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A1 Related Work444

The current work relates most closely to four lines of work, on model approximation and the Frame445

Problem, on LM guided model synthesis, hybrid models of language comprehension, and LM446

primitives in probabilistic programs.447
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A1.1 Model Approximation & the Frame Problem448

Previous work on the Frame Problem has made significant progress in defining resource rational449

[34] objectives by which small, task-specific models can be constructed to approximate reasoning450

and planning with respect to larger models or priors [29, 27]. This work provides an important451

theoretical existence proof, demonstrating that it is possible to construct smaller tractable models that452

approximate larger (and intractable) ones, and that people empirically [27] show behaviors consistent453

with these approximations in reasoning and planning tasks. Both of these works have relatively little454

to say about how minds arrive at these smaller approximations. The current approach builds on this455

work by examining, at a Marr algorithmic level, how the mind might construct these models – by456

decomposing the process into a relevance-based synthesis procedure, and by showing that this can be457

instantiated concretely by exploiting learnable patterns acquired from joint program and language458

experience.459

A1.2 Hybrid Models of Language Comprehension460

Our concrete computational approach is more closely related to work in cognitive science that shows461

how language models can be used to synthesize probabilistic programs from language, by translating462

between natural language and a symbolic LoT [46, 52, 49, 51, 50]. This prior work considers cases463

where natural language explicitly spells out all relevant symbolic structure necessary for language464

interpretation. We build on these approaches by by extending model construction to areas where465

relevant knowledge must be recruited from large bodies of real-world background information,466

forcing us to confront the challenges of relevance-based retrieval that open-world reasoning poses.467

A1.3 Language Models for Model Discovery468

Our work connects to three related lines of work using code language models to synthesize structured469

models of the world or behavior. These lines of work differ in the goals of model synthesis, and the470

symbolic substrate of models they synthesize.471

One thread focuses on using language models to synthesize explicit, symbolic computational cognitive472

models of human [40] or non-human animal behavior [9]. We differ from these works in our focus473

on synthesizing probabilistic programs as the key representational structure for representing ad-hoc474

models, which affords a particularly expressive model and automatic reasoning class with strong475

connections to earlier probabilistic modeling work in computational cognitive science. Our work is476

also somewhat different in its framing and goals. Both earlier works seek discover symbolic cognitive477

models to automate the proposal of scientific models for studying behavior. While our approach478

can be interpreted this way, the MSA architecture also represents an algorithmic hypothesis about479

how humans minds actually reason, framing flexible cognition itself as a process of ad-hoc model480

synthesis.481

More broadly, our focus is on modeling how people reason about arbitrary, open-world situations482

differentiates – as a proof of concept towards more domain-general cognitive model synthesis over483

probabilistic models. This differentiates our work from other recent automated model synthesis484

methods in both cognitive science and AI that have focused on more domain-specific models, such485

as synthesizing models to explain social reasoning [53, 13]. Other recent AI work has focused486

on synthesizing world models that represent (often deterministic) transition functions for decision487

making and planning [44, 47, 41, 38]. This work could be productively combined with ours to488

synthesize probabilistic models that support planning and inference to explain an even wider class of489

ad-hoc reasoning.490

Finally, a related and concurrent line of work in AI has begun to use language models to synthesize491

probabilistic models [18, 48], including probabilistic programs [33, 16]. These works are most492

similar to ours in their formalism, but differ significantly in their goals. The latter works especially493

focus on automating scientific modeling for statistical analysis from data. We focus on an expressive494

probabilistic programming language class designed for cognitive modeling, and evaluate our approach495

with respect to empirical evidence of human reasoning. However, as with other work on automated496

modeling, there are rich synergies between these approaches – such as extending the MSA approach497

to capture human scientific discovery, or collaborative scientific discovery between AI and human498

“thought partners” that includes jointly modeling a human scientist along with models of the world499

[11].500
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A2 General Discussion501

A2.1 Reasons For Model Fit502

Why might human judgments better align with MSAs than with LM baselines in these cases? One503

possibility is that the difference is due to the way both model classes handle coherence. The mental504

models generated by MSAs are coherent by design, while LMs internal representations do not505

have similar coherence constraints. If people’s judgments over multiple variables tend to be more506

internally coherent, this could drive the fit to MSAs over LMs. Another possibility is that MSAs use507

of explicit causal and probabilistic representations might force the model to place more weight on508

deeper structural properties, rather than superficial features of the language used to describe tasks.509

If people’s judgments are tracking these deeper causal properties of the stimuli, this could explain510

the better match to MSAs. Such an explanation would fit with similar findings that point to a lack511

of robustness in these models in response to surface-level features [36, 43, 37]. Determining which512

of these or other explanations is most plausible, and if this general trend continues to hold in more513

varied domains, is a priority for future research.514

A2.2 Handling Surprising Evidence515

In our data, people appeared to be close to rational in their integration of evidence with background516

beliefs, as measured by fit to our MSA. This included integrating unexpected observations (e.g., a517

surprising win by a suspected slow runner against a suspected fast runner) in a measured fashion. In518

cases where LMs differ most from people, a tentative analysis suggests that one of the key challenges519

faced by LMs was an over-sensitivity to these surprising observations. For example, from qualitative520

inspection, we noticed instances where the LM baselines tended to believe that a fast runner’s single521

loss to an otherwise slower runner was often enough to neutralize or reverse the model’s assessment522

of their relative speeds, even when the weight of the rest of the evidence suggested otherwise. The523

tendency of our MSA not to over-index in these cases may be due to the construction of an explicit524

model, with priors and a causal structure that grounds the integration of competing observations.525

Further work should explore this theme of holistic integration more thoroughly, including in cases526

where information is revealed piecemeal over time (as it often is in naturalistic reasoning tasks),527

rather than all at once (as in our experiments here).528

A2.3 Open-World Reasoning529

Data from Exp. 3 demonstrated the largest differences between model classes in fit to human data.530

