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A ADDITIONAL EXPERIMENTS

A.1 COMPARISON OF RMSPROP AND SGD TRAINING PERFORMANCE

In this section, we provide additional figures comparing the performance of RMSprop and SGD in
the experiment mentioned in Section[5] Specifically, we plot the training and test accuracy at each
epoch for both algorithms. We also run 300 epochs to guarantee the convergence of SGD. Figure
[AT]demonstrates typical difference of behaviors of RMSprop and SGD during training. In this case,
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the batch size is set to be 32, and /32 is set to be 0.99 for RMSprop. The result shows that although
SGD manages to achieve 100% training accuracy finally, it takes substantially more time for SGD to
converge. The test accuracy of SGD is not as high as RMSprop as well in this case.
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Figure A1: Performance of RMSprop and SGD with ResNet-18 on CIFAR-10. We choose the batch size to be
32 and run 300 epochs for each experiment. For the RMSprop experiment, we choose B2 = 0.99.

A.2 RMSPROP EXPERIMENTS ON GANS

We also explored the performance of RMSprop with different 52’s on GANSs. In the experiment,
we choose CIFAR-10 as the dataset, DCGAN (Radford et al., 2016) as the architecture and Jensen-
Shannon distance as the loss metric. In particular, a 5-layer CNN and a 7-layer CNN are used as the
generator and the discriminator, respectively. We fix the learning rate as 0.0002 for both the generator
and the discriminator and take 100K iterations on all experiments. For each s, 3 repetitions are
conducted. The quantitative results, measured by FID scores, are shown in Table[d] The performance
of RMSprop indeed benefits from larger choice of J5.

Table 4: FID scores of the generator for RMSprop with different 82’s

Bo FID score

09  41.57+1.00
095 39.92£1.10
0.99  38.94+0.77
0.995 39.09+£0.57
0.999 38.26£1.16

A.3 A SIMPLE INTUITIVE COUNTER EXAMPLE

For a simple example, consider the following problem:

9
min f (z) = 2% = 102> + Y _(—2?) (5)
j=1

which corresponds to fo = 1022 and f; = fo = --- = f9 = —x? in our setting. There is a strong
positive gradient signal and many weak negative signals. Similar counter examples are also proposed
by other researchers (Chen et al., 2019).

Weighing gradient square in the past and at present, 32 controls the level of distortion of the gradient
signal. Like what Figure [A2]illustrated, small §s distorts the gradient more. While small 5, may
help v; approach closer to E gﬂ , thus facilitating optimization, it can also cause divergence.

We also explored the performance of RMSprop with different 35. Results are listed in Figure [A3]
with all experiments starting from z; = 1, v9 = 0. RMSprop behaves very differently when we
increase 3o from 0.9 to 0.99, suggesting a phase transition between the two values.
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Figure A2: A figure showing how updating direction \/ﬁ depends on gradient g with different (5.
2 —P2)g9
When > = 1, the update is linearly dependent on gradient. The smaller /3> is, the more it deviates from linearity.

g
V B2+ (1—B2)g2

After taking expectation, E can be far away from E [g]
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Figure A3: Convergence of RMSprop with different 5». It diverges for small 52 while converges for big (-.
The phase transition point is between 0.9 and 0.99 for toy problem ().
A.4 NON-REALIZABLE EXAMPLES
A non-realizable toy problem is:
(z—a)® ifj =0

fi(z) = 10 \?
! —0.1(95—5%) ifl<j<9
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Then,

: 1 2 1 2
f(x):ij(x)ZEx ~ 9
§=0

is lower bounded by —%a2. We apply diminishing step size RMSprop, AMSGrad, and SGD to this
problem with @ = 10. The results are shown in Figure[A4]

RMSprop
AMSgrad
———s6D

RMSprop
AMSgrad
———s6D

1og ;(Ix-x Iy
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X

) 1 2 3 4 5 6 7 ] 9 10 "o 1 2 3 4 5 6 7 8 9 10 [ 1 2 3 4 5 6 7 ] 9 10
number of iteration %108 number of iteration x10% number of iteration %108

Figure A4: Convergence of 3 popular algorithms on the toy model. They all use diminishing step size n: = %
with n; = 0.1. The left figure plots log,, |z — z*| over iterations with the initialization point of zop = 0; the
middle figure plots © — =* over iterations with the initialization point of o = 0; while the right figure plots

log, o |x — x| over iterations with the initialization point of zo = —0.1.

As Figure [A4] shows, SGD converges, which is not surprising since diminishing step size SGD
converges even for non-realizable problems. AMSGrad also converges slowly to x* since the
logarithm of distance to the optimum point decreases steadily. This is also in accordance with the
result in [Chen et al.| (2019). In comparison, RMSprop fails to converge to the global minimum in
1 x 107 iterations: from the plot of x — z* it seems that 2 moves away from the global optimum
even if we set the initialization to be x¢ = z*. Our further experiments show that RMSprop cannot
generally converge to the optimal point in this problem: z stays at some distance dependent on 35
away from the optimum. Moreover, when 3 becomes closer to zero, the distance is smaller.

A.5 HISTOGRAM OF p1, p2, AND p3

In Appendix [F} we introduce three parameters p1, po, and ps that will effect the threshold of (3. It
will be helpful to estimate their size in practice. We study a typical image classification problem on
MNIST using RMSProp. The batch size is set to 16 (thus n = 3750) and [32 is 0.99, which falls in
the convergence regime. Then we calculate the three quantities for each coordinate (each parameter
in the neural network) in the beginning epochs of training, and estimate their distribution density.
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(a) Histogram of p; (b) Histogram of p2 (c) Histogram of p3

Figure AS: Histograms of three parameters. Probability is normalized.

These results show that on this specific image classification problem, the maximal p; is upper bounded
by O(y/n) (which is close to the worst-case estimate), the maximal ps is close to O(n), while p3 is
upper bounded by O(1/4/n). Combining these three practical bounds, the product p; p2p3 =~ O(n).
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Thus our bound for j, is approximately 1 — O (n~?2). Note that our bound 1 — O(np;p2p3) is just
the worst-case bound; for practical purposes, we shall consider the average values of p;s. The bulk
of the distribution of p; lies at 10, and the build of the distributions of ps and p3 lie at 200 and 0.01
respectively, thus the product pq paps is roughly 20 < /n, thus the suggested 82 ~ 1 — O (n*1‘5).
This suggested (35 is still larger than the practically used (2, and we leave it as a future work to close
this gap.

