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A ADDITIONAL EXPERIMENTS

A.1 COMPARISON OF RMSPROP AND SGD TRAINING PERFORMANCE

In this section, we provide additional figures comparing the performance of RMSprop and SGD in
the experiment mentioned in Section 5. Specifically, we plot the training and test accuracy at each
epoch for both algorithms. We also run 300 epochs to guarantee the convergence of SGD. Figure
A1 demonstrates typical difference of behaviors of RMSprop and SGD during training. In this case,
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the batch size is set to be 32, and β2 is set to be 0.99 for RMSprop. The result shows that although
SGD manages to achieve 100% training accuracy finally, it takes substantially more time for SGD to
converge. The test accuracy of SGD is not as high as RMSprop as well in this case.

(a) RMSprop with β2 = 0.99 (b) SGD

Figure A1: Performance of RMSprop and SGD with ResNet-18 on CIFAR-10. We choose the batch size to be
32 and run 300 epochs for each experiment. For the RMSprop experiment, we choose β2 = 0.99.

A.2 RMSPROP EXPERIMENTS ON GANS

We also explored the performance of RMSprop with different β2’s on GANs. In the experiment,
we choose CIFAR-10 as the dataset, DCGAN (Radford et al., 2016) as the architecture and Jensen-
Shannon distance as the loss metric. In particular, a 5-layer CNN and a 7-layer CNN are used as the
generator and the discriminator, respectively. We fix the learning rate as 0.0002 for both the generator
and the discriminator and take 100K iterations on all experiments. For each β2, 3 repetitions are
conducted. The quantitative results, measured by FID scores, are shown in Table 4. The performance
of RMSprop indeed benefits from larger choice of β2.

Table 4: FID scores of the generator for RMSprop with different β2’s

β2 FID score

0.9 41.57±1.00
0.95 39.92±1.10
0.99 38.94±0.77
0.995 39.09±0.57
0.999 38.26±1.16

A.3 A SIMPLE INTUITIVE COUNTER EXAMPLE

For a simple example, consider the following problem:

min
x
f (x) = x2 = 10x2 +

9∑
j=1

(−x2) (5)

which corresponds to f0 = 10x2 and f1 = f2 = · · · = f9 = −x2 in our setting. There is a strong
positive gradient signal and many weak negative signals. Similar counter examples are also proposed
by other researchers (Chen et al., 2019).

Weighing gradient square in the past and at present, β2 controls the level of distortion of the gradient
signal. Like what Figure A2 illustrated, small β2 distorts the gradient more. While small β2 may
help vt approach closer to E

[
g2
t

]
, thus facilitating optimization, it can also cause divergence.

We also explored the performance of RMSprop with different β2. Results are listed in Figure A3,
with all experiments starting from x1 = 1, v0 = 0. RMSprop behaves very differently when we
increase β2 from 0.9 to 0.99, suggesting a phase transition between the two values.
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Figure A2: A figure showing how updating direction g√
β2+(1−β2)g2

depends on gradient g with different β2.

When β2 = 1, the update is linearly dependent on gradient. The smaller β2 is, the more it deviates from linearity.

After taking expectation, E
[

g√
β2+(1−β2)g2

]
can be far away from E [g]

(a) β2 = 0.1 (b) β2 = 0.9

(c) β2 = 0.99 (d) β2 = 0.999

Figure A3: Convergence of RMSprop with different β2. It diverges for small β2 while converges for big β2.
The phase transition point is between 0.9 and 0.99 for toy problem (5).

A.4 NON-REALIZABLE EXAMPLES

A non-realizable toy problem is:

fj(x) =


(x− a)

2 ifj = 0

− 0.1

(
x− 10

9
a

)2

if1 ≤ j ≤ 9
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Then,

f(x) =

9∑
j=0

fj(x) =
1

10
x2 − 1

9
a2

is lower bounded by − 1
9a

2. We apply diminishing step size RMSprop, AMSGrad, and SGD to this
problem with a = 10. The results are shown in Figure A4.

Figure A4: Convergence of 3 popular algorithms on the toy model. They all use diminishing step size ηt = η1√
t

with η1 = 0.1. The left figure plots log10 |x− x?| over iterations with the initialization point of x0 = 0; the
middle figure plots x− x? over iterations with the initialization point of x0 = 0; while the right figure plots
log10 |x− x?| over iterations with the initialization point of x0 = −0.1.

As Figure A4 shows, SGD converges, which is not surprising since diminishing step size SGD
converges even for non-realizable problems. AMSGrad also converges slowly to x? since the
logarithm of distance to the optimum point decreases steadily. This is also in accordance with the
result in Chen et al. (2019). In comparison, RMSprop fails to converge to the global minimum in
1 × 107 iterations: from the plot of x − x? it seems that x moves away from the global optimum
even if we set the initialization to be x0 = x?. Our further experiments show that RMSprop cannot
generally converge to the optimal point in this problem: x stays at some distance dependent on β2

away from the optimum. Moreover, when β2 becomes closer to zero, the distance is smaller.

A.5 HISTOGRAM OF ρ1 , ρ2, AND ρ3

In Appendix F, we introduce three parameters ρ1, ρ2, and ρ3 that will effect the threshold of β2. It
will be helpful to estimate their size in practice. We study a typical image classification problem on
MNIST using RMSProp. The batch size is set to 16 (thus n = 3750) and β2 is 0.99, which falls in
the convergence regime. Then we calculate the three quantities for each coordinate (each parameter
in the neural network) in the beginning epochs of training, and estimate their distribution density.

(a) Histogram of ρ1 (b) Histogram of ρ2 (c) Histogram of ρ3

Figure A5: Histograms of three parameters. Probability is normalized.

These results show that on this specific image classification problem, the maximal ρ1 is upper bounded
by O(

√
n) (which is close to the worst-case estimate), the maximal ρ2 is close to O(n), while ρ3 is

upper bounded by O(1/
√
n). Combining these three practical bounds, the product ρ1ρ2ρ3 ≈ O(n).
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Thus our bound for β2 is approximately 1−O
(
n−2

)
. Note that our bound 1−O(nρ1ρ2ρ3) is just

the worst-case bound; for practical purposes, we shall consider the average values of ρ′is. The bulk
of the distribution of ρ1 lies at 10, and the build of the distributions of ρ2 and ρ3 lie at 200 and 0.01
respectively, thus the product ρ1ρ2ρ3 is roughly 20 <

√
n, thus the suggested β2 ≈ 1−O

(
n−1.5

)
.

This suggested β2 is still larger than the practically used β2, and we leave it as a future work to close
this gap.

B THEORETICAL RESULTS OF ORIGINAL RMSPROP/ADAM

Adam introduced in (Kingma & Ba, 2015) starts from zero initialization and uses a bias correction
step to rectify the early step sizes:

Algorithm 2 Randomly shuffled Adam with zero initialization and bias correction

Initialize m1,−1 = 0 and v1,−1 = 0
for k = 1→∞ do

Sample {τk,0, τk,1, · · · , τk,n−1} as a random permutation of {0, 1, 2, · · · , n− 1}
for i = 0→ n− 1 do

mk,i = β1mk,i−1 + (1− β1)∇fτk,i
vk,i = β2vk,i−1 + (1− β2)∇fτk,i ◦ ∇fτk,i
xk,i+1 = xk,i − ηk∗n√

vk,i

1−βnk+i2

+ε
◦ ml,k,i

1−βnk+i1

Break if certain exit condition is satisfied.
end for
xk+1,0 = xk,n
vk+1,−1 = vk,n−1

mk+1,−1 = mk,n−1

end for
return x

We will refer to Algorithm 2 as the bias corrected version. The bias corrected version differs from
Algorithm 1 only in earlier stage of training, thus it should have the same convergence pattern. Indeed,
the following theorem shows that most of our results still apply, with some minor modifications in
the beginning stages.

Theorem B.1. (convergence of full-batch Adam with zero initialization and bias correction) For
optimization problem (3) with n = 1, assume that f is gradient Lipschitz continuous with constant L
and lower bounded by f∗. Then, for full-batch Adam with diminishing step size ηt = η1√

t
and any

β1 <
√
β2 < 1, we have:

min
t∈(tinit,T ]

‖∇ft‖1 ≤ O
(

log T√
T

)
where tinit = max{1, dlogβ1

1
4e}.

Theorem B.2. (convergence of small-β1 Adam with zero initialization and bias correction) For
optimization problem (3), we assume that f is lower-bounded by f∗ and fj is gradient Lipschitz
continuous with constant L for all j. Furthermore, we assume that fj satisfies assumption (2). Then,
for randomly shuffled RMSprop with diminishing step size ηt = η1√

t
and β1, β2 satisfying

T1 (β1, β2) + T2 (β2) < 1− 1√
2

(6)

we have

min
t∈[tinit,T ]

‖∇fnt‖1 ≤ O
(

log T√
T

)
+O

(
Q3,5

√
D0

)
where Q3,5 is a constant that approaches 0 in the limit as β2 → 1, T2 is defined in (4), and T1 is
defined in (59)
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It’s worth mentioning that although tinit is nonzero, it is finite, thus not affecting the convergence
results.

We interleave the proof of these two results with those of main theorems in the subsequent sections.

C NOTATIONS AND SOME LEMMAS

We are going to use multiple subscripts in the proof. The notations are explained here:

• Vector x is in parameter space Rd. In the full-batch Adam, i.e. n = 1, we denote xt as the
value of x at the t-th epoch and xl,t is the l-th component of xt. If n > 1, we denote xk,i as
the value of x at the k-th outer loop and i-th inner loop, and xl,k,i as the l-th component of
xk,i.
• vt, vl,t, vk,i, vl,k,i, and mt, ml,t, mk,i, ml,k,i are defined in a similar way as x.
• We denote ηt as the step-size. We will focus mainly on diminishing step size, especially
ηt = η1√

t
. Nevertheless, for each epoch, the step size stays the same.