This experiment focused on generalization in the open-world setting, conditioning on participant-531

sourced commentaries introducing novel considerations. Performance on this experiment represents a532

particularly interesting kind of generalization – to observations that require introducing new variables533

and dependencies into the underlying causal structure, thereby expanding the expressivity of the534

model (relative to what would have been synthesized in the absence of the commentary; the models535

synthesized in Exp. 1 and Exp. 2). As noted earlier, reasoning in this open-world setting represents a536

strong challenge for classical Bayesian models of cognition, which cannot handle novel variables.537

Despite this, our MSA strongly outperforms LMs in modeling human judgments for these stimuli,538

suggesting a continued benefit from being able to rely on the kinds of representations that figure539

in probabilistic models. In particular, MSAs’ ability to recombine symbolic representations of the540

relevant causal structures may have supported a greater degree of generalization to highly novel541

circumstances. A priority for future work is explore where this ability breaks with LM-powered542

model synthesis to explore whether other kinds of MSAs might better fit human cognitive abilities in543

turn.544

A2.4 Distributions of Human Judgments Reveal Structure That All Models Fail To Capture545

One of the advantages of collecting and analyzing distributional data is that we can analyze human546

and model judgments in more fine-grained ways than conventional measures like R
2 allow. A547

cursory analysis of this data reveals interesting differences between people and both model classes,548

highlighting the amount of structure in human judgments still to be explained. Compared to human549

participants, for example, LMs appear to be more streaky – clustering their judgments around550

particular outcomes – and respond too strongly to surprising observations – yielding judgments that551

16



are at times wholly in the opposite direction of people’s. MSAs are more often directionally correct552

(as evidenced by greater R2), but tend to produce judgments that are visibly smoother and more553

uncertain than people’s (see Figure 15 in Supplement). In short, human judgments appear to have554

strong opinions (visible streaks, like in the LMs), but place those peaks more consistently over modes555

in the Bayesian posterior (as evidenced by our MSA’s superior R2 and WD measures).556

A pressing question then is whether some other model class could better delivers the patterns seen in557

the human data. This might be some deeper hybridization of neural and symbolic methods – one that558

reproduces the sharply peaked opinions of LMs, but places those peaks more consistently in the right559

places – or an MSA with stronger sampling methods that focus samples more directly over modes.560

Modeling such fine-grained distributional features of human judgments is a target for future work.561

A2.5 Experimental Limitations562

One limitation of the current work is that human data were relatively noisy – both split half human-563

human correlations and model-human correlations showed wide confidence intervals. We can also564

explore ways to make human vairance more model-able – by matching particular mental models (in565

MSAs) or response patterns (in LMs) to particular participants – to capture individual participant’s566

unique conception of the situtation, for example.567

Variance in samples from our MSA was also often too low. Judgments in Experiments 1 and 2, for568

example, were highly correlated for our MSA, but not nearly so correlated for people. Similarly,569

people’s judgments in certain conditions, such as in the canoe domain, were often higher variance570

than those of our MSA. This suggests a lack of diversity in the models synthesized by our MSA.571

Follow-on work should explore how to increase the diversity of synthesized models, by increasing the572

number of models, for example, or by more targeted methods, such as conditioning model generation573

(and LM responses) on participants’ self-reports about what they are thinking about.574

Another near-term target for follow-up work is exploring stronger baselines and more thorough model575

ablations. Anecdotally, we found that a staged model synthesis procedure worked best, but this576

should be explored systematically and compared to other model synthesis strategies. Similarly, MSA577

performance should be compared to state-of-the-art reasoning models, as well as the cognitive models578

derived from them [6]. Leading reasoning models in particular are likely to perform better at these579

tasks, but also likely to synthesize better probabilistic models if used internally to our MSA. It will580

be important to see how those two effects wash out when both are compared for human-likeness.581

A2.6 Limitations in Model Synthesis582

Much like the LMs, our implementation of an MSA also faced important limitations in its ability583

to generalize. Model generations were often overly influenced by the example models given in our584

prompt, with a consequent lack in model diversity. For example, while our MSA was often able to585

reconfigure the primitives in the prompted models into models for the novel sport, it struggled to586

invent new primitives when these were called for. In Exp. 3 our MSA struggled to make sense of587

temporal information frequently given in commentaries (e.g., “Kai was fast until he rolled his ankle in588

match 4”) until we included an example of the relevant abstraction, a temporal ordering of events, in589

the prompted models. Once armed with this abstraction, the MSA could model the influence of events590

before, after, or during, but it struggled to build these abstractions on its own. Some of these issues591

of prompt sensitivity might be ameliorated by using larger LMs or models specially fine-tuned for592

the task of model synthesis, which might learn to more systematically explore the space of possible593

models.594

A2.7 Looking Ahead595

Addressing the problem of open-world cognition that will require exploring a broader space of596

possible MSAs. This might include synthesis using other modeling languages that support long-597

horizon planning [54], multi-agent reasoning [10], or distributional primitives learned from experience598

[32, 15, 25]. Future work should also explore other model synthesis strategies, such as those that599

refine initial models with external feedback [47, 44] or that consider multiple models at once [35].600

Finally, future MSAs should learn from model construction over time, by components of the synthesis601

architecture based on previous successes or failures, and by augmenting the modeling language with602

successful concepts [17, 24].603
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Future MSAs can be evaluated both based on ground truth accuracy – whether the models they604

synthesize are any good – and match to various measures of human behavior. We can ask, for605

example, whether certain modeling languages better capture the generalizations that people endorse,606

or which synthesis strategies fit the dynamics of human thought processes, as measured by reaction607

times or systematic shifts in people’s judgments.608

The current era of highly general AI systems means that a deep understanding of how human open-609

world cognition works may now be within reach. We don’t yet have a settled view of how people610

are able to reason in locally coherent and globally relevant ways about the large and ever-expanding611

space of things people think about, but the way to investigate this is becoming clear. By scaling612

