
Supplementary Material: The Role of Global Labels
in Few-Shot Classification and How to Infer Them
The supplementary material is organized as follows:

• Appendix A contains the proofs accompanying our theoretical analysis.

• Appendix B presents additional experiment results.

• Appendix C details experimental setups, model architecture and hyperparameter values.

A Proofs

Let T = {(St, Qt)}Tt=1 be a meta-training set where all tasks are annotated with global labels. We
denote the collection of query sets as Q = {Qt}Tt=1 = {(Xt, Yt)}Tt=1 where we write Qt = (Xt, Yt)
as a tuple of query input samples Xt = {xjt}

nq
j=1 and their corresponding labels Yt = {yjt}

nq
j=1. For

simplicity, we assume that the query sets are disjoint, namely Qt ∩Qt′ = ∅ for any t 6= t′. We merge
all query sets into a flat dataset D(Q) = {(xi, yi)}Ni=1 = ∪Tt=1Qt, with N = nqT .

Proposition A.1. With the notation and assumptions introduced above, let C be the total number of
classes in D(Q), and W ∈ RC×m the global classifier. Denote by W [Y ] the sub-matrix with rows
indexed by the sorted unique values from Y . Then, for any embedding ψθ : X → Rm

E(X,Y )∈Q

[
Lce

(
W [Y ], (ψθ(X), Y )

)]
≤ E(x,y)∈D(Q) [`ce(Wψθ(x), y)] , (A.1)

Proof. For a dataset D, let π(D) be the set of class labels from D.

E(x,y)∈D [`ce(Wψθ(x), y)] =
1

N

∑
(x,y)∈D

− log
exp(W [y]ψθ(x))∑

y′∈π(D(Q)) exp(W [y′]ψθ(x))
(A.2)

=
1

N

∑
Q∈Q

∑
(x,y)∈Q

− log
exp(W [y]ψθ(x))∑

y′∈π(D(Q)) exp(W [y′]ψθ(x))
(A.3)

(A.3) rewrites the cross-entropy loss by enumerating over Q. We observe that Q and D(Q) share the
same collection of samples, since all query sets are disjoint.

(A.3) ≥ 1

T

∑
Q∈Q

1

nq

∑
(x,y)∈Q

− log
exp(W [y]ψθ(x))∑

y′∈π(Q) exp(W [y′]ψθ(x))
(A.4)

=
1

T

∑
(X,Y )∈Q

[
Lce(W [Y ], (ψθ(X), Y ))

]
(A.5)

= E(X,Y )∈Q

[
Lce(W [Y ], (ψθ(X), Y ))

]
(A.6)

In (A.4), the inequality is formed because the denominator
∑
y′∈π(D(Q)) exp(W [y′]>ψθ(x)) is

replaced with smaller values by summing over a smaller number of classes from π(Q). Lastly, we
rewrites the equation as the expectation over tasks in Q.

Taking (A.2) and (A.6) yields

E(X,Y )∈Q

[
Lce

(
W [Y ], (ψθ(X), Y )

)]
≤ E(x,y)∈D(Q) [`ce(Wψθ(x), y)] (A.7)

Remark A.1. If E(x,y)∈D(Q) [`ce(Wψθ(x), y)] = 0,

E(X,Y )∈Q

[
Lce

(
W [Y ], (ψθ(X), Y )

)]
= E(x,y)∈D(Q) [`ce(Wψθ(x), y)] = 0.

12



Proof. If E(x,y)∈D(Q) [`ce(Wψθ(x), y)] = 0, By Proposition 1,

E(X,Y )∈Q

[
Lce

(
W [Y ], (ψθ(X), Y )

)]
≤ 0

As cross-entropy loss Lce(·) ≥ 0, we have E(X,Y )∈Q

[
Lce

(
W [Y ], (ψθ(X), Y )

)]
= 0

B Additional Experiments

B.1 Impact of Pruning Threshold

In Algorithm 2, the pruning threshold is controlled by the hyper-parameter q. We investigate
how different q values affect the number of clusters estimated by the labeling algorithm and the
corresponding test accuracy on miniIMAGENET and tieredIMAGENET.