B THEORETICAL RESULTS OF ORIGINAL RMSPROP/ADAM

Adam introduced in (Kingma & Ba, |[2015) starts from zero initialization and uses a bias correction
step to rectify the early step sizes:

Algorithm 2 Randomly shuffled Adam with zero initialization and bias correction

Initialize my,_1 = O0and v;,_1 =0
fork=1— oo do
Sample {7 0, k1, -  Tk,n—1} as a random permutation of {0,1,2,--- ,n — 1}
fori=0—n—1do
My = Prmpi—1+ (1= B1) V.,
Uk = Povki1+ (1= B2)Vin , oV,

Nkxn mik,i

Tki+1l = Tk — o o nkti
ki 1-54
liﬁg,k-m +e
Break if certain exit condition is satisfied.

end for
Tk+1,0 = Tk,n
Vk+1,—1 = Vk,n—1
MEk4+1,-1 = Mk n—1
end for
return x

We will refer to Algorithm 2] as the bias corrected version. The bias corrected version differs from
Algorithm|T|only in earlier stage of training, thus it should have the same convergence pattern. Indeed,
the following theorem shows that most of our results still apply, with some minor modifications in
the beginning stages.

Theorem B.1. (convergence of full-batch Adam with zero initialization and bias correction) For
optimization problem (3) with n = 1, assume that f is gradient Lipschitz continuous with constant L
and lower bounded by f*. Then, for full-batch Adam with diminishing step size n; = = and any

Vvt
b1 < /P2 < 1, we have:

logT
i \V4 <O
el 7y IV Felh < ( VT )

where t;n;; = max{1, [logs 11}

Theorem B.2. (convergence of small-31 Adam with zero initialization and bias correction) For
optimization problem , we assume that f is lower-bounded by f* and f; is gradient Lipschitz
continuous with constant L for all j. Furthermore, we assume that f; satisfies assumption @)). Then,
for randomly shuffled RMSprop with diminishing step size n; = % and (1, B2 satisfying

Ty (B1,B2) + T (B2) < 1 — % 6)

we have

: logT
< .
teéﬂf},n IV fuelly < O ( JT ) + O (Q3,5\/D70>

where Qs 5 is a constant that approaches 0 in the limit as B2 — 1, Ty is defined in @), and T is

defined in (39)
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It’s worth mentioning that although ¢;,;; is nonzero, it is finite, thus not affecting the convergence
results.

We interleave the proof of these two results with those of main theorems in the subsequent sections.

C NOTATIONS AND SOME LEMMAS

We are going to use multiple subscripts in the proof. The notations are explained here:

e Vector x is in parameter space R<. In the full-batch Adam, i.e. n = 1, we denote x; as the
value of x at the ¢-th epoch and z; ; is the [-th component of z;. If n > 1, we denote x, ; as
the value of x at the k-th outer loop and ¢-th inner loop, and z; j ; as the [-th component of
Tyi-

® Uy, Ui t, Vk,is Ulk,i» and my, my ¢, my 5, My 1, are defined in a similar way as .

e We denote 7, as the step-size. We will focus mainly on diminishing step size, especially

N = % Nevertheless, for each epoch, the step size stays the same.

o Further, to simplify the notation, in the proof of the convergence of randomly shuffled Adam,
we define g; 1 ;. ; £ 6%1 fi(x) oy We sometimes use f; as a short-handed notation

of f (x¢), O; as a short-handed notation of a%p and V f; ;. ; as a short-handed notation for
)
37lf(ff) |L:“

Then we will discuss some basic properties of Adam and RMSprop.
Lemma C.1. For any version of RMSprop, in each iteration,

Tt
|i 141 — @iy < ——

V1= [

This is obvious since \/52”1',%1 + (1= p52) (gi,t)z > /1 — B3 |gi|. Since this is an upper bound
on the stepsize, the magnitude of € does not matter here. If we use bias correction, the stepsize is

< n:/(i:gz) < \/1”: = hence this lemma still holds.

Lemma C.2. For any version of Adam, if 1 < /s, in each iteration,

contracted by a factor of #: |41 — @iy
2

|xi,t+1 — Tt S e \/1];75 11— 51;: be
R/

where bc is an index which equals to O for the bias corrected version and 1 for the specially initialized
version.

Proof. By the update rule of specially initialized Adam,

_ |4 ¢
|Ti¢ 11 — ZCi,t| =mnm—.
Vit
Since
t—1
mie = (1—pB1) Zgi,tfsﬂi
s=0
We have
t—1
il < (1=81)D lgii—s| B
s=0

Moreover, since v; ; = [Bav; t—1 + (1 — f2) gft_l, by recursively expand v; ¢, we have

t—1

vie = (1= 52) > 97 B3 > 97055

s=0
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foreach s € {1,--- ,¢ — 1}. Therefore:

t—1
(1 = B1) |git—s|

Ti 41 < b1
| i,t+ pa \/m 1
t—1
(1—51)git—s|
< ki By

(1 - 52) 5592'2,:&73
.S 15 (5

V)

V(1= B2) \VP2
<3 =B) ( B )
S —
s=0 (1 - BQ) ﬂZ
1 1-75
= nt B
-5 1- 2
If we use bias correction for both m and v, the result simply changes to the step size is multiplied
by a factor of ¥— [f? < 1=5 - Therefore we only need to multiply 7; \/11_ = 1-5 l*bc 5 with 7 B1 to
obtain the bound for bias corrected version. O
Lemma C.3. Let M and k be 2 integers with k > M, we have
f /
Proof. For the lower bound,
Z Foodt 2M M
v Vi VE+VE—M vk \/E
For the upper bound,
L =L gt 2M 2M
S s <=
kM1 vVt NE—M—-1+vVk—1" Vk—1
O
Lemma C.4. Let © € R, then for b > 0, min,{(z — y)* | |y| < b} > 22 — 2]|z| b
Proof. The proof is very straight forward.
Ifb < |z], miny, <, (v — y)* > (2] = b)* = 2% = 2|x|b+b* > ? — 2|a|b.
If b > |2], minjy < (z—y)?=0>a%—2|z|b O

D PROOF OF THEOREM [4.1]

We start by determining the upper bound of v;_; ;. In the following lemma, we use 0; f; as a simple
notation for %f(xt).

