

412 **A Supplement: Modeling Open-World Cognition as On-Demand Synthesis of**
413 **Probabilistic Models**

414 **Appendix**

415	A1 Related Work	14
416	A1.1 Model Approximation & the Frame Problem	15
417	A1.2 Hybrid Models of Language Comprehension	15
418	A1.3 Language Models for Model Discovery	15
419	A2 General Discussion	16
420	A2.1 Reasons For Model Fit	16
421	A2.2 Handling Surprising Evidence	16
422	A2.3 Open-World Reasoning	16
423	A2.4 Distributions of Human Judgments Reveal Structure That All Models Fail To Capture	16
424	A2.5 Experimental Limitations	17
425	A2.6 Limitations in Model Synthesis	17
426	A2.7 Looking Ahead	17
427	A3 Model Synthesis Architectures: Additional Implementational Details	18
428	A3.1 Parsing	19
429	A3.2 Retrieving informal relevant background knowledge and proposing conceptual de-	
430	pendency graph	21
431	A3.3 Synthesizing the formal symbolic model	23
432	A3.4 Model-Based Bayesian Inferences	26
433	A4 Natural Language Reasoning Experiments: Additional Experimental Details	26
434	A4.1 Model Olympics Vignettes	26
435	A4.2 LM-only experimental details	28
436	A4.3 Exp. 1: human judgment experimental details	29
437	A4.4 Exp. 2: human judgment experimental details	30
438	A4.5 Exp. 3: human judgment experimental details	30
439	A5 Results: Supplemental Analyses	31
440	A5.1 Human and MSA correlations between Experiments 1 and 2	31
441	A5.2 Total Variation Distance for comparing distributions between humans and models	32
442	A5.3 Human-Model Correlations for All Models	32
443	A5.4 Human-Model Correlations for All Models	32

444 **A1 Related Work**

445 The current work relates most closely to four lines of work, on model approximation and the Frame
446 Problem, on LM guided model synthesis, hybrid models of language comprehension, and LM
447 primitives in probabilistic programs.

448 **A1.1 Model Approximation & the Frame Problem**

449 Previous work on the Frame Problem has made significant progress in defining *resource rational*
450 [\[34\]](#) objectives by which small, task-specific models can be constructed to approximate reasoning
451 and planning with respect to larger models or priors [\[29\]](#) [\[27\]](#). This work provides an important
452 theoretical existence proof, demonstrating that it is possible to construct smaller tractable models that
453 approximate larger (and intractable) ones, and that people empirically [\[27\]](#) show behaviors consistent
454 with these approximations in reasoning and planning tasks. Both of these works have relatively little
455 to say about *how* minds arrive at these smaller approximations. The current approach builds on this
456 work by examining, at a Marr algorithmic level, how the mind might construct these models – by
457 decomposing the process into a relevance-based synthesis procedure, and by showing that this can be
458 instantiated concretely by exploiting learnable patterns acquired from joint program and language
459 experience.

460 **A1.2 Hybrid Models of Language Comprehension**

461 Our concrete computational approach is more closely related to work in cognitive science that shows
462 how language models can be used to synthesize probabilistic programs from language, by translating
463 between natural language and a symbolic LoT [\[46\]](#) [\[52\]](#) [\[49\]](#) [\[51\]](#) [\[50\]](#). This prior work considers cases
464 where natural language explicitly spells out all relevant symbolic structure necessary for language
465 interpretation. We build on these approaches by extending model construction to areas where
466 relevant knowledge must be recruited from large bodies of real-world background information,
467 forcing us to confront the challenges of relevance-based retrieval that open-world reasoning poses.

468 **A1.3 Language Models for Model Discovery**

469 Our work connects to three related lines of work using code language models to synthesize structured
470 models of the world or behavior. These lines of work differ in the goals of model synthesis, and the
471 symbolic substrate of models they synthesize.

472 One thread focuses on using language models to synthesize explicit, symbolic computational cognitive
473 models of human [\[40\]](#) or non-human animal behavior [\[9\]](#). We differ from these works in our focus
474 on synthesizing *probabilistic programs* as the key representational structure for representing ad-hoc
475 models, which affords a particularly expressive model and automatic reasoning class with strong
476 connections to earlier probabilistic modeling work in computational cognitive science. Our work is
477 also somewhat different in its framing and goals. Both earlier works seek to discover symbolic cognitive
478 models to automate the proposal of scientific models for studying behavior. While our approach
479 can be interpreted this way, the MSA architecture also represents an algorithmic hypothesis about
480 *how humans minds actually reason*, framing flexible cognition itself as a process of ad-hoc model
481 synthesis.

482 More broadly, our focus is on modeling how people reason about arbitrary, open-world situations
483 differentiates – as a proof of concept towards more domain-general cognitive model synthesis over
484 probabilistic models. This differentiates our work from other recent automated model synthesis
485 methods in both cognitive science and AI that have focused on more domain-specific models, such
486 as synthesizing models to explain social reasoning [\[53\]](#) [\[13\]](#). Other recent AI work has focused
487 on synthesizing world models that represent (often deterministic) transition functions for decision
488 making and planning [\[44\]](#) [\[47\]](#) [\[41\]](#) [\[38\]](#). This work could be productively combined with ours to
489 synthesize probabilistic models that support planning and inference to explain an even wider class of
490 ad-hoc reasoning.

491 Finally, a related and concurrent line of work in AI has begun to use language models to synthesize
492 probabilistic models [\[18\]](#) [\[48\]](#), including probabilistic programs [\[33\]](#) [\[16\]](#). These works are most
493 similar to ours in their formalism, but differ significantly in their goals. The latter works especially
494 focus on automating scientific modeling for statistical analysis from data. We focus on an expressive
495 probabilistic programming language class designed for cognitive modeling, and evaluate our approach
496 with respect to empirical evidence of human reasoning. However, as with other work on automated
497 modeling, there are rich synergies between these approaches – such as extending the MSA approach
498 to capture human scientific discovery, or collaborative scientific discovery between AI and human
499 “thought partners” that includes jointly modeling a human scientist along with models of the world
500 [\[11\]](#).

501 **A2 General Discussion**

502 **A2.1 Reasons For Model Fit**

503 Why might human judgments better align with MSAs than with LM baselines in these cases? One
504 possibility is that the difference is due to the way both model classes handle coherence. The mental
505 models generated by MSAs are coherent by design, while LMs internal representations do not
506 have similar coherence constraints. If people’s judgments over multiple variables tend to be more
507 internally coherent, this could drive the fit to MSAs over LMs. Another possibility is that MSAs use
508 of explicit causal and probabilistic representations might force the model to place more weight on
509 deeper structural properties, rather than superficial features of the language used to describe tasks.
510 If people’s judgments are tracking these deeper causal properties of the stimuli, this could explain
511 the better match to MSAs. Such an explanation would fit with similar findings that point to a lack
512 of robustness in these models in response to surface-level features [36, 43, 37]. Determining which
513 of these or other explanations is most plausible, and if this general trend continues to hold in more
514 varied domains, is a priority for future research.

515 **A2.2 Handling Surprising Evidence**

516 In our data, people appeared to be close to rational in their integration of evidence with background
517 beliefs, as measured by fit to our MSA. This included integrating unexpected observations (e.g., a
518 surprising win by a suspected slow runner against a suspected fast runner) in a measured fashion. In
519 cases where LMs differ most from people, a tentative analysis suggests that one of the key challenges
520 faced by LMs was an over-sensitivity to these surprising observations. For example, from qualitative
521 inspection, we noticed instances where the LM baselines tended to believe that a fast runner’s single
522 loss to an otherwise slower runner was often enough to neutralize or reverse the model’s assessment
523 of their relative speeds, even when the weight of the rest of the evidence suggested otherwise. The
524 tendency of our MSA not to over-index in these cases may be due to the construction of an explicit
525 model, with priors and a causal structure that grounds the integration of competing observations.
526 Further work should explore this theme of holistic integration more thoroughly, including in cases
527 where information is revealed piecemeal over time (as it often is in naturalistic reasoning tasks),
528 rather than all at once (as in our experiments here).