• Further, to simplify the notation, in the proof of the convergence of randomly shuffled Adam,
we define gl,k,i,j , ∂

∂xl
fj (x)

∣∣
x=xk,i

. We sometimes use ft as a short-handed notation

of f (xt), ∂l as a short-handed notation of ∂
∂xl

, and ∇fl,k,i as a short-handed notation for
∂
∂xl

f (x)
∣∣
x=xk,i

.

Then we will discuss some basic properties of Adam and RMSprop.
Lemma C.1. For any version of RMSprop, in each iteration,

|xi,t+1 − xi,t| ≤
ηt√

1− β2

This is obvious since
√
β2vi,t−1 + (1− β2) (gi,t)

2 ≥
√

1− β2 |gi,t|. Since this is an upper bound
on the stepsize, the magnitude of ε does not matter here. If we use bias correction, the stepsize is

contracted by a factor of 1
1−βt2

: |xi,t+1 − xi,t| ≤
ηt(1−βt2)√

1−β2
≤ ηt√

1−β2
, hence this lemma still holds.

Lemma C.2. For any version of Adam, if β1 <
√
β2, in each iteration,

|xi,t+1 − xi,t| ≤ ηt
1√

1− β2

1− β1 ∗ bc
1− β1√

β2

where bc is an index which equals to 0 for the bias corrected version and 1 for the specially initialized
version.

Proof. By the update rule of specially initialized Adam,

|xi,t+1 − xi,t| = ηt
|mi,t|
vi,t

.

Since

mi,t = (1− β1)

t−1∑
s=0

gi,t−sβ
s
1,

We have

|mi,t| ≤ (1− β1)

t−1∑
s=0

|gi,t−s|βs1

Moreover, since vi,t = β2vi,t−1 + (1− β2) g2
i,t−1, by recursively expand vi,t, we have

vi,t = (1− β2)

t−1∑
s=0

g2
i,t−sβ

s
2 ≥ g2

i,t−sβ
s
2
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for each s ∈ {1, · · · , t− 1}. Therefore:

|xi,t+1 − xi,t| ≤ ηt
t−1∑
s=0

(1− β1) |gi,t−s|√
vi,t

βs1

≤ ηt
t−1∑
s=0

(1− β1) |gi,t−s|√
(1− β2)βs2g

2
i,t−s

βs1

= ηt

t−1∑
s=0

(1− β1)√
(1− β2)

(
β1√
β2

)s
≤ ηt

+∞∑
s=0

(1− β1)√
(1− β2)

(
β1√
β2

)s
= ηt

1√
(1− β2)

1− β1

1− β1√
β2

.

If we use bias correction for both m and v, the result simply changes to the step size is multiplied

by a factor of
√

1−βt2
1−βt1

≤ 1
1−β1

. Therefore we only need to multiply ηt 1√
1−β2

1−β1∗bc
1− β1√

β2

with 1
1−β1

to

obtain the bound for bias corrected version.

Lemma C.3. Let M and k be 2 integers with k > M , we have

M∑
p=1

1√
k − p

∈
[
M√
k
, 2

M√
k − 1

]

Proof. For the lower bound,

M∑
p=1

1√
k − p

≥
∫ k

k−M

dt√
t

=
2M√

k +
√
k −M

≥ M√
k
.

For the upper bound,

M∑
p=1

1√
k − p

≤
∫ k−1

k−M−1

dt√
t

=
2M√

k −M − 1 +
√
k − 1

≤ 2M√
k − 1

.

Lemma C.4. Let x ∈ R, then for b ≥ 0, miny{(x− y)
2 | |y| ≤ b} ≥ x2 − 2 |x| b

Proof. The proof is very straight forward.

If b ≤ |x|, min|y|≤b (x− y)
2 ≥ (|x| − b)2

= x2 − 2 |x| b+ b2 ≥ x2 − 2 |x| b.

If b ≥ |x|, min|y|≤b (x− y)
2

= 0 ≥ x2 − 2 |x| b

D PROOF OF THEOREM 4.1

We start by determining the upper bound of vt−1,i. In the following lemma, we use ∂ift as a simple
notation for ∂

∂xi
f(xt).

Lemma D.1. Define ∆t = η1L
√
d√

1−β2

√
t
, where d is the dimension of parameter space. For any

coordinate i, if |∂ift| ≥ 4
√

2∆t

1−β2
, the following holds for RMSprop:

vi,t−1 ≤
5

2
|∂ift|2 .
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Remark: if we change the definition of ∆t to ∆t = η1L
√
d√

1−β2

√
t

1−β1∗br
1− β1√

β2

, this lemma holds for Adam.

Proof. From Lemma C.1, the effective step-size of RMSprop is uniformly upper bounded. Therefore,
if ∂ift is given, by the per-sample gradient Lipschitz continuity condition, the previous gradients
cannot be too large. We thus have the following (under the initial condition vi,0 = (1− β2)

−1
g2
i,0):

vi,t−1 = (1− β2)

t−1∑
j=1

(gi,t−j)
2
βj−1

2 + βt−1
2 (gi,0)

2

= (1− β2)

t−1∑
j=1

|∂ift−j |2 βj−1
2 + βt−1

2 (gi,0)
2

≤ (1− β2)

t−1∑
j=1

(
|∂ift|+

j∑
k=1

∆t−k

)2

βj−1
2 +

(
|∂ift|+

t−1∑
k=1

∆t−k

)2

βt−1
2

≤ (1− β2)

t−1∑
j=1

(
|∂ift|+

2j√
t− 1 +

√
t− j − 1

η1L
√
d√

1− β2

)2

βj−1
2

+

(
|∂ift|+

2(t− 1)√
t− 1

η1L
√
d√

1− β2

)2

βt−1
2

≤ (1− β2)

t−1∑
j=1

(
|∂ift|+

2j√
t− 1

η1L
√
d√

1− β2

)2

βj−1
2 +

(
|∂ift|+

2(t− 1)√
t− 1

η1L
√
d√

1− β2

)2

βt−1
2

≤ (1− β2)

t−1∑
j=1

(
|∂ift|+

2
√

2j√
t

η1L
√
d√

1− β2

)2

βj−1
2 +

βt−1
2

1− β2

(
|∂ift|+

2
√

2(t− 1)√
t

η1L
√
d√

1− β2

)2


≤ (1− β2)

∞∑
j=1

(
|∂ift|+

2
√

2j√
t

η1L
√
d√

1− β2

)2

βj−1
2

≤ (1− β2)

∞∑
j=1

(
|∂ift|2 βj−1

2 +
4
√

2j√
t

η1

√
dL√

1− β2

|∂ift|βj−1
2 +

8j2η2
1dL

2

t (1− β2)
βj−1

2

)

= |∂ift|2 +
4
√

2Lη1

√
dL√

t
|∂ift|

1

(1− β2)
3
2

+
8η2

1dL
2 (1 + β2)

t (1− β2)
3

≤ |∂ift|2 + |∂ift|
4
√

2∆t

(1− β2)
+

16∆2
t

(1− β2)
2

(7)
where the first inequality comes from the gradient Lipschitz continuity condition: each iteration
changes xi,t−1 by at most ηt 1√

1−β2
, so the gradient changes by at most ∆t by Lipschitz continuity;

the second inequality comes from Lemma C.3; and the fourth inequality is because t > 1. For
the fifth inequality, we extend the upper limit of the summation from t to infinity by the relation

1
1−β2

= 1 + β@ + β2
2 + · · · , which is feasible since we just add some non-negative terms on the right

hand side of the inequality. The last equality comes from the following calculation:

(1− β2)

∞∑
j=1

βj−1
2 = 1

(1− β2)

∞∑
j=1

jβj−1
2 =

1

1− β2

(1− β2)

∞∑
j=1

j2βj−1
2 =

1 + β2

(1− β2)
2 .
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Therefore, if |∂ift| ≥ 4
√

2 ∆t

1−β2
, we have:

vi,t−1 ≤
5

2
|∂ift|2

With some minor modifications in the proof, the above lemma also holds for RMSprop with bias
correction.
Lemma D.2. For RMSprop, the following holds for all∇ft:〈

∇ft, ηt
−∇ft√

β2vt−1 + (1− β2)∇f2
t

〉
≤ −ηt

‖∇ft‖1√
1 + 3

2β2

+ ηt
4
√

2∆t

1− β2

1√
1 + 3

2β2

where ‖∇ft‖1 is the 1-norm of vector ∇ft.

Proof. For any coordinate i, if |∂ift| ≥ 4
√

2∆t

1−β2
, from Lemma D.1 we can see:

∂ift
∂ift√

β2vi,t−1 + (1− β2) ∂if2
t

≥ |∂ift|2√(
1 + 3

2β2

)
|∂ift|2

=
|∂ift|√
1 + 3

2β2

≥ |∂ift|√
1 + 3

2β2

− 4
√

2∆t

1− β2

1√
1 + 3

2β2

.

(8)

When |∂ift| ≤ 4
√

2∆t

1−β2
, we have :

∂ift
∂ift√

β2v
t−1
i + (1− β2) ∂if2

t

≥ 0

≥ |∂ift|√
1 + 3

2β2

− 4
√

2∆t

1− β2

1√
1 + 3

2β2

.

(9)

Next, we sum up both sides of the inequality by subscript i and multiply it by −ηt, obtaining:〈
∇ft, ηt

−∇ft√
β2vt−1 + (1− β2)∇f2

t

〉
≤ −ηt

‖∇ft‖1√
1 + 3

2β2

+ ηt
4
√

2d∆t

1− β2

1√
1 + 3

2β2

.

Then, to the proof of Theorem 4.1:

Proof. Since ft is L-Lipschitz, by descent lemma and Lemma C.1,

f (xt+1)− f (xt) ≤〈∇f (xt) , xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ −ηt

〈
∇ft,

∇ft√
β2vt−1 + (1− β2)∇f2

t

〉
+
L

2
η2
t

d

1− β2
.

