
A Supplementary Material

A.1 AMWC Heuristic

Algorithm 2 describes the heuristic we use for asymmetric multiway cut inspired by greedy additive
edge contraction heuristic for multicut in [34]. The algorithm proceeds by initializing each vertex
belonging to a separate cluster (panoptic label). Afterwards, most similar edges are merged in a
greedy fashion until similarity becomes negative (Lines 4-6), where similarity for an edge is computed
in accordance with its affinity cost as well as node costs (Lines 25-29). Whenever a merge operation is
performed the corresponding edge is contracted and new edges can potentially be created (Lines 7-17).
Afterwards, the clusters belonging to non-partitionable class (i.e stuff) are merged. For finding the
argmax efficiently in Line 4 we use priority-queue.

Algorithm 2: AMWC GREEDY EDGE CONTRACTION

Input :Graph G = (V,E), node costs cV : V × [K]→ R, edge costs cE : E → R,
partitionable classes P ⊆ [K]

Output :Clustering C1∪̇ . . . ∪̇ CM = V , Class labels of each cluster x : {Ci} → [K],
1 Initialize clustering: Ci = {i} ∀i ∈ V
2 Initialize class labels: x(Ci) = argmink∈[K] cV (i, k) ∀i ∈ V
3 while E 6= ∅ do
4 Best merge candidate: ij = argmaxab∈E total_edge_similarity(ab)
5 if tij < 0 then
6 break
7 Merge j with i: Ci = Ci ∪ Cj , Cj = ∅
8 Remove edge ij: E = E \ {ij}
9 Assign joint class label: x(Ci) = kij

10 Update node costs: cV (i, k) = cV (i, k) + cV (j, k)∀k ∈ [K]
11 Assign neighbours of j to i:
12 for jh ∈ E do
13 if ih /∈ E then
14 E = E ∪ ih
15 cE(ih) = 0
16 cE(ih) = cE(ih) + cE(jh)
17 end
18 end
19 Merge non-partitionable clusters:
20 for Ci, Cj : x(Ci) = x(Cj), x(Ci) /∈ P do
21 Ci = Ci ∪ Cj
22 Cj = ∅
23 end
24 return {Ci}i, x
25 Function total_edge_similarity(ij)
26 Best joint class label: kij = argmink∈[K][cV (i, k) + cV (j, k)]
27 Merge cost: s(ij) = cV (i, kij) + cV (j, kij)
28 Separation cost: m(ij) = cE(ij) + cV (i, x(Ci)) + cV (j, x(Cj))
29 Compute similarity: t(ij) = m(ij)− s(ij)
30 return t(ij)

A.2 Training details

Table 2 contains the hyperparameters used for fully differentiable training. The data augmentation
scheme is the same as the one used in Panoptic-DeepLab in [70] (which we also use during baseline
training). Since the panoptic quality surrogate loss is in [0, 1] we multiply it by a scalar w which
in turn affects the magnitude of perturbation in the costs (Line 1 in Alg. 1). As the COCO dataset
contains significantly more classes than Cityscapes, we scale the loss by a larger number to ensure
that its magnitude is large enough. Notice that the gradient estimates (Lines 4-5 in Alg. 1) would
always be in [−1, 1] irrespective of loss scaling.

16

Table 2: Hyperparameters for fully differentiable training. R(a, b, c): all values in [a, b] divisible by
c.

Optimization Data aug.

Dataset λ N w LR D% Crop Horiz. flip Resize

Cityscapes [1, 5e3] 5 10 1e-3 10 512, 1024 X R(512, 2048, 32)
COCO [1e3, 5e3] 5 100 1e-4 10 640, 640 X R(448, 768, 64)

Table 3: Statistics of our models for Cityscapes and COCO datasets. We also report runtime
breakdown (in seconds) for one training iteration with batch size 24. Overall time includes both
forward and backward pass.

Dataset Params Time for 1 training itr.