529 **A2.3 Open-World Reasoning**

530 Data from Exp. 3 demonstrated the largest differences between model classes in fit to human data.
531 This experiment focused on generalization in the open-world setting, conditioning on participant-
532 sourced commentaries introducing novel considerations. Performance on this experiment represents a
533 particularly interesting kind of generalization – to observations that require introducing new variables
534 and dependencies into the underlying causal structure, thereby expanding the expressivity of the
535 model (relative to what would have been synthesized in the absence of the commentary; the models
536 synthesized in Exp. 1 and Exp. 2). As noted earlier, reasoning in this open-world setting represents a
537 strong challenge for classical Bayesian models of cognition, which cannot handle novel variables.
538 Despite this, our MSA strongly outperforms LMs in modeling human judgments for these stimuli,
539 suggesting a continued benefit from being able to rely on the kinds of representations that figure
540 in probabilistic models. In particular, MSAs’ ability to recombine symbolic representations of the
541 relevant causal structures may have supported a greater degree of generalization to highly novel
542 circumstances. A priority for future work is explore where this ability breaks with LM-powered
543 model synthesis to explore whether other kinds of MSAs might better fit human cognitive abilities in
544 turn.

545 **A2.4 Distributions of Human Judgments Reveal Structure That All Models Fail To Capture**

546 One of the advantages of collecting and analyzing distributional data is that we can analyze human
547 and model judgments in more fine-grained ways than conventional measures like R^2 allow. A
548 cursory analysis of this data reveals interesting differences between people and both model classes,
549 highlighting the amount of structure in human judgments still to be explained. Compared to human
550 participants, for example, LMs appear to be more streaky – clustering their judgments around
551 particular outcomes – and respond too strongly to surprising observations – yielding judgments that

552 are at times wholly in the opposite direction of people’s. MSAs are more often directionally correct
553 (as evidenced by greater R^2), but tend to produce judgments that are visibly smoother and more
554 uncertain than people’s (see [Figure 15](#) in Supplement). In short, human judgments appear to have
555 strong opinions (visible streaks, like in the LMs), but place those peaks more consistently over modes
556 in the Bayesian posterior (as evidenced by our MSA’s superior R^2 and WD measures).

557 A pressing question then is whether some other model class could better deliver the patterns seen in
558 the human data. This might be some deeper hybridization of neural and symbolic methods – one that
559 reproduces the sharply peaked opinions of LMs, but places those peaks more consistently in the right
560 places – or an MSA with stronger sampling methods that focus samples more directly over modes.
561 Modeling such fine-grained distributional features of human judgments is a target for future work.

562 **A2.5 Experimental Limitations**

563 One limitation of the current work is that human data were relatively noisy – both split half human-
564 human correlations and model-human correlations showed wide confidence intervals. We can also
565 explore ways to make human variance more model-able – by matching particular mental models (in
566 MSAs) or response patterns (in LMs) to particular participants – to capture individual participant’s
567 unique conception of the situation, for example.

568 Variance in samples from our MSA was also often too low. Judgments in Experiments 1 and 2, for
569 example, were highly correlated for our MSA, but not nearly so correlated for people. Similarly,
570 people’s judgments in certain conditions, such as in the canoe domain, were often higher variance
571 than those of our MSA. This suggests a lack of diversity in the models synthesized by our MSA.
572 Follow-on work should explore how to increase the diversity of synthesized models, by increasing the
573 number of models, for example, or by more targeted methods, such as conditioning model generation
574 (and LM responses) on participants’ self-reports about what they are thinking about.

575 Another near-term target for follow-up work is exploring stronger baselines and more thorough model
576 ablations. Anecdotally, we found that a staged model synthesis procedure worked best, but this
577 should be explored systematically and compared to other model synthesis strategies. Similarly, MSA
578 performance should be compared to state-of-the-art reasoning models, as well as the cognitive models
579 derived from them [\[6\]](#). Leading reasoning models in particular are likely to perform better at these
580 tasks, but also likely to synthesize better probabilistic models if used internally to our MSA. It will
581 be important to see how those two effects wash out when both are compared for human-likeness.

582 **A2.6 Limitations in Model Synthesis**

583 Much like the LMs, our implementation of an MSA also faced important limitations in its ability
584 to generalize. Model generations were often overly influenced by the example models given in our
585 prompt, with a consequent lack in model diversity. For example, while our MSA was often able to
586 reconfigure the primitives in the prompted models into models for the novel sport, it struggled to
587 invent new primitives when these were called for. In Exp. 3 our MSA struggled to make sense of
588 temporal information frequently given in commentaries (e.g., “Kai was fast until he rolled his ankle in
589 match 4”) until we included an example of the relevant abstraction, a temporal ordering of events, in
590 the prompted models. Once armed with this abstraction, the MSA could model the influence of events
591 before, after, or during, but it struggled to build these abstractions on its own. Some of these issues
592 of prompt sensitivity might be ameliorated by using larger LMs or models specially fine-tuned for
593 the task of model synthesis, which might learn to more systematically explore the space of possible
594 models.

595 **A2.7 Looking Ahead**

596 Addressing the problem of open-world cognition that will require exploring a broader space of
597 possible MSAs. This might include synthesis using other modeling languages that support long-
598 horizon planning [\[54\]](#), multi-agent reasoning [\[10\]](#), or distributional primitives learned from experience
599 [\[32\]](#) [\[15\]](#) [\[25\]](#). Future work should also explore other model synthesis strategies, such as those that
600 refine initial models with external feedback [\[47\]](#) [\[44\]](#) or that consider multiple models at once [\[35\]](#).
601 Finally, future MSAs should *learn* from model construction over time, by components of the synthesis
602 architecture based on previous successes or failures, and by augmenting the modeling language with
603 successful concepts [\[17\]](#) [\[24\]](#).

604 Future MSAs can be evaluated both based on ground truth accuracy – whether the models they
605 synthesize are any good – and match to various measures of human behavior. We can ask, for
606 example, whether certain modeling languages better capture the generalizations that people endorse,
607 or which synthesis strategies fit the dynamics of human thought processes, as measured by reaction
608 times or systematic shifts in people’s judgments.

609 The current era of highly general AI systems means that a deep understanding of how human open-
610 world cognition works may now be within reach. We don’t yet have a settled view of how people
611 are able to reason in locally coherent and globally relevant ways about the large and ever-expanding
612 space of things people think about, but the way to investigate this is becoming clear. By scaling
613 MSAs, as well as their pure LM alternatives, and systematically comparing them to human data, we
614 can now begin to meaningfully adjudicate between models of human general cognition. Cognitive
615 science has shed tremendous light on how parts of the mind work. It can now begin to study how
616 those parts fit together.

617 A3 Model Synthesis Architectures: Additional Implementational Details

618 Experiment and model implementation details reference the repository at: <https://anonymous.4open.science/r/msa-cogsci-2025-data-CFB6>

620

621 As described in the main text, we sequentially construct $M_{\text{ad-hoc}}$ in a staged process that interleaves
622 generation and evaluation steps. The base LM used in all experiments is the HuggingFace
623 `meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo` release. We query the model using the
624 Together API. Here we provide additional parameters and prompting details for each of these stages.

625

626 In our experiments, as we described in the main text, we model each *simulated human participant* as
627 ultimately synthesizing a single model $M_{\text{ad-hoc}}$ conditioned on an input natural language scenario.
628 The following describes the parameterization used for each single simulated human participant.

629

630 Each stage of generation involves a frame prompt for that stage, into which we inject a shuffled set
631 of background examples demonstrating each stage of this pipeline for a set of held-out example
632 scenarios (none of which appear verbatim in our main experiments.) Specifically, we use a *held-out*
633 prompting scheme for selecting these examples, where for a scenario from any given sporting domain
634 (eg. *tug-of-war*) we automatically select background examples only constructed for the *other* sports –
635 in this case, *canoe-racing* and *biathlon*, along with two other example scenarios, *diving* and *exam*,
636 that we use as examples for all scenarios.)

