
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AdaCoder: Adaptive Prompt Compression for
Programmatic VisualQuestion Answering

Anonymous Author(s)∗

ABSTRACT
Visual question answering aims to provide responses to natural lan-
guage questions given visual input. Recently, visual programmatic
models (VPMs), which generate executable programs to answer
questions through large language models (LLMs), have attracted
research interest. However, they often require long input prompts
to provide the LLM with sufficient API usage details to generate
relevant code. To address this limitation, we propose AdaCoder, an
adaptive prompt compression framework for VPMs. AdaCoder op-
erates in two phases: a compression phase and an inference phase.
In the compression phase, given a preprompt that describes all
API definitions in the Python language with example snippets of
code, a set of compressed preprompts is generated, each depend-
ing on a specific question type. In the inference phase, given an
input question, AdaCoder predicts the question type and chooses
the appropriate corresponding compressed preprompt to generate
code to answer the question. Notably, AdaCoder employs a single
frozen LLM and pre-defined prompts, negating the necessity of
additional training and maintaining adaptability across different
powerful black-box LLMs such as GPT and Claude. In experiments,
we apply AdaCoder to ViperGPT and demonstrate that it reduces
token length by 71.1%, while maintaining or even improving the
performance of visual question answering.

CCS CONCEPTS
•Computingmethodologies→Multimedia;Computer vision;
Natural language processing.

KEYWORDS
Visual programmatic models, Code generation, Visual question
answering, Large language models, Prompt compression.
ACM Reference Format:
Anonymous Author(s). 2024. AdaCoder: Adaptive Prompt Compression for
Programmatic Visual Question Answering. In Proceedings of Proceedings of
the 32th ACM International Conference on Multimedia (MM ’24). ACM, New
York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Visual question answering (VQA), which aims to automatically pro-
vide answers to questions related to visual content, is a challenging
research topic in the fields of multimedia analysis, computer vision,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, 28 October – 1 November, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Inference procedure of AdaCoder. Given an input
question, an adaptive programming instruction 𝑝pre for the
specific question type is used to generate a Python program
for visual question answering.

and natural language processing [2, 6, 11, 14, 30, 37]. Thanks to the
advantages of deep learning techniques, significant progress has
been made in VQA over the past decade with end-to-end learning
models such as GLIP [22]. However, these models do not explicitly
distinguish between visual processing and reasoning, which limits
their generalizability and interpretability.

To overcome this limitation, several pioneering studies have
introduced visual programmatic models (VPMs), models that gen-
erate executable programs specifically designed to answer ques-
tions, providing a more manageable and transparent inference pro-
cess [12, 29, 31]. VPMs typically consist of a large language model
(LLM) for code generation and a set of APIs for image processing.
Given an input question, the LLM analyzes the text to understand
the intent and the required computational steps. It then generates a
program that, when executed, can manipulate and analyze images
by using APIs to produce the desired answer, where the APIs in-
clude both low-level modules (e.g., image cropping) and high-level
modules (e.g., object detection). VPMs have proven effective and
are gaining traction; however, they also face challenges in terms
of computational complexity, as long prompts are required to en-
able the LLM to understand API usage for generating appropriate
programs.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM ’24, 28 October – 1 November, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To reduce computational costs, the development of efficient neu-
ral network architectures has been extensively studied. However,
these approaches require retraining or additional learning, which is
not feasible for application to LLMs trained with huge data, such as
GPT and Claude, which we refer to as black-box LLMs. Recently, re-
search has begun to focus on prompt compression [8, 15, 25], which
involves optimizing input prompts to achieve high performance
with shorter inputs. For example, LLMLingua [15, 26] compresses
prompts using smaller models before using black-box LLMs.

Inspired by these studies, we introduce AdaCoder, a framework
of adaptive prompt compression for VPMs. More specifically, Ada-
Coder operates in two phases: a compression phase and an infer-
ence phase. The compression phase generates a set of compressed
preprompts, each depending on a specific question type, given a
preprompt that describes all API definitions in the Python language
with example snippets of code. The inference phase adaptively se-
lects a compressed prompt by classifying the question type and
generates a Python program to answer the input question, as shown
in Figure 1. Notably, we implement all of the modules of AdaCoder
with a single frozen LLM, which allows implementation with black-
box LLMs. Our contributions are as follows:

1) We propose AdaCoder, a novel prompt compression framework
for VPMs. It adaptively selects a short instruction for code
generation based on question type.

2) We define and formulate all procedures of AdaCoder with a
single frozen LLM. This avoids additional training and enables
implementation with black-box LLMs.

3) We demonstrate the effectiveness of AdaCoder over the state-of-
the-art ViperGPT [31] model on three VQA datasets with GPT
and Claude. We show that the token length of input prompts
is reduced by 71.1%, while maintaining or even improving
question answering performance. We also show that AdaCoder
outperforms LLMLingua [15] in our evaluations.

2 RELATEDWORK
2.1 Visual question answering
End-to-end models. In the early phase of VQA research history, a
number of neural network architectures designed to process multi-
modal inputs were introduced. These include a combination of a
convolutional neural network (CNN) for visual feature extraction
and a recurrent neural network (RNN) for textual feature extrac-
tion [13, 24, 41]. Recent models often include attention modules
to enhance individual feature extraction for each modality and to
combine features of multiple modalities effectively [1, 28, 36, 38].
Large-scale pre-training has become a critical component in im-
proving the performance of these models, enabling them to answer
complex questions by implicitly associating words with specific
regions in images [20–22]. More recently, LLMs have been incorpo-
rated into VQA frameworks with prompt tuning techniques such
as self-prompt tuning [40]. However, these models do not explicitly
distinguish between visual processing and reasoning, limiting their
interpretability. Some recent studies have focused on techniques
to improve interpretability such as causal inference [5], reasoning
path [23], reasoning prompts [19] and gradient-based explainability
method [34].