AMWC MWC Overall

Cityscapes 34M 2.5 6.1 16.8
COCO 34M 3.5 9 15.7

Lastly, we randomly set 10% of values in cV , cE to zero (indicated by D in table 2) during fully
differentiable training which makes learning harder. This is similar to dropout except that it is applied
to the costs of an optimization layer and secondly the costs are not normalized by dropout rate during
test time. This gives a slight but consistent improvement of about 0.3 points in PQ (%) during
evaluation.

Model statistics are shown in Table 3 showing number of trainable parameters and runtime for one
training iteration where we compare time spent on solving AMWC and MWC problems during
forward and backward pass resp.

A.3 Loss on AMWC

Here we perform an ablation study where we directly apply loss on semantic class labels x and edge
labels y instead of panoptic labels. Since we do not use panoptic labels, this approach does not require
transformation to MWC. The gradients can be computed by perturbing associated semantic costs cV
and edge costs cE and calling the same AMWC solver in the backward pass. Given ground-truth
labels xg, yg , the losses are

LV =
1

|V |
‖x− xg‖1 (8)

LE = 1− yT yg
yT yg + 0.5(yT (1− yg) + (1− y)T yg)

(9)

Here the loss on edge labels is based on the F1-score following the approach of SMW [69] to account
for class-imbalance. The loss (9) is applied separately on each affinity classifier. Afterwards the
approach of [64] can be directly applied to compute gradients except that we use N = 5 using the
robust backpropagation formula (4) for a fair comparison with the panoptic quality surrogate. Lastly,
the losses are scaled to put more emphasis on small objects and ‘thing’ classes in the same way as
done for baseline pre-training.

We conduct a comparison on Cityscapes dataset and train using the same setup as for the panoptic
quality surrogate loss and use the checkpoint with lowest validation error. Results are given in
Table 4. We can see that optimizing PQ surrogate gives better performance and using separate losses
decreases the performance especially on ‘thing’ classes. This is due to multiple reasons: (a) The loss
applied on affinities cannot perform well w.r.t. PQ because each edge mis-classification is penalized
arbitrarily instead of calculating its impact on PQ, (b) a slight localization error in boundary detection
is penalized in the same way as boundary localization errors.

17

Table 4: Comparison of PQ surrogate loss with separate losses on AMWC output
Loss PQ PQth PQst
Separate losses 57.8 45.7 66.6
PQ surrogate 62.1 55.1 67.2

A.4 Reproducibility

To ensure that results of fully differentiable training are reproducible we finetune our baseline with
6 random seeds on the Cityscapes dataset for 1500 iterations (instead of 3000 for our main results)
and evaluate on the validation split. This introduces multiple sources of randomness in the training
process due to mini-batch selection, drop-out, data augmentation etc. More importantly the values
of λ in (4) change since they are also drawn randomly in an interval. The results are contained in
Table 5 showing that all trials improve over the baseline by fully differentiable training.

Table 5: Reproducibility of fully differentiable training after 1500 iterations under random seeds
on Cityscapes validation set. For comparison we also show performance of baseline and fully
differentiable training after 3000 iterations.

Trial PQ PQth PQst
1 61.41 54.40 66.50
2 62.01 54.78 67.26
3 61.77 54.73 66.89
4 61.33 54.37 66.40
5 61.91 54.85 67.06
6 62.07 55.14 67.11

Baseline 58.5 48.3 66.0
Fully differentiable (final) 62.1 55.1 67.2

A.5 Affinity classifiers

The affinity feature maps fA from the affinity decoder and node costs cV from the semantic segmen-
tation branch are used for computing affinity scores. First fA, cV are concatenated and reduced to
256 channels by two convolutional layers. Afterwards, the result is sent to each classifier specific to
an edge distance d. Each classifier predicts horizontal and vertical edge affinities. These steps are
illustrated in Figure 7.