637

638 Below, we describe where in the repository one can find the *frame prompts* for each stage, which
639 include a `<SHUFFLED EXAMPLES>` token indicating where these shuffled example generations appear.
640 The full set of shuffled examples themselves can be found at the `example-scenarios` directory at
641 our data repository, which includes:

- 642 • Base `{tug-of-war, canoe-racing, biathlon, diving, exam}` examples used for
643 **Exp. 1 and Exp. 2.**
- 644 • Base `{tug-of-war, canoe-racing, biathlon, diving}` examples for **Exp. 3.** This
645 experiment was run later and we constructed extended examples demonstrating models with
646 free-form additional natural language observations. We also omit the *exam* example domain
647 from these experiments. However, future work will explore the effect of these examples on
648 generation and seek to construct a more general set of examples (or fine-tune models so that
649 example-based prompting is not necessary; we use it here as we build on a generic base
650 model.)

651 Note that these shuffled example text files contain a concatenated set of *all* of the generation stages
652 (eg. each example file contains an example input scenario, parse, background information in natural
653 language, dependency graph, and full probabilistic program.

654

655 All frame prompts for each generation stage appear under the `msa-frame-prompts` directory.
656 Generating of the parsing and background-knowledge/dependency graph used a single system prompt

657 which is included in the same directory. No system prompt was used for the ad-hoc probabilistic
658 program model generation stage.

659 **A3.1 Parsing**

660 In our experiments, we forward sample only $k_{parse} = 1$ parse at $temp=0.2$. Throughout, we use
661 lower temperatures for generation stages that require greater syntactic control (like code generation)
662 and higher temperatures for tasks that involve generating natural language (like retrieving and
663 generating informal relevant variables.) We also implement an LLM-based evaluation function
664 Φ_{parse} which scores parses, but as we only take $k_{parse} = 1$ sample per participant this is of limited
665 utility (we find empirically that parse variability is less important for downstream model quality than
666 diversity in informal knowledge generation, but k_{parse} could be increased for more ambiguous and
667 freeform language in future experiments.

668

669 The full frame prompt for the parsing stage can be found at `generate-parsing` in the frame
670 prompts directory and the evaluation prompt can be found at `score-parsing`. The frame prompt for
671 this stage was injected with shuffled and concatenated examples starting from the input scenario up
672 to the example parses (delimited by `<START_LANGUAGE_TO_WEBPPL_CODE>`).

673

674 Here we show a few example parses for canoe-racing and biathlon scenarios in **Exp. 1** and **Exp. 2**
675 (as only the background information changed between these experiments, the outcome evidence and
676 questions shown were matched for scenarios in Exp. 1 and Exp. 2). We omit a tug-of-war example as
677 the latent variables as it uses the same outcome and latent variable format as canoe-racing. Parses
678 are excerpted from the full scenario, but show examples of a sentence in natural language parsed
679 into a corresponding line of code. Note that the parse code invariably includes calls to placeholder
680 functions that have not yet been generated and must be generated in the final model.

Example parse for Exp. 1, canoe-racing

In the first race, Fey and Ollie lost to Lane and Jamie.

```
condition(lost({team1: ['fey', 'ollie'], team2: ['lane', 'jamie'], race: 1}))
```

Query 1: Out of 100 random athletes, where do you think Fey ranks in terms of intrinsic strength?

```
intrinsic_strength_rank({athlete: 'fey', out_of_n_athletes: 100})
```

On a percentage scale from 0 to 100%, how much effort do you think Fey put into the second race?

```
effort_level_in_race({athlete: 'fey', race: 2})
```

In a new race later this same day between Fey and Ollie (Team 1) and Harper and Gale (Team 2), who would win and by how much?

```
who_would_win_by_how_much({team1: ['fey', 'ollie'], team2: ['harper', 'gale'], race: 4})i
```

681

Excerpted parse examples for Exp. 1, biathlon

In the first round, Robin and Ollie beat Lane and Ness.

```
condition(beat({team1: ['robin', 'ollie'], team2: ['lane', 'ness'], round: 1}))
```

Out of 100 random athletes, where do you think Robin ranks in terms of intrinsic strength?

```
intrinsic_strength_rank({athlete: 'robin', out_of_n_athletes: 100})
```

On a percentage scale from 0 to 100%, how accurate do you think Robin was at shooting in the second round?

```
shooting_accuracy_in_round({athlete: 'robin', round: 2})
```

In a new round later this same day between Robin and Ollie (Team 1) and Lane and Taylor (Team 2), who would win and by how much?

```
who_would_win_by_how_much({team1: ['robin', 'ollie'], team2: ['lane', 'taylor'], round: 4})
```

683 Here we show a few excerpted example parses for **Exp. 3**, specifically showing parses of the free-form
684 participant-provided observations. As there is more variability across these parses, we show several
685 instances of parses sample for different simulated participants to demonstrate variability.

Example parses for Exp. 3, participant-generated details

Taylor is brand new to the sport of canoe racing, and this is only his 2nd time competing.

Sampled parse 1: `condition(is_brand_new_to_canoe_racing({athlete: 'taylor'})
&& is_second_time_competing({athlete: 'taylor'}))`

Sampled parse 2: `condition(is_brand_new_to_canoe_racing({athlete:
'taylor'}) && is_only_second_time_competing({athlete: 'taylor'}))`

Kay didn't get enough sleep last night and can barely stay awake during the race.

Sampled parse 1: `condition(!got_enough_sleep_last_night({athlete: 'kay'}) &&
barely_staying_awake_during_race({athlete: 'kay'}))`

Sampled parse 2: `condition(didnt_get_enough_sleep_last_night({athlete:
'kay'}))`

**In the first match of tug-of-war Kay, while managing to pull off the win from Avery,
pulled a muscle in their shoulder that limited their pulling output going forward.**

Sampled parse 1: `condition(pulled_muscle_in_shoulder_in_match({athlete:
'kay', match: 1}) && beat({team1: ['kay'], team2: ['avery'], match: 1}))`

Sampled parse 2: `condition(pulled_muscle_in_match({athlete: 'kay', match:
1}) && beat({team1: ['kay'], team2: ['avery'], match: 1}))`

686

687 **A3.2 Retrieving informal relevant background knowledge and proposing conceptual 688 dependency graph**

689 We jointly sample the informal relevant background information K and corresponding dependency
690 graphs G . In our experiments, for each simulated participant we sample $k_{informal} = 8$ informal
691 specifications and their corresponding dependency graphs at $temp = 0.5$. We then implement an
692 LLM-based evaluation function $\Phi_{informal}$ which jointly scores the generated K and G , from which
693 we select the top scoring K^*, G^* .

694

695 The full frame prompt for this stage can be found at
696 `generate-informal-background-knowledge-and-dependency-graph` and the evalua-
697 tion prompt can be found at `score-informal-background-and-dependency-graph` in the
698 frame prompts directory. As each generation stage is conditioned on all previous generation steps,
699 note that the injected shuffled and concatenated examples now draw from the input scenario up to the
700 example dependency graph (delimited by `<START_SCRATCHPAD>`).

701

702 Here we show example retrieved informal background knowledge and the corresponding dependency
703 graph for sample scenarios in **Exp. 2** (which required retrieving additional information to make up
704 for the underspecified background) and **Exp. 3**.

Example informal background knowledge and dependency graph for Exp. 2, biathlon

In this event, teams of players are competing in rounds of a biathlon, a winter sport that combines cross-country skiing races and rifle shooting. In each round, the team that wins depends on the average speed with which the athletes are able to ski, based on their intrinsic strength, as well as each team member's shooting accuracy in that particular round.

Intrinsic strength is an underlying attribute of a given athlete that varies somewhat widely from athlete to athlete. An athlete's intrinsic strength ranking out of n other athletes is the number of other athletes we might expect them to be stronger than out of N total random athletes.

Athletes also vary in their shooting accuracy in any given round. Shooting accuracy is a continuous parameter, measured as a percentage from 0 to 100%. Athletes can have poor, average, or excellent shooting accuracy in a given round. Their shooting accuracy in a round is somewhat dependent on their intrinsic strength, as stronger athletes are probably more likely to have better shooting accuracy.

A team's skiing speed in a round is described in the background as the average effective skiing speed with which the athletes are able to ski on that team. The effective skiing speed of an athlete in a round is determined at a base level by their intrinsic strength, since stronger athletes ski faster.

A team's overall score in a round is the sum of their average skiing speed and their average shooting accuracy in that particular round. The skiing speed and shooting accuracy are weighted equally.