_ mLVd . . .
Lemma D.1. Define A; = T vT where d is the dimension of parameter space. For any
coordinate i, if |0; f¢| > 4\[A’ , the following holds for RMSprop:

5
Vi1 < 3 0,17 .

17
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mLvd 1— Bl*br

Vi 1 , this lemma holds for Adam.

Remark: if we change the definition of A; to A; =

Proof. From Lemma|[C.] the effective step-size of RMSprop is uniformly upper bounded. Therefore,

if 9; f; is given, by the per-sample gradient Lipschitz continuity condition, the previous gradients
cannot be too large. We thus have the following (under the initial condition v; o = (1 — 52)_1 91'2,0)5

t—1

Vige1 = (1= B2) Y (9ii—3)° B3+ 8L (gi0)?

1]

J

=(1- 52) 10ifr—i|” B3 + BY " (gi0)?

I
~ -
I
-

<.
I
—

t—1 t—1 2
<(1—po) Z<|3ft|+ZAt k) - <|3ft|+ZAt k) .

Jj=1

t—1 .
2j mLVd
={=h) Z('aﬁ” 1+\/t—j—1\/1—62>

=
+ <|8ift| + 25;711) %)2

<), ('M'* ﬁ%%) (|a PSR
<10 fu]2 + |0u S| 4\fAt N 16A2

(1=52)  (1-py)?

(7
where the first inequality comes from the gradient Lipschitz continuity condition: each iteration
changes z; ;1 by at most ntﬁ’ so the gradient changes by at most A; by Lipschitz continuity;
the second inequality comes from Lemma [C.3} and the fourth inequality is because ¢ > 1. For
the fifth inequality, we extend the upper limit of the summation from ¢ to infinity by the relation
= 62 =1+ Ba + B3 + - -, which is feasible since we just add some non-negative terms on the right

hand side of the 1nequa11ty. The last equality comes from the following calculation:

(1-p2)> B =1
j=1

Nl L
(1 /32);]@ =5,

1— S j-1 _ 1+ o .
( 52)2] B (1—52)2

18
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we have:

Therefore, if |0; f;| > 4v/2 Aé

17 2,
5
Vi1 < 3 10: /2
O

With some minor modifications in the proof, the above lemma also holds for RMSprop with bias
correction.

Lemma D.2. For RMSprop, the following holds for all V f;:
-V v 4v/2A 1
<vﬁWt fr >§__ IVAily, , 4V2A,

\/52Ut71+(1_52)vft2 nt\/l—F%/Bg ntliﬂQ \/1—1—%62

where ||V fi||, is the 1-norm of vector V f;.

Proof. For any coordinate i, if |0; f| > 41@?2‘, from Lemma we can see:
0 fi o lopp
VBavi—1+ (1= B2) 0if2 — \/(1 +285) 10 f|
|0; f+]

Y e 8
\/1+ 352 ®

o 0t 424, 1

0 ft

When [9; f| < 41*/??;, we have :
Oi ft

O; [t >0
VBl (L= B2) 01 f7
9)
- ifel 427, 1
1+ 505 1=0 V14382
Next, we sum up both sides of the inequality by subscript ¢ and multiply it by —n;, obtaining:
-V v 4v/2dA 1
<Vﬁmt Ji 2>§mllﬂ1 o /2 ,
\/BQUt—1+(1_62)vft U].—‘r%ﬂz 2 1/1+%ﬁ2
O
Then, to the proof of Theorem 4.1}
Proof. Since f; is L-Lipschitz, by descent lemma and Lemma|C.1]
L
Flaerr) = f(2e) SV (20) 2001 = 20) + 5 oo = A
(10)

V fi +£7I2
VB2vi—1 + (1= Ba) V2 21— By

We sum both sides of the inequality from ¢;,,;; to T:

S - <Vft7

T

m vy Lo,1 Ld
farm) =1 ) <= 2 ﬁ<vf“ Jﬂzvt_1+(1—6g)VfE>+tZ BEICRY

t=tinit =tinit
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As f (zpy1) > f*, we have:

T T
Ui Vi 21 Ld N
—= (Ve < Moy T @) = f
t:%;it \/i < \/BQUt—1+(1_ﬁ2)Vft2> t:%;it t2(1 _62)
Next we apply the result from Lemma[D.2]to further simplify it as:
d n
1
e
t=tinit \/i 1 + 562
T
1 Ld 4v2dLd 1 .
< 77%; + f @tii) — f

+ 3
t=tinit 2 (1 N ﬂ2> (1 - 62)5 \/@

On the right hand side, we have

On the left hand side, we have

ZT: i22(\/:7—\/15,4,”4,5——1)

t=tinit
Hence, setting t;,,;+ = 1, we have:

. 1
min [V fill, < —=

t€[tinie,T] VT

where the constants are:
x) — f* 3
Ql,lzif( ;) f \/1+ 552
m 2
m [ Ld1+382  42dLd

2\ 2a=m) ¢ (1—B)}

(Qu1+ Q21 log (T4 1)),

and

Q2,1 =

E PROOF OF THEOREM

Y

(12)

13)

The proof procedure of Theorem [d.2]is similar to that of Theorem#.1} As mentioned in Appendix D]

01 LVd(1—bexB1)
()

if we set A; =

, where bc is set to zero for bias corrected version, and to one for

specially initialized version, and keep other notations unchanged, Lemma [D.T| holds for Adam. Then

it suffices to find a sufficient decrease condition for Adam.
Lemma E.1. Fort > 1 and 31 < /o, the following holds:

—my ||Vft||1 Ald 1 261 1 1-— [31
V fesme > < e +mdvV2 + +
NG V10 VE\1=0 1-5)\VI0 1-5 ( _ B )
' =5 1= 75
Proof. From Lipschitz continuity and Lemma[C.2} we know that
| < Aiit A, < —2 A
it Git—s| > t—1 t—s > \/t—i]. 1
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where the last inequality comes from Lemma|C.3] As a result,