For long-range edges, we first take the difference of node features. Specifically, given node features
f of shape B ×N ×H ×W → R (where B,N,H,W correspond to batch-size, channels, height,
width resp.), horizontal and vertical edge features gdh, g

d
v for a distance d are computed as

gdh(b, n, i, j) = f(b, n, i, j + bd
2
c)− f(b, n, i, j − dd

2
e) (10)

gdv(b, n, i, j) = f(b, n, i+ bd
2
c, j)− f(b, n, i− dd

2
e, j) (11)

This operation is marked by Sd in Figure 7. Afterwards, we make use of depth-wise separable
convolution with 2 groups for efficiency. Note that the indexing in (10) is done in such a way that
center locations of each horizontal and vertical edge match, see Figure 8. The reason is that if there is
an oblique boundary in an image there is a high chance that both horizontal and vertical affinities
would be low. To capture this inter-dependence the last layer of each affinity classifier does not use
depth-wise separable convolution.

A.6 Other evaluation metrics

Table 6 contains results of instance segmentation and semantic segmentation evaluation metrics on
the Cityscapes dataset. On the instance segmentation task our fully differentiable approach performs

18

256

I
4

fA

K

cV

256

C(3), BN,R

256

C(3), BN,R

64

C(3), BN,R

32

C(3), BN,R

2

I
4

C(1)

256 256

gdvgdh

64

CG(3), BN,R

64 32

CG(3), BN,R

32 2

I
4

C(1)

cd
E

Qd ∀d ∈ D s.t. d > 1

Q1

c1
E

Sd

Figure 7: Classifier Q1 predicts information about the finest scale (similar to edge detection in
images). In-addition there are |D− 1|-many classifiers (one is shown in dotted region) for long-range
context. All classifiers produce a two channel output cdE containing horizontal and vertical edge costs
at a distance d. Sd: takes differences of node features in + neighbourhood with edge distance d
giving gdh, g

d
v . (C(n): n× n conv., BN : batch-norm, R: ReLU, CG(n): C(n) with 2 groups.)

(i, j)(i− d
2
, j) (i+ d

2
, j)

(i, j − d
2
)

(i, j + d
2
)

gdv

gdh

Figure 8: Edge neighbourhood around a location i, j where the image contains two regions indicated
by yellow and green colors. Assuming edge distance d is even. Horizontal and vertical features
gdh, g

d
v at location i, j are computed from edge end-points. Note that both horizontal and vertical

edges would have low affinity values due to presence of a boundary.

better than all approaches which use ResNet-50. For the semantic segmentation task we also get a
slight improvement over the baseline by fully differentiable training.

A.6.1 Instance segmentation evaluation

Average precision (AP) is used to assess instance segmentation performance. To calculate AP one
additionally requires uncertainty scores for each instance to establish a ranking. We compute the
uncertainty score for an instance with mask p ∈ {0, 1}|V | having class label l as

1

|P |
∑
i∈V

cV (i, l)p(i) +

∑
ij∈E 1[p(i) 6= p(j)]cE(ij)∑

ij∈E 1[p(i) 6= p(j)]︸ ︷︷ ︸
Inter-cluster mean similarity

−
∑
ij∈E 1[p(i) = p(j)]cE(ij)∑

ij∈E 1[p(i) = p(j)]︸ ︷︷ ︸
Intra-cluster mean similarity

(12)

A.6.2 Comparison w.r.t boundary-based quality metrics

We additionally evaluate the performance of our model using the metrics proposed in [17] which
focuses more on the quality of detected boundaries. The results are given in Table 7 which shows
the despite downsampling our fully trained model can still outperform methods such as Panoptic-

19

Table 6: Instance and semantic segmentation performance (AP, mIoU resp.) on Cityscapes validation
set. †: Mask selection (e.g. by Mask-RCNN), *: Uses test-time augmentation. (-) Marks the results
which are not reported for that setting.

Method Backbone AP(%) mIoU(%)

EfficientPS [52]† Custom 38.3 79.3
Panoptic-FPN [36]† ResNet-101 33 75.7
UPSNet [73]† ResNet-50 33.3 75.2
Unify. PS [46]† ResNet-50 33.7 79.5
Panoptic-DL [16] Xception-71 35.3 80.5
Axial-DL [66] Axial-L 35.8 81.0
Panoptic-DL [16] ResNet-50 33.1 78.1
SSAP [27]* ResNet-101 37.3 -
SSAP [27] ResNet-50 31.5 -

COPS baseline ResNet-50 32.7 78.5
COPS fully differentiable ResNet-50 34.1 79.3

DeepLab [16] in terms of boundary quality. We can also see that most of the performance gain of full
training over baseline actually comes from increased recognition quality (RQ).