Table 5: The effects of pruning threshold on test accuracy and the number of clusters.
miniIMAGENET (64 classes) tieredIMAGENET (351 classes)

q No. Clusters 1-shot(%) 5-shot(%) q No. Clusters 1-shot(%) 5-shot(%)
4.5 58 60.9± 0.5 78.5± 0.4 4 363 69.1± 0.5 84.2± 0.3
5.5 58 60.9± 0.5 78.5± 0.4 4.5 427 68.5± 0.4 83.6± 0.3
6.5 64 62.0± 0.4 79.6± 0.3 5.5 752 68.4± 0.4 83.5± 0.3

The results suggest that MeLa is robust to a wide range of q and obtains similar performance for
different q values. With appropriate q values, the number of clusters estimated for the two datasets
are very close to the actual number of global classes. For miniIMAGENET, the labeling algorithm
could recover exactly 64 classes. While it is possible to replace q with directly guessing the number
of clusters in Algorithm 2, we note that tuning for q is more convenient since appropriate q values
appear to concentrate within a much narrower range, compared to the possible numbers of clusters.

B.2 Experiment on MeLa Variant

MeLa is compatible with different meta-learning algorithms. In this experiment, we demonstrate
that we could further exploit the performance gains from pre-training by leveraging S2M2 [12],
which combines additional data augmentation during pre-training and fine-tuning after obtaining the
inferred labels. In particular, S2M2 introduces two additional augmentation techniques, including
sample rotation and sample mix-up [30]. The pre-trained model is fine-tuned with meta-training tasks
to obtain embeddings more suitable for meta-testing.

We compared MeLa (S2M2) with several recent meta-learning methods, including RFS [23],
FEAT [28] and FRN [27] in Table 6.

Table 6: Classification accuracy of meta-learning models on miniIMAGENET and tieredIMAGENET.

miniIMAGENET tieredIMAGENET
1-shot 5-shot 1-shot 5-shot

Global Labels

RFS [23] 62.0± 0.4 79.6± 0.3 69.4± 0.5 84.4± 0.3
FEAT [28] 66.7± 0.2 82.0± 0.1 70.8± 0.2 84.8± 0.2
FRN [27] 66.4± 0.2 82.8± 0.1 71.2± 0.2 86.0± 0.2

Local Labels

FRN (no pre-training) 63.0± 0.2 78.01± 0.2 - -
MeLa (S2M2) 65.8± 0.4 83.1± 0.3 70.6± 0.5 85.9± 0.3

Despite not having access to global labels, MeLa (S2M2) is highly competitive with FEAT and FRN,
two state-of-the-art models that exploits global labels. In addition, the proposed method outperforms

13



RFS and FRN (no pre-training). The results further validate the efficacy of pre-training and the
positive contribution from additional augmentation.

B.3 Experiment on CIFAR Variants

In this section we present additional experiments on CIFAR-FS and CIFAR-100 datasets.

The CIFAR-FS dataset [1] is derived from the original CIFAR-100 dataset by randomly splitting
100 classes into 64, 16 and 20 classes for training, validation, and testing, respectively. The FC100
dataset [13] is also constructed from CIFAR-100 dataset with the classes split in a way similar to
tieredIMAGENET. The exact splits used in our experiments are identical to [23]. We evaluate MeLa
on both CIFAR-FS and FC100 in 5-way-1-shot and 5-way-5-shot settings.

Table 7: Comparison on CIFAR-FS and FC100 benchmarks
Accuracy (%)

CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot

MAML [5] 58.9± 1.9 71.5± 1.0 - -
R2D2 [1] 65.3± 0.2 79.4± 0.1 - -
TADAM [13] - - 40.1± 0.4 56.1± 0.4
Shot-free [16] 69.2± n/a 84.7± n/a - -
ProtoNet [20] 72.2± 0.7 83.5± 0.5 37.5± 0.6 52.5± 0.6
MetaOptNet [10] 72.6± 0.7 84.3± 0.5 41.1± 0.6 55.5± 0.6

MeLa (Ours) 71.4± 0.5 85.6± 0.4 44.0± 0.5 59.5± 0.5
RFS [23] 71.6± 0.5 85.7± 0.4 44.4± 0.5 60.0± 0.5

Table 7 suggests that MeLa obtains test performance comparable to RFS, which is the oracle setting.
This further validates that global labels may not be necessary as input, and that our proposed
labeling algorithm is effective in inferring meaningful global labels across tasks. In addition, MeLa
outperforms other meta-learning baselines in 3 out of 4 settings, and is only slightly worse than
MetaOptNet in the remaining setting. While the high-dimensional embedding used by MetaOptNet
(16000 dimensions vs 640 in ours) may be advantageous for some scenarios (e.g. CIFAR-FS 1-shot
setting), they are potentially difficult to scale to larger tasks and pre-training still produces more
robust embedding overall.