2s

GitGit—s = Gii — 9] ﬁAl-

The momentum m; ; is a discounted sum of g; ;. Therefore,

t—1

migie = (1 — 1) Zgz',f,gz',t—sﬂf + gi,tgi,oﬂf_l
s=0

— 25 2t — 1)Ay
> (1 6) (gz = lgu] )B (g;{ |gi,,|> 5
1 ;0 t t \/7 1 t t \/15—71 1

> (1—51)50: (gzt |9i,¢] ﬁ)

s=0
24, B1

=g, (1_ )
" VE—Tlgii| 1 =P

Ift > 1and |g;¢| > 8‘/\%‘1 16151 , it reduces to:

391'2,t
mi1Git > 1

When we use zero initialization and bias correction, the inner product should be changed to:

t—1

miGic = (1 — p1) Zgi,tgi,tfsﬁf

> (1 —51)2 (gm it jﬂ)

s=0
2A 6 t+1
2 t 1 1 t 1
1— Bt — — Bt —
gl,t( 61 T—1 5 (151 ﬁl 1751
>9‘2t (1_55_ 281 2 )
" VE=T|gis|1— B
Thus if ¢ > max{logg, 7,1} and |g; | > M%Al%, it reduces to:
2
g.
m; 19i¢ = 17)&

2
To accommodate the results under 2 settings, we will use the looser bound g;‘ in the following

derivations. Combining this bound and the result from the Adam version of Lemma[D.I] we come to

the conclusion that if |g; ¢| > 4\@% (ﬁ + 2/31 ) the following holds:

e Git > gz'2,t > 91‘2,75 _|gi,t|

it fVis — 21/'Ui,t - ) gg_Qt N v 10
2

Thus,

mzt |gzt| Al( 1 2ﬁ1 ) 1 ]-_ﬂl
w2 Vo VTR T g VI T (

m)
Bz
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Otherwise, if |g; +| < 4\[A1 ( L -+ 12_11), from Lemma

fe:n
mg ¢ 1-51
Git = 2_|gi,t| 3
Uit V=5 (1- )
_|gi,t _| t| 1 1_ﬁl
V10 V10 M(l—%)
, Al 1 Qﬂl ) 1 1_ﬂ1
—4v2
= V1o \fJ(l—Bz L= er\/m( o)

Therefore the inequality holds for every g; ;, we can sum up all indices:

i, v Aqd 1 2 1 1-—
Zg”mt | ft||1_4\/§ 1 < . 51> . A

VUi~ V10 t \1-82 1-p1) |\ V10 - ( By )
Vi VI=5 o
This completes the proof. O

Finally, after repeating almost the same procedures at the end of Appendix D} we can prove

1
min \% < ——
t€(tinit,T] H ft”l o \/T

with the following constants:

(Qr2+ Q22log (T'+ 1)),

z, ) — [* — QonPLdlog tin;
Q1o = f @) = f 277@2771 g t/10
1

and " )
Q22 = %Lsz

where
/ 1 1— 81 %xbc
QQZ — 51
V1= 6 < VB ) [

1 1— By *xbe 231 1 1— By *xbc
4v'2d
M—Bz( - % >+ (=5 125) VIO TR (1 ) ]

F PROOF OF THEOREM [4.3]

It takes even more complicated calculations to prove the convergence of the randomly shuffled
version of RMSprop, but the rationale is still to track the magnitude of v and calculate the diminishing
speed of ||V f||;. The derivations in this section can be considered as a template: following similar
guidelines, the convergence of Adam(with small 3;) can also be proved. We will prove Theorem[4.4]
in the later section.

At the begging of this section, we introduce several new notations.

We define glb7 & as the largest coordinate of the gradient in the beginning of the k-th epoch:

bip=arg max g ro4,
i€{0,- ,n—1}

b _
916 = 91,k,0,by -

We next introduce three constants to characterize the distribution of gradient norms among different
batches i.

22



Published as a conference paper at ICLR 2021

p1 is a constant that measures similarity of gradient norms:

n
p1 > > i1 191k,0,i] : (14)
21‘:1 |91.%,0,i]
for all 1 and k. It’s easy to verify that 1 < p; < y/n: the lower bound can be derived from Cauchy

T
C < 1, where we set

Vilul®[lo)*

inequality, and the upper bound from Cauchy-Schwartz inequality that
Yandov = (1,1,..1)T

u = (191,500l s 91,k,0n
p2 1s a constant that represents the ratio of the largest gradient norm to average gradient norm:
b
ik
P2 T T

7 2it [9k.0,i]

We can see 1 < py < n, and p- is lower when the gradients norm are more homogeneous.

‘ 2

5)

p3 1s a constant that represents the the ratio of gradient norm to noisy gradient root mean square:
n

1> i1 91,k,0,i]

1 n 2

7 2im1 |90k0i]

it’s easy to see that 0 < p3 < \/np; < n. ps is alrger when g; j o;’s are more aligned.

p3 = (16)

Lemma F.1. [f the l-th component of the gradient V f satisfies

mL dnn2< 322 )
(

|81f($k,0)|2¢%@ 1—33) By

we have
v, g
1,k,0 > 2

1 2 =
n > 91.k,0, 2
This lemma gives us a lower bound of v when the gradient norm is large enough.

Proof. We still define
o Ld: g
VI—PBavt

Assume M (M < k) is the largest integer satisfying

Ay

M
Z Vi < |gixl-
j=1
M is greater than 1 and smaller than k, so such M must exist. By definition and Lemma ’gf’ ; k‘
is lower bounded by:
| b | > \/aLnl \/ﬁn %
= VT=B vk

Since vy o could be considered as exponential averaging of g7, ;:

a7

2 2 2 2
Vg0 = (1 — B2) (gz,k,o,rk,o + 9ik—1 1,7 1m1 P2 T ikt =210 aP2 T )

to estimate a lower bound of v; ;o we have to find a lower bound for gradient norm in the summand.

For a very loose estimate, we use Lemma C.4|to derive such lower bound . As |g?, | is assumed to be
. . . . . . . 7 .

sufficiently large, continuity restricts the range of gradient norm: in each iteration, all coordinates

change by at most \/%, so change in the gradient norm is also bounded due to Lipschitz condition.

Since one epoch contains n iterations, each coordinate shifts by at most % in one epoch.
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Recall that we explicitly required M<k, which contains two cases: M < k—1land M =k — 1, we
will discuss them separately.