The team that gets the highest score in any given round wins. A team beats another if their team's overall score is higher in that round. A team loses to another team if they did not beat that team in a given round.

The amount that one team wins over another team is given by the difference in their overall scores.

- `intrinsic_strength`
- `intrinsic_strength_rank`
 - depends on: `intrinsic_strength`
- `shooting_accuracy_in_round`
 - depends on: `intrinsic_strength`
- `effective_skiing_speed_in_round`
 - depends on: `intrinsic_strength`
- `team_skiing_speed_in_round`
 - depends on: `effective_skiing_speed_in_round`
- `team_shooting_accuracy_in_round`
 - depends on: `shooting_accuracy_in_round`
- `team_overall_score_in_round`
 - depends on: `team_skiing_speed_in_round`, `team_shooting_accuracy_in_round`
- `beat`
 - depends on: `team_overall_score_in_round`
- `lost`
 - depends on: `beat`
- `who_would_win_by_how_much`
 - depends on: `lost`

705

Example informal background knowledge and dependency graph for Exp. 3, tug of war

Participant-generated detail: In the first match of tug-of-war Kay, while managing to pull off the win from Avery, pulled a muscle in their shoulder that limited their pulling output going forward.

First, let's reason about the role of strength in this scenario. Intrinsic strength is an underlying attribute of a given athlete that varies somewhat widely from athlete to athlete.

An athlete's intrinsic strength ranking out of n other athletes is the number of other athletes we might expect them to be stronger than out of N total random athletes.

Athletes also vary in the effort that they put into any given match. Athletes can put in either moderate amount of effort, little effort, or extra high amounts of effort. Which of these they are more likely to do probably depends on their underlying strength, as stronger athletes are probably more likely to put in extra high effort, and weaker athletes probably tend to be more likely to put in lower amounts of effort.

An athlete who 'tries hard' in a match puts in a fair amount of effort.

Whether or not an athlete pulls a muscle in their shoulder in a specific match occurs at a rare frequency for any given athlete and match. This is an event that affects future matches after the match in which someone was injured. We will need to think about whether an athlete has pulled a muscle in ANY previous matches to understand its effects on the current match.

An athlete's effective pulling strength in a given match is determined at a base level by their intrinsic strength, but is (1) reduced if they pulled a muscle in their shoulder in any PREVIOUS match, which will make them pull less hard; and (2) increased by their effort level, which is effectively a percentage multiplier on their pulling strength in this match.

A team's pulling strength in a match is described in the background as the AVERAGE effective pulling strength with which the athletes are able to pull on that team.

A tug-of-war team beats another if their team's pulling strength is greater in that match, assuming a fixed match length.

A tug-of-war team loses to another team if they did not beat that team in a given match.

To calculate who would win and by how much, we will calculate the likelihood that a team would win over another.

```
- intrinsic_strength
- intrinsic_strength_rank
  - depends on: intrinsic_strength
- effort_level_in_match
  - depends on: intrinsic_strength
- pulled_muscle_in_shoulder_in_match
- pulled_muscle_in_shoulder_in_any_previous_match
  - depends on: pulled_muscle_in_shoulder_in_match
- effective_athlete_pulling_strength_in_match
  - depends on: intrinsic_strength,
    pulled_muscle_in_shoulder_in_any_previous_match, effort_level_in_match
- team_pulling_strength_in_match
  - depends on: effective_athlete_pulling_strength_in_match
- beat
  - depends on: team_pulling_strength_in_match
- lost
  - depends on: beat
- who_would_win_by_how_much
  - depends on: lost
```

706

707 A3.3 Synthesizing the formal symbolic model

708 Finally, conditioned on the best scoring parse, informal knowledge and dependency graph, for each
709 simulated participant we sample a single full probabilistic program $k_{program} = 1$ at $temp = 0.2$
710 from the LLM. As described in the main text, we implement Φ_{formal} as simply whether or not the
711 probabilistic program compiles and produces inferences over the queries.

712

713 The full frame prompt for this stage can be found at `generate-model` in the frame prompts directory.
714 As each generation stage is conditioned on all previous generation steps, note that the injected
715 shuffled and concatenated examples now include the full text of the examples, from the scenarios and
716 including all prior example generation stages up to the example models.
717 As models are verbose, below we reproduce an *excerpted* model from **Exp. 3** showing the parse that
718 involves functions for the new participant detail, and with excerpted components for the other named
719 functions.

Example informal background knowledge and dependency graph for Exp. 3, biathlon

Participant-generated detail: In the first match of tug-of-war Kay, while managing to pull off the win from Avery, pulled a muscle in their shoulder that limited their pulling output going forward.

```
var model = function() {
  // BACKGROUND KNOWLEDGE

  // Intrinsic strength is an underlying attribute of a given athlete that
  // varies somewhat widely from athlete to athlete.
  var intrinsic_strength = mem(function ({athlete}) {...})

  // An athlete's intrinsic strength ranking out of n other athletes is
  // the number of other athletes we might expect them to be stronger than
  // out of N total random athletes.
  var intrinsic_strength_rank = function({athlete, out_of_n_athletes})
  {...}

  // Athletes also vary in the effort that they put into any given match.
  // Athletes can put in either moderate amount of effort, little effort, or
  // extra high amounts of effort. Which of these they are more likely to do
  // probably depends on their underlying strength, as stronger athletes are
  // probably more likely to put in extra high effort, and weaker athletes
  // probably tend to be more likely to put in lower amounts of effort.
  var effort_level_in_match = mem(function({athlete, match}) {...})

  // An athlete who 'tries hard' in a match puts in a fair amount of
  // effort.
  var tried_hard_in_match = mem(function({athlete, match}) {...})

  // Whether or not an athlete pulls a muscle in their shoulder in a
  // specific match occurs at a rare frequency for any given athlete and
  // match. This is an event that affects future matches after the match in
  // which someone was injured. We will need to think about whether an
  // athlete has pulled a muscle in ANY previous matches to understand its
  // effects on the current match.
  var pulled_muscle_in_shoulder_in_match = mem(function({athlete, match}) {
    var likelihood_of_pulling_muscle_in_match = 0.05;
    return flip(likelihood_of_pulling_muscle_in_match);
  })

  // An athlete's effective pulling strength in a given match is
  // determined at a base level by their intrinsic strength, but is (1)
  // reduced if they pulled a muscle in their shoulder in any PREVIOUS match,
  // which will make them pull less hard; and (2) increased by their effort
  // level, which is effectively a percentage multiplier on their pulling
  // strength in this match.
  var effective_athlete_pulling_strength_in_match = mem(function({athlete,
  match}) {
    // Assume that base pulling strength is just their current strength.
    var base_pulling_strength_in_match = intrinsic_strength({athlete :
  athlete})

    // Reduced if they pulled a muscle in their shoulder in any PREVIOUS
    // match. Use the helper function to check if they pulled a muscle after
    // any previous match.
    var pulling_strength_adjusted_for_pulled_muscle =
  any_previous_time_inclusive(
    function(prev_match) {
      return pulled_muscle_in_shoulder_in_match({athlete: athlete,
  match: prev_match})
    }, match) ? base_pulling_strength_in_match * 0.7 :
  base_pulling_strength_in_match;

    // Increased by effort level in this match.
    var pulling_strength_adjusted_for_effort_level =
  (effort_level_in_match({athlete: athlete, match: match}) / 100) *
  pulling_strength_adjusted_for_pulled_muscle;

    return pulling_strength_adjusted_for_effort_level;
  })
}
```

721 **A3.4 Model-Based Bayesian Inferences**

722 In our experiment, all inferences are derived using the WebPPL built in *rejection sampling* inference
723 engine. Inference budgets are specified in the main text: we report posteriors from $b_{samples} = 1000$
724 samples per simulated participant for **Exp. 1** and **Exp. 2**, and $b_{samples} = 500$ for **Exp. 3** (as
725 in general rejection sampling is much slower on these, where observations specify a rare a priori
726 observation).

727 **A4 Natural Language Reasoning Experiments: Additional Experimental**
728 **Details**

729 **A4.1 Model Olympics Vignettes**

730 This supplemental section provides additional details on the stimuli generation and selection process
731 for the Model Olympics domain vignettes used throughout the experiments.