(10)

We sum both sides of the inequality from tinit to T:

f (xT+1)− f (xtinit) ≤ −
T∑

t=tinit

η1√
t

〈
∇ft,

∇ft√
β2vt−1 + (1− β2)∇f2

t

〉
+

T∑
t=tinit

η2
1

1

t

Ld

2 (1− β2)
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As f (xT+1) ≥ f?, we have:

T∑
t=tinit

η1√
t

〈
∇ft,

∇ft√
β2vt−1 + (1− β2)∇f2

t

〉
≤

T∑
t=tinit

η2
1

1

t

Ld

2 (1− β2)
+ f (xtinit)− f?

Next we apply the result from Lemma D.2 to further simplify it as:

T∑
t=tinit

η1
√
t
√

1 + 3
2β2

‖∇ft‖

≤
T∑

t=tinit

η2
1

1

t

 Ld

2 (1− β2)
+

4
√

2dLd

(1− β2)
3
2

1√
1 + 3

2β2

+ f (xtinit)− f?
(11)

On the right hand side, we have
T∑

t=tinit

1

t
≤ log

T + 1

tinit

On the left hand side, we have

T∑
t=tinit

1√
t
≥ 2

(√
T −
√
tinit − 1

)
Hence, setting tinit = 1, we have:

min
t∈[tinit,T ]

‖∇ft‖1 ≤
1√
T

(Q1,1 +Q2,1 log (T + 1)) ,

where the constants are:

Q1,1 =
f (x1)− f∗

2η1

√
1 +

3

2
β2 (12)

and

Q2,1 =
η1

2

Ld
√

1 + 3
2β2

2 (1− β2)
+

4
√

2dLd

(1− β2)
3
2

 (13)

E PROOF OF THEOREM 4.2

The proof procedure of Theorem 4.2 is similar to that of Theorem 4.1. As mentioned in Appendix D,
if we set ∆t = η1L

√
d(1−bc∗β1)

√
1−β2

(
1− β1√

β2

)√
t
, where bc is set to zero for bias corrected version, and to one for

specially initialized version, and keep other notations unchanged, Lemma D.1 holds for Adam. Then
it suffices to find a sufficient decrease condition for Adam.

Lemma E.1. For t > 1 and β1 <
√
β2, the following holds:〈

∇ft, ηt
−mt√
vt

〉
≤ −ηt

‖∇ft‖1√
10

+ηt4
√

2
∆1d√
t

(
1

1− β2
+

2β1

1− β1

) 1√
10

+
1− β1

√
1− β2

(
1− β1√

β2

)


Proof. From Lipschitz continuity and Lemma C.2, we know that

|gi,t − gi,t−s| ≤ ∆t−1 + · · ·+ ∆t−s ≤
2s√
t− 1

∆1,
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where the last inequality comes from Lemma C.3. As a result,

gi,tgi,t−s ≥ g2
i,t − |gi,t|

2s√
t− 1

∆1.

The momentum mi,t is a discounted sum of gi,t. Therefore,

mi,tgi,t = (1− β1)

t−1∑
s=0

gi,tgi,t−sβ
s
1 + gi,tgi,0β

t−1
1

≥ (1− β1)

t−1∑
s=0

(
g2
i,t − |gi,t|

2s∆1√
t− 1

)
βs1 +

(
g2
i,t − |gi,t|

2(t− 1)∆1√
t− 1

)
βt1

≥ (1− β1)

∞∑
s=0

(
g2
i,t − |gi,t|

2s∆1√
t− 1

)
βs1

= g2
i,t

(
1− 2∆1√

t− 1 |gi,t|
β1

1− β1

)
.

If t > 1 and |gi,t| > 8
√

2∆1√
t

β1

1−β1
, it reduces to:

mi,tgi,t ≥
3g2
i,t

4
.

When we use zero initialization and bias correction, the inner product should be changed to:

mi,tgi,t = (1− β1)

t−1∑
s=0

gi,tgi,t−sβ
s
1

≥ (1− β1)

t−1∑
s=0

(
g2
i,t − |gi,t|

2s∆1√
t− 1

)
βs1

= g2
i,t

(
1− βt1 −

2∆1√
t− 1 |gi,t|

(
β1

1− β1
− βt1t−

βt+1
1

1− β1

))
> g2

i,t

(
1− βt1 −

2∆1√
t− 1 |gi,t|

β1

1− β1

)
.

Thus if t > max{logβ1

1
4 , 1} and |gi,t| > 8

√
2∆1√
t

β1

1−β1
, it reduces to:

mi,tgi,t ≥
g2
i,t

2
.

To accommodate the results under 2 settings, we will use the looser bound
g2i,t
2 in the following

derivations. Combining this bound and the result from the Adam version of Lemma D.1, we come to
the conclusion that if |gi,t| > 4

√
2∆1√

t

(
1

1−β2
+ 2β1

1−β1

)
, the following holds:

mi,t
gi,t√
vi,t
≥

g2
i,t

2
√
vi,t
≥

g2
i,t

2
√

5
2g

2
i,t

=
|gi,t|√

10

Thus,

gi,t
mi,t√
vi,t
≥ |gi,t|√

10
− 4
√

2
∆1√
t

(
1

1− β2
+

2β1

1− β1

) 1√
10

+
1− β1

√
1− β2

(
1− β1√

β2

)
 .
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Otherwise, if |gi,t| ≤ 4
√

2∆1√
t

(
1

1−β2
+ 2β1

1−β1

)
, from Lemma C.2:

gi,t
mi,t√
vi,t
≥ − |gi,t|

1− β1
√

1− β2

(
1− β1√

β2

)
=
|gi,t|√

10
− |gi,t|

 1√
10

+
1− β1

√
1− β2

(
1− β1√

β2

)


≥ |gi,t|√
10
− 4
√

2
∆1√
t

(
1

1− β2
+

2β1

1− β1

) 1√
10

+
1− β1

√
1− β2

(
1− β1√

β2

)


Therefore the inequality holds for every gi,t, we can sum up all indices:

d∑
i=1

gi,t
mi,t√
vi,t
≥
‖∇ft‖1√

10
− 4
√

2
∆1d√
t

(
1

1− β2
+

2β1

1− β1

) 1√
10

+
1− β1

√
1− β2

(
1− β1√

β2

)


This completes the proof.

Finally, after repeating almost the same procedures at the end of Appendix D, we can prove

min
t∈[tinit,T ]

‖∇ft‖1 ≤
1√
T

(Q1,2 +Q2,2 log (T + 1)) ,

with the following constants:

Q1,2 =
f (xtinit)− f∗ −Q

′

2η
2
1Ld log tinit

2η1

√
10

and
Q2,2 =

η1

2
LdQ

′

2

where

Q
′

2 =
1√

1− β2

(
1− β1 ∗ bc
1− β1√

β2

)[

1

2
√

1− β2

(
1− β1 ∗ bc
1− β1√

β2

)
+ 4
√

2d

(
1

1− β2
+

2β1

1− β1

) 1√
10

+
1− β1 ∗ bc

√
1− β2

(
1− β1√

β2

)
]

F PROOF OF THEOREM 4.3

It takes even more complicated calculations to prove the convergence of the randomly shuffled
version of RMSprop, but the rationale is still to track the magnitude of v and calculate the diminishing
speed of ‖∇f‖1. The derivations in this section can be considered as a template: following similar
guidelines, the convergence of Adam(with small β1) can also be proved. We will prove Theorem 4.4
in the later section.

At the begging of this section, we introduce several new notations.

We define gbl,k as the largest coordinate of the gradient in the beginning of the k-th epoch:

bl,k = arg max
i∈{0,··· ,n−1}

|gl,k,0,i| ,

gbl,k = gl,k,0,bl,k .

We next introduce three constants to characterize the distribution of gradient norms among different
batches i.
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ρ1 is a constant that measures similarity of gradient norms:

ρ1 ≥
∑n
i=1 |gl,k,0,i|√∑n
i=1 |gl,k,0,i|

2
(14)

for all l and k. It’s easy to verify that 1 ≤ ρ1 ≤
√
n: the lower bound can be derived from Cauchy

inequality, and the upper bound from Cauchy-Schwartz inequality that uT v√
‖u‖2‖v‖2

≤ 1, where we set

u = (|gl,k,0,0| , ... |gl,k,0,n|)T and v = (1, 1, ...1)T

ρ2 is a constant that represents the ratio of the largest gradient norm to average gradient norm:

ρ2 ≥

∣∣∣gbl,k∣∣∣2
1
n

∑n
i=1 |gl,k,0,i|

2 (15)

We can see 1 ≤ ρ2 ≤ n, and ρ2 is lower when the gradients norm are more homogeneous.

ρ3 is a constant that represents the the ratio of gradient norm to noisy gradient root mean square:

ρ3 ≥
|
∑n
i=1 gl,k,0,i|√

1
n

∑n
i=1 |gl,k,0,i|

2
(16)

it’s easy to see that 0 ≤ ρ3 ≤
√
nρ1 ≤ n. ρ3 is alrger when gl,k,0,i’s are more aligned.

Lemma F.1. If the l-th component of the gradient ∇f satisfies

|∂lf (xk,0)| ≥ η1L
√
dnn2

√
k
√

1− β2

(
32
√

2

(1− βn2 )βn2

)
we have

vl,k,0
1
n

∑
i g

2
l,k,0,i

≥ βn2
2

This lemma gives us a lower bound of v when the gradient norm is large enough.

Proof. We still define

∆t =
Ld

1
2

√
1− β2

η1√
t
.

Assume M(M < k) is the largest integer satisfying

M∑
j=1

√
n∆k−j ≤

∣∣gbl,k∣∣ .
M is greater than 1 and smaller than k, so such M must exist. By definition and Lemma C.3,

∣∣∣gbl,k∣∣∣
is lower bounded by: ∣∣gbl,k∣∣ ≥ √dLη1

√
nn√

1− β2

M√
k

(17)

Since vl,k,0 could be considered as exponential averaging of g2
l,k,i:

vl,k,0 = (1− β2)
(
g2
l,k,0,τk,0

+ g2
l,k−1,n−1,τk−1,n−1

β2 + g2
l,k−1,n−2,τk−1,n−2

β2
2 + · · ·

)
to estimate a lower bound of vl,k,0 we have to find a lower bound for gradient norm in the summand.
For a very loose estimate, we use Lemma C.4 to derive such lower bound . As |gbl,k| is assumed to be
sufficiently large, continuity restricts the range of gradient norm: in each iteration, all coordinates
change by at most ηnk√

1−β2
, so change in the gradient norm is also bounded due to Lipschitz condition.