Case 1: When M<k-1, the definition of M indicates that ZMH NI ’ g; k‘ This implies (by

Lemma [C.3):
lob4] < A12(M+2)v/n  A4AM/n

<
gl,k /71{. +1 \/E
Since we assumed |0, f (zx0)| > % <f2\,é; ) the largest coordinate of the gradient is also
lower bounded by ‘gl k’ }% ( 52\/;; > Therefore
2
s 32
1-p3

For each i, if 73, _; , = 4, by Lipschitz continuity we know that:

J
- |gl,k,0,i|| < nZA(k—p)n
p=1

| |glvk7jyrv7'k7j,r

is:

Then a natural lower bound on ] k=G, T s

; ,
19000l =1 Y Ampyn =0 lfnZA(k pyn < |91k,0,i

p=1 p=1
9Lk0, 75, | = j (18)
0if n Z Ak—pyn = 191,50,
p=1
Combining this with Lemma|C.4] we have:
J
912,1@,0,1‘ — 2119150, Z A (k—p)n under all circumstances
2 p=1
9Lk—jrmi_jr| Z (19)

J
0 ifnZA(k_p)n > |90.k,0,4]
p=1

We use the first bound in (I9) for j < M and the second bound for j > M, thus the lower bound of
v is given by (we omitted the initialization of v in this case):

n J
V0 = (1= B2) ZZ (91 k0,4 = 2191,k,0, nZA(kp)n> 5’
i=1 j=1 p=1

LS 2jv/n
> (1=p2) ZZ(LglkOZ 2|glk01|A1\/ﬁ> 2

=1 j=1

sy Uy

Y 21— M it pEM — MBEM (1 - B3)
=(1-p2) 87 E 191,10, — —4A; ==
L_l -5 el (1-p3)°
— By . | 2 M oy lgnk0. 1—pgM nM>
1 55 BQ |J§_1 |gl7k707 | ( 2 ) 1 LE—1 < 1— ﬂg ﬂ2

(20)
where we applied Lemma|[C.3|for the third inequality. The second last equality used the relation:

M . 1— nIV[ MﬂnM(lfﬂ )
557 = B3 2
2% (- 53)°
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Then, from (17) and the definition of p; in (14), % > p% S lgukoil = 2
=1 i 1
VdlmVin M. oA, JvE, thus:

V1i-B2 Vk
;QMMOABQV p M —4¢ﬁ1( gy )]

B2 9 4[1
§ ; nl] - X2 21
=71 53 £ |gl,k,0, | 52 [ ﬁg ‘| (21)

b
gl,k’ >

vlkO_l

M 1-

1 = 2 4[ 1
= Z: |g1,k,0,i]” B2 (1 M I-pp )

8v2 Vi,k,0 By
We already showed M > = 5 hence IS Joiroil > 5.

Case 2: On the other hand, if M = k — 1, this means

o ’>\/EL771\/E’€—1
S VT=B VE

we can use Lemma [C.4]to rederive equation (20) as:

n k-1
Ui k0 = (1= B2) Z<|glk01| _2|glk01|nZA(k p)n>52
=1 j=1
1 n k—1
2 n(k—1
o ) <|gl,k,o,i| —2|gik04n ) A(kp)n) pyty
i=1 p=1 22)
n k—1 .
2]\/ﬁ nj
(1 PB2) (gl k0" = 2|91k,0,] A1 %) !
z=zl j=1 k—1 ’
1 2 2(k — 1)\/75) n(k—1)
+ - i|" =2 i| A ———=—
- ; (lgl,k,o, " = 21g1k,0,il A1 Jic1 )

where the initialization term is taken into consideration. We estimate the summations separately.

k—1

n(k—1
(1= 52) > lgkoal® B3 + 5( Mgkl

j=1

k-1
= (1=B2) | gk 2 1+ B2+ B3 + ..) |guko.l?
j=1

2

ﬂkl)
Qn (

2 BT (5 4 B3+ ) g0l

k—1
> (1=82) | > lguwoal”
j=1

= gjﬂz 9110,
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and also

i k—1
gumoil A | (1 82) Y BT + /32’“ Dk -1)

VE—1 =
k—1
vn .
< 4|guk0.4l A (1=B2) [ D_iBs" + 52 k(1482 + 82 +..)
VE—1 =
A Vn ni 4 gnk n | g2n
< 4|g1,5,0,l 1\/k7( — B2) B3 " Z]ﬂ k(1+/82+/82 +)
n X
< 4|gz7k,o,i|A1\ﬂ< B2 5" ZJB A (1 B3+ B2+ )
N 1
=4{g1k,0,i| A1—F— ( — B2) By "By
Vi - -
As aresult:
2?21 |9l,k:,0,z‘
v i :
lko_1 52 [Zglk0| — T
St (1 )
N3 o Z?=1 9150l VE—1 1—p53
. 1 n b mLvVdnB;" (32,32 : :
Since we have_z Yo lgikoil > ‘ > T (1_5n,>, the inequality
1 vi— 2
V1, k,0

B2 . .
ko 5 P2
IS Jgroil? = 9 holds this case as well. The proof is complete.

. .. . . V. k.0 By
- —uRU > 2
With the definition of p3 in equation (T6), we can then extend our result to GTGro? 2 ap- For
the bias corrected version, we need one more constraint £ > 18:?” + 1 to reach the same conclusion.
2
The derivation is very similar: the only difference is that we don’t have to consider case 2. O

Next we will try to find an upper bound for v.

Lemma F.2. Assume that .