Visual programmatic models. To improve interpretability and
generalizability, VPMs that generate programs to answer questions
based on visual input have been gaining research attention. This is
a novel approach that leads to more manageable and traceable in-
ferences because the generated programs contain logical sequences
that are understandable to humans and articulate a step-by-step
methodology for reaching conclusions. Examples of VPMs include
ViperGPT [31], VisProg [12], and CodeVQA [27]. All of these gen-
erate Python programs utilizing image processing APIs, such as
object detection, through a frozen LLM. However, generating pro-
grams to answer complex and compositional questions requires
many APIs and example codes for them. As a result, the length of
the input prompt becomes long. To the best of our knowledge, this
work is the first to propose adaptive prompt compression for VPMs.

2.2 Large language models
Code generation. Extensive research and development in the field
of natural language processing (NLP) has led to the creation of LLMs
that excel at a variety of NLP tasks. Among these, a distinct group
of LLMs is specifically designed for programming code generation,
having been trained on large amounts of programs and documents
related to programming. For example, Codex [7], a variant of the
GPT-3 lineup, demonstrates its proficiency in multiple program-
ming languages. CodeLlama [27], which is built on Llama2 [33]
and has an expanded code dataset, shows improved performance
in handling larger contexts in programming.

Most recently, black-box LLMs such as GPT-3.5/4 [4], Claude1
and Gemini [32] integrate extensive knowledge from a broad spec-
trum of domains, including programming, allowing them not only
to generate code but also to understand and execute complex in-
structions given by humans. Since their zero-shot performance
on programming tasks is remarkably high, they are expected to
automate many aspects of coding in future that were previously
manual and time-consuming, and are also useful for integration
into VPMs for visual question answering.
Reasoning and interpretability. Interpretability is an important
consideration when integrating LLMs into real-world systems, es-
pecially in contexts that require high reliability and accountability.
Various prompting techniques have significantly improved the inter-
pretability of LLMs. For example, chain-of-thought prompting [16],
which provides an LLM with a series of contextual examples, en-
ables intermediate reasoning to reach final conclusions. Tree-of-
thought prompting [39] constructs a tree structure of thoughts,
enriching the decision-making process by branching out various
reasoning pathways. VPMs can also be viewed as an extended
prompting method that improves interpretability because they
show a sequence of logical steps leading to a conclusion by un-
derstandable programs. However, these methods also increase the
complexity of input prompts because the instructions for LLMs
need to be detailed, thus increasing computational costs.
Prompt compression. Several strategies have been developed to
compress prompts, notably by creating specialized tokens through
prompt-based fine-tuning of LLMs [8, 9, 25, 35], with the goal of
minimizing the number of tokens processed during inference. How-
ever, fine-tuning of LLMs often limits their generalizability and

1https://claude.ai

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering MM ’24, 28 October – 1 November, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: AdaCoder framework. (a) Compression phase generates a set of compressed prompts C by utilizing an LLM 𝜋 with
two instructions 𝑟pre for rewriting API definitions and 𝑟code + 𝑟sp for writing snippets of code specialized for each question type 𝑡 .
(b) Inference phase adaptively selects code snippets to create compressed preprompt 𝑝pre for generating a Python code 𝑧 for
visual question answering.

is not always applicable to black-box LLMs. Other efforts have
focused on token reduction. These include token pruning during in-
ference [10, 17, 18] and token merging [3]. However, these methods
are generally proposed for small models such as BERT and ViT, and
rely on fine-tuning or intermediate inference results. Most recently,
Jiang et al. [15] have introduced LLMLingua, which compresses
prompts with a small model and feeds the compressed prompts to
an LLM. This method can be applied to black-box LLMs because it
does not require comprehensive fine-tuning of LLMs.

In contrast to these previous studies, this work aims to define
and formulate all procedures of prompt compression and inference
for code generation with a single frozen LLM to fully leverage the
advantages of powerful black-box LLMs.

3 ADACODER FRAMEWORK
This section introduces AdaCoder, a framework for adaptive prompt
compression for VPMs. Figure 2 shows an overview of the AdaCoder
framework, which consists of two phases: the compression phase
and the inference phase. The compression phase is run only once
to prepare compressed prompts, each of which is specialized for a
specific question type. The inference phase classifies question type
and adaptively selects a compressed preprompt to generate code
for visual question answering. Below, we begin with a preliminary
formulation of a VPM. We then present each phase of AdaCoder.

3.1 Preliminary
Notation and settings.We follow the notation used in previous
work on VPMs [29, 31]. Let 𝑥 ∈ 𝑋 be an input image and 𝑞 ∈ 𝑄

be an input question about the image, where 𝑋 is a set of images
and 𝑄 is a set of questions. VPMs aim to generate a code 𝑧 ∈ 𝑍

that returns the answer 𝑎 ∈ 𝐴 to the question, where 𝑍 is a set of
executable codes and 𝐴 is a set of answers.