733 As described in the main text, we construct a set of procedurally generated vignettes for experiments
734 **Exp. 1**, **Exp. 2**, **Exp. 3**, where each vignette consists of a: linguistic *background* on the
735 particular sport of interest (which could be *tug-of-war*, *canoe racing*, or *biathlon*); a set of *evidence*
736 sentences describing match outcomes (plus, in the **Exp. 3** case, one additional participant-generated
737 observation); and 8 *questions*.

738 At the data repository section, the `model-olympics-human-experiment` directory contains:

- 740 • Base **detailed backgrounds** for the `{tug-of-war, canoe-racing, biathlon}` sports
741 used for vignettes in **Exp. 1**.
- 742 • Base **underspecified backgrounds** for the `{tug-of-war, canoe-racing, biathlon}`
743 sports used for vignettes in **Exp. 2**.
- 744 • Base **underspecified backgrounds (no reference to any participant-generated variables)**
745 for the `{tug-of-war, canoe-racing}` sports used for vignettes in **Exp. 3**. Note that the
746 **Exp. 3** vignettes were constructed shown to models were constructed using underspecified
747 backgrounds (as in **Exp. 2**); we provide these again for comparison.

748 Using the base backgrounds, we procedurally generated vignettes for each sport using a set of **16 base**
749 **vignette templates**, comprised of **12** templates derived from the patterns of evidence used (originally,
750 in the *tug-of-war* domain only) in [22], and **4** additional templates specifically designed to present
751 noisy and anomalous evidence that would evaluate whether participants and models judged these
752 outcomes based on the “Bayesian explaining away” of anomalous outcomes relative to accumulative
753 contrary evidence, based on multiple conjunctive latent causal variables. The templates describe the
754 relations between athletes in a tournament; we instantiate the templates into concrete templates for
755 each sport using sport-specific latent variables, and with randomly sampled athlete names from a
756 set of gender-neutral names (to avoid priors about athlete strength). We then randomly subsampled
757 amongst these procedurally templates to select the vignettes reported in our experiments. In total, as
758 described in the main experimental text the final stimuli for each experiment reported in the paper
759 comprised:

- 760 • **Exp. 1:** 6 randomly sampled vignettes (from the full set of 16 possible vignette templates)
761 for each sport, for a total of **18** vignettes. Note that these 6 vignette templates were
762 independently sampled for each sport and therefore may not have had the same evidence
763 patterns per sport.
- 764 • **Exp. 2:** matched vignette templates to **Exp. 1**, for a total of **18** vignettes, but with
765 underspecified backgrounds and re-generated athlete names.
- 766 • **Exp. 3:** 5 *tug-of-war* and 4 *canoe-racing* vignettes, which were base vignettes extended with
767 participant-generated details. As we describe throughout, these base vignettes were similar
768 in form but slightly different (in their background details and phrasing of the inference
769 questions) from those used in **Exp. 1** and **Exp. 2**, as this was a preliminary experiment
770 piloted before **Exp. 1** and **Exp. 2**.

771 As we describe in the human experimental details below, human participants in our study actually
772 viewed slightly more vignettes than were ultimately reported in our paper here or compared to model
773 results – we removed one vignette (from all three reports) which contained an error in the questions
774 that asked about an athlete who was actually not part of a particular match; and we removed one
775 additional sports domain, a *synchronizeddiving* domain, due to apparent confusion about the sport
776 itself and high amounts of variance in participant answers. We currently withhold the full exact set of
777 stimuli from **Exp. 1** and **Exp. 2**, and the stimuli used in **Exp. 3**, to avoid their appearance in LLM
778 training datasets while we prepare an extended version of this work. The full dataset will be released
779 upon publication, and future work will seek to generate a more dynamic version of this dataset for
780 evaluation. However, here we show an example vignette from the *tug-of-war* domain, demonstrating
781 the difference between the detailed (Exp. 1) and underspecified (Exp. 2) backgrounds.

Example tug-of-war vignette, showing Exp. 1 vs. Exp. 2 backgrounds

Exp. 1: Detailed background In this event, the athletes are competing in tug-of-war tournaments. Each tournament consists of a series of matches. In each match, athletes compete as part of a team.

An athlete's intrinsic strength remains constant throughout a tournament. An athlete neither gets stronger nor weaker between matches. You can assume that all matches take place on the same day.

Athletes also vary in the effort that they put into any given match. Most of the time, people pull with a moderately high amount of effort. Sometimes, an athlete won't put in much effort and will pull with only a fraction of their strength. Other times, they may put in a lot of effort and pull extra hard, beyond what their intrinsic strength would suggest.

How hard a team pulls overall in any given match is determined by the total amount that all of the athletes on the team pull in that match. How hard each athlete pulls in a given match is determined by their intrinsic strength, modified by how much effort they put in (a lower fraction of their intrinsic strength if they don't put in much effort, or even more than their strength if they put in more effort).

The team that pulls the hardest in a given match wins.

Athletes compete either individually or as a team.

All matches take place on the same day.

Exp. 2: Underspecified background In this event, the athletes are competing in matches of tug-of-war.

In each round, the team that wins the round depends on how hard the athletes collectively pull, based on their intrinsic strength modulated by other factors including how much effort they put in to that round.

Athletes compete either individually or as a team.

All matches take place on the same day.

CONDITIONS

In the first match, Peyton and Avery lost to Blake and Casey.

In the second match, Peyton and Blake lost to Avery and Casey.

In the third match, Peyton and Casey lost to Avery and Blake.

QUERIES

Query 1: Out of 100 random athletes, where do you think Peyton ranks in terms of intrinsic strength?

Query 2: Out of 100 random athletes, where do you think Avery ranks in terms of intrinsic strength?

Query 3: Out of 100 random athletes, where do you think Blake ranks in terms of intrinsic strength?

Query 4: On a percentage scale from 0 to 100%, how much effort do you think Peyton put into the second match?

Query 5: On a percentage scale from 0 to 100%, how much effort do you think Avery put into the second match?

Query 6: On a percentage scale from 0 to 100%, how much effort do you think Blake put into the second match?

Query 7: In a new match later this same day between Peyton and Avery (Team 1) and Blake and Gale (Team 2), who would win and by how much?

Query 8: In a new match later this same day between Peyton and Blake (Team 1) and Avery and Gale (Team 2), who would win and by how much?

782

783 A4.2 LM-only experimental details

784 The repository includes the frame prompting format used to elicit judgments for both the *LM-direct*
785 and *LM-CoT* baselines, in the `lm-only-baseline-prompts` directory.