MSAs, as well as their pure LM alternatives, and systematically comparing them to human data, we613

can now begin to meaningfully adjudicate between models of human general cognition. Cognitive614

science has shed tremendous light on how parts of the mind work. It can now begin to study how615

those parts fit together.616

A3 Model Synthesis Architectures: Additional Implementational Details617

Experiment and model implementation details reference the repository at: https:618

//anonymous.4open.science/r/msa-cogsci-2025-data-CFB6.619

620

As described in the main text, we sequentially construct Mad-hoc in a staged process that interleaves621

generation and evaluation steps. The base LM used in all experiments is the HuggingFace622

meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo release. We query the model using the623

Together API. Here we provide additional parameters and prompting details for each of these stages.624

625

In our experiments, as we described in the main text, we model each simulated human participant as626

ultimately synthesizing a single model Mad-hoc conditioned on an input natural language scenario.627

The following describes the parameterization used for each single simulated human participant.628

629

Each stage of generation involves a frame prompt for that stage, into which we inject a shuffled set630

of background examples demonstrating each stage of this pipeline for a set of held-out example631

scenarios (none of which appear verbatim in our main experiments.) Specifically, we use a held-out632

prompting scheme for selecting these examples, where for a scenario from any given sporting domain633

(eg. tug-of-war) we automatically select background examples only constructed for the other sports –634

in this case, canoe-racing and biathlon, along with two other example scenarios, diving and exam,635

that we use as examples for all scenarios.)636

637

Below, we describe where in the repository one can find the frame prompts for each stage, which638

include a <SHUFFLED EXAMPLES> token indicating where these shuffled example generations appear.639

The full set of shuffled examples themselves can be found at the example-scenarios directory at640

our data repository, which includes:641

• Base {tug-of-war, canoe-racing, biathlon, diving, exam} examples used for642

Exp. 1 and Exp. 2.643

• Base {tug-of-war, canoe-racing, biathlon, diving} examples for Exp. 3. This644

experiment was run later and we constructed extended examples demonstrating models with645

free-form additional natural language observations. We also omit the exam example domain646

from these experiments. However, future work will explore the effect of these examples on647

generation and seek to construct a more general set of examples (or fine-tune models so that648

example-based prompting is not necessary; we use it here as we build on a generic base649

model.)650

Note that these shuffled example text files contain a concatenated set of all of the generation stages651

(eg. each example file contains an example input scenario, parse, background information in natural652

language, dependency graph, and full probabilistic program.653

654

All frame prompts for each generation stage appear under the msa-frame-prompts directory.655

Generating of the parsing and background-knowledge/dependency graph used a single system prompt656
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which is included in the same directory. No system prompt was used for the ad-hoc probabilistic657

program model generation stage.658

A3.1 Parsing659

In our experiments, we forward sample only kparse = 1 parse at temp=0.2. Throughout, we use660

lower temperatures for generation stages that require greater syntactic control (like code generation)661

and higher temperatures for tasks that involve generating natural language (like retrieving and662

generating informal relevant variables.) We also implement an LLM-based evaluation function663

!parse which scores parses, but as we only take kparse = 1 sample per participant this is of limited664

utility (we find empirically that parse variability is less important for downstream model quality than665

diversity in informal knowledge generation, but kparse could be increased for more ambiguous and666

freeform language in future experiments.667

668

The full frame prompt for the parsing stage can be found at generate-parsing in the frame669

prompts directory and the evaluation prompt can be found at score-parsing.The frame prompt for670

this stage was injected with shuffled and concatenated examples starting from the input scenario up671

to the example parses (delimited by <START_LANGUAGE_TO_WEBPPL_CODE>).672

673

Here we show a few example parses for canoe-racing and biathlon scenarios in Exp. 1 and Exp. 2674

(as only the background information changed between these experiments, the outcome evidence and675

questions shown were matched for scenarios in Exp. 1 and Exp. 2). We omit a tug-of-war example as676

the latent variables as it uses the same outcome and latent variable format as canoe-racing. Parses677

are excerpted from the full scenario, but show examples of a sentence in natural language parsed678

into a corresponding line of code. Note that the parse code invariably includes calls to placeholder679

functions that have not yet been generated and must be generated in the final model.680

Example parse for Exp. 1, canoe-racing

In the first race, Fey and Ollie lost to Lane and Jamie.
condition(lost({team1: ['fey', 'ollie'], team2: ['lane', 'jamie'], race: 1}))

Query 1: Out of 100 random athletes, where do you think Fey ranks in terms of intrinsic
strength?
intrinsic_strength_rank({athlete: 'fey', out_of_n_athletes: 100})

On a percentage scale from 0 to 100%, how much effort do you think Fey put into the
second race?
effort_level_in_race({athlete: 'fey', race: 2})

In a new race later this same day between Fey and Ollie (Team 1) and Harper and Gale
(Team 2), who would win and by how much?
who_would_win_by_how_much({team1: ['fey', 'ollie'], team2: ['harper',

'gale'], race: 4})i

681
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Excerpted parse examples for Exp. 1, biathlon

In the first round, Robin and Ollie beat Lane and Ness.
condition(beat({team1: ['robin', 'ollie'], team2: ['lane', 'ness'], round:

1}))

Out of 100 random athletes, where do you think Robin ranks in terms of intrinsic
strength?
intrinsic_strength_rank({athlete: 'robin', out_of_n_athletes: 100})

On a percentage scale from 0 to 100%, how accurate do you think Robin was at shooting
in the second round?
shooting_accuracy_in_round({athlete: 'robin', round: 2})

In a new round later this same day between Robin and Ollie (Team 1) and Lane and
Taylor (Team 2), who would win and by how much?
who_would_win_by_how_much({team1: ['robin', 'ollie'], team2: ['lane',

'taylor'], round: 4})

682
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Here we show a few excerpted example parses for Exp. 3, specifically showing parses of the free-form683

participant-provided observations. As there is more variability across these parses, we show several684

instances of parses sample for different simulated participants to demonstrate variability.685