The process of answering questions is divided into two steps: the
code generation step and the execution step. The former generates
a code as

𝑧 = Π(𝑞), (1)

where Π : 𝑄 → 𝑍 is a code generation module. The latter executes
the code with an input image by

𝑎 = Λ(𝑥, 𝑧), (2)

where Λ : 𝑋 × 𝑍 → 𝐴 is the execution engine. This work utilizes
the Python execution engine for Λ.
Large languagemodel. To implement the code generationmodule,
a single frozen LLM 𝜋 : 𝑇 → 𝑇 is often used, where 𝑇 is a set of
texts2. For example, the code generationmoduleΠ can be defined by

Π(𝑞) = 𝜋 (𝑝pre + 𝑞), (3)

where 𝑝pre ∈ 𝑇 is a preprompt that gives instructions to generate
code using image and text processing APIs, 𝑞 ∈ 𝑄 is an input
question, and + indicates textual concatenation. Here, APIs include
both low-level functions, such as image cropping, and high-level
functions, such as object detection.
Preprompt definition. In order to provide the LLM with detailed
instructions on how to use the APIs, the preprompt 𝑝pre typically
includes API definitions, coding instructions, and example snippets
of code. We define a preprompt 𝑝pre by

𝑝pre = Ψ(𝑝def, 𝑐, 𝑝inst), (4)

where 𝑝def is a text of API definitions, 𝑐 ∈ 𝑍 is textually concatenated
example snippets of Python code, 𝑝inst ∈ 𝑇 is a coding instruction
written in a natural language, and Ψ is a structural aggregation
function to insert code snippets to immediately after function defi-
nitions as comments. For example, a code snippet for comparing
the positions of objects is inserted immediately after the definition
of the object detection function. Below, we review the preprompt
of ViperGPT [31], which we use in Section 4.
1) API definitions. The text of API definitions for 𝑝def ∈ 𝑍 is written
in Python and includes both class, method and function definitions.
Specifically, it consists of the Python class ImagePatch to represent
an image patch and a set of auxiliary functions.
2) Code snippets. For each function and method, one or two code
snippets are provided. Each code snippet calls the function or
2This work assumes that questions, answers, and codes are in text form, i.e.,𝑄,𝐴, and
𝑍 are subsets of𝑇 .

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MM ’24, 28 October – 1 November, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

method at least once. For example, the following code snippet is
given for the find method that detects objects in images.

Return the foo
def execute_command(image) -> List[ImagePatch]:

image_patch = ImagePatch(image)
foo_patches = image_patch.find("foo")
return foo_patches

3) Coding instruction. The coding instruction provides short in-
structions describing how to write code, specifying a programming
language and how APIs should be used. Specifically, 𝑝inst is the
following text:

Write a function using Python and the ImagePatch class (above) that
could be executed to provide an answer to the query.

Consider the following guidelines:
- Use base Python (comparison, sorting) for basic logical
operations, left/right/up/down, math, etc.

- Use the llm_query function to access external information and
answer informational questions not concerning the image.

Token length. One of major limitations of previous VPMs is that
the input token length is long, resulting in a large computational
load. This work addresses this limitation by introducing an adaptive
prompt compression method. More specifically, we define the input
token length of the code generation module in Eq. (3) as

ℓ (𝑞;Π) = |𝑝pre | + |𝑞 |, (5)

where |𝑡 | is the number of tokens of a text 𝑡 ∈ 𝑇 . Our goal is to
reduce this length.

3.2 Compression phase
As shown in Figure 2a, the compression phase creates a set of
compressed prompts C = {𝑝def} ∪ {𝑐𝑡 : 𝑡 ∈ 𝑌 }, where 𝑝def is a
compressed text of API definitions, 𝑐𝑡 is a compressed code snippet
for question type 𝑡 ∈ 𝑌 , and 𝑌 is a set of question types. Below,
we detail the two-step process for compressing API definitions and
code snippets.
Compressing API definitions. This step compresses the API
definitions by

𝑝def = 𝜋 (𝑝pre + 𝑟pre) (6)

where 𝑝pre is the original preprompt in Eq. (4), 𝜋 is a frozen LLM,
and 𝑟pre is the instruction to rewrite API definitions. Figure 3a shows
the definition of 𝑟pre.
Compressing code snippets. This step compresses the code snip-
pets for each question type as follows:

𝑐𝑡 = 𝜋 (𝑝pre + 𝑟code + 𝑟sp (𝑑𝑡)), (7)

where 𝑝pre is the original preprompt, 𝑟code is the instruction to write
code snippets, 𝑟sp is an additional instruction to write code spe-
cialized for a specific question type with a placeholder to insert
the definition of question type 𝑑𝑡 , and 𝑡 ∈ 𝑌 is a question type.
Figure 3b and 3c show the definitions of 𝑟code and 𝑟sp, respectively.
Here, we assumed that a pre-defined set of question types𝑌 is given.
For example, with the GQA dataset [14], five question types shown
in Table 1 are provided with their definitions.

(a) Instruction to rewrite API definitions 𝑟pre
Rewrite the API reference above.

Consider the following guidelines:
- Make the API reference shortly.
- Must include all class, methods, fields, and functions above.
- Must include some explanations to make clear the usage of each
class, methods, fields, and functions above.

(b) Instruction to write code snippets 𝑟code
Write some examples of a question and Python code using the API
reference above that provides the answer to the question.

Consider the following guidelines:
- Must use all class, methods, fields, and functions above at least
one time.

- Must refer to code example above.
- Must write at least three example.

(c) Instruction to specialize for specific question type 𝑟sp
- Must make {type_definition[i]}

Figure 3: Instruction prompts for the compression phase.
{type_definition[i]} is a placeholder to which a question
type definition 𝑑𝑡 . See Table 1 for example type definitions.