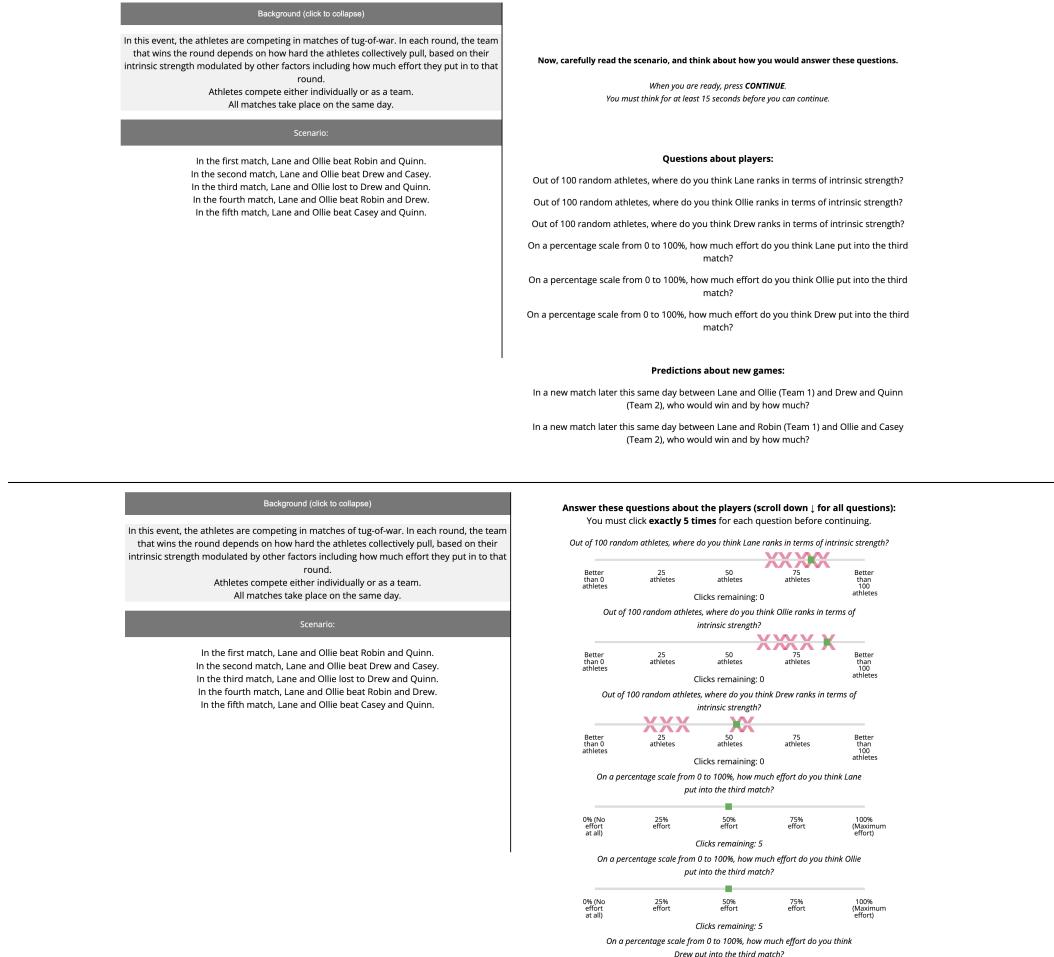


Figure 7: Example interfaces showing the human experimental setup – shown is a sample trial from **Exp. 2**, the underspecified background experiment. Participants first read the background information, scenario and questions (top). They then indicate their judgments via multiple clicks per question (bottom)

786 Each prompt contained the full *experiment instructions* shown to humans for each experiment (though
 787 note that the videos showing how to use the multi-click judgment interface were described in text, as
 788 prompts were text only); and then the full vignette, with additional instructions for how to answer
 789 each query.

790 **A4.3 Exp. 1: human judgment experimental details**

791 Pre-trial instructions were shown to all participants containing an example tutorial on how to use the
 792 multi-click slider interface to indicate the distribution of their judgments, including GIFs showing
 793 how they could indicate high certainty about a specific posterior mode (eg. most clicks around one
 794 end of the slider); split certainty about multiple posterior modes; and relative uncertainty about a
 795 continuous range.

796 As described in the main text, participants judged a randomly constructed batch of two vignettes
 797 from each of the three sport. Trials were grouped by sport (all participants first saw vignettes about
 798 tug-of-war, then canoe-races, then biathlon). Participants in 3 of the 4 batch conditions (57 of 76
 799 participants) also saw an additional 2 vignettes from an additional synchronized diving domain; this
 800 domain was moved after participants appeared generally confused about the domain and showed
 801 extremely low inter-participant correlation in answers.

802 Trials were grouped into sections by each sport. Prior to reading the vignettes for a particular sport, in
803 Exp. 1 only, participants were additionally presented with a full background description of the sport
804 (with the same details as in the *detailed background* D(, along with an example tournament showing
805 the kinds of outcome patterns that could appear in the later vignettes). Participants were required to
806 spend 15 seconds reading this background description. The full text of these background descriptions
807 can be found in the `model-olympics-human-experiment` directory of our repository. Then, for
808 each vignette trial, participants first read were (1) presented with the background and vignette
809 containing evidence and questions (but no sliders for inputs), as shown in the example interface in
810 **Figure 7 (top)**, and required to think about the vignette for 15 seconds without progressing; they
811 could then proceed to (2) an interface presenting sliders for the multi-click inputs, shown in
812 **Figure 7 (bottom)**. Participants took a median time of 2.24 minutes to provide all judgments for one
813 vignette. Participants were paid at a base rate of \$15/hr and told they may receive a bonus of up
814 to \$16/hr “if you try your best throughout the experiment to answer each question”; in reality, all
815 participants were provided the bonus.

816 **A4.4 Exp. 2: human judgment experimental details**

817 This experiment followed the same interface format as Exp. 1, except with the underspecified
818 backgrounds for each vignette. Additionally, participants in Exp. 2 were not shown the additional full
819 description of the sport background prior to beginning the vignettes (they only read the backgrounds
820 alongside the vignettes themselves). Participants took on average 2.81 minutes to provide their
821 multi-click judgments per vignette. As with Exp. 1, participants in 2 of the 4 sets of vignettes also
822 saw vignettes about diving, along with the other three sports, which were later omitted from the
823 experimental analysis when this sport was removed from analysis.

824 **A4.5 Exp. 3: human judgment experimental details**

825 This experiment involved both a **human commentary elicitation** experiment and a **human judgment**
826 **experiment**.

827 During the **commentary elicitation experiment**, as described in the main text, N=20 participants
828 were shown a tutorial indicating that they would read vignettes about sports scenario, and then “act
829 as a sports commentator” to write one or a few sentences introducing a new detail that would *change*
830 *their* reasoning about a randomly selected new match prediction question. Participants were randomly
831 assigned to conditions over which of the two new match questions they would need to change, and
832 whether they were asked to produce details that would either *increase* or *decrease* the odds of a
833 particular outcome given their initial judgments. On each trial, as in earlier experiments, participants
834 completed the full judgment task – they read the vignettes for 15 seconds, then proceeded to the
835 sliders where they entered judgments for all questions. They were then shown which new match
836 prediction they were to manipulate and told the direction they would need to manipulate with their
837 commentary. After writing commentary, participants were shown the full vignette (with their added
838 commentary) and asked to re-enter their judgments on the new match prediction.

839 As noted in the main text, this experiment used only the tug-of-war and canoe racing sports; and used
840 9 base vignettes with the *underspecified* backgrounds from Exp. 2, and slightly different patterns of
841 evidence than used in Exp. 1 and Exp. 2 – in particular, the vignettes included slightly easier outcome
842 patterns of evidence involving head-head matches between single players, whereas the vignettes
843 in Exp. 1 and Exp. 2 only involved matches between teams of two players each. Additionally,
844 participants were shown slightly different wordings of the *judgment* questions during the trials: the
845 strength questions asked *how strong* athletes were (rather than their absolute strength ranking out of
846 random athletes) and *how much effort* they put in (rather than asking specifically for a percent effort).

847 In total, this experiment yielded an initial set of 81 initial distinct commentary observations across
848 all participants. We filtered these down to 9 final vignettes by (1) excluding all participants who
849 did not adjust their judgments after providing commentary in the specified direction (e.g., they did
850 not actually increase the odds of the predicted match); (2) excluding participants who appeared to
851 have used language models (participants were explicitly instructed not to) or who provided clearly
852 spam answers; (3) excluding commentary that was more than a single sentence. We then selected
853 the 9 commentary with a more specific set of criteria that could be generalized in future work – we
854 selected commentary that focused on a *single athlete* (rather than generics about the world, like *it*

855 *was raining*); and commentary that focused on a single new *event* observation (eg. *Athlete A took an*
 856 *energy drink*) or observation about the athlete (*Athlete A had less experience*).

857 During the **human judgment experiment**, we then recruit a new set of participants to provide the
 858 same $k = 5$ multi-click judgments as in Experiments 1 and 2. Instructions were the same as in
 859 Exp. 1 and Exp. 2, except that participants were told that they would be reading vignettes including
 860 commentary written by other people. Each participant in this trial was shown the full set of $k=9$
 861 vignettes with commentary. Participants were provided the *underspecified* sport description from
 862 Exp. 2, as described in the main text. Participants took approximately 2.22 minutes to provide their
 863 judgments per vignette.