Example parses for Exp. 3, participant-generated details

Taylor is brand new to the sport of canoe racing, and this is only his 2nd time competing.
Sampled parse 1: condition(is_brand_new_to_canoe_racing({athlete: 'taylor'})

&& is_second_time_competing({athlete: 'taylor'}))

Sampled parse 2: condition(is_brand_new_to_canoe_racing({athlete:

'taylor'}) && is_only_second_time_competing({athlete: 'taylor'}))

Kay didn’t get enough sleep last night and can barely stay awake during the race.
Sampled parse 1: condition(!got_enough_sleep_last_night({athlete: 'kay'}) &&

barely_staying_awake_during_race({athlete: 'kay'}))

Sampled parse 2: condition(didnt_get_enough_sleep_last_night({athlete:

'kay'}))

In the first match of tug-of-war Kay, while managing to pull off the win from Avery,
pulled a muscle in their shoulder that limited their pulling output going forward.
Sampled parse 1: condition(pulled_muscle_in_shoulder_in_match({athlete:

'kay', match: 1}) && beat({team1: ['kay'], team2: ['avery'], match: 1}))

Sampled parse 2: condition(pulled_muscle_in_match({athlete: 'kay', match:

1}) && beat({team1: ['kay'], team2: ['avery'], match: 1}))

686

A3.2 Retrieving informal relevant background knowledge and proposing conceptual687

dependency graph688

We jointly sample the informal relevant background information K and corresponding dependency689

graphs G. In our experiments, for each simulated participant we sample kinformal = 8 informal690

specifications and their corresponding dependency graphs at temp = 0.5. We then implement an691

LLM-based evaluation function !informal which jointly scores the generated K and G, from which692

we select the top scoring K→, G→.693

694

The full frame prompt for this stage can be found at695

generate-informal-background-knowledge-and-dependency-graph and the evalua-696

tion prompt can be found at score-informal-background-and-dependency-graph in the697

frame prompts directory. As each generation stage is conditioned on all previous generation steps,698

note that the injected shuffled and concatenated examples now draw from the input scenario up to the699

example depdendency graph (delimited by <START_SCRATCHPAD>).700

701
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Here we show example retrieved informal background knowledge and the corresponding dependency702

graph for sample scenarios in Exp. 2 (which required retrieving additional information to make up703

for the underspecified background) and Exp. 3.704

Example informal background knowledge and dependency graph for Exp. 2, biathlon

In this event, teams of players are competing in rounds of a biathalon, a winter sport that
combines cross-country skiing races and rifle shooting. In each round, the team that wins
depends on the average speed with which the athletes are able to ski, based on their intrinsic
strength, as well as each team member’s shooting accuracy in that particular round.
Intrinsic strength is an underlying attribute of a given athlete that varies somewhat widely
from athlete to athlete. An athlete’s intrinsic strength ranking out of n other athletes is the
number of other athletes we might expect them to be stronger than out of N total random
athletes.
Athletes also vary in their shooting accuracy in any given round. Shooting accuracy is a
continuous parameter, measured as a percentage from 0 to 100%. Athletes can have poor,
average, or excellent shooting accuracy in a given round. Their shooting accuracy in a round
is somewhat dependent on their intrinsic strength, as stronger athletes are probably more
likely to have better shooting accuracy.
A team’s skiing speed in a round is described in the background as the average effective
skiing speed with which the athletes are able to ski on that team. The effective skiing speed
of an athlete in a round is determined at a base level by their intrinsic strength, since stronger
athletes ski faster.
A team’s overall score in a round is the sum of their average skiing speed and their average
shooting accuracy in that particular round. The skiing speed and shooting accuracy are
weighted equally.
The team that gets the highest score in any given round wins. A team beats another if their
team’s overall score is higher in that round. A team loses to another team if they did not beat
that team in a given round.
The amount that one team wins over another team is given by the difference in their overall
scores.

- intrinsic_strength

- intrinsic_strength_rank

- depends on: intrinsic_strength

- shooting_accuracy_in_round

- depends on: intrinsic_strength

- effective_skiing_speed_in_round

- depends on: intrinsic_strength

- team_skiing_speed_in_round

- depends on: effective_skiing_speed_in_round

- team_shooting_accuracy_in_round

- depends on: shooting_accuracy_in_round

- team_overall_score_in_round

- depends on: team_skiing_speed_in_round, team_shooting_accuracy_in_round

- beat

- depends on: team_overall_score_in_round

- lost

- depends on: beat

- who_would_win_by_how_much

- depends on: lost

705
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Example informal background knowledge and dependency graph for Exp. 3, tug of war

Participant-generated detail: In the first match of tug-of-war Kay, while managing to
pull off the win from Avery, pulled a muscle in their shoulder that limited their pulling
output going forward.
First, let’s reason about the role of strength in this scenario. Intrinsic strength is an underlying
attribute of a given athlete that varies somewhat widely from athlete to athlete.
An athlete’s intrinsic strength ranking out of n other athletes is the number of other athletes
we might expect them to be stronger than out of N total random athletes.
Athletes also vary in the effort that they put into any given match. Athletes can put in either
moderate amount of effort, little effort, or extra high amounts of effort. Which of these they
are more likely to do probably depends on their underlying strength, as stronger athletes are
probably more likely to put in extra high effort, and weaker athletes probably tend to be more
likely to put in lower amounts of effort.
An athlete who ’tries hard’ in a match puts in a fair amount of effort.
Whether or not an athlete pulls a muscle in their shoulder in a specific match occurs at a rare
frequency for any given athlete and match. This is an event that affects future matches after
the match in which someone was injured. We will need to think about whether an athlete has
pulled a muscle in ANY previous matches to understand its effects on the current match.
An athlete’s effective pulling strength in a given match is determined at a base level by
their intrinsic strength, but is (1) reduced if they pulled a muscle in their shoulder in any
PREVIOUS match, which will make them pull less hard; and (2) increased by their effort
level, which is effectively a percentage multiplier on their pulling strength in this match.
A team’s pulling strength in a match is described in the background as the AVERAGE
effective pulling strength with which the athletes are able to pull on that team.
A tug-of-war team beats another if their team’s pulling strength is greater in that match,
assuming a fixed match length.
A tug-of-war team loses to another team if they did not beat that team in a given match.
To calculate who would win and by how much, we will calculate the likelihood that a team
would win over another.