3.3 Inference phase
The inference phase generates a code to answer the input question
by utilizing a compressed preprompt adaptively selected based on
the question type as shown in Figure 2b. More specifically, this
phase consists of four steps: question classification, preprompt
generation, code generation, and execution.
Question classification. Given an input question 𝑞 ∈ 𝑄 , this step
predicts the question type. We define classification prompt 𝑝cls and
use the LLM 𝜋 for question classification as follows:

𝑡 = 𝜋 (𝑝cls + 𝑞), (8)

where 𝑡 is the predicted question type. The classification prompt
consists of a short instruction for classification and a list of defini-
tions of question types. The definition of classification prompt is
shown in Figure 4.
Preprompt generation. This step generates a compressed pre-
prompt given the question type as follows:

𝑝pre = Ψ(𝑝def, 𝑝inst, 𝑐𝑡) (9)

where 𝑝def ∈ C is the compressed API definitions in Eq. 6, 𝑝inst
is the coding instruction, 𝑐𝑡 ∈ C is the snippets of code for the
question type 𝑡 , and Ψ is the structural aggregation function in
Eq. (4). Note that the computational cost of this step is almost neg-
ligible because both compressed prompts, 𝑝def and 𝑐𝑡 , have already
been computed in the compression phase. We do not compress the
coding instruction 𝑝inst, because it is already short.
Code generation. This step generates a Python code 𝑧 as follows:

𝑧 = 𝜋 (𝑝pre + 𝑞), (10)

where 𝑝pre is the compressed preprompt.
Execution. Finally, the predicted answer 𝑎 to the question is ob-
tained by executing the code as follows:

𝑎 = Λ(𝑥, 𝑧), (11)

where 𝑥 is an input image, and Λ is the Python execution engine.
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering MM ’24, 28 October – 1 November, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Question type definition for the GQA dataset.

Type 𝑡 Definition 𝑑𝑡

obj question asking existence of object.

cat question related to object identification within some
category.

attr question asking about the attributes or position of
an object. (e.g. "What is the color of bar?", "On
which of image is the foo?")

rel question derived from an affirmative sentence and
asking about its subject or object (e.g. "What is the
foo next to the baz wearing?", "Is the qux holding a
quux?").

global question asking about the entire situation of the
scene, such as weather or facility (e.g. "Is it
foo?").

3.4 Discussion
AdaCoder formulation. By substituting Eqs. (8) and (9) into
Eq. (10), we can finally define the code generation module ΠAda of
AdaCoder as follows:

ΠAda (𝑞) = 𝜋

(
Ψ
(
𝑝def, 𝑝inst, 𝑐𝜋 (𝑝cls+𝑞)

)
+ 𝑞

)
, (12)

by which a code is generated as 𝑧 = ΠAda (𝑞). The total token length
is given by

ℓ (𝑞;ΠAda) = |𝑝def | + |𝑝inst | + |𝑝cls | + |𝑐𝜋 (𝑝cls+𝑞) | + 2|𝑞 |. (13)

Below, we discuss the computational cost and adaptiveness.
Computational cost. Although, in the first sight, AdaCoder seems
computationally more expensive than the conventional code gen-
eration module in Eq. (3) because the LLM 𝜋 is called twice in
Eq. (12); indeed, AdaCoder improves the computational efficiency
in practice when a black-box LLM such as GPT or Claude is used
for 𝜋 with state-of-the-art VPMs such as ViperGPT, because the
input token length is significantly shortened. Compared to previous
prompt compression methods such as LLMLingua, our approach is
more efficient and effective because it can reduce the token length
while preserving the structure of code. We will experimentally
demonstrate this in Section 4.2.1.
Adaptiveness. A major strength of AdaCoder is that it does not
require additional training to adaptively compress the preprompt.
Since recent black-box LLMs exhibit quite high zero-shot perfor-
mance on text processing tasks such as text classification and sum-
marization, AdaCoder leverages these capabilities to enhance effi-
ciency and reduce the computational costs of VPMs.

4 EXPERIMENTS
4.1 Experimental settings
Datasets. We use three VQA datasets for evaluation: GQA [14],
VQAv2 [11], and NLVR2 [30]. The GQA dataset is designed to test
a model’s visual reasoning abilities, encompassing five question
types: existence of objects (obj), category of objects (cat), attributes
of objects (attr), relationships between subjects and/or objects (rel),
and global questions (global). The VQAv2 dataset contains open-
ended questions about images that require an understanding of

Classification prompt 𝑝cls
Classify the question into following question classes.

- {type[0]}: {type_definition[0]}
- {type[1]}: {type_definition[1]}
...
- {type[n]}: {type_definition[n]}

Question:

Figure 4: Classification prompt for the inference phase.
{type[i]} and {type_definition[i]} are placeholders for
names and definitions of question type, respectively, for
𝑖 = 0, 1, · · · , 𝑛 where 𝑛 is the number of question types.

visual content to generate answers. The NLVR2 dataset is designed
to test a model’s ability to understand complex natural language
statements and their correspondence to a given pair of images.
From each of these two dataset, we randomly choose 2,000 QAs3.
Evaluation metrics.We use the exact match accuracy (%) for case-
insensitive answers as a QA performance evaluation metric. The
reduction rate (%) of the input token length is used to evaluate the
compression performance.
Baselines. The baselines are ViperGPT [31] and LLMLingua [15]
applied to it. They are state-of-the-art VPM and prompt compres-
sion method, respectively.
Implementation details. We implement AdaCoder on top of the
official implementation of ViperGPT4. The API set consists of basic
image and text processing functions. Specifically, it consists of the
ImagePatch class and a set of auxiliary functions. The ImagePatch
class is a class to store a image region and has the following nine
methods.
1) crop, 2) overlaps_with, 3) find, 4) exists, 5) best_text_match,
6) verify_property, 7) simple_query, 8) llm_query, 9) compute_depth.