Since one epoch contains n iterations, each coordinate shifts by at most η1n√
nk

in one epoch.
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Recall that we explicitly required M<k, which contains two cases: M < k − 1 and M = k − 1, we
will discuss them separately.

Case 1: When M<k-1, the definition of M indicates that
∑M+1
j=1

√
n∆k−j >

∣∣∣gbl,k∣∣∣ . This implies (by
Lemma C.3): ∣∣gbl,k∣∣ ≤ ∆12 (M + 2)

√
n√

k + 1
<

∆14M
√
n√

k

Since we assumed |∂lf (xk,0)| ≥ η1Ln
√
dn√

k
√

1−β2

(
32
√

2
1−βn2

)
, the largest coordinate of the gradient is also

lower bounded by
∣∣∣gbl,k∣∣∣ ≥ η1L

√
dn√

k
√

1−β2

(
32
√

2
1−βn2

)
Therefore

M ≥ 8
√

2

1− βn2
For each i, if τk−j,r = i, by Lipschitz continuity we know that:

∣∣∣∣gl,k−j,r,τk−j,r ∣∣− |gl,k,0,i|∣∣ ≤ n j∑
p=1

∆(k−p)n

Then a natural lower bound on
∣∣gl,k−j,r,τk−j,r ∣∣ is:

∣∣gl,k,0,τk−j,r ∣∣ ≥

|gl,k,0,i| − n

j∑
p=1

∆(k−p)n ≥ 0 if n
j∑
p=1

∆(k−p)n ≤ |gl,k,0,i|

0 if n
j∑
p=1

∆(k−p)n ≥ |gl,k,0,i|

(18)

Combining this with Lemma C.4, we have:

∣∣gl,k−j,r,τk−j,r ∣∣2 ≥

g2
l,k,0,i − 2n |gl,k,0,i|

j∑
p=1

∆(k−p)n under all circumstances

0 if n
j∑
p=1

∆(k−p)n ≥ |gl,k,0,i|

(19)

We use the first bound in (19) for j ≤M and the second bound for j > M , thus the lower bound of
v is given by (we omitted the initialization of v in this case):

vl,k,0 ≥ (1− β2)

n∑
i=1

M∑
j=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|n

j∑
p=1

∆(k−p)n

)
βnj2

≥ (1− β2)

n∑
i=1

M∑
j=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|∆1

2j
√
n√

k − 1

)
βnj2

= (1− β2)βn2

[
n∑
i=1

|gl,k,0,i|2
1− βnM2

1− βn2
− 4∆1

∑n
i=1 |gl,k,0,i|

√
n√

k − 1

1− βnM2 −MβnM2 (1− βn2 )

(1− βn2 )
2

]

=
1− β2

1− βn2
βn2

[
n∑
i=1

|gl,k,0,i|2
(
1− βnM2

)
− 4∆1

∑n
i=1 |gl,k,0,i|

√
n√

k − 1

(
1− βnM2

1− βn2
−MβnM2

)]
(20)

where we applied Lemma C.3 for the third inequality. The second last equality used the relation:

M∑
j=1

jβnj2 = βn2
1− βnM2 −MβnM2 (1− βn2 )

(1− βn2 )
2
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Then, from (17) and the definition of ρ1 in (14),
∑n
i=1|gl,k,0,i|

2∑n
i=1|gl,k,0,i|

≥ 1
ρ21

∑n
i=1 |gl,k,0,i| ≥

1
n

∣∣∣gbl,k∣∣∣ ≥
√
dLη1

√
n√

1−β2

M√
k

=
√
nM∆1/

√
k, thus:

vl,k,0 ≥
1− β2

1− βn2

n∑
i=1

|gl,k,0,i|2 βn2

[(
1− βnM2

)
− 4

1

M

√
k

k − 1

(
1− βnM2

1− βn2
−MβnM2

)]

≥ 1− β2

1− βn2

n∑
i=1

|gl,k,0,i|2 βn2

[
1− 4

√
2

M

1− βnM2

1− βn2

]

≥ 1

n

n∑
i=1

|gl,k,0,i|2 βn2

(
1− 4

√
2

M

1

1− βn2

) (21)

We already showed M ≥ 8
√

2
1−βn2

, hence vl,k,0
1
n

∑n
i=1|gl,k,0,i|

2 ≥ βn2
2 .

Case 2: On the other hand, if M = k − 1, this means

∣∣gbl,k∣∣ ≥ √dLη1
√
n√

1− β2

k − 1√
k

we can use Lemma C.4 to rederive equation (20) as:

vl,k,0 ≥ (1− β2)

n∑
i=1

k−1∑
j=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|n

j∑
p=1

∆(k−p)n

)
βnj2

+
1

n

n∑
i=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|n

k−1∑
p=1

∆(k−p)n

)
β
n(k−1)
2

≥ (1− β2)

n∑
i=1

k−1∑
j=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|∆1

2j
√
n√

k − 1

)
βnj2

+
1

n

n∑
i=1

(
|gl,k,0,i|2 − 2 |gl,k,0,i|∆1

2(k − 1)
√
n√

k − 1

)
β
n(k−1)
2

(22)

where the initialization term is taken into consideration. We estimate the summations separately.

(1− β2)

k−1∑
j=1

|gl,k,0,i|2 βnj2 +
1

n
β
n(k−1)
2 |gl,k,0,i|2

= (1− β2)

k−1∑
j=1

|gl,k,0,i|2 βnj2 +
β
n(k−1)
2

n

(
1 + β2 + β2

2 + ...
)
|gl,k,0,i|2


≥ (1− β2)

k−1∑
j=1

|gl,k,0,i|2 βnj2 + β
n(k−1)
2

(
βn2 + β2n

2 + ...
)
|gl,k,0,i|2


=

1− β2

1− βn2
βn2 |gl,k,0,i|

2
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and also

4 |gl,k,0,i|∆1

√
n√

k − 1

(1− β2)

k−1∑
j=1

jβnj2 +
1

n
β
n(k−1)
2 (k − 1)


≤ 4 |gl,k,0,i|∆1

√
n√

k − 1
(1− β2)

k−1∑
j=1

jβnj2 +
1

n
β
n(k−1)
2 k

(
1 + β2 + β2

2 + ...
)

≤ 4 |gl,k,0,i|∆1

√
n√

k − 1
(1− β2)β−n2

k−1∑
j=1

jβnj2 + βnk2 k
(
1 + βn2 + β2n

2 + ...
)

≤ 4 |gl,k,0,i|∆1

√
n√
∞

(1− β2)β−n2

k−1∑
j=1

jβnj2 + βnk2 k
(
1 + βn2 + β2n

2 + ...
)

= 4 |gl,k,0,i|∆1

√
n√

k − 1
(1− β2)β−n2 βn2

1

(1− βn2 )
2

As a result:

vl,k,0 ≥
1− β2

1− βn2
βn2

[
n∑
i=1

|gl,k,0,i|2 − 4∆1

∑n
i=1 |gl,k,0,i|

√
n√

k − 1

β−n2

1− βn2

]

=
1

n

n∑
i=1

|gl,k,0,i|2 βn2
(

1− 4∆1∑n
i=1 |gl,k,0,i|

√
k − 1

√
nβ−n2 ρ2

1

1− βn2

)

Since we have 1
ρ21

∑n
i=1 |gl,k,0,i| ≥ 1

n

∣∣∣gbl,k∣∣∣ ≥ η1L
√
dnβ−n2√

k
√

1−β2

(
32
√

2
1−βn2

)
, the inequality

vl,k,0
1
n

∑n
i=1|gl,k,0,i|

2 ≥ βn2
2 holds this case as well. The proof is complete.

With the definition of ρ3 in equation (16), we can then extend our result to vl,k,0
(∂lf(xk,0))2

≥ βn2
2ρ23

. For

the bias corrected version, we need one more constraint k > 8
√

2
1−βn2

+ 1 to reach the same conclusion.
The derivation is very similar: the only difference is that we don’t have to consider case 2.

Next we will try to find an upper bound for v.
Lemma F.2. Assume that

n−1∑
j=0

‖∇fj‖22 ≤ D1 ‖∇f‖22 +D0.

Given k, we set α as the index of the coordinate with the greatest gradient:

α = arg max
l=1,2,··· ,d

|∂lf (xk,0)| .

If k ≥ 4 and
√
|∂αf (xk,0)|2 + D0

D1d
≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

, the following holds:

vα,k,0 ≤
5

2
D1d

(
|∂αf (xk,0)|2 +

D0

D1d

)
.

Proof. The rationale of this proof is similar to Lemma D.1. Recall that

vα,k,0 = (1− β2)
(
g2
α,k,0,τk,0

+ g2
α,k−1,n−1,τk−1,n−1

β2 + g2
α,k−1,n−2,τk−1,n−2

β2
2 + · · ·

)
As α is the index of the greatest gradient component, we have:

‖∇f‖22 ≤ d
∣∣∣∣ ∂

∂xα
f (xk,0)

∣∣∣∣2 .
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Thus our assumption
∑n−1
j=0 ‖∇fj‖

2
2 ≤ D1 ‖∇f‖22 +D0 leads to

n−1∑
j=0

‖gk,0,j‖22 =

n−1∑
j=0

‖∇fj (xk,0)‖22 ≤ D1d

∣∣∣∣ ∂

∂xα
f (xk,0)

∣∣∣∣2 +D0.