2 2
S IVHill; < DuIVFIS + Do
j=0

Given k, we set « as the index of the coordinate with the greatest gradient:

a=arg max [0f (zr0)l-

I_fk >4 and \/|a f l'k ())| + D d 2 4\/7W, thefolloWlng holds:

5 D
o < 301 (100 o)+ 22 )

Proof. The rationale of this proof is similar to Lemma[D.T] Recall that

2 2 2 2
Va,k,0 = (1 - 62) (gOé,k,O,TkYO —+ ga,kfl,nfl,‘rk_lyn_162 + goc,kfl,n72,7'k_17n_2ﬁ2 + - )

As « is the index of the greatest gradient component, we have:

9 2
IV 11l3 < d\axfm,o)
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Thus our assumption Z;.’;Ol IV £;]l5 < D1 |[V£]|2 + Do leads to

n—1 n—1 2
0
> gkl =D IVE (zro)ll; < Dld‘c’)xf (7x,0)] + Do.
j=0 §=0 «
Specifically, for all j € {0,1,2,--- ,n — 1},
9 2
2 2
|9a.k,041" < llgr.0,5ll5 < Dld‘al,f(xk,o) + Do

To estimate an upper bound for v, 0, we will first determine an upper bound for each g, 1 — i Th— i
withk—1> 5> 0:

J
+ Z min{n, jn —i — ng}An(p—q)

q=0
< \/‘52(,]0(%’0)

o, k—jimi—j < |ga7k70;7k—j,i

(23)

2 J
D
+ TL\/Dld + qul min{n, jn —i — ng}Ap,p—q)
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The inequality is a result of Lipschitz continuity and Lemma|C.T} Summing them up and combining
these inequalities, we have

k n—1

2 n(j— i n(k—
Va,k,0 = (1 - ﬁQ) ((ga k,0,7, 0 + Z Z ga7k7.jyn*177;;7—k—j,nfl—i) 62 U= +1) + ﬁ2 (h=1) (ga,1771,J)2

j=11i=0

2
A
< (1 — 52) < (ga,k,O,Tk,0)2 + ﬂ2 <|ga,k,0,‘rk_1yn_1‘ + n(kl—]_)>

2 n(k—1)—1 2
24, n(k—1)
+ BS |gaak10ﬁk—1,n—2| + m-# +o ) 4+ 5, |9a,1,—1,7] + Z Ap(k—1)—t
t=1

n(k—1)—1 2
<1=5) Y, (\/|3 f (ko) DdVDl +2An(k 1) t) 53
=0
n(k—1)—1 2
(\/|8 f (zro) + Dyd + Z An(kl)t) ﬁg(k_l)
t=1
(k—1)—1 : 2
B Dy 2j nlfL j
<(1-p2) jz:; (\/V)f(fﬂko)"‘Dd D1d+\/(k—1—1+\/n k1) —j_1vI-7 >52
2(n(k—1)—1) mvVdL n(k—1)
(\/|8ka0 Dud+ Valk—1) 1+ n(k—1)—j—1v/1-P > ?
rb(k 1)—1 .
>, Do 2j mvdL
<(1-52) (\/Wf%o Dd Dyd \/n _1_1\/1[32> 62

Q(Tl(k— 1) — 1) 771\/EL n(k—1)
(\/Iaf (zr0)l” + 3 \/ d+ \/n(k—l)—1\/1—52> By

n(k— 1) 1 . 2
2v2j mVdL :
(1_62) (\/la f Tk,0 ‘ + \/D1d+ W\/ﬁ) ﬁ%

<\/|8 £ (@10l )2+ Do Dyd + 2v2(n(k —1) = 1) 771\/&L> g(k—l) (1= B2) (14 ot B2+ ..)

Vnk V1=
D 4 dL ;
_<1ﬁg>§<(|aaf<xk,o>|2 Do) puagh+ 2 o o + /D
8i*nidL?
k(- @)55)

_ Dy \/|8af(xk70)| Tod B 80t L (1 + B2) Ba
=D:d <(|3 f(xro0)]? + D d) +4v2Lip VDink (1 ,52)% - nkDy (1 — By)°

2

of (o) + 5% 1 1607212

nkD1 (1 — 62)3
24)

1s)
<Dyd (<|8ocf (zr0)[* + DO) +4v2Lm, \/|
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where the first inequality is due to Lipschitz continuity, the second holds because of relation (23]) and
the fact that

et

. ik < .
the third comes from Lemma the fourth comes from 7\/@ < /2. Therefore, if

V10aF (eo)lP + B > 4V2 B we have
D
v < 301 (0] (or0) + 2.

In the bias corrected version, the main result of this lemma still holds, with some minor modifications
during the proof. O

Lemma F.3. Under the same condition of Lemma there exists a lower bound of
below:

given

1
VUL k,i

1 1 1-— 4
> (1 . B (_1+ PQZ>) .
VUlki  A/ULko 2 By

Remark: ps can be replaced by its upper bound n.

Proof. From the convexity of function \/T we have

for x > —1. Applying this to

\/7 yields

L 1 51 (1_'Ulk,z Ulk0)> 1 ( vk Ulko|>
VOiki  A/Uko + (Ui — Viko)  VOLEO 2v1 1,0 = VUKo 2v1 1,0

Note that
i 2
Viesi = V0% + (Gktimen) By (L= B2) 4+ + (Giksiimes ) (1—pa),

the difference of v; 1, ; and vy 1 o is given by
2 2
Ui,k,i — ViL,k,0 = (1 - 52) [ (gz,k,i,rk,i) — U ko0 + B2 ((gz,k,i—l,rk,i,l) - Uz,k,o) + -

— 2
+6y ((gl,k,l,m,l) - Ul,k,t)”
where we have applied the relation v; 0 — S50 k.0 = (1 — B2) (1 + B+ -+ ﬁé_l) vl k,0- By the
definition of glb7 i and Lipschitz continuity, the following inequality holds:
1

VLk,0

((gz,k,i,mi)z + o (gl,k,iq,mi_l)Q +---+ 5371 (gz,k,1,m.,1)2)

1 ALY . A2
S'Ul,k,O gz,m,mi-ﬁ-lm + 2 gl,k,o,mi,1+(l—1)m + .-

A A\ 2
+ 5;71 (gl,k,O,Tkyl + \/TE) )

<! <|gb /+¢A1>2+ﬂ (\gb |+(z’—1)A1>2+~-~+ﬂ“ (\g |+ el )2
7Ul,k',0 I,k m 2 Lk m 2 Lk M

(‘Q?k

2
S A
+ 1)
. ) Vnk
Sl—n-
UL,k,0

(25)
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As we assumed |0, f (zx,0)] > Ln/dn (32\6), we have

Vky1—B2 \1-83
lobu > mLvdn [ 32v2 )  Ayy/n 32V2
M VeI = \1 -85 Vk 1-p83°
Therefore, we can further simplify the inequality as
1 2 2 i 2
VLko ((gl,k7i,7k,z‘) + B2 (gl,kﬂ*lﬁk,iq) + By ! (gl,k,17‘rk,1) )
2 2 2
b 1-83 b
ohe (1+5558) _ Johs]
< 322 <9 .
V1,k,0 V1,k,0
Recall that the lower bound of v; 1 o is given by
Uz,k,02 S— ULLk,0 > 372
(gf’,k) A k04l p2 202
Thus,
1 2 2 i 2 41po
((gl,k,i,m,i) + B2 (Gukirmi) +o+ 85 (Gukrm,) ) < —
ULk,0 B3