The auxiliary function set consists of the following four functions.
1) distance, 2) best_image_match, 3) bool_to_yesno, 4) coerce_to_numeric.

Each method or function is provided with its definition in Python
and example code snippets. See the Appendix for more details.
LLMs.We use GPT and Claude for both ViperGPT and AdaCoder.
For GPT, we use gpt-3.5-turbo, released as version 1106, which is
trained on data up to September 2021 and is provided by the OpenAI
platform. For Claude, we use claude-3-haiku, released as version
20240307. This is a model trained using large amounts of feedback
on long document tasks. Note that the original ViperGPT used
code-davinci-002 (the GPT-3 Codex [7]), which was fine-tuned
for code generation tasks and is no longer accessible.

4.2 Experimental results
4.2.1 Main results
QA accuracy. Table 2 shows QA accuracy in comparison to the
ViperGPT baseline. We see that AdaCoder reduces the input token
length by 71.1%, while improving QA accuracy on all of the three

3This is due to the usage limits of Claude and GPT. The list of sampled QA IDs will be
provided along with our code.
4https://github.com/cvlab-columbia/viper

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MM ’24, 28 October – 1 November, 2024, Melbourne, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Comparison with other methods. AdaCoder is compared with ViperGPT [31], LLMLingua [15], and Simple compression
that omits QA classification prompts.

Method LLM Accuracy (%) Input prompt Output
GQA VQAv2 NLVR2 Token length ↓ Characters ↓ Reduction ↑ Token length

ViperGPT baseline gpt-3.5-turbo 41.3 42.7 59.2 3,434 15,950 - 78
LLMLingua gpt-3.5-turbo 39.1 45.2 47.3 2,536 11,507 26.2% 71
Simple compression gpt-3.5-turbo 28.9 42.6 50.3 810 3,553 76.4% 80
AdaCoder (Ours) gpt-3.5-turbo 43.6 46.2 60.8 993 4,343 71.1% 77

ViperGPT baseline claude-3-haiku 40.4 42.6 60.1 3,777 15,950 - 300
LLMLingua claude-3-haiku 37.0 43.1 59.5 2,766 11,507 26.8% 306
Simple compression claude-3-haiku 14.5 23.6 54,3 1,181 4,535 68.7% 245
AdaCoder (Ours) claude-3-haiku 41.6 44.7 60.1 1,170 4,503 69.0% 234

Figure 5: Confusion matrix of question classification. Over-
all classification accuracy was 58.1%. (GQA dataset, gpt-3.5-
turbo)

datasets. This shows the effectiveness and efficiency of the proposed
prompt compression method.

The simple compression setup omits the instruction prompt 𝑟sp to
compress for specific question type (i.e., question type classification
is omitted). We see that the QA accuracy is significant degraded
by this omission, which confirms the effectiveness of our adaptive
approach.

With LLMLingua, we observed that it cannot maintain the struc-
ture of code snippets in the preprompt after compression at a re-
duction rate of 71.1% (the same rate as ours), resulting in a QA
accuracy of 0%. Therefore, the results in Table 2 are given at a lower
reduction rate ≃ 25% by adjusting the compression ratio parameter
accordingly. With this setting, LLMs can generate executable code
with a probability of 98%; however, the QA accuracy is degraded by
2.2 points on GQA. This shows that prompt compression for VPMs
is challenging, and that our approach specialized for preserving
code structure is effective.
Question type classification. Figure 5 shows the confusionmatrix
of question type classification for the GQA dataset. We observe that
two question types, “attr” and “global”, achieve accuracies greater
than 75%. The types “rel” and “obj” are often misclassified as “attr”
and “cat”, respectively. This is because the questions are often short,
making it difficult to distinguish between them.

To investigate how these classification errors affect the final QA
accuracy, Table 3 compares AdaCoder using 1) predicted question

Table 3: Analysis on effect of question type classification.

Method Token length Accuracy (%)

w/ Predicted question types 992 43.6
w/ Ground-truth question types 851 44.5
w/ Random question types 851 37.6
w/o Q. type based compression 732 28.9

types, 2) ground-truth question types, 3) random question types,
and 4) without using question type based compression. We observe
three key findings. First, the best performance is achieved by using
ground truth question types. This highlights the importance of
classifying question types to improve overall accuracy. Second, the
performance drop due to classification errors is less than 1.0 points.
This suggests that AdaCoder effectively classified the critical ques-
tion types necessary for code generation, even though the accuracy
for question classification is not very high. Third, the method us-
ing random question types, which compresses prompts for each
question type and randomly choose one of them in inference, is
better than the method without question type based compression.
This is because the instruction prompt 𝑟sp in Eq. (7) for specializing
code snippets to each question type makes it more likely to provide
code snippets that are related to each other, thereby increasing the
probability of completing the program. When this instruction is
omitted and compression is performed regardless of the question
type, code snippets that are effective for any question type tend to
be retained after compression. However, this approach results in
the loss of some specific snippets that are necessary to complete
the program, thereby reducing QA accuracy. These results suggest
that the instruction 𝑟sp is important for compressing code snippets.
Compressed prompts. Table 4 summarizes the token length and
compression performance for each component of the input pre-
prompt. We see that both API definitions and code snippets are
significantly compressed. A comparison of the original and com-
pressed API definitions is shown in Figure 6. We see that descrip-
tions of methods unnecessary for coding, such as those for the
initialization method, are omitted, and the remaining sections are
condensed into shorter sentences. This is an effective compres-
sion achieved by the language understanding and summarization
capabilities of black-box LLMs.
Computational time. Since the model weights and details of the
black-box LLMs are not publicly available, and API response times

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering MM ’24, 28 October – 1 November, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Token length and number of characters for each
component of input prompt. Reduction rate is measured by
token length.

