the PDE-GAN method that appear in all four problems.

B.1 LAPLACE

In Figure 6 (a) both G1 and D1 converge to the same value ln(2), which means the LHSu rep-
resenting the PDE residual (F) is sufficiently small and the discriminator Du finds it difficult to
distinguish between the RHSu (‘realu’) and LHSu (‘fakeu’). Similarly, in Figure 6 (b), when the
LHSc representing the cost objective (J ) is sufficiently small, the outputs value of Dc(LHSc) and
Dc(RHSc) also approach 0.5 and G2 and D2 converge to the same value ln(2).

15
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Laplace: (a) Convergence of the G1 and D1 in the PDE-GAN method; (b) Convergence
of the G2 and D2 in the PDE-GAN method; (c) The cost objective of Soft-PINNs under different
weights (ωs=1e-02). (d) The cost objective of Hard-PINNs under different weights (ωh=1e04); (e)
Comparison of PDE loss for Soft-PINNs and Hard-PINNs under optimal weights with the PDE-
GAN method; (f) Comparison of Cost loss for Soft-PINNs and Hard-PINNs under optimal weights
with the PDE-GAN method; (g) The optimal controls obtained by the three methods are compared
with the analytical solution; (h) The absolute errors between the results of the three methods and the
analytical solution.

Figure 6(c)-(d) shows the cost objectives of Soft-PINNs and Hard-PINNs under different weights
based on the finite element method. We marked the optimal weights (Soft: 1e-02, Hard: 1e04) in
the figure with red dots. Next, we will compare the results of Soft-PINNs and Hard-PINNs under
the optimal weights with our results to demonstrate the advantages of PDE-GAN.

In Figure 6(e), we compared the PDE loss during the training processes of the Soft-PINNs, Hard-
PINNs (optimal weight) and our method (PDE-GAN). It is obvious that the PDE loss of PDE-GAN
is approximately at least 5 orders of magnitude lower than that of the other methods. In Figure
6(f), we compared the Cost loss during the training processes of the three methods. Additionally,
our method can achieve a reduction of 7 and 2 orders of magnitude compared to Soft-PINNs and
Hard-PINNs. To facilitate reader understanding, we reiterate the formulation of the PDE loss and
cost loss based on the loss functions in (3) and (7) as follows.

For Soft-PINNs:
PDE loss = LF (uθu , cθc) + LB(uθu) + LI(uθu). (37)

Cost loss = LJ (uθu , cθc). (38)

For Hard-PINNs and PDE-GAN:

PDE loss = LF (ûθu , cθc) (39)

Cost loss = LJ (ûθu , cθc). (40)

In Figure 6(g), we plot the optimal control obtained cθc from the three methods and analytical
solution c∗(x). To make the comparison more intuitive, in Figure 6(h), we subtract the analytical
solution from each of the three solutions and take the absolute value. It can be observed that the
PDE-GAN method achieves the highest accuracy without the need for line search.
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(a) (b) (c) (d)

(e) (f) (g)
(h)

Figure 7: Inviscid Burgers: (a) Convergence of the G1 and D1 in the PDE-GAN method; (b)
Convergence of the G2 and D2 in the PDE-GAN method; (c) The cost objective of Soft-PINNs
under different weights (ωs=1e01). (d) The cost objective of Hard-PINNs under different weights
(ωh=1e08); (e) Comparison of PDE loss for Soft-PINNs and Hard-PINNs under optimal weights
with the PDE-GAN method; (f) Comparison of Cost loss for Soft-PINNs and Hard-PINNs under
optimal weights with the PDE-GAN method; (g) Numerical solutions for the final state of Soft-
PINNs, Hard-PINNs, and PDE-GAN, compared to the target final state; (h) Absolute value of the
error between the final states of Hard-PINNs and PDE-GAN and the target final state.

B.2 INVISCID BURGERS

In Figure 7(a)-(b), both (G1,D1) and (G2, D2) converge to ln(2). Similar to Laplace problem, this
means that we have successfully trained a generator network that can deceive the discriminator.

Figure 7(c)-(d) illustrates the cost objectives of Soft-PINNs and Hard-PINNs under different
weights. Next, we compare the results of Soft-PINNs and Hard-PINNs under the optimal weights
(Soft: 1e01, Hard: 1e08) with our results (PDE-GAN).

In Figure 7(e)-(f), although our method shows little difference from the Hard-PINNs in the Cost
loss, in terms of PDE loss, our method (PDE-GAN) is nearly 2 orders of magnitude lower than the
Hard-PINNs.

In Figure 7(g), the final state of the system u(x, 1) under three methods is displayed, along with our
reference target state ua(x, 1). It is evident that the Soft-PINNs is the farthest from the target state.
To make the comparison more intuitive, in Figure 7(h), we subtract the target state ua(x, 1) from the
two final states (Hard and ours). It can be visually observed that our method is closer to ua(x, 1).

B.3 VISCOUS BURGERS (INITIAL VALUE CONTROL)

In Figure 8(a)-(b), both (G1,D1) and (G2, D2) converge to ln(2).