864 A5 Results: Supplemental Analyses

865 This section collects additional analyses comparing human and model judgments.

866 A5.1 Human and MSA correlations between Experiments 1 and 2

867 We first examine how well *human judgments correlate across the matched vignettes in experiment 1*
 868 *and experiment 2* – that is, whether people made judgments when reading the detailed background
 869 information that correlated with those from the underspecified background information. In general,
 870 as seen in Figure 8, judgments appear to be highly correlated, providing some evidence that people
 871 retrieve and use similar kinds of information to reason about the underspecified Exp. 2 condition as
 872 those that were provided to them explicitly in Exp. 1. Notably, there appears to be less correlation in
 873 the canoe race sport (middle column) – suggesting that people generally retrieved other ways that
 874 effort and strength might have contributed to the observed outcomes when left to come up with these
 875 details on their own, compared to the version spelled out to them in Exp. 1.

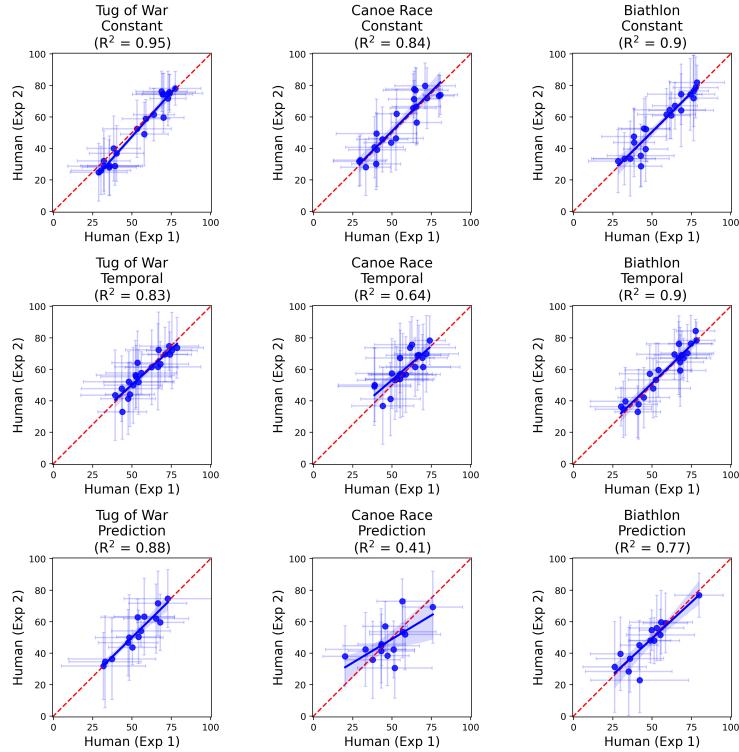


Figure 8: Correlations between human participant predictions per stimuli per query between Experiment 1 (x axis) versus Experiment 2 (y axis).

876 We perform the same analysis for the MSA judgments, comparing correlations between MSA
 877 judgments in Experiment 1 and 2 (Figure 9). In general, we see that the judgments are *very well*

878 correlated between the experiments, more so than the human participants – and unlike human
 879 participants, we do not see variance in the canoe racing condition between Experiment 1 and 2. This
 880 warrants further investigation, as it suggests that the model synthesis procedure is less diverse in
 881 producing human-like distributions over possible ad-hoc *models* in Experiment 2 from underspecified
 882 backgrounds, and may reflect a lack of sampling diversity in model construction.

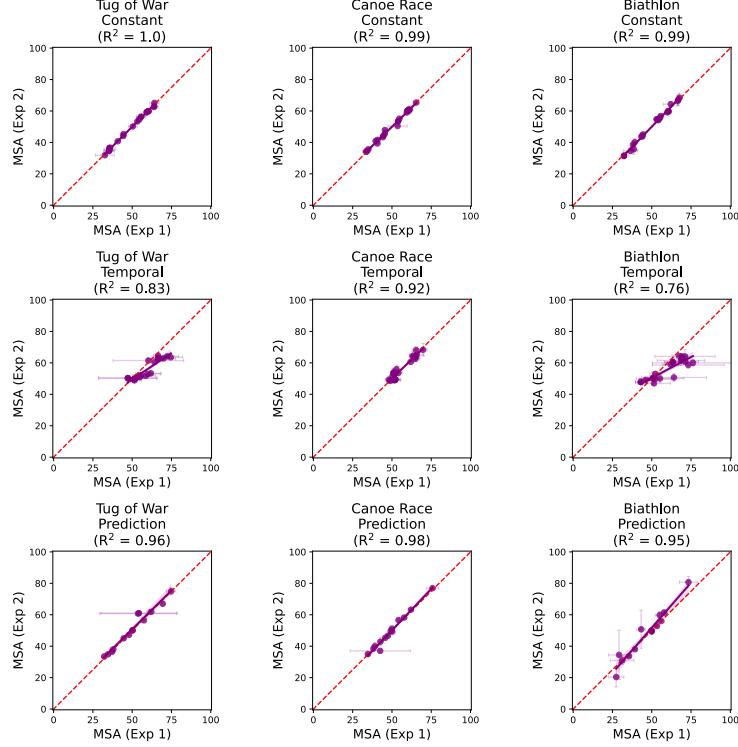


Figure 9: Comparing correlations between MSA predictions per stimuli per query for Experiment 1 (x axis) versus Experiment 2 (y axis).

883 A5.2 Total Variation Distance for comparing distributions between humans and models

884 To ensure our distributional analyses are not specific to using the Wasserstein Distance metric, we
 885 repeat our distributional analyses using Total Variation Distance (which does not account for the
 886 “geography” of the domain when comparing distributions). As in our Wasserstein Distance analyses,
 887 we first bucketize participant and model judgments (into 10 buckets) and compute our measure over
 888 the buckets. We see similar trends across models, sports, and experiments in Figure 10.

889 A5.3 Human-Model Correlations for All Models

890 Below, we include the full set of scatterplots between the average human and average model responses
 891 for the three experiments. We depict additional gold model results for Exp. 1 and Exp. 2 in Figure 11
 892 Direct-LLM in Figure 12 and CoT-LLM in Figure 13. We compare all model scatterplots on Exp. 3
 893 in Figure 14.

894 A5.4 Human-Model Correlations for All Models

895 Figure 15 also briefly summarizes qualitative error analysis patterns between Experiments 1 and 2,
 896 highlighting distinctions in LM-only baselines relative to human judgments in overall patterns of
 897 judgments (red) – as well as distinctions between the MSA baselines in the *qualitative* nature of
 898 the distributions of human judgments (LMs often appear to make peakier judgments relative to the
 899 symbolic model posteriors, which could be an artifact of the 5-sampling procedure).

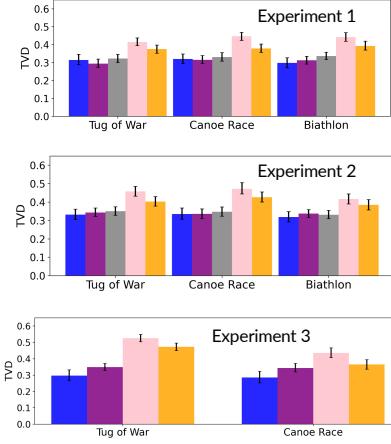


Figure 10: Comparing Total Variation Distance (TVD) between model and human judgments across each experiment. Bootstrapping and averaging follow as in our Wasserstein Distance computations; that is: TVD is computed between judgments per query per scenario, then aggregated as the mean over query types, and mean across query types for each depicted sport and experiment.) Error bars for model-humans show 95% CI over 1000 bootstrapped samples, with replacement, on the human data; for human-humans, over 1000 sampled 50-50 split-halve TVDs.