Component ViperGPT AdaCoder
Tokens Characters Tokens Characters Reduction

API defs 1,971 9,299 541 2,360 72.5%
Code snippets 1,386 6,263 233 971 76.0%
Instruction 77 388 77 388 -
Classification 0 0 141 618 -

Total 3,434 15,950 992 4,337 71.7%

import math

class ImagePatch:
"""A Python class containing a crop of an image centered around a
particular object, as well as relevant information.
...

def __init__(self, image, left: int = None, lower: int = None,
right: int = None, upper: int = None):

"""Initializes an ImagePatch object by cropping the image at the given
coordinates and stores the coordinates as attributes. If no
coordinates are provided, the image is left unmodified, and the
coordinates are set to the dimensions of the image.
...

def best_image_match(list_patches: List[ImagePatch], content: List[str],
return_index = False) -> Union[ImagePatch, int]:

"""Returns the patch most likely to contain the content.
Parameters

list_patches : List[ImagePatch]
... 1,971 tokens, 9,299 characters

API Reference:

Class: ImagePatch

Attributes:
- cropped_image: array_like - An array-like of the cropped image taken from the
original image.

- left: int - The position of the left border of the crop's bounding box in the
original image.
...

Methods:
- find(object_name: str) -> List[ImagePatch]: Returns a list of ImagePatch
objects matching object_name contained in the crop.

- exists(object_name: str) -> bool: Returns True if the object specified by
object_name is found in the image, and False otherwise.
...

Functions:
- best_image_match(list_patches: List[ImagePatch], content: List[str],

return_index=False) -> Union[ImagePatch, int]: Returns the patch most likely
to contain the content.

- distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float: Returns the
distance between the edges of two ImagePatches.
... 541 tokens, 2,360 characters

Figure 6: Comparison of the original and compressed API
definitions (𝑝def and 𝑝def). AdaCoder reduced the token length
by 72.5%.

can be affected by server congestion, a detailed analysis of compu-
tation times is not possible. However, the total time for experiments
on the GQA dataset was reduced by 55%.
4.2.1 Ablation study and analysis
Ablation study. Table 5 presents the results of an ablation study.
We see that both compression of API definitions and code snip-
pets contribute to each other for both reducing the input token
length and improving QA accuracy. Table 6 summarizes the QA ac-
curacy obtained by using a single compressed prompt. We see that
even with one prompt of either “attr” or “rel”, our method achieves
comparable or slightly better performance than the ViperGPT base-
line (41.3%). However, using one prompt of either “obj” or “global”,

Table 5: Ablation study with respect to prompt compression
(GQA dataset, gpt-3.5-turbo).

Method Token length Accuracy

AdaCoder 992 43.6

w/o compressing API defs. 2,422 40.6
w/o compressing code snippets. 2,145 41.1
w/o QA classification 851 28.9
w/o any compression 3,434 41.3

Table 6: Ablation study using a single specialized prompt
during inference (GQA dataset, gpt-3.5-turbo).

Method Token length Accuracy (%)

AdaCoder (adaptive prompt) 992 43.6

w/ fixed prompt of obj 967 30.9
w/ fixed prompt of cat 1,015 39.0
w/ fixed prompt of attr 1,008 41.7
w/ fixed prompt of rel 993 42.3
w/ fixed prompt of global 977 35.3

Table 7: Cross question type evaluation (GQA dataset, gpt-
3.5-turbo).

QA type obj cat attr rel global

obj 77.0 17.5 31.1 21.8 16.9
cat 74.5 45.3 39.9 28.5 35.4
attr 68.9 30.7 52.4 28.9 36.9
rel 70.2 35.8 50.9 30.3 33.9
global 71.1 31.4 38.0 24.8 32.3

the QA accuracy is significantly degraded. These results demon-
strate that our adaptation approach is essential for improving QA
accuracy while compressing input prompts. The detailed QA ac-
curacy by question type is analyzed in Table 7. We see that the
four compressed prompt specialized for “obj”, “cat”, “attr”, and “rel”
performed the best for corresponding questions. For the “global”
questions, the prompt for “attr” was the best. This is because “global”
questions are highly varied and not easily categorized. Defining
fine-grained QA types would be interesting as a next step in future
research.
Error analysis. Table 8 shows an error analysis, where we manu-
ally counted the occurrence of four types of errors. “Coding error”
indicates that the generated program is not executable or returns
nothing. “Cannot answer to simple query” indicates that the pro-
gram is correct but the simple_query method returned a response
such as “I cannot answer”. “No object detected” indicates that no ob-
ject is detected by the findmethod. “Wrong answer” indicates that
the returned answer was wrong. We have two observations. First,
the predominant type of error was wrong answers, and AdaCoder
reduced their frequency. Second, despite AdaCoder’s improvement
in coding quality, there is still a 7.8% incidence of coding errors.
This suggests that there is still room for improvement in instructing
LLMs about API usage.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, 28 October – 1 November, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 7: Qualitative examples. (a) Input of questions and images. (b) Adaptively selected example code snippets. Each compressed
prompt involves three or four snippets, and two of them are shown. These examples are fed into LLM with the compressed
API definition in Figure 6. (c) Generated Python program for question answering. (d) Visualization of intermediate outputs to
derive the answer.