Specifically, for all j ∈ {0, 1, 2, · · · , n− 1},

|gα,k,0,j |2 ≤ ‖gk,0,j‖22 ≤ D1d

∣∣∣∣ ∂

∂xα
f (xk,0)

∣∣∣∣2 +D0

To estimate an upper bound for vα,k,0, we will first determine an upper bound for each gα,k−j,i,τk−j,i
with k − 1 ≥ j > 0:

∣∣gα,k−j,i,τk−j,i∣∣ ≤ ∣∣gα,k,0,τk−j,i ∣∣+

j∑
q=0

min{n, jn− i− nq}∆n(k−q)

≤

√∣∣∣∣ ∂

∂xα
f (xk,0)

∣∣∣∣2 +
D0

D1d

√
D1d+

j∑
q=1

min{n, jn− i− nq}∆n(k−q)

(23)
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The inequality is a result of Lipschitz continuity and Lemma C.1. Summing them up and combining
these inequalities, we have

vα,k,0 = (1− β2)

(gα,k,0,τk,0)2 +

k∑
j=1

n−1∑
i=0

(
gα,k−j,n−1−i,τk−j,n−1−i

)2
β
n(j−1)+i+1
2

+ β
n(k−1)
2 (gα,1,−1,J)

2

≤ (1− β2)

((
gα,k,0,τk,0

)2
+ β2

(∣∣gα,k,0,τk−1,n−1

∣∣+
∆1√

n (k − 1)

)2

+ β2
2

(∣∣gα,k,0,τk−1,n−2

∣∣+
2∆1√
n (k − 1)

+

)2

+ · · ·

)
+ β

n(k−1)
2

|gα,1,−1,J |+
n(k−1)−1∑

t=1

∆n(k−1)−t

2

≤ (1− β2)

n(k−1)−1∑
j=0

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

j∑
t=1

∆n(k−1)−t

)2

βj2

+

√|∂αf (xk,0)|2 +
D0

D1d

√
D1d+

n(k−1)−1∑
t=1

∆n(k−1)−t

2

β
n(k−1)
2

≤ (1− β2)

n(k−1)−1∑
j=0

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2j√
n(k − 1)− 1 +

√
n(k − 1)− j − 1

η1

√
dL√

1− β2

)2

βj2

+

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2(n(k − 1)− 1)√
n(k − 1)− 1 +

√
n(k − 1)− j − 1

η1

√
dL√

1− β2

)2

β
n(k−1)
2

≤ (1− β2)

n(k−1)−1∑
j=0

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2j√
n(k − 1)− 1

η1

√
dL√

1− β2

)2

βj2

+

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2(n(k − 1)− 1)√
n(k − 1)− 1

η1

√
dL√

1− β2

)2

β
n(k−1)
2

≤ (1− β2)

n(k−1)−1∑
j=0

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2
√

2j√
nk

η1

√
dL√

1− β2

)2

βj2

+

(√
|∂αf (xk,0)|2 +

D0

D1d

√
D1d+

2
√

2(n(k − 1)− 1)√
nk

η1

√
dL√

1− β2

)2

β
n(k−1)
2 (1− β2)

(
1 + β2 + β2

2 + ...
)

≤ (1− β2)

∞∑
j=0

((
|∂αf (xk,0)|2 +

D0

D1d

)
D1dβ

j
2 +

4
√

2j√
nk

η1dL√
1− β2

√
|∂αf (xk,0)|2 +

D0

D1d

√
D1β

j
2

+
8j2η2

1dL
2

nk (1− β2)
βj2

)

=D1d

(|∂αf (xk,0)|2 +
D0

D1d

)
+ 4
√

2Lη1

√
|∂αf (xk,0)|2 + D0

D1d√
D1nk

β2

(1− β2)
3
2

+
8η2

1L
2 (1 + β2)β2

nkD1 (1− β2)
3


≤D1d

(|∂αf (xk,0)|2 +
D0

D1d

)
+ 4
√

2Lη1

√
|∂αf (xk,0)|2 + D0

D1d√
D1nk

1

(1− β2)
3
2

+
16η2

1L
2

nkD1 (1− β2)
3


(24)

28



Published as a conference paper at ICLR 2021

where the first inequality is due to Lipschitz continuity, the second holds because of relation (23) and
the fact that

i√
k (n− j)

≤
i∑
l=1

1√
k (n− j)− l

,

the third comes from Lemma C.3, the fourth comes from
√
nk√

n(k−1)−1
≤
√

2. Therefore, if√
|∂αf (xk,0)|2 + D0

D1d
≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

, we have

vα,k,0 ≤
5

2
D1d

(
|∂αf (xk,0)|2 +

D0

D1d

)
.

In the bias corrected version, the main result of this lemma still holds, with some minor modifications
during the proof.

Lemma F.3. Under the same condition of Lemma F.1, there exists a lower bound of 1√
vl,k,i

given
below:

1
√
vl,k,i

≥ 1
√
vl,k,0

(
1− 1− β2

2

(
−1 +

4ρ2i

βn2

))
.

Remark: ρ2 can be replaced by its upper bound n.

Proof. From the convexity of function 1√
1+x

, we have

1√
1 + x

≥ 1− x

2

for x > −1. Applying this to 1√
vl,k,i

yields

1
√
vl,k,i

=
1√

vl,k,0 + (vl,k,i − vl,k,0)
≥ 1
√
vl,k,0

(
1− vl,k,i − vl,k,0

2vl,k,0

)
≥ 1
√
vl,k,0

(
1− |vl,k,i − vl,k,0|

2vl,k,0

)
.

Note that

vl,k,i = vl,k,0β
i
2 +

(
gl,k,1,τk,1

)2
βi−1

2 (1− β2) + · · ·+
(
gl,k,i,τk,i

)2
(1− β2) ,

the difference of vl,k,i and vl,k,0 is given by

vl,k,i − vl,k,0 = (1− β2)
[ (
gl,k,i,τk,i

)2 − vl,k,0 + β2

((
gl,k,i−1,τk,i−1

)2 − vl,k,0)+ · · ·

+ βi−1
2

((
gl,k,1,τk,1

)2 − vl,k,0) ]
where we have applied the relation vl,k,0−βi2vl,k,0 = (1− β2)

(
1 + β2 + · · ·+ βi−1

2

)
vl,k,0. By the

definition of gbl,k and Lipschitz continuity, the following inequality holds:

1

vl,k,0

((
gl,k,i,τk,i

)2
+ β2

(
gl,k,i−1,τk,i−1

)2
+ · · ·+ βi−1

2

(
gl,k,1,τk,1

)2)
≤ 1

vl,k,0

((
gl,k,0,τk,i + i

∆1√
nk

)2

+ β2

(
gl,k,0,τk,i−1

+ (i− 1)
∆1√
nk

)2

+ · · ·

+ βi−1
2

(
gl,k,0,τk,1 +

∆1√
nk

)2
)

≤ 1

vl,k,0

((∣∣gbl,k∣∣+ i
∆1√
nk

)2

+ β2

(∣∣gbl,k∣∣+ (i− 1)
∆1√
nk

)2

+ · · ·+ βi−1
2

(∣∣gbl,k∣∣+
∆1√
nk

)2
)

≤i

(∣∣∣gbl,k∣∣∣+ i ∆1√
nk

)2

vl,k,0
.
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As we assumed |∂lf (xk,0)| ≥ η1Ln
√
dn√

k
√

1−β2

(
32
√

2
1−βn2

)
, we have

∣∣gbl,k∣∣ ≥ η1L
√
dn√

k
√

1− β2

(
32
√

2

1− βn2

)
=

∆1
√
n√
k

32
√

2

1− βn2
.

Therefore, we can further simplify the inequality as

1

vl,k,0

((
gl,k,i,τk,i

)2
+ β2

(
gl,k,i−1,τk,i−1

)2
+ · · ·+ βi−1

2

(
gl,k,1,τk,1

)2)

≤i

∣∣∣gbl,k∣∣∣2 (1 +
1−βn2
32
√

2

)2

vl,k,0
≤ 2i

∣∣∣gbl,k∣∣∣2
vl,k,0

.

Recall that the lower bound of vl,k,0 is given by

vl,k,0(
gbl,k

)2 ≥
vl,k,0

1
n

∑n
i=1 |gl,k,0,i|

2
ρ2

≥ βn2
2ρ2

.

Thus,

1

vl,k,0

((
gl,k,i,τk,i

)2
+ β2

(
gl,k,i−1,τk,i−1

)2
+ · · ·+ βi−1

2

(
gl,k,1,τk,1

)2) ≤ 4iρ2

βn2

As a result,

|vl,k,i − vl,k,0|
vl,k,0

=
(1− β2)

vl,k,0

∣∣∣∣∣ (gl,k,i,τk,i)2 − vl,k,0 + β2

((
gl,k,i−1,τk,i−1

)2 − vl,k,0)+ · · ·

+ βi−1
2

((
gl,k,1,τk,1

)2 − vl,k,0)
∣∣∣∣∣

=
(1− β2)

vl,k,0

((
gl,k,i,τk,i

)2
+ β2

(
gl,k,i−1,τk,i−1

)2
+ · · ·+ βi−1

2

(
gl,k,1,τk,1

)2)
− (1− β2)

vl,k,0

(
vl,k,0 + β2vl,k,0 + · · ·+ βi−1

2 vl,k,0
)

≤ (1− β2)

(
4iρ2

βn2
− 1

)
where the definition of ρ2 is in (15) and we finally have

|vl,k,i − vl,k,0|
2vl,k,0

≤
(
−1 +

4ρ2i

βn2

)
1− β2

2
.

This completes our proof of the lemma.

The next lemma is about the inner product between the gradient and all iterations in one epoch.