- intrinsic_strength

- intrinsic_strength_rank

- depends on: intrinsic_strength

- effort_level_in_match

- depends on: intrinsic_strength

- pulled_muscle_in_shoulder_in_match

- pulled_muscle_in_shoulder_in_any_previous_match

- depends on: pulled_muscle_in_shoulder_in_match

- effective_athlete_pulling_strength_in_match

- depends on: intrinsic_strength,

pulled_muscle_in_shoulder_in_any_previous_match, effort_level_in_match

- team_pulling_strength_in_match

- depends on: effective_athlete_pulling_strength_in_match

- beat

- depends on: team_pulling_strength_in_match

- lost

- depends on: beat

- who_would_win_by_how_much

- depends on: lost

706

A3.3 Synthesizing the formal symbolic model707

Finally, conditioned on the best scoring parse, informal knowledge and dependency graph, for each708

simulated participant we sample a single full probabilistic program kprogram = 1 at temp = 0.2709

from the LLM. As described in the main text, we implement !formal as simply whether or not the710

probabilistic program compiles and produces inferences over the queries.711

712
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The full frame prompt for this stage can be found at generate-model in the frame prompts directory.713

As each generation stage is conditioned on all previous generation steps, note that the injected714

shuffled and concatenated examples now include the full text of the examples, from the scenarios and715

including all prior example generation stages up to the example models.716

As models are verbose, below we reproduce an excerpted model from Exp. 3 showing the parse that717

involves functions for the new participant detail, and with excerpted components for the other named718

functions.719
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Example informal background knowledge and dependency graph for Exp. 3, biathlon

Participant-generated detail: In the first match of tug-of-war Kay, while managing to
pull off the win from Avery, pulled a muscle in their shoulder that limited their pulling
output going forward.

var model = function() {

// BACKGROUND KNOWLEDGE

// Intrinsic strength is an underlying attribute of a given athlete that

varies somewhat widely from athlete to athlete.

var intrinsic_strength = mem(function ({athlete}) {...})

// An athlete's intrinsic strength ranking out of n other athletes is

the number of other athletes we might expect them to be stronger than

out of N total random athletes.

var intrinsic_strength_rank = function({athlete, out_of_n_athletes})

{...}

// Athletes also vary in the effort that they put into any given match.

Athletes can put in either moderate amount of effort, little effort, or

extra high amounts of effort. Which of these they are more likely to do

probably depends on their underlying strength, as stronger athletes are

probably more likely to put in extra high effort, and weaker athletes

probably tend to be more likely to put in lower amounts of effort.

var effort_level_in_match = mem(function({athlete, match}) {...})

// An athlete who 'tries hard' in a match puts in a fair amount of

effort.

var tried_hard_in_match = mem(function({athlete, match}) {...})

// Whether or not an athlete pulls a muscle in their shoulder in a

specific match occurs at a rare frequency for any given athlete and

match. This is an event that affects future matches after the match in

which someone was injured. We will need to think about whether an

athlete has pulled a muscle in ANY previous matches to understand its

effects on the current match.

var pulled_muscle_in_shoulder_in_match = mem(function({athlete, match}) {

var likelihood_of_pulling_muscle_in_match = 0.05;

return flip(likelihood_of_pulling_muscle_in_match);

})

// An athlete's effective pulling strength in a given match is

determined at a base level by their intrinsic strength, but is (1)

reduced if they pulled a muscle in their shoulder in any PREVIOUS match,

which will make them pull less hard; and (2) increased by their effort

level, which is effectively a percentage multiplier on their pulling

strength in this match.

var effective_athlete_pulling_strength_in_match = mem(function({athlete,

match}) {

// Assume that base pulling strength is just their current strength.

var base_pulling_strength_in_match = intrinsic_strength({athlete :

athlete})

// Reduced if they pulled a muscle in their shoulder in any PREVIOUS

match. Use the helper function to check if they pulled a muscle after

any previous match.

var pulling_strength_adjusted_for_pulled_muscle =

any_previous_time_inclusive(

function(prev_match) {

return pulled_muscle_in_shoulder_in_match({athlete: athlete,

match: prev_match})

}, match) ? base_pulling_strength_in_match * 0.7 :

base_pulling_strength_in_match;

// Increased by effort level in this match.

var pulling_strength_adjusted_for_effort_level =

(effort_level_in_match({athlete: athlete, match: match}) / 100) *

pulling_strength_adjusted_for_pulled_muscle;

return pulling_strength_adjusted_for_effort_level;

})

// A team's pulling strength in a match is described in the background

as the AVERAGE effective pulling strength with which the athletes are

able to pull on that team.

var team_pulling_strength_in_match = function({team, match}) {...}

// A tug-of-war team beats another if their team's pulling strength is

greater in that match, assuming a fixed match length.

var beat = function({team1, team2, match}){...}

// A tug-of-war team loses to another team if they did not beat that

team in a given match.

var lost = function({team1, team2, match}){...}

// To calculate who would win and by how much, we will calculate the

likelihood that a team would win over another.

var who_would_win_by_how_much = function({team1, team2, match}) {...}

<CONDITION AND QUERIES OMITTED FOR CONCISION>

}}

var posterior = Infer({ model: model, method: 'rejection'});

720
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A3.4 Model-Based Bayesian Inferences721