Table 8: Error analysis (individual error rates as percentages).

Error type ViperGPT AdaCoder

Correct but with unnecessary details 0.5 0.5
Correct except for articles 1.1 1.5
Correct by paraphrasing 1.4 1.6

Coding error 8.3 7.8
Cannot answer to simple query 6.1 6.1
No object detected 0.7 1.6
Wrong answer 40.6 37.3

Several minor errors were also observed. “Correct but with un-
necessary details” refers to responses that were marked incorrect
because they provided additional, unnecessary information, such as
the response “Yes, there is an apple on the table” where the ground
truth is “Yes”. “Correct except with articles” refers to cases where
the instruction to respond with a single word was ignored and an
article was added, resulting in responses such as “a car” instead of
“car”. “Correct by paraphrasing” refers to errors resulting from the
use of interchangeable terms that do not change the meaning, such
as using “lady” instead of “woman”.
Qualitative examples. Figure 7 presents qualitative examples of
the generated programs. As shown, few example code snippets re-
lated to the input question are adaptively selected. These examples
help LLM to generate a program to answer the question. When the
program is executed, the object patches are detected and then the
relative position or colors are compared to derive a correct answer.

5 CONCLUSION
We introduced AdaCoder, a framework for adaptive prompt com-
pression for visual programmatic models. AdaCoder efficiently
generated programs for visual question answering by compressing
and selecting prompts depending on the question type. A single
black-box LLM is effectively employed to perform question type
classification, textual compression and code generation, eliminat-
ing the need for additional training. In experiments, we demon-
strated the effectiveness and efficiency of AdaCoder in comparison
to ViperGPT and LLMLingua. Finally, we discuss limitations and
future work.
Limitations. As this work relies on black-box LLMs, analysis from
the perspective of neural network architecture is limited. Alterna-
tive choices to LLMs for code generation may include open-source
white-box models, such as CodeLlama and StarCoder. However,
since AdaCoder requires high-quality text classification and sum-
marization, these models were not suitable for prompt compression.
New research directions leveraging the combination of white-box
and black-box LLMs need to be further explored.
Future work. To advance multimodal automated programming,
future research directions that focus on pushing the boundaries
beyond the traditional scope of VQA would be interesting. This
includes developing methods for interactive code modification to
enable a more dynamic and responsive programming environment.
Additionally, we plan to explore the automatic extension of APIs to
facilitate their evolution in becoming more efficient and effective in
addressing the complex requirements of multimodal interactions.
We believe that the present work contributes to fostering new ideas
for such novel research directions for the multimedia community.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering MM ’24, 28 October – 1 November, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Peter Anderson, Xiaodong He, Chris Buehler, et al. 2018. Bottom-up and top-

down attention for image captioning and visual question answering. In Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 6077–
6086.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. VQA: Visual question answering. In
Proc. IEEE/CVF International Conference on Computer Vision (ICCV). 2425–2433.

[3] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feicht-
enhofer, and Judy Hoffman. 2023. Token Merging: Your ViT But Faster. In Proc.
International Conference on Learning Representations (ICLR).

[4] Tom Brown, Benjamin Mann, Nick Ryder, et al. 2020. Language models are
few-shot learners. In Proc. Annual Conference on Neural Information Processing
Systems (NeurIPS). 1877–1901.

[5] Jiali Chen, Zhenjun Guo, Jiayuan Xie, Yi Cai, and Qing Li. 2023. Deconfounded
Visual Question Generation with Causal Inference. In Proc. ACM International
Conference on Multimedia (ACMMM). 5132–5142.

[6] Kang Chen, Tianli Zhao, and Xiangqian Wu. 2023. VTQA2023: ACM Multimedia
2023 Visual Text Question Answering Challenge. In Proc. ACM International
Conference on Multimedia (ACMMM). 9646–9650.

[7] Mark Chen, Jerry Tworek, et al. 2021. Evaluating Large LanguageModels Trained
on Code. arXiv2107.03374 (2021).

[8] Alexis Chevalier, AlexanderWettig, Anirudh Ajith, and Danqi Chen. 2023. Adapt-
ing Language Models to Compress Contexts. In Proc. Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[9] Tao Ge, Jing Hu, Li Dong, Shaoguang Mao, Yan Xia, Xun Wang, Si-Qing Chen,
and Furu Wei. 2022. Extensible Prompts for Language Models on Zero-shot
Language Style Customization. In Proc. Annual Conference on Neural Information
Processing Systems (NeurIPS).

[10] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan T. Chakar-
avarthy, Yogish Sabharwal, and Ashish Verma. 2020. Power-bert: Accelerating
BERT inference via progressive word-vector elimination. In Proc. International
Conference on Machine Learning (ICML). 3690–3699.

[11] Yash Goyal, Tejas Khot, et al. 2017. Making the V in VQA matter: Elevating the
role of image understanding in Visual Question Answering. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 6904–6913.

[12] Tanmay Gupta and Aniruddha Kembhavi. 2022. Visual Programming: Com-
positional visual reasoning without training. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[13] Ziqi Huang, Hongyuan Zhu, Ying Sun, et al. 2021. A diagnostic study of visual
question answering with analogical reasoning. In ICIP. IEEE, 2463–2467.

[14] Drew A. Hudson and Christopher D. Manning. 2019. GQA: A New Dataset for
Real-World Visual Reasoning and Compositional Question Answering. In Proc.
IEEE/CVF International Conference on Computer Vision (ICCV).