In Figure 8(c)-(d), we calculated the cost objective of the initial conditions for Soft-PINNs and
Hard-PINNs under different weights using the 128th-order spectral method and selected the optimal
weights (Soft: 1e04, Hard: 1e05).

In Figure 8(e)-(f), we compared the PDE loss and Cost loss during the training processes of the
Soft-PINNs, Hard-PINNs and our method (PDE-GAN). Although our method shows little difference
from the Hard-PINNs in the PDE loss, in terms of Cost loss, our method (PDE-GAN) is nearly 2
orders of magnitude lower than the Hard-PINNs.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Viscous Burgers (Initial value control): (a) Convergence of the G1 and D1 in the PDE-
GAN method; (b) Convergence of the G2 and D2 in the PDE-GAN method; (c) The cost objective
of Soft-PINNs under different weights (ωs=1e04). (d) The cost objective of Hard-PINNs under
different weights (ωh=1e05); (e) Comparison of PDE loss for Soft-PINNs and Hard-PINNs under
optimal weights with the PDE-GAN method; (f) Comparison of Cost loss for Soft-PINNs and Hard-
PINNs under optimal weights with the PDE-GAN method; (g) Numerical solutions for the final state
of Soft-PINNs, Hard-PINNs, and PDE-GAN, compared to the target final state; (h) Absolute value
of the error between the final states of Hard-PINNs and PDE-GAN and the target final state.

Figure 8(g) shows the spectral solution of the final state compared with the target state ua(x, 1).
Additionally, to make the comparison more intuitive, in Figure 8(h), we present the absolute value
of the difference between the spectral solution of the final state and the target final state ua(x, 1). It
can be visually observed that our method is closer to the target.

B.4 VISCOUS BURGERS (DISTRIBUTED CONTROL)

In Figure 9(a)-(b), both (G1,D1) and (G2, D2) converge to ln(2).

In Figure 9 (c)-(d), we calculated the cost objective of the optimal distributed control (f(x, t)) for
Soft-PINNs and Hard-PINNs under different weights base on the Forward Euler Method.

In Figure 9 (e)-(f), we compared the changes in PDE loss and Cost loss during the training processes
of the three methods. Although our method shows little difference in Cost loss compared to Hard-
PINNs, our method (PDE-GAN) has a PDE loss at least two orders of magnitude lower than the
other methods.

In Figure 9 (g), we show the numerical solutions (Forward Euler method) at the final state of three
methods and compare them with the final target state ua(x, 1) = 0. Additionally, to make the
comparison more intuitive, in Figure 9 (h), we subtract the final state u(x, 1) from ua(x, 1) and take
the absolute value. It can be visually observed that our method is closer to the target state zero.

C TRAINING DETAILS

In all optimal control problems, we compare the three methods under the same uniform grid con-
ditions (32x32). Three methods all use generator Gu to define the state solution(u(x, t)) of the
PDEOC problems, and generator Gc to define the optimal control function(c(x)/f(x, t)/c(t)). Dur-
ing training, we choose the Adam optimizer and simultaneously use a learning rate scheduler. Gu

and Gc start with the same initial learning rate, and after every decay iterations, the learning rate is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Viscous Burgers (Distributed control): (a) Convergence of the G1 and D1 in the PDE-
GAN method; (b) Convergence of the G2 and D2 in the PDE-GAN method; (c) The cost objective
of Soft-PINNs under different weights (ωs=1e02). (d) The cost objective of Hard-PINNs under
different weights (ωh=1e03); (e) Comparison of PDE loss for Soft-PINNs and Hard-PINNs under
optimal weights with the PDE-GAN method; (f) Comparison of Cost loss for Soft-PINNs and Hard-
PINNs under optimal weights with the PDE-GAN method; (g) Numerical solutions for the final state
of Soft-PINNs, Hard-PINNs, and PDE-GAN, compared to the target final state (ua(x, 1) = 0); (h)
Absolute value of the error between the final states of Hard-PINNs and PDE-GAN and the target
final state.

multiplied by the decay factor γ. Also, to make the training process more stable, we added residual
connections between the hidden layers of the neural network.

PDE-GAN: We reparameterize generator Gu so that it directly satisfies the initial/boundary con-
ditions of the problem. The structure of the generator(Gu, Gc) and discriminator(Du, Dc) networks
is shown in Table 3. We train both generator Gu/Gc and discriminator Du/Dc simultaneously by
loss function (10 - 12), starting from new parameter initializations. According to G1 (13), D1 (14),
G2 (15) and D2 (16) mentioned before, we define the criteria for determining convergence. When
|G1−D1| and |G2−D2| remain continuously below a certain upper bound for 500 iterations, we
consider the training to be complete. This means that we generate data through generators Gu and
Gc that are sufficient to deceive discriminators Du and Dc continuously for 500 iterations. During
the training process, the three loss functions (10 - 12) are updated in a 1:1:1 ratio sequentially. Ad-
ditionally, the beta parameters of the Adam optimizer impact the training of generative adversarial
networks. Therefore, we adopted the residual monitoring methodBullwinkel et al. (2022) to filter
and select stable β parameters for training. Tables 3 summarize these hyperparameter values for
PDE-GAN.