In our experiment, all inferences are derived using the WebPPL built in rejection sampling inference722

engine. Inference budgets are specified in the main text: we report posteriors from bsamples = 1000723

samples per simulated participant for Exp. 1 and Exp. 2, and bsamples = 500 for Exp. 3 (as724

in general rejection sampling is much slower on these, where observations specify a rare a priori725

observation.726

A4 Natural Language Reasoning Experiments: Additional Experimental727

Details728

A4.1 Model Olympics Vignettes729

This supplemental section provides additional details on the stimuli generation and selection process730

for the Model Olympics domain vignettes used throughout the experiments.731

732

As described in the main text, we construct a set of procedurally generated vignettes for experiments733

Exp. 1, Exp. 2, Exp. 3, where each vignette consists of a: linguistic background on the734

particular sport of interest (which could be tug-of-war, canoe racing, or biathlon); a set of evidence735

sentences describing match outcomes (plus, in the Exp. 3 case, one additional participant-generated736

observation); and 8 questions.737

738

At the data repository section, the model-olympics-human-experiment directory contains:739

• Base detailed backgrounds for the {tug-of-war, canoe-racing, biathlon} sports740

used for vignettes in Exp. 1.741

• Base underspecified backgrounds for the {tug-of-war, canoe-racing, biathlon}742

sports used for vignettes in Exp. 2.743

• Base underspecified backgrounds (no reference to any participant-generated variables)744

for the {tug-of-war, canoe-racing} sports used for vignettes in Exp. 3. Note that the745

Exp. 3 vignettes were constructed shown to models were constructed using underspecified746

backgrounds (as in Exp. 2); we provide these again for comparison.747

Using the base backgrounds, we procedurally generated vignettes for each sport using a set of 16 base748

vignette templates, comprised of 12 templates derived from the patterns of evidence used (originally,749

in the tug-of-war domain only) in [22], and 4 additional templates specifically designed to present750

noisy and anomalous evidence that would evaluate whether participants and models judged these751

outcomes based on the “Bayesian explaining away" of anomalous outcomes relative to accumulative752

contrary evidence, based on multiple conjunctive latent causal variables. The templates describe the753

relations between athletes in a tournament; we instantiate the templates into concrete templates for754

each sport using sport-specific latent variables, and with randomly sampled athlete names from a755

set of gender-neutral names (to avoid priors about athlete strength). We then randomly subsampled756

amongst these procedurally templates to select the vignettes reported in our experiments. In total, as757

described in the main experimental text the final stimuli for each experiment reported in the paper758

comprised:759

• Exp. 1: 6 randomly sampled vignettes (from the full set of 16 possible vignette templates)760

for each sport, for a total of 18 vignettes. Note that these 6 vignette templates were761

independently sampled for each sport and therefore may not have had the same evidence762

patterns per sport.763

• Exp. 2: matched vignette templates to Exp. 1, for a total of 18 vignettes, but with764

underspecified backgrounds and re-generated athlete names.765

• Exp. 3: 5 tug-of-war and 4 canoe-racing vignettes, which were base vignettes extended with766

participant-generated details. As we describe throughout, these base vignettes were similar767

in form but slightly different (in their background details and phrasing of the inference768

questions) from those used in Exp. 1 and Exp. 2, as this was a preliminary experiment769

piloted before Exp. 1 and Exp. 2.770
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As we describe in the human experimental details below, human participants in our study actually771

viewed slightly more vignettes than were ultimately reported in our paper here or compared to model772

results – we removed one vignette (from all three reports) which contained an error in the questions773

that asked about an athlete who was actually not part of a particular match; and we removed one774

additional sports domain, a synchronizeddiving domain, due to apparent confusion about the sport775

itself and high amounts of variance in participant answers. We currently withhold the full exact set of776

stimuli from Exp. 1 and Exp. 2, and the stimuli used in Exp. 3, to avoid their appearance in LLM777

training datasets while we prepare an extended version of this work. The full dataset will be released778

upon publication, and future work will seek to generate a more dynamic version of this dataset for779

evaluation. However, here we show an example vignette from the tug-of-war domain, demonstrating780

the difference between the detailed (Exp. 1) and underspecified (Exp. 2) backgrounds.781
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Example tug-of-war vignette, showing Exp. 1 vs. Exp. 2 backgrounds

Exp. 1: Detailed background In this event, the athletes are competing in tug-of-war
tournaments. Each tournament consists of a series of matches. In each match, athletes
compete as part of a team.
An athlete’s intrinsic strength remains constant throughout a tournament. An athlete neither
gets stronger nor weaker between matches. You can assume that all matches take place on
the same day.
Athletes also vary in the effort that they put into any given match. Most of the time, people
pull with a moderately high amount of effort. Sometimes, an athlete won’t put in much effort
and will pull with only a fraction of their strength. Other times, they may put in a lot of effort
and pull extra hard, beyond what their intrinsic strength would suggest.
How hard a team pulls overall in any given match is determined by the total amount that all
of the athletes on the team pull in that match. How hard each athlete pulls in a given match
is determined by their intrinsic strength, modified by how much effort they put in (a lower
fraction of their intrinsic strength if they don’t put in much effort, or even more than their
strength if they put in more effort).
The team that pulls the hardest in a given match wins.
Athletes compete either individually or as a team.
All matches take place on the same day.

Exp. 2: Underspecified background In this event, the athletes are competing in matches of
tug-of-war.
In each round, the team that wins the round depends on how hard the athletes collectively
pull, based on their intrinsic strength modulated by other factors including how much effort
they put in to that round.
Athletes compete either individually or as a team.
All matches take place on the same day.

CONDITIONS
In the first match, Peyton and Avery lost to Blake and Casey.
In the second match, Peyton and Blake lost to Avery and Casey.
In the third match, Peyton and Casey lost to Avery and Blake.

QUERIES
Query 1: Out of 100 random athletes, where do you think Peyton ranks in terms of intrinsic
strength?
Query 2: Out of 100 random athletes, where do you think Avery ranks in terms of intrinsic
strength?
Query 3: Out of 100 random athletes, where do you think Blake ranks in terms of intrinsic
strength?
Query 4: On a percentage scale from 0 to 100%, how much effort do you think Peyton put
into the second match?
Query 5: On a percentage scale from 0 to 100%, how much effort do you think Avery put
into the second match?
Query 6: On a percentage scale from 0 to 100%, how much effort do you think Blake put
into the second match?
Query 7: In a new match later this same day between Peyton and Avery (Team 1) and Blake
and Gale (Team 2), who would win and by how much?
Query 8: In a new match later this same day between Peyton and Blake (Team 1) and Avery
and Gale (Team 2), who would win and by how much?