As a result,

[V1ki = Vikol _ (1= Ba)
V1,k,0 UL,k,0

(gl,k,i,rk,i)g — UKo + B2 ((gl,k,iq,rk,i,l)Q - ’Ul,k,o) + -

+ 6571 ((gl,k,1,r,¢,1)2 - Ul,k,O) ’

(1—52) 2 2 i 2
:m ((gl;k7i,7k,i) + 62 (gl,k,i—l,ﬂc,i—1> +-- 62 ! (gl,k,lﬂ—k’l) )
1-p i
- (72) (Uz,k,o + Baviko + -+ 55 1vl,k’0)
UL,k,0
41
<(1- ) ( i _1)
2

where the definition of ps is in (I5) and we finally have
Apoi\ 1 —
<(-1+ p2i\ 1= '
By 2

This completes our proof of the lemma. O

[V ki — V1 k,0
201 k.0

The next lemma is about the inner product between the gradient and all iterations in one epoch.
Lemma F4. Under assumptions in Theorem if the largest component « satisfies: (i)

|(9O¢f (Ikﬁ)‘ Z 32\/§n2(AW’ (ll) \/|3af (.’,Uk70)|2 + D’iod Z 4\/5(1752)A71D\/W’ we have

1-63)
= 9k,i
o v , 7'La7—k,i é
< fr0 ;7?” >
1 . 1 8Dy Ay
— ———min < (1 —T2(52)) [0af (2£,0) |, [0a f (zk,0) |? +T2(B2)y [ v5 5 + ——=C3
\/ 3D1d Yo DIk

with Ty defined in (37).
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Proof. Case I We first consider those gradient component large enough, i.e. |9, f (xy0)| greater

than jﬁ (%) n?. By Lemmaand Lipschitz continuity,
2 2
g mlvd <g _mIvd_ (26)
LEO ke = T = i = YLk, = YLE0, 7k
™ VT =B, o o e/ B
Therefore,

im LN A |0y f (xx.0)| im LNd |0y f (9%,0)|.

Of (h,0) Gi.k,0,70.— < Of (Tr,0) Gkyivrs < OLf (Th,0) G1k,0,m,F

VknyT =P, \/(@)\/m

As the signs of g; 0,7, , and Oif (z10) can be same or different, we have to treat the 2 cases
respectively.

When 9, f (zx,0) and 91,k,0,m;,,; Share the same sign, their product is positive. Then from Lemma

gl k ) Tk.i
5 i,
Lf (2h,0) Worsd
G1k,0,75 4 1— 5 ( 4P2i)> im LA O f (2k,0)]
>0 f(x = 11— -1+ - :
1f (ko) VULkO ( 2 2 VEny/T = Ba/Uiki (28)
> f () T0omis (1 16 (_1 n 4PZZ)> _imLVd |9 f (zk0)] .
VOLkO 2 B3 VEny/T = Bar/vr k055

On the other hand, if they have different signs, we simply have

) 9l,k,i JTh,i
\ Ul,k,i
. 29)
gkom: 1 |Of (wk0)l inL\d
> O f (zk0) -,
VOLEO /B VOO VEnyT = Bar/Bi

oLf (k0

Combining these two inequalities yields

n—1

9i,k,i,
f (zx Z ki, T,
f(xk0) 2" i

alf (Tk0) ( 1-— ( 4np2>> I ki i
Tk,i ]‘_ 1 -
> = (g;glko 5 - Z i (30)

0if (x10)]  mILVd nz:l ]
VULE,O VEnyT — B2 \/ﬂ;

where i+ means the set of the indices of the components with the same sign of 0 f (z1,) and i—
means the set of the indices of the components with opposite sign. Note that we have added 2
non-positive terms on the right hand side. For simplicity, define

n(n—1)
Cy st —— 2
NS
Since

> Gikom, T D Gukom., = 0uf (zro),

i€i+ 1€i—
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we have

n—1
lk?T}c
o f (wkp) g .
i VUl k,i

8lf l‘ko ( _1—ﬂ2 (_ 4Tlp2>)
= 'UlkO <l§i_glk07k1 2 1+ 1;%1@;7,“ 1—|—\/E

oS (weo)l  mILVd
VOiko VknyT— B

Ouf (@ro)” 101 (o) (=1 +4npaf; 1
> oo N <Z€22+|glk01 152)+zezz|glkm|<\/7 ))

oS (xko)l  mLVd
VO VEnyT=Ps

2
Z@zf(xlao) 0L f (Tr,0) (Z%;r'glkoz 62)(1+4"p262+§_ |G1.k.0.4] (\/@ 1))

Co

Cs

v/ Vl,k,0 v/ Vl,k,0
nLvVd2n
——— (5.
\/7\/1_7 n/2
(31
The last inequality holds due to Lemma and the fact that |0;f (zx,0)| is greater than

Ay 322 2
Y <(1_ R ﬁ;) n®. It can further reduce to

— gl,k,z;rk
O f (wr,0) E -

Vl,k,i
, Vitks (32)
Af (xr0)”  |Ouf (zk0)] mLVd2n
> E |91,k,0,i 0 /20
\/M \ULE,0 \f\/iﬂn

1+ 4npy

Wheredlz(lfﬂg)( 25">+<\/1571>_

Case II: For those gradient components smaller than - f ((1 326\/')%”) n?, the inequality is simply

n—1
9l,ki, T Al 32\[ 9 n
of (zr0) Z T > — Ny <( R ) n’ = 7

1=0

because of Lemma[C.1]

We denote the gradient components in case I by "I large" (large in the sense that |0; f (z,0)| >

S| (732\/5 ) n?) and the rest components of the gradient by "I small". Summing up all of them,

Vnk \ (1-83)B%
we have

d n—1 Gk

17—
E oL f (wr0) E ookl
=1 —0

Ulk1
o) ) L/d2
>Z< Lf xko |lf ﬂfko\z|glk01| 0 — n nn/20> (33)
[ large Vvlko \/m % \f\/iﬁ