Lemma F.4. Under assumptions in Theorem 4.3, if the largest component α satisfies: (i)

|∂αf (xk,0)| ≥ 32
√

2n2 ∆1

(1−βn2 )βn2
√
nk

; (ii)
√
|∂αf (xk,0)|2 + D0

D1d
≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

, we have

−

〈
∇fk,0,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
≤

− 1√
5
2D1d

min

(1− T2(β2)) |∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

+ T2(β2)

√
8D0

5D2
1d

2
+

∆1√
nk
C3

with T2 defined in (37).
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Proof. Case I: We first consider those gradient component large enough, i.e. |∂lf (xk,0)| greater

than ∆1√
nk

(
32
√

2
(1−βn2 )βn2

)
n2. By Lemma C.1 and Lipschitz continuity,

gl,k,0,τk,i −
iη1L
√
d√

kn
√

1− β2

≤ gl,k,i,τk,i ≤ gl,k,0,τk,i +
iη1L
√
d√

kn
√

1− β2

. (26)

Therefore,

∂lf (xk,0) gl,k,0,τk,i−
iη1L
√
d |∂lf (xk,0)|√

kn
√

1− β2

≤ ∂lf (xk,0) gl,k,i,τk,i ≤ ∂lf (xk,0) gl,k,0,τk,i+
iη1L
√
d |∂lf (xk,0)|√

kn
√

1− β2

.

(27)
As the signs of gl,k,0,τk,i and ∂lf (xk,0) can be same or different, we have to treat the 2 cases
respectively.

When ∂lf (xk,0) and gl,k,0,τk,i share the same sign, their product is positive. Then from Lemma F.3,

∂lf (xk,0)
gl,k,i,τk,i√
vl,k,i

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

(
1− 1− β2

2

(
−1 +

4ρ2i

βn2

))
− iη1L

√
d |∂lf (xk,0)|√

kn
√

1− β2
√
vl,k,i

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

(
1− 1− β2

2

(
−1 +

4ρ2i

βn2

))
− iη1L

√
d |∂lf (xk,0)|√

kn
√

1− β2

√
vl,k,0βi2

.

(28)

On the other hand, if they have different signs, we simply have

∂lf (xk,0)
gl,k,i,τk,i√
vl,k,i

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

1√
βi2
− |∂lf (xk,0)|
√
vl,k,0

iη1L
√
d√

kn
√

1− β2

√
βi2
.

(29)

Combining these two inequalities yields

∂lf (xk,0)
n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥∂lf (xk,0)
√
vl,k,0

(∑
i∈i+

gl,k,0,τk,i

(
1− 1− β2

2

(
−1 +

4nρ2

βn2

))
+
∑
i∈i−

gl,k,i,τk,i√
βn2

)
−

|∂lf (xk,0)|
√
vl,k,0

η1L
√
d√

kn
√

1− β2

(
n−1∑
i=0

i√
βi2

) (30)

where i+ means the set of the indices of the components with the same sign of ∂lf (xk,0) and i−
means the set of the indices of the components with opposite sign. Note that we have added 2
non-positive terms on the right hand side. For simplicity, define

C2 ,
n (n− 1)

2
√
βn2

.

Since ∑
i∈i+

gl,k,0,τk,i +
∑
i∈i−

gl,k,0,τk,i = ∂lf (xk,0) ,
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we have

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥∂lf (xk,0)
√
vl,k,0

(∑
i∈i+

gl,k,0,τk,i

(
1− 1− β2

2

(
−1 +

4nρ2

βn2

))
+
∑
i∈i−

gl,k,i,τk,i

(
1 +

1√
βn2
− 1

))

− |∂lf (xk,0)|
√
vl,k,0

η1L
√
d√

kn
√

1− β2

C2

≥∂lf (xk,0)
2

√
vl,k,0

− |∂lf (xk,0)|
√
vl,k,0

(∑
i∈i+
|gl,k,0,i| (1− β2)

(−1 + 4nρ2β
−n
2 )

2
+
∑
i∈i−
|gl,k,0,i|

(
1√
βn2
− 1

))

− |∂lf (xk,0)|
√
vl,k,0

η1L
√
d√

kn
√

1− β2

C2

≥∂lf (xk,0)
2

√
vl,k,0

− |∂lf (xk,0)|
√
vl,k,0

(∑
i∈i+
|gl,k,0,i| (1− β2)

(−1 + 4nρ2β
−n
2 )

2
+
∑
i∈i−
|gl,k,0,i|

(
1√
βn2
− 1

))

− η1L
√
d2n

√
k
√

1− β2β
n/2
2

C2.

(31)
The last inequality holds due to Lemma F.1 and the fact that |∂lf (xk,0)| is greater than
∆1√
nk

(
32
√

2
(1−βn2 )βn2

)
n2. It can further reduce to

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥∂lf (xk,0)
2

√
vl,k,0

− |∂lf (xk,0)|
√
vl,k,0

∑
i

|gl,k,0,i| δ1 −
η1L
√
d2n

√
k
√

1− β2β
n/2
2

C2

(32)

where δ1 = (1− β2)

(
−1+

4nρ2
βn2

)
2 +

(
1√
βn2
− 1

)
.

Case II: For those gradient components smaller than ∆1√
nk

(
32
√

2
(1−βn2 )βn2

)
n2, the inequality is simply

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥ − ∆1√
nk

(
32
√

2

(1− βn2 )βn2

)
n2 n√

1− β2

because of Lemma C.1.

We denote the gradient components in case I by "l large" (large in the sense that |∂lf (xk,0)| ≥
∆1√
nk

(
32
√

2
(1−βn2 )βn2

)
n2) and the rest components of the gradient by "l small". Summing up all of them,

we have

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥
∑
l large

(
∂lf (xk,0)

2

√
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− |∂lf (xk,0)|
√
vl,k,0

∑
i

|gl,k,0,i| δ1 −
η1L
√
d2n

√
k
√

1− β2β
n/2
2
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)

+
∑
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− ∆1√
nk

(
32
√

2

(1− βn2 )βn2

)
n3

√
1− β2

.

(33)

32



Published as a conference paper at ICLR 2021

We can further simplify the inequality to

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥
∑
l large

∂lf (xk,0)
2

√
vl,k,0

−
∑
l large

|∂lf (xk,0)|
√
vl,k,0

∑
i

|gl,k,0,i| δ1 −
∆1√
nk
C3

(34)

where

C3 =

√
2nnd

β
n/2
2

C2 +

(
32
√

2

(1− βn2 )βn2

)
n3d√
1− β2

=

√
2nn2(n− 1)d

2βn2
+

32
√

2

1− βn2
n3d√

(1− β2)βn2

We have assumed that |∂αf (xk,0)| > ∆1√
nk

32
√

2
(1−βn2 )β2nn

2 in assumption (i), thus α ∈ l large. Further-
more, as a very loose estimate, we keep only the α component in the first term:

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥∂αf (xk,0)
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√
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−
∑
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√
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∑
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(35)

We know from Lemma F.1 that if |∂lf (xk,0)| ≥ η1
√
dnn2

√
k
√

(1−β2)βn2

(
32
√

2
1−βn2

)
:
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√
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√
2ρ2

3

βn2
.

where the definition of ρ3 is in (16). Then by the assumption
∑n−1
j=0 ‖∇fj‖

2
2 ≤ D1 ‖∇f‖22 +D0, we

have ∑
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√
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√
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√
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√
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√
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√
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(36)

where the third inequality comes from the fact that under the constraints (i)
∑n−1
i=0

∣∣gl,k,0,τk,i ∣∣ ≤
ρ1

√∑n−1
i=0

∣∣gl,k,0,τk,i ∣∣2 for each i and (ii)
∑n−1
i=0

∑d
l=1

∣∣gl,k,0,τk,i ∣∣2 ≤ D1 ‖∇f‖22 + D0,∑d
l=1

∑n−1
i=0

∣∣gl,k,0,τk,i ∣∣ is upper bounded by
√
dρ1

√
D1 ‖∇f‖22 +D0, the fourth is because

‖∇f‖22 ≤ d |∂αf (xk,0)|2, and the last is because
√
x+ y ≤

√
x+
√
y, for any x, y ≥ 0.
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Therefore, inequality (35) reduces to

d∑
l=1

∂lf (xk,0)

n−1∑
i=0
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C3.

Taking in the result from Lemma F.2 that vα,k,0 ≤ 5
2D1d

(
|∂αf (xk,0)|2 + D0

D1d

)
, we have

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

gl,k,i,τk,i√
vl,k,i

≥ ∂αf (xk,0)
2√

5
2D1d

(
|∂αf (xk,0)|2 + D0

D1d

) −
√

2

βn2
D1ρ1ρ3d

(
|∂αf (xk,0)|+

√
D0

D1d

)
δ1 −

∆1√
nk
C3

≥ 1√
5D1d

min{|∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

}

−

√
2

βn2
D1ρ1ρ3d

(
|∂αf (xk,0)|+

√
D0

D1d

)
δ1 −

∆1√
nk
C3

≥ 1√
5D1d

min{|∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

} − T2(β2)

(
|∂αf (xk,0)|+

√
D0

D1d

)− ∆1√
nk
C3

≥ 1√
5D1d

min{(1− T2(β2)) |∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

} − 2T2(β2)

√
D0

D1d

− ∆1√
nk
C3

≥ 1√
5D1d

min{(1− T2(β2)) |∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

} − T2(β2)

√
8D0

5D2
1d

2
− ∆1√

nk
C3

where T2 is defined as

T2 (β2) =

√
10d

βn2
dρ1ρ3D1δ1 =

√
10d

βn2
dρ1ρ3D1

(1− β2)

(
4nρ2
βn2
− 1
)

2
+

(
1√
βn2
− 1

) .

(37)
Note that in the fourth inequality, we used the following inequality:

min{x, x2√
D0

D1d

} − T2x

= min{(1− T2)x,
x2√
D0

D1d

− T2x}

≥ min{(1− T2)x,
x2√
D0

D1d

− T2

√
D0

D1d
}

≥ min{(1− T2)x,
x2√
D0

D1d

} − T2

√
D0

D1d

with x = |∂αf(xk,0)|.
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Remark:when β2 is very close to 1, for the first order Taylor expansion:

T2(β2) ∼ O ((1− β2)nρ1ρ2ρ3)

Lemma F.5. Under assumptions in Theorem 4.3, if we choose β2 to be a constant satisfying the
constraint T2 (β2) ≤ 1− 1√

2
, we have the following for all∇fk,0 :

−

〈
∇fk,0,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
≤ − 1√

10D1d
min

‖∇fk,0‖1d
,
‖∇fk,0‖22√

D0d
D1

+
√
D0C5 +

∆1√
nk
C4

where ‖∇fk,0‖1 is the 1-norm of vector∇fk,0, C4 and C5 are defined in (38) and (39).