782

A4.2 LM-only experimental details783

The repository includes the frame prompting format used to elicit judgments for both the LM-direct784

and LM-CoT baselines, in the lm-only-baseline-prompts directory.785

28



Figure 7: Example interfaces showing the human experimental setup – shown is a sample trial from
Exp. 2, the underspecified background experiment. Participants first read the background information,
scenario and questions (top). They then indicate their judgments via multiple clicks per question
(bottom)

Each prompt contained the full experiment instructions shown to humans for each experiment (though786

note that the videos showing how to use the multi-click judgment interface were described in text, as787

prompts were text only); and then the full vignette, with additional instructions for how to answer788

each query.789

A4.3 Exp. 1: human judgment experimental details790

Pre-trial instructions were shown to all participants containing an example tutorial on how to use the791

multi-click slider interface to indicate the distribution of their judgments, including GIFs showing792

how they could indicate high certainty about a specific posterior mode (eg. most clicks around one793

end of the slider); split certainty about multiple posterior modes; and relative uncertainty about a794

continuous range.795

As described in the main text, participants judged a randomly constructed batch of two vignettes796

from each of the three sport. Trials were grouped by sport (all participants first saw vignettes about797

tug-of-war, then canoe-races, then biathlon. Participants in 3 of the 4 batch conditions (57 of 76798

participants) also saw an additional 2 vignettes from an additional synchronized diving domain; this799

domain was moved after participants appeared generally confused about the domain and showed800

extremely low inter-participant correlation in answers.801
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Trials were grouped into sections by each sport. Prior to reading the vignettes for a particular sport, in802

Exp. 1 only, participants were additionally presented with a full background description of the sport803

(with the same details as in the detailed background D(, along with an example tournament showing804

the kinds of outcome patterns that could appear in the later vignettes). Participants were required to805

spend 15 seconds reading this background description. The full text of these background descriptions806

can be found in the model-olympics-human-experiment directory of our repository. Then, for807

each vignette trial, participants first read were (1) presented with the background and vignette808

containing evidence and questions (but no sliders for inputs), as shown in the example interface in809

Figure 7 (top), and required to think about the vignette for 15 seconds without progressing; they810

coudl then could proceed to (2) an interface presenting sliders for the multi-click inputs, shown in811

Figure 7 (bottom). Participants took a median time of 2.24 minutes to provide all judgments for one812

vignette. Participants were paid at a base rate of $15/hr and told they may receive a bonus of up813

to $16/hr “if you try your best throughout the experiment to answer each question”; in reality, all814

participants were provided the bonus.815

A4.4 Exp. 2: human judgment experimental details816

This experiment followed the same interface format as Exp. 1, except with the underspecified817

backgrounds for each vignette. Additionally, participants in Exp. 2 were not shown the additional full818

description of the sport background prior to beginning the vignettes (they only read the backgrounds819

alongside the vignettes themselves). Participants took on average 2.81 minutes to provide their820

multi-click judgments per vignette. As with Exp. 1, participants in 2 of the 4 sets of vignettes also821

saw vignettes about diving, along with the other three sports, which were later omitted from the822

experimental analysis when this sport was removed from analysis.823

A4.5 Exp. 3: human judgment experimental details824

This experiment involved both a human commentary elicitation experiment and a human judgment825

experiment.826

During the commentary elicitation experiment, as described in the main text, N=20 participants827

were shown a tutorial indicating that they would read vignettes about sports scenario, and then “act828

as a sports commentator" to write one or a few sentences introducing a new detail that would change829

their reasoning about a randomly selected new match prediction question. Participants were randomly830

assigned to conditions over which of the two new match questions they would need to change, and831

whether they were asked to produce details that would either increase or decrease the odds of a832

particular outcome given their initial judgments. On each trial, as in earlier experiments, participants833

completed the full judgment task – they read the vignettes for 15 seconds, then proceeded to the834

sliders where they entered judgments for all questions. They were then shown which new match835

prediction they were to manipulate and told the direction they would need to manipulate with their836

commentary. After writing commentary, participants were shown the full vignette (with their added837

commentary) and asked to re-enter their judgments on the new match prediction.838

As noted in the main text, this experiment used only the tug-of-war and canoe racing sports; and used839

9 base vignettes with the underspecified backgrounds from Exp. 2, and slightly different patterns of840

evidence than used in Exp. 1 and Exp. 2 – in particular, the vignettes included slightly easier outcome841

patterns of evidence involving head-head matches between single players, whereas the vignettes842

in Exp. 1 and Exp. 2 only involved matches between teams of two players each. Additionally,843

participants were shown slightly different wordings of the judgment questions during the trials: the844

strength questions asked how strong athletes were (rather than their absolute strength ranking out of845

random athletes) and how much effort they put in (rather than asking specifically for a percent effort).846

In total, this experiment yielded an initial set of 81 initial distinct commentary observations across847

all participants. We filtered these down to 9 final vignettes by (1) excluding all participants who848

did not adjust their judgments after providing commentary in the specified direction (e.g., they did849

not actually increase the odds of the predicted match); (2) excluding participants who appeared to850

have used language models (participants were explicitly instructed not to) or who provided clearly851

spam answers; (3) excluding commentary that was more than a single sentence. We then selected852

the 9 commentary with a more specific set of criteria that could be generalized in future work – we853

selected commentary that focused on a single athlete (rather than generics about the world, like it854
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was raining); and commentary that focused on a single new event observation (eg. Athlete A took an855

energy drink) or observation about the athlete (Athlete A had less experience).856