Table 7: Evaluation w.r.t boundary based panoptic quality metrics [17] denoted by subscript ‘b’
computed on Cityscapes validation set

Method PQb SQb RQb PQ SQ RQ

Panoptic-DL [16] 36.3 64.3 55.6 60.3 81.5 72.9
COPS baseline 35.2 62.3 55.9 58.5 80.3 71.8
COPS full 38.9 64.3 59.7 62.1 81.5 75.2

A.7 AMWC without downsampling

Due to runtime issues associated with AMWC solver our results are computed at 1/4-th of the
input resolution. To quantify the potential gains in quality we report results computed without this
downsampling. Results are given in Table 8 where we see improvement in all metrics although with a
significant slow down due to sequential nature of AMWC solver. Nonetheless, this shows that our
results can be further improved if faster algorithms for solving AMWC are developed.

Table 8: Effects of downsampling in COPS evaluation performance computed on Cityscapes valida-
tion set. The runtime is computed for batch-size of 1.

Downsampling factor PQ SQ RQ AP Runtime(sec.)

1/4 62.1 81.5 75.2 34.1 2
1 63.1 82.9 75.4 38.2 15

A.8 Oracle study

We perform an oracle study where the segmentation costs cV sent as input to AMWC are replaced by
ground-truth. This helps in establishing an upper bound on performance assuming that the semantic
segmentation branch is performing perfectly. The affinity costs cE are still computed through the
network. Results are given in Table 9.

We see a substantial increase in PQ scores for COCO dataset showing that panoptic segmentation
performance on COCO dataset is heavily influenced by semantic segmentation as it contains a large
number of classes (133). Since the affinity costs can only make cut/merge decisions for a pair

20

of pixels, it cannot be a major source of improvement in semantic performance (except in edge
localization).

Lastly, we do not see 100% score in PQo
st because our results are downsampled by a factor of 1/4

w.r.t. the ground-truth.

Table 9: Oracle study: Evaluation on subset of validation split of COCO and Cityscapes.
Actual results Semantic Oracle

Dataset PQ PQth PQst PQo PQo
th PQo

st
Cityscapes 62.1 55.1 67.2 81.1 67 91.4
COCO 38.4 40.5 35.2 70.9 57.2 91.2

A.9 Design choices for panoptic segmentation

We argue that approaches should be compared not only in terms of their performance on benchmarks
but also w.r.t. other factors such as network complexity, number of hyperparameters etc., which
also matters in production. In table 10 we compare different panoptic segmentation approaches
in terms of these properties. Moreover, we also mention whether these approaches can be trained
end-to-end (which reduces the number of hyperparameters during training) and whether they optimize
the metric-of-interest (i.e., panoptic quality). Even though for a real-world application one might not
want to optimize panoptic quality directly, it can serve as a starting point for devising a metric one
cares about in production.

Table 10: Qualitative comparison of different approaches of panoptic segmentation in terms of neural
network (NN) complexity, number of hyperparameters, end-to-end differentiability and whether they
optimize panoptic quality at training time. Last column indicates performance on validation sets of
corresponding datasets.

Methods Complexity # of Hyperparams. E-to-E Opt. PQ PQ

Train Eval Citysc. COCO

Max-DL [65] High Less Less 3 Partially - 49.3
Eff. PS [52] High Many Many 7 7 63.9 -
UPSNet [73] High Many Less 7 7 59.3 42.5
Unify. PS [46] High Less Less 3 Partially 61.4 43.4
Axial-DL [66] Medium Less Less 7 7 63.9 41.8
SSAP [27] Medium Less Less 7 7 61.1 36.5
SMW [69] Medium Many Less 7 7 59.3 -
Panoptic-DL [16] Low Low Less 7 7 60.2 35.1

COPS baseline Low Low None 7 7 58.5 34.3
COPS full Low Low None 3 3 62.1 38.4

A.10 Example results

21

(a)

(b)

Figure 9: Example results on Cityscapes test set

22