Soft-PINNs: For Soft-PINNs, we train both generator Gu/Gc simultaneously by loss function (3).
The PINN method only utilizes the generators (Gu, Gc), and its hyperparameters are identical to
those of the generators in the PDE-GAN method. We repeat above procedure for some values of ws.
We consider the result to have converged when the change in the PDEs residual term is continuously
less than a upper bound for n times. The training hyperparameters for the Soft-PINNs are shown in
Table 4.

Hard-constrained: For Hard-PINNs method, we reparameterize generator Gu so that it directly
satisfies the initial/boundary conditions of the problem. Then we train both generator Gu/Gc simul-
taneously by loss function (7). Similar to Soft-PINNs, Hard-PINNs also only utilizes the generators
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(Gu, Gc), and its hyperparameters are identical to those of the generators in the PDE-GAN method.
We repeat above procedure for some values of wh. We consider the result to have converged when
the change in the PDEs residual term is continuously less than a upper bound for n times. The
training hyperparameters for the Hard-PINNs are shown in Table 5.

Table 3: PDE-GAN methods hyper-parameters.

Hyperparameter Laplace Inviscid Burgers BurgersV-ini BurgersV-dis
Gu [2, (50*4), 1] [2, (50*3), 1] [2, (50*3), 1] [2, (50*3), 1]
Gc [1, (50*4), 1] [1, (50*3), 1] [1, (50*3), 1] [1, (50*3), 1]
Du [1, (50*2), 1] [1, (20*5), 1] [1, (20*5), 1] [1, (20*5), 1]
Dc [1, (50*2), 1] [1, (20*5), 1] [1, (20*5), 1] [1, (20*5), 1]
Learning Gu/Gc: 0.0121 Gu/Gc: 0.0127 Gu/Gc: 0.0127 Gu/Gc: 0.0127
rate(G/D) Du/Dc: 0.0884 Gu/Gc: 0.0054 Gu/Gc: 0.0054 Gu/Gc: 0.0054
Decay steps 9 10 20 10
Decay(γ) 0.9533 0.9548 0.9548 0.9548
Grid [32*32] [32*32] [32*32] [32*32]
Gu/Gc − β1(Adam) 0.2955 0.1852 0.1852 0.1852
Gu/Gc − β2(Adam) 0.3582 0.5941 0.5941 0.5941
Du/Dc − β1(Adam) 0.5751 0.0937 0.0937 0.0937
Du/Dc − β2(Adam) 0.1330 0.1846 0.1846 0.1846
Activation tanh tanh tanh tanh
Boundu (|G1−D1|) 1e-4 1e-6 1e-6 1e-6
Boundc (|G2−D2|) 1e-5 1e-6 1e-6 1e-6

Table 4: Soft-PINNs hyper-parameters.

Hyperparameter Laplace Inviscid Burgers BurgersV-ini BurgersV-dis
Weight (ωj) [1e-1 - 1e6] [1e-3 - 1e5] [1e-1 - 1e7] [1e-3 - 1e5]
Gu [2, (50*4), 1] [2, (50*3), 1] [2, (50*3), 1] [2, (50*3), 1]
Gc [1, (50*4), 1] [1, (50*3), 1] [1, (50*3), 1] [1, (50*3), 1]
Learning Gu/Gc: 0.0121 Gu/Gc: 0.0127 Gu/Gc: 0.0127 Gu/Gc: 0.0127
Decay steps 9 10 20 10
Decay(γ) 0.9533 0.9548 0.9548 0.9548
Grid [32*32] [32*32] [32*32] [32*32]
Gu/Gc − β1(Adam) 0.2955 0.1852 0.1852 0.1852
Gu/Gc − β2(Adam) 0.3582 0.5941 0.5941 0.5941
Activation tanh tanh tanh tanh
Upper bound 1e-9 1e-9 1e-12 1e-9
Times (n) 300 300 300 300

Table 5: Hard-PINNs hyper-parameters.

Hyperparameter Laplace Inviscid Burgers BurgersV-ini BurgersV-dis
Weight (ωj) [1 - 1e9] [1e3 - 1e11] [1e-1 - 1e7] [1e-3 - 1e5]
Gu [2, (50*4), 1] [2, (50*3), 1] [2, (50*3), 1] [2, (50*3), 1]
Gc [1, (50*4), 1] [1, (50*3), 1] [1, (50*3), 1] [1, (50*3), 1]
Learning Gu/Gc: 0.0121 Gu/Gc: 0.0127 Gu/Gc: 0.0127 Gu/Gc: 0.0127
Decay steps 9 10 20 10
Decay(γ) 0.9533 0.9548 0.9548 0.9548
Grid [32*32] [32*32] [32*32] [32*32]
Gu/Gc − β1(Adam) 0.2955 0.1852 0.1852 0.1852
Gu/Gc − β2(Adam) 0.3582 0.5941 0.5941 0.5941
Activation tanh tanh tanh tanh
Upper bound 1e-9 1e-15 1e-12 1e-9
Times (n) 300 300 300 300
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