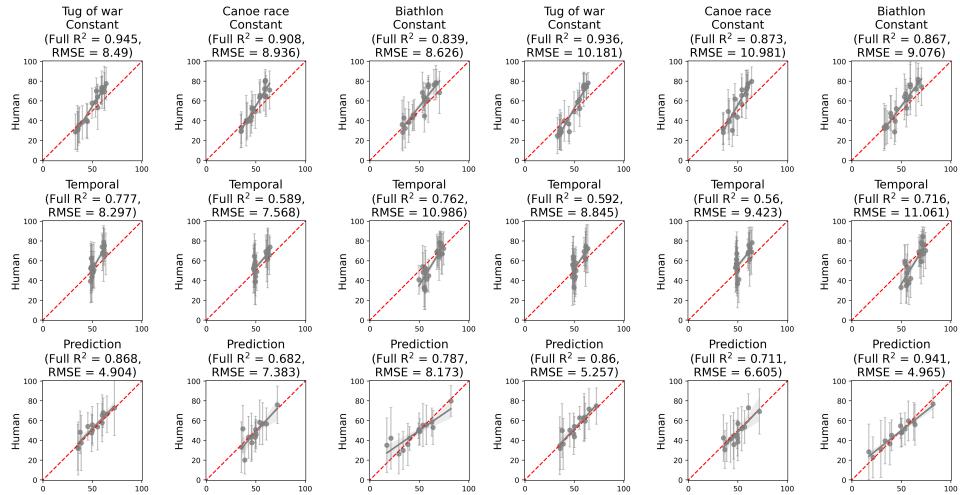


Figure 11: Inferences under the gold model against people for Exp. 1 (left) and Exp. 2 (right). Error bars depict standard deviation over the human responses.

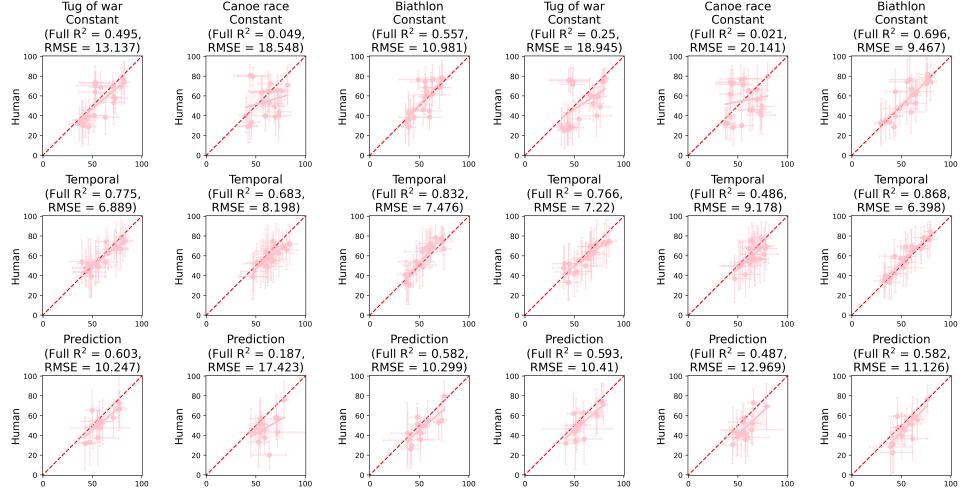


Figure 12: Inferences under the Direct-LLM model against people for Exp. 1 (left) and Exp. 2 (right). Error bars depict standard deviation over the human and model responses.

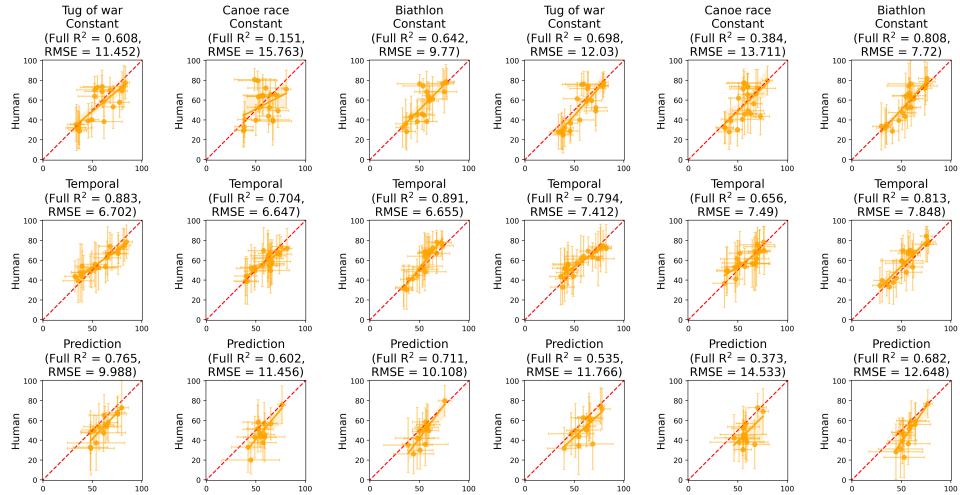


Figure 13: Inferences under the CoT-LLM model against people for Exp. 1 (left) and Exp. 2 (right). Error bars depict standard deviation over the human and model responses.

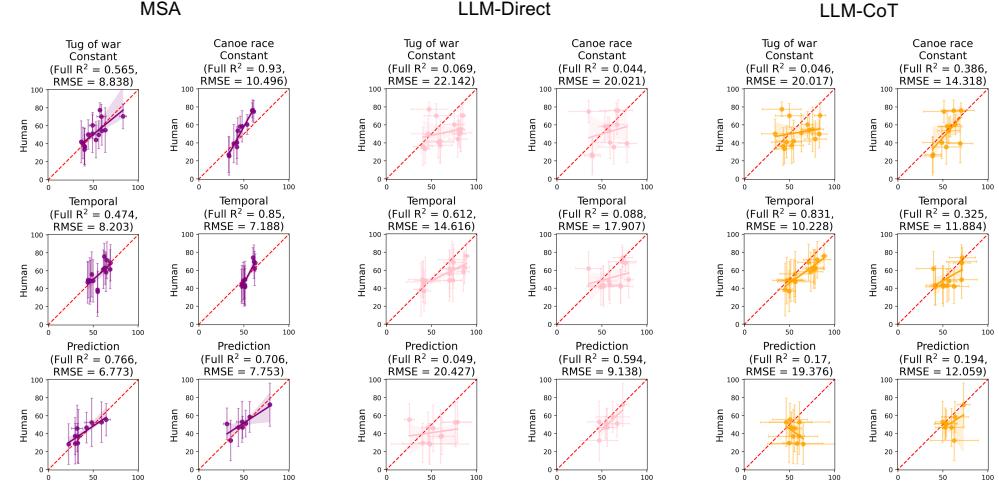


Figure 14: Inferences under MSA (left), Direct-LLM (middle), and CoT-LLM (right) against people for Exp. 3. Error bars depict standard deviation over the human and model responses.

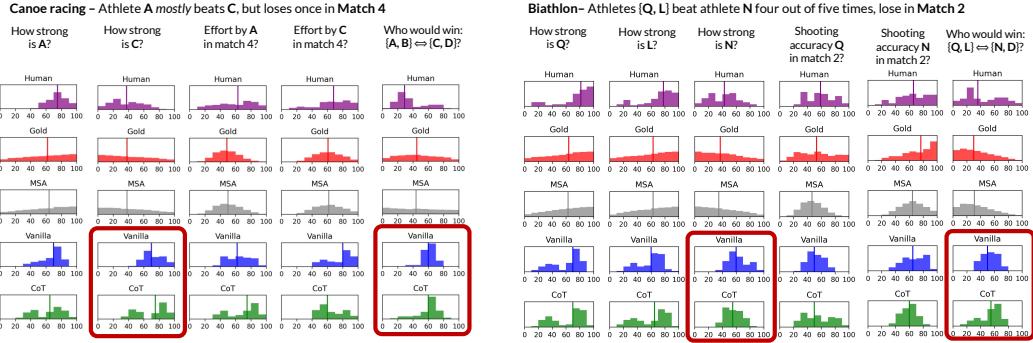


Figure 15: Illustrative examples from Experiments 1 and 2 highlighting one divergent pattern in inferences from LLM-only baselines, relative to human judgments (and normative Bayesian inferences in models synthesized by our MSA implementation). In the *canoe racing scenario* (left), noisy evidence in the vignette suggests that athlete A often appears in a winning pair of teammates that beat teams containing athlete C, despite a single anomalous loss. Humans judge C to be largely weaker than average, but both LLM-baselines (red) switch to predicting C as particularly strong; and predict that C would now win on a team against A. Similarly, in the *biathlon scenario* (right), a pair of athletes (Q, L) frequently beats another (N), while losing anomalously once. LLM-baselines allocate more probability to the possibility that both Q and L are actually quite weak, largely believe N is stronger, and tend to predict that N will win against Q and L.