Note that in the zero initialization and bias corrected version, we also need the condition k > 8
√

2
1−βn2

+1.

Proof. We will discuss the cases where conditions in Lemma F.4 hold or become violated.

Case 1 If we have |∂αf (xk,0)| ≥ 32
√

2n2 ∆1

(1−βn2 )βn2
√
nk

and |∂αf (xk,0)| ≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

,

then we can apply Lemma F.4:〈
∇fk,0,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
≥

1√
5D1d

min

(1− T2(β2)) |∂αf (xk,0) |, |∂αf (xk,0) |2 1√
D0

D1d

− T2(β2)

√
8D0

5D2
1d

2
− ∆1√

nk
C3

≥ 1√
10D1d

min

|∂αf (xk,0) |, |∂αf (xk,0)|2√
D0

D1d

− T2(β2)

√
8D0

5D2
1d

2
− ∆1√

nk
C3

≥ 1√
10D1d

min

|∂αf (xk,0) |, |∂αf (xk,0)|2√
D0

D1d

− T2(β2)

√
8D0

5D2
1d

2
− ∆1√

nk
C4

C4 is a constant defined as

C4 = C3 +
1

(1− β2)
max{32

√
2n,

4
√

2√
D1d
}

(
1√

10D1d
min{1, ∆1

√
D1d

(1− β2)
√
nD0

max{32
√

2n2β−n2 ,
4
√

2√
D1d
}}+

dn√
1− β2

)
(38)

Case 2 Else-wise, |∂αf (xk,0)| ≤ ∆1

(1−β2)
√
nk

max{32
√

2n2β−n2 , 4
√

2√
D1d
}. As a result,〈

∇fk,0,
n−1∑
i=0

gk,i,τk,i√
vk,i

〉

≥− d ∆1

(1− β2)
√
nk

max

{
32
√

2n2β−n2 ,
4
√

2√
D1d

}
n√

1− β2

≥ 1√
10D1d

min

|∂αf (xk,0)| , |∂αf (xk,0)|2√
D0

D1d

− ∆1√
nk

(
C3 +

1

(1− β2)
max

{
32
√

2n2β−n2 ,
4
√

2√
D1d

}

·

(
1√

10D1d
min

{
1,

∆1

√
D1d

(1− β2)
√
nD0

max

{
32
√

2n2β−n2 ,
4
√

2√
D1d

}})
+

dn√
1− β2

)
− T2(β2)

√
8D0

5D2
1d

2

=
1√

10D1d
min

|∂αf (xk,0)| , |∂αf (xk,0)|2√
D0

D1d

− ∆1√
nk
C4 − T2(β2)

√
8D0

5D2
1d

2
.
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This finishes the proof, with

C5 =
2
√

10T2(β2)

5D1d
(39)

Proof of Theorem 4.3.

Since f is L-Lipschitz, by descent lemma and Lemma C.1,

f (xk+1,0)− f (xk,0) ≤〈∇f (xk,0) , xk+1,0 − xk,0〉+
L

2
‖xk+1,0 − xk,0‖2

≤ − η0√
kn

〈
∇f (xk,0) ,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
+
L

2

η2
1nd

(1− β2) k

(40)

Summing both sides of the inequality ranging k from tinit to T ,

f (xT+1,0)− f (xtinit,0) ≤ −
T∑

k=tinit

η1√
nk

〈
∇ft,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
+

T∑
k=tinit

L

2

η2
1nd

(1− β2) k
.

Since f (xT+10) ≥ f?, we have

T∑
k=tinit

η1√
nk

〈
∇ft,

n−1∑
i=0

gk,i,τk,i√
vk,i

〉
≤

T∑
k=tinit

L

2

η2
1nd

(1− β2) k
+ f (xtinit0)− f?

.

Let tinit = 4 for specially initialized version, and 1 + d 8
√

2
1−βn2

efor zero initialized version, and apply
the result from Lemma F.5, for all k ≥ tinit,〈

∇fk,0,
n−1∑
i=0

gk,i,τk,i√
vk,i

〉
≥ 1√

10D1d
min{

‖∇fk,0‖1
d

,
‖∇fk,0‖22√

D0d
D1

} −
√
D0C5 −

∆1√
nk
C4.

We can further simplify it as

T∑
k=tinit

η1√
nk

 1√
10D1d

min

‖∇fk,0‖1d
,
‖∇fk,0‖22√

D0d
D1

−√D0C5


≤

T∑
k=tinit

C6

k
+ f (xtinit0)− f?

(41)

where

C6 = Lη2
1

(
nd

2 (1− β2)
+

C4

√
d

n
√

1− β2

)
(42)

On the right hand side, we have a summation proportional to

T∑
k=tinit

1

k
≤ log

T + 1

tinit
.

On the left hand side, we have a summation proportional to:

T∑
k=tinit

1√
k
≥ 2

(√
T −
√
tinit − 1

)
.
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For Algorithm 1, we can set tinit = 4, while for Algorithm 2, we should set tinit = max{logβ1

1
4 , 1+

8
√

2
1−βn2

}. Hence, we have

min
k∈[tinit,T ]

min{‖∇fk,0‖1 , ‖∇fk,0‖
2
2

√
D1d

D0
} ≤ 1√

T −
√
tinit − 1

(Q1,3 +Q2,3 log (T + 1))+
√
D0Q3,3

where

Q1,3 =
f (xtinit,0)− f∗ − C6 log tinit

2η1

√
10nD1dd, (43)

Q2,3 =
C6

√
10nD1dd

2η1
, (44)

Q3,3 = C5

√
10D1dnd, (45)

C6 is defined in (42), and C5 is defined in (39).

Note that C5 proportional to
√
T2 and so is Q3. Seemingly, C6 depends on β−n2 . Thus, it increases

exponentially with the number of batch samples n. However, our choice of β2 can prevent this: to
keep T2 which also contains β−n2 terms small enough, we implicitly add an upper bound on β−n2 .

G PROOF OF THEOREM 4.4

Similar to the full batch version Adam, if we set ∆t = η1L
√
d(1−β1∗bc)

√
1−β2

(
1− β1√

β2

)√
t
, results of Lemma F.1,

F.2, and F.3 still hold without further modifications. We will begin by finding an upper bound of the
difference between ml,k,i and gl,k,i,τk,i , followed by a replacement for Lemma F.4.
Lemma G.1. For k > 1, we have

∣∣ml,k,i − gl,k,0,τk,i
∣∣ ≤ β1

n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣ ( 1− β1

1− βn1
+ 1

)
+

∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
))

.

Proof. First, we upper bound ml,k−1,n−1 by

|ml,k−1,n−1| =

∣∣∣∣∣(1− β1)
(
gl,k−1,n−1,τk−1,n−1

+ β1gl,k−1,n−2,τk−1,n−2
· · ·
)

+ β
n(k−1)
1

n−1∑
p=0

gl,1,−1,i

∣∣∣∣∣
≤ (1− β1)

( (∣∣gl,k−1,n−1,τk−1,n−1

∣∣+
∣∣gl,k−1,n−2,τk−1,n−2

∣∣+ · · ·+
∣∣gl,k−1,0,τk−1,0

∣∣)+

βn1
(∣∣gl,k−2,n−1,τk−2,n−1

∣∣+
∣∣gl,k−2,n−2,τk−2,n−2

∣∣+ · · ·+
∣∣gl,k−2,0,τk−2,0

∣∣)+ · · ·
)

+ β
n(k−1)
1

n−1∑
p=0

|gl,1,−1,i|

= (1− β1)

k−1∑
p=1

n−1∑
q=0

∣∣gl,k−p,m−q,τk−p,m−q ∣∣β(p−1)n
1 + β

n(k−1)
1

n−1∑
p=0

|gl,1,−1,i|

≤ (1− β1)

k−1∑
p=1

n−1∑
q=0

(∣∣gl,k,0,τk−p,q ∣∣+

p∑
t=1

n∆n(k−t)

)
β

(p−1)n
1 +

n−1∑
q=0

(∣∣gl,k,0,τk−p,q ∣∣+

k−1∑
t=1

n∆n(k−t)

)
β

(k−1)n
1

≤ (1− β1)

k−1∑
p=1

n−1∑
q=0

(∣∣gl,k,0,τk−p,q ∣∣+
2∆1np√
n (k − 1)

)
β

(p−1)n
1 +

(∣∣gl,k,0,τk−p,q ∣∣+
2∆1n(k − 1)√

n (k − 1)

)
β

(k−1)n
1

≤ (1− β1)

+∞∑
p=1

n−1∑
q=0

(∣∣gl,k,0,τk−p,q ∣∣+
2∆1np√
n (k − 1)

)
β

(p−1)n
1

=

n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣ 1− β1

1− βn1
+

2∆1n
2√

n (k − 1)

1− β1

(1− βn1 )
2
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where the first inequality is because β1 < 1, the second comes from Lipschitz inequality, the third
applies the result of Lemma C.3, the fourth combines two terms by the relation 1 = (1 − β1)(1 +
β1 + β2

1 + ...), and the last equality follows the same calculation in Lemma D.1. This holds for the
bias corrected version.

Therefore,∣∣ml,k,i − gl,k,i,τk,i
∣∣

=
∣∣∣βi+1

1 ml,k−1,n−1 + (1− β1)βi1gl,k,0,τk,0 + (1− β1)βi−1
1 gl,k,1,τk,1 + · · ·

+ (1− β1)β1gl,k,i−1,τk,i−1
− β1gl,k,i,τk,i

∣∣∣
≤ β1

(
βi1 |ml,k−1,n−1|+ (1− β1)βi−1

1

∣∣gl,k,0,τk,0 ∣∣+ · · ·+ (1− β1)
∣∣gl,k,i−1,τk,i−1

∣∣+
∣∣gl,k,i,τk,i ∣∣)

≤ β1

(
|ml,k−1,n−1|+

∣∣gl,k,0,τk,0∣∣+ · · ·+
∣∣gl,k,i−1,τk,i−1

∣∣+
∣∣gl,k,i,τk,i ∣∣)

.