[15] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing Prompts for Accelerated Inference of Large Language
Models. In Proc. Conference on Empirical Methods in Natural Language Processing
(EMNLP).

[16] Ziqi Jin and Wei Lu. 2023. Tab-CoT: Zero-shot Tabular Chain of Thought. In
Proc. Findings of the Association for Computational Linguistics (ACL Findings).

[17] Gyuwan Kim and Kyunghyun Cho. 2021. Length-adaptive transformer: Train
once with length drop, use anytime with search. In Proc. Annual Meeting of the
Association for Computational Linguistics (ACL). 6501–6511.

[18] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph
Hassoun, and Kurt Keutzer. 2022. Learned Token Pruning for Transformers.
In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(SIGKDD). 784–794.

[19] Yunshi Lan, Xiang Li, Xin Liu, Yang Li, Wei Qin, and Weining Qian. 2023. Im-
proving Zero-shot Visual Question Answering via Large Language Models with
Reasoning Question Prompts. In Proc. ACM International Conference on Multime-
dia (ACMMM).

[20] Tung Le, Huy Tien Nguyen, and Minh Le Nguyen. 2021. Vision and text trans-
former for predicting answerability on visual question answering. In ICIP. IEEE,
934–938.

[21] Liunian Harold Li, Haoxuan You, Zhecan Wang, et al. 2021. Unsupervised
Vision-and-Language Pre-training Without Parallel Images and Captions. In
Proc. Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL).

[22] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[23] Rengang Li, Cong Xu, Zhenhua Guo, Baoyu Fan, Runze Zhang, Wei Liu, Yaqian
Zhao, Weifeng Gong, and EndongWang. 2022. AI-VQA: Visual Question Answer-
ing based on Agent Interaction with Interpretability. In Proc. ACM International
Conference on Multimedia (ACMMM). 5274–5282.

[24] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2015. Ask Your Neu-
rons: A Neural-based Approach to Answering Questions about Images. In Proc.
IEEE/CVF International Conference on Computer Vision (ICCV). 1–9.

[25] Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. Learning to Compress
Prompts with Gist Tokens. In Proc. Annual Conference on Neural Information
Processing Systems (NeurIPS).

[26] Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang,
Qingwei Lin, Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. LLMLingua-2: Data Distillation for Efficient and
Faithful Task-Agnostic Prompt Compression. arXiv preprint arXiv:2403.12968
(2024).

[27] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, et al. 2023. Code llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[28] Argho Sarkar and Maryam Rahnemoonfar. 2022. Grad-CAM aware supervised
attention for visual question answering for post-disaster damage assessment. In
ICIP. IEEE, 3783–3787.

[29] Sanjay Subramanian, Medhini Narasimhan, et al. 2023. Modular Visual Question
Answering via Code Generation. In Proc. Annual Meeting of the Association for
Computational Linguistics (ACL).

[30] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi.
2019. A Corpus for Reasoning About Natural Language Grounded in Photographs.
In Proc. Annual Meeting of the Association for Computational Linguistics (ACL).
6418–6428.

[31] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual Inference
via Python Execution for Reasoning. In Proc. IEEE/CVF International Conference
on Computer Vision (ICCV).

[32] Gemini Team, Rohan Anil, et al. 2023. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805 (2023).

[33] Hugo Touvron, Louis Martin, Kevin Stone, et al. 2023. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

[34] Qingqing Wang, Liqiang Xiao, Yue Lu, Yaohui Jin, and Hao He. 2022. Towards
Reasoning Ability in Scene Text Visual Question Answering. In Proc. ACM
International Conference on Multimedia (ACMMM). 2281–2289.

[35] David Wingate, Mohammad Shoeybi, and Taylor Sorensen. 2022. Prompt Com-
pression and Contrastive Conditioning for Controllability and Toxicity Reduction
in Language Models. In Proc. Findings of Empirical Methods in Natural Language
Processing (EMNLP Findings).

[36] Xiangyu Wu, Jianfeng Lu, Zhuanfeng Li, and Fengchao Xiong. 2022. Ques-to-
Visual Guided Visual Question Answering. In ICIP. IEEE, 4193–4197.

[37] Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and
Wenwu Zhu. 2022. AVQA: A Dataset for Audio-Visual Question Answering
on Videos. In Proc. ACM International Conference on Multimedia (ACMMM).
3480–3491.

[38] Zichao Yang, Xiaodong He, Jianfeng Gao, et al. 2016. Stacked Attention Networks
for Image Question Answering. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[39] Shunyu Yao, Dian Yu, Jeffrey Zhao, et al. 2023. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In Proc. Annual Conference on
Neural Information Processing Systems (NeurIPS).

[40] Bowen Yuan, Sisi You, and Bing-Kun Bao. 2023. Self-PT: Adaptive Self-Prompt
Tuning for Low-Resource Visual Question Answering. In Proc. ACM International
Conference on Multimedia (ACMMM). 5089–5098.

[41] Haotian Zhang and Wei Wu. 2022. Context Relation Fusion Model for Visual
Question Answering. In ICIP. IEEE, 2112–2116.

9

	Abstract
	1 Introduction
	2 Related work
	2.1 Visual question answering
	2.2 Large language models

	3 AdaCoder framework
	3.1 Preliminary
	3.2 Compression phase
	3.3 Inference phase
	3.4 Discussion

	4 Experiments
	4.1 Experimental settings
	4.2 Experimental results

	5 Conclusion
	References