During the human judgment experiment, we then recruit a new set of participants to provide the857

same k = 5 multi-click judgments as in Experiments 1 and 2. Instructions were the same as in858

Exp. 1 and Exp. 2, except that participants were told that they would be reading vignettes including859

commentary written by other people. Each participant in this trial was shown the full set of k=9860

vignettes with commentary. Participants were provided the underspecified sport description from861

Exp. 2, as described in the main text. Participants took approximately 2.22 minutes to provide their862

judgments per vignette.863

A5 Results: Supplemental Analyses864

This section collects additional analyses comparing human and model judgments.865

A5.1 Human and MSA correlations between Experiments 1 and 2866

We first examine how well human judgments correlate across the matched vignettes in experiment 1867

and experiment 2 – that is, whether people made judgments when reading the detailed background868

information that correlated with those from the underspecified background information. In general,869

as seen in Figure 8, judgments appear to be highly correlated, providing some evidence that people870

retrieve and use similar kinds of information to reason about the underspecified Exp. 2 condition as871

those that were provided to them explicitly in Exp. 1. Notably, there appears to be less correlation in872

the canoe race sport (middle column) – suggesting that people generally retrieved other ways that873

effort and strength might have contributed to the observed outcomes when left to come up with these874

details on their own, compared to the version spelled out to them in Exp. 1.875

Figure 8: Correlations between human participant predictions per stimuli per query between Experi-
ment 1 (x axis) versus Experiment 2 (y axis).

We perform the same analysis for the MSA judgments, comparing correlations between MSA876

judgments in Experiment 1 and 2 (Figure 9). In general, we see that the judgments are very well877
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correlated between the experiments, more so than the human participants – and unlike human878

participants, we do not see variance in the canoe racing condition between Experiment 1 and 2. This879

warrants further investigation, as it suggests that the model synthesis procedure is less diverse in880

producing human-like distributions over possible ad-hoc models in Experiment 2 from underspecified881

backgrounds, and may reflect a lack of sampling diversity in model construction.882

Figure 9: Comparing correlations between MSA predictions per stimuli per query for Experiment 1
(x axis) versus Experiment 2 (y axis).

A5.2 Total Variation Distance for comparing distributions between humans and models883

To ensure our distributional analyses are not specific to using the Wasserstein Distance metric, we884

repeat our distributional analyses using Total Variation Distance (which does not account for the885

“geography” of the domain when comparing distributions). As in our Wasserstein Distance analyses,886

we first bucketize participant and model judgments (into 10 buckets) and compute our measure over887

the buckets. We see similar trends across models, sports, and experiments in Figure 10.888

A5.3 Human-Model Correlations for All Models889

Below, we include the full set of scatterplots between the average human and average model responses890

for the three experiments. We depict additional gold model results for Exp. 1 and Exp. 2 in Figure 11,891

Direct-LLM in Figure 12, and CoT-LLM in Figure 13. We compare all model scatterplots on Exp. 3892

in Figure 14.893

A5.4 Human-Model Correlations for All Models894

Figure 15 also briefly summarizes qualitative error analysis patterns between Experiments 1 and 2,895

highlighting distinctions in LM-only baselines relative to human judgments in overall patterns of896

judgments (red) – as well as distinctions between the MSA baselines in the qualitative nature of897

the distributions of human judgments (LMs often appear to make peakier judgments relative to the898

symbolic model posteriors, which could be an artifact of the 5-sampling procedure).899
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Experiment 1 

Experiment 2 

Experiment 3 

Figure 10: Comparing Total Variation Distance (TVD) between model and human judgments across
each experiment. Bootstrapping and averaging follow as in our Wasserstein Distance computations;
that is: TVD is computed between judgments per query per scenario, then aggregated as the mean
over query types, and mean across query types for each depicted sport and experiment.) Error bars
for model-humans show 95% CI over 1000 bootstrapped samples, with replacement, on the human
data; for human-humans, over 1000 sampled 50-50 split-halve TVDs.

Figure 11: Inferences under the gold model against people for Exp. 1 (left) and Exp. 2 (right). Error
bars depict standard deviation over the human responses.
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Figure 12: Inferences under the Direct-LLM model against people for Exp. 1 (left) and Exp. 2 (right).
Error bars depict standard deviation over the human and model responses.

Figure 13: Inferences under the CoT-LLM model against people for Exp. 1 (left) and Exp. 2 (right).
Error bars depict standard deviation over the human and model responses.
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MSA LLM-Direct LLM-CoT

Figure 14: Inferences under MSA (left), Direct-LLM (middle), and CoT-LLM (right) against people
for Exp. 3. Error bars depict standard deviation over the human and model responses.

Canoe racing – Athlete A mostly beats C, but loses once in Match 4

How strong 
is A?

How strong 
is C?

Who would win: 
{A, B} ⟺ {C, D}?

Effort by A
in match 4?

Effort by C
in match 4?

Biathlon– Athletes {Q, L} beat athlete N four out of five times, lose in Match 2

How strong 
is Q?

How strong 
is L?

Shooting 
accuracy Q
in match 2?

How strong 
is N?

Shooting 
accuracy N
in match 2?

Who would win: 
{Q, L} ⟺ {N, D}?

Figure 15: Illustrative examples from Experiments 1 and 2 highlighting one divergent pattern in
inferences from LLM-only baselines, relative to human judgments (and normative Bayesian inferences
in models synthesized by our MSA implementation). In the canoe racing scenario (left), noisy
evidence in the vignette suggests that athlete A often appears in a winning pair of teammates that
beat teams containing athlete C, despite a single anomalous loss. Humans judge C to be largely
weaker than average, but both LLM-baselines (red) switch to predicting C as particularly strong;
and predict that C would now win on a team gainst A. Similarly, in the biathlon scenario (right), a
pair of athletes (Q, L) frequently beats another (N), while losing anomalously once. LLM-baselines
allocate more probability to the possibility that both Q and L are actually quite weak, largely believe
N is stronger, and tend to predict that N will win against Q and L.
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