By taking in the upper bound of |ml,k−1,n−1| and applying the Lipschitz gradient continuous
condition, we have∣∣ml,k,i − gl,k,i,τk,i

∣∣
≤ β1

(
n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣ 1− β1

1− βn1
+

2∆1n
2√

n (k − 1)

1− β1

(1− βn1 )
2 +

i∑
q=0

(∣∣gl,k,0,τk,q ∣∣+
q∆1√
kn

))

≤ β1

n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣ ( 1− β1

1− βn1
+ 1

)
+ β1

n2∆1√
kn

1− β1

(1− βn1 )
2

(
1 + 2

√
2
)

and ∣∣ml,k,i − gl,k,0,τk,i
∣∣ ≤ ∣∣ml,k,i − gl,k,i,τk,i

∣∣+
∣∣gl,k,0,τk,i − gl,k,i,τk,i ∣∣

≤
∣∣ml,k,i − gl,k,i,τk,i

∣∣+
i∆1√
kn

≤ β1

n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣ ( 1− β1

1− βn1
+ 1

)
+

∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
))

where we have applied Lipschitz continuity in the first inequality. This completes the proof.

Lemma G.2. Under assumptions in Theorem 4.4, assume that the largest component α satisfies(i)

|∂αf (xk,0)| ≥ 32
√

2n2 ∆1

(1−βn2 )βn2
√
nk

; (ii)
√
|∂αf (xk,0)|2 + D0

D1d
≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

. We have:〈
∇fk,0,

n−1∑
i=0

mki√
vk,i

〉
≥ |∂αf (xk,0)|√

5
2D1d

(
1− T1 (β1)− T2 (β2)− (T1 + T2)

D0

D1d |∂αf |2

)
− ∆1√

nk
C8

with T2 defined in (37).

Proof. Similar to Lemma F.4, we first consider those gradient components large enough, i.e.
|∂lf (xk,0)| greater than ∆1√

nk

(
32
√

2
(1−βn2 )βn2

)
n2. By Lemma G.1,

∣∣ml,k,i − gl,k,0,τk,i
∣∣ ≤ β1

(
1− β1

1− βn1
+ 1

) n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+ ∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
))

.

(46)
Therefore,

∂lf (xk,0)ml,k,i ≥ ∂lf (xk,0) gl,k,0,τk,i

− |∂lf (xk,0)|

(
β1

(
1− β1

1− βn1
+ 1

) n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+
∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
)))

.

(47)
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As the sign of gl,k,0,τk,i can be the same or different to ∂lf (xk,0), we again have to treat 2 cases
respectively.

When ∂lf (xk,0) and gl,k,0,τk,i share the same sign, their product is positive. Then from Lemma F.3,

∂lf (xk,0)
ml,k,i√
vl,k,i

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

(
1− 1− β2

2

(
−1 +

4nρ2

βn2

))

− |∂lf (xk,0)|
√
vl,k,i

(
β1

(
1− β1

1− βn1
+ 1

) n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+
∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
)))

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

(
1− 1− β2

2

(
−1 +

4nρ2

βn2

))

− |∂lf (xk,0)|√
βi2vl,k,0

(
β1

(
1− β1

1− βn1
+ 1

) n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+
∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
)))

.

(48)

On the other hand, if they have different signs, we simply have

∂lf (xk,0)
ml,k,i√
vl,k,i

≥ ∂lf (xk,0)
gl,k,0,τk,i√
vl,k,0

1√
βi2
−

− |∂lf (xk,0)|√
βi2vl,k,0

(
β1

(
1− β1

1− βn1
+ 1

) n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+
∆1√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
)))

.

(49)

Combining these two inequalities yields

∂lf (xk,0)

n−1∑
i=0

ml,k,i√
vl,k,i

≥∂lf (xk,0)
√
vl,k,0

(∑
i∈i+

gl,k,0,τk,i

(
1− 1− β2

2

(
−1 +

4nρ2

βn2

))
+
∑
i∈i−

gl,k,i,τk,i√
βn2

)
−

− |∂lf (xk,0)|√
βi2vl,k,0

(
β1

(
1− β1

1− βn1
+ 1

)
n

n−1∑
q=0

∣∣gl,k,0,τk,q ∣∣+
∆1n√
kn

(
n+ β1n

2 1− β1

(1− βn1 )
2

(
1 + 2

√
2
)))

.

(50)
where i+ means the set of the indices of the components with the same sign of ∂lf (xk,0) and i−
means the set of the indices of the components with opposite sign. Note that we have added 2
non-positive terms on the right hand side. For simplicity, define

C7 ,
n2

β
n/2
2

(
1 + β1n

1− β1

(1− βn1 )
2

(
1 + 2

√
2
))

.

Since

∑
i∈i+

gl,k,0,τk,i +
∑
i∈i−

gl,k,0,τk,i = ∂lf (xk,0) ,
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we have

∂lf (xk,0)
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√
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2
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+
∑
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(
1 +

1√
βn2
− 1

)
+

β1

βn2

∑
i
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(

1− β1

1− βn1
+ 1

)
n
)
− |∂lf (xk,0)|
√
vl,k,0

∆1√
kn
C7

≥∂lf (xk,0)
2

√
vl,k,0

− |∂lf (xk,0)|
√
vl,k,0

∆1√
kn
C7

− |∂lf (xk,0)|
√
vl,k,0

(∑
i∈i+
|gl,k,0,i| (1− β2)

(−1 + 4nρ2β
−n
2 )

2
+
∑
i∈i−
|gl,k,0,i|

(
1√
βn2
− 1

)

+
β1

βn2

∑
i
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(

1− β1

1− βn1
+ 1

)
n

)

≥∂lf (xk,0)
2

√
vl,k,0

− n
√

2n√
βn2

∆1√
kn
C7

− |∂lf (xk,0)|
√
vl,k,0

(∑
i∈i+
|gl,k,0,i| (1− β2)

(−1 + 4nρ2β
−n
2 )

2
+
∑
i∈i−
|gl,k,0,i|

(
1√
βn2
− 1

)

+
β1

βn2

∑
i

|gl,k,0,i|
(

1− β1

1− βn1
+ 1

)
n

)
.

(51)
The last inequality holds due to Lemma F.1 and the fact that |∂lf (xk,0)| ≤ n

∣∣∣gbl,k∣∣∣. It can further
reduce to

∂lf (xk,0)

n−1∑
i=0

ml,k,i√
vl,k,i

≥∂lf (xk,0)
2

√
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√
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|gl,k,0,i| (δ1 + δ2)− n
√

2n√
βn2

∆1√
kn
C7

(52)

where δ1 = (1− β2)

(
−1+

4nρ2
βn2

)
2 +

(
1√
βn2
− 1

)
and δ2 = β1

βn2

(
1−β1

1−βn1
+ 1
)
n.

When |∂lf (xk,0)| is smaller than ∆1√
nk

(
32
√

2
(1−βn2 )βn2

n2
)

, the inequality is simply:

∂lf (xk,0)

n−1∑
i=0

ml,k,i√
vl,k,i

≥ − ∆1√
nk

(
32
√

2

(1− βn2 )βn2

)
n2 n√

1− β2

1− β1

1− β1√
β2

because of Lemma C.2. We denote the large gradient components in the first case by "l large" and the
rest components of the gradient by "l small". Summing up all of them, we have

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

ml,k,i√
vl,k,i

≥
∑
l large

(
∂lf (xk,0)

2

√
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− |∂lf (xk,0)|
√
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∑
i

|gl,k,0,i| (δ1 + δ2)− m
√

2n√
βn2

∆1√
kn
C7

)

+
∑
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− ∆1√
nk

(
32
√

2

1− βn2

)
d

n√
1− β2

1− β1

1− β1√
β2

.

(53)
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Since we have assumed that the largest component of the gradient is sufficiently large, we can further
simplify the inequality to

d∑
l=1

∂lf (xk,0)

n−1∑
i=0

ml,k,i√
vl,k,i

≥
∑
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∂lf (xk,0)
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√
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∑
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k
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(54)

where C8 =
√

6nd

β
n/2
2

C2 +
(

32
√

2
(1−βn2 )βn2

)
n2

√
n√

1−βn2
1−β1

1− β1√
β2

.

Since |∂αf (xk,0)| > ∆1√
nk

32
√

2
(1−βn2 )βn2

n2, we have |∂αf (xk,0)| > ∆1√
nk

32
√

2
(1−βn2 )βn2

n2. Thus α ∈ l large.
Furthermore, we keep only the α component in the first term, yielding
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(55)

We know from Lemma F.1 that for large l,

|∂lf (xk,0)|
√
vl,k,0

≤

√
2ρ2

3

βn2
.

By our assumption:
d∑
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(56)

The last inequality can be derived from Cauchy-Schwartz inequality. As a result,
d∑
l=1
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where we have used Lemma F.2 since k > 4. T2 is still defined as

T2 (β2) =

√
5d

βn2
dρ1ρ3D1δ1 =

√
5d

βn2
dρ1ρ3D1
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and T1 is defined as

T1 (β1, β2) =
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5d
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dρ1ρ3D1δ2 =

√
5d

βn2
dρ1ρ3nD1
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(
1− β1

1− βn1
+ 1

)
. (59)

They approach zero when β2 approaches one and β1 approaches zero. This completes the proof.

If we use the bias corrected version, we need one additional constraint 1 + 8
√

2
1−βn2

.

Lemma G.2 is the Adam counterpart of Lemma F.4. Further, if we replace C3 in Lemma F.4 with C8

just defined and replace T2 by T1 + T2, we can repeat the rest of the proof in Appendix F to prove
Theorem 4.4. We omit the derivation and present the constants below:
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where the constants are given by:
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where C9 and C10 defined as
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