B.4 Experiment on MetaDataset

We compare MeLa against the initial embeddings learned via Eq. (3), FEAT and FRN for fine-grained
classification. Specifically, all models are trained on tasks sampled from from Aircraft, CUB and
VGG flower. Since only local labels are used, all models are trained without pre-training. For
meta-testing, we sample 1500 tasks from each constituent dataset and report the test accuracy for
each dataset below.

Table 8: Test Accuracy on a subset of MetaDataset (Aircraft, CUB, VGG Flower). A single model is
trained for each method over all tasks.

Aircraft CUB VGG Flower
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FEAT 61.7± 0.6 75.8± 0.5 59.6± 0.6 73.1± 0.5 62.9± 0.6 76.0± 0.4
FRN 60.7± 0.7 77.6± 0.5 61.9± 0.7 77.7± 0.5 65.2± 0.6 81.2± 0.5

Eq. (3) 67.7± 0.6 82.8± 0.4 53.8± 0.5 69.2± 0.5 65.4± 0.5 83.3± 0.3
MeLa 69.2± 0.5 84.3± 0.4 61.0± 0.5 77.2± 0.4 69.4± 0.5 86.0± 0.3

14



C Model and Experimental Setups

We provide additional details on the model architecture, experiment setups, and hyperparameter
choices. We performed only limited model tuning, as it is not the focus on the work.

C.1 Model Architecture

We use a ResNet-12 architecture for all our experiments. The architecture strikes a good balance
between model complexity and performance, and is one of the most commonly adopted architecture
in existing works [e.g. 10, 13, 16, 23]. Specifically, we adopt the default architecture from the official
implementation4 of [23]. The model’s penultimate layer is averaged and outputs an embedding
ψθ(x) ∈ R640.

C.2 Experiment Setup

The initial embedding function ψ0
θ can be trained on either 1-shot or 5-shot setting with minimal

impact on the quality of ψ∗θ . We choose the latter in our experiments. To ensure fair comparison, we
follow the existing convention and use 15 samples per class for query sets Q.

For all experiments, we adopt an initial learning rate of 0.05. The learning rate is decayed by a factor
of 0.1 twice for all datasets. All models are trained using a SGD optimizer with a momentum of 0.9
and a weight decay of 5× 10−4.

Table 9 reports hyperparameter values used in our experiments. Datasets CIFAR-FS and FC100 share
the same values and are reported under “CIFAR”.

Table 9: Hyperparameter values used in the experiments

VALUES
SYMBOL DESCRIPTION miniIMAGENET tieredIMAGENET CIFAR

λ1 IN (4) REGULARIZER FOR RIDGE REGRESSION 10−3 10−3 10−3

λ2 IN (7) REGULARIZER FOR LOGISTIC REGRESSION 1 1 1
J INITIAL NUMBER OF CLUSTERS 300 3000 300
q PRUNING PARAMETER IN (13) 6.5 4.5 4.5

C.3 Meta-Testing

For all of our models, we use

wce(Z) = argmin
W

Lce(W,Z) + λ2 ‖W‖2 (C.1)

as the base learner for meta-testing. (C.1) is implemented by scikit-learn5 and identical to the one
used in [23]. We observe empirically that this base learner outperforms other common choices such
as ProtoNet [20] or SVM [10].

C.4 Computational Requirements

All experiments are runnable on a commodity desktop PC with a single Nvidia 2080 Ti and 48GB
of RAM. MeLa takes about 3 hours to train for miniIMAGENET and about 6 hours to train for
tieredIMAGENET. CIFAR-FS and FC100 both take about 1.5 hours for training.

The computational complexity of MeLa is similar to other methods that exploits pre-training. In
addition, our choice of applying ridge regression for learning the initial embedding function is
computationally efficient and fast to train.

4https://github.com/WangYueFt/rfs
5https://scikit-learn.org/stable/

15

https://github.com/WangYueFt/rfs
https://scikit-learn.org/stable/

	Proofs
	Additional Experiments
	Impact of Pruning Threshold
	Experiment on MeLa Variant
	Experiment on CIFAR Variants
	Experiment on MetaDataset

	Model and Experimental Setups
	Model Architecture
	Experiment Setup
	Meta-Testing
	Computational Requirements