32v/2 n?
P (152)52>\/71—6z'

[ small
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We can further simplify the inequality to

Za[f .'lfko i lkzrkl

Ul k X
S ( 0f (2x0)] A oY
Tk,0 L f (k0 1
>Z lﬁ Z m— 2\91k02|51 ﬁ
I large ULk,0 l large Vi,k,0 i
where
vV2nnd 32v/2 n3d
Cs=—mm Ot g | A
B, (1-83)53 1— [
2nn?(n —1)d 322 n3d
263 153 /(1 - B2)By
We have assumed that |0, f (x,0)] > W @ 3/37“\”{62" n? in assumption (i), thus o € [ large. Further-
more, as a very loose estimate, we keep only the o component in the first term:
— 9l ki, i
of (x
S0t 3 e
3 Oaf (x0)” 101f (2k,0)| A o
(Tk0) L f (k0 1
- — C
NG lg Ny ;“’”“0’“ Jnk

] . > 71 \/%n2 ( 32\/5) :
We know from Lemmathat if |00 f (zk,0)] > Vi (=57 \15

|5lf($k,o)|< 2p3
N

where the definition of ps is in (T6). Then by the assumption Z?;Ol IV f; H; < Dy ||V f|3 + Do, we

have
0f (xk0)] )| X
Z NG Z|glk0ﬁm

[ large =0
2 2 n—1
< Z ﬁ Z |gl,k,0,7-k7i
I large 2 =0
9 d n—1
p3 ZZ ’glkOTk,L
=1 =0 (36)

2 2
< ﬁx/&m/m IV £1I3 + Do
2
202 D
A /Dy 9 ero) + 5
2

1
% o /Do
/Bg Dlpld (aaf (Ik’,o)| + Dld

where the third inequality comes from the fact that under the constraints (i) Z?;OI |gl$k’0’rk)i <
-1 2 . .. -1 d 2 2
p1 \/Zf;o |91k,0,m|” for each i and GDX75 Yoz [g1k0m.| < DilVEl; + Do,

Zle E?:_Ol ‘gl,k’oﬁk,i is upper bounded by \/Epm/Dl ||Vf||§ + Dy, the fourth is because
HVfH; < d|0af (a:k,o)|2, and the last is because \/z +y < \/x + /y, forany z,y > 0.

33



Published as a conference paper at ICLR 2021

Therefore, inequality (33) reduces to

d n—1 Gk
Z 8lf (.’I;k’0> Z sy Tk
=1 =0 \/W

Ouf (x10)° Dy Ay
> — —D d | |04 + ) —C5.
\/W By 1P1P3 | f(xk,O)l Dld 1 m 3

Taking in the result from Lemmathat Va,k,0 < ngd <|8af (k.0) |2 + DDfl“d) , we have

Zalf (k,0) Z i/k%l
Oa f (v, 0) 2 ( Dy ) Ay
> 1|z D1p1p3d | |Oaf (zr0)] + 01 — —=0Cs
\ 5 7 d
\/ (|5‘ e O + Dld) B3 Dy Vnk
/ Do
Did
- ,/%Dlmpgd <|a f (@0l + 5‘;) o1 - J%cg
A
(minﬂaaf(xk,o)|,|aaf<xk,o>QJDT} ~T3(6) <|a f (o)l + é)d)) o
Did

> (min{uwz))|aaf<xk,o>|,|aaf<xk,o>21} 2Ty (B) DO)Alcg

1 .
> D min{|8a f (2£,0) |, [8af (zx0) |

—_

>

5

>
a

1

\ 5D1d DDOd Dld vV ’ﬂ/{
1 _ 1 8Dy Aq
> 1-1T (] y |Oar P
= \/m mln{( 2(52)) |a f (.’Ek’o) ‘ ‘a f (l‘k’()) | DDOd } (ﬂ2) 5D2d2 MCS

where T5 is defined as

i [ (1),
2 (B2) = N dp1psD161 = —dp1p3Dy | (1 - f2) + ( — — 1)
2 2 2

(37
Note that in the fourth inequality, we used the following inequality:
2
. x
min{z, 7D} —Thx
Dud
2
= min{(1 — T3)x, — Thx}
Daq_
Did
D
> min{(1 — Tv)x \/7 0 }
. z? Do
> 1-T: —_—
> min{( 5)T, 0} 2\ Dd
Did
with z = |0a f (Tk,0)]- O
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Remark:when (35 is very close to 1, for the first order Taylor expansion:

T5(B2) ~ O ((1 — B2) np1p2p3)

Lemma E.S. Under assumptions in Theorem 4.3} if we choose 52 to be a constant satisfying the
constraint Ty (B2) < 1 — f’ we have thefollowmgfor all V fr0 -

n—1 2
Ghimi 1 ) IIVkolly Vel A
—{ V/ro, =) < — min 1 ’ ++/DyCs + C
< feo ; NCox > V10D:1d d Dy RV T

where ||V fi.ol|, is the 1-norm of vector V f. o, Cy and C5 are defined in and (39).

Note that in the zero initialization and bias corrected version, we also need the condition & > ls‘gn +1.

Proof. We will discuss the cases where conditions in Lemma[F.4]hold or become violated.

Case 1 If we have |0, f (z0)| > 32v2n2—21 _ and |0 f (zk,0)

(=57 ) g ok | > W2

then we can apply Lemma

n—1
9k,i, 1.
Viko, ) ——— )=

g min ] (1= Ta(3a)) 00 (o1 110 (1) P | = Talf) 57 — 2=C
Dqd
> \/%Tldmin 10af (210 |, W - TM)@ - f#cg
Dqd
> e min {10, (o) | 2 (o) 4 _ g5, o — =
Dqd
(Y} is a constant defined as
Cy=Cs+— ) 762) max{32v/2n, \/id} <\/101T1dmin{1’ (I_A;\Q/)T:TO max{32v2n?5, ", \/fd}} + \/1d7_1 7
(38)
Case 2 Else-wise, |0q f (21,0)| < 5, )f max{32v2n?p;",
<ka,o7:§§ gf/;% >
_ d(l—ﬁA;)W% max {32@#‘5;", 4;2} \/171752
> e min d [0 (o)l 2 (;’1;0"2} - f%(cw — max{ng n262",j%}
. <\/101T1d min {1, % max {32\/571262", j%}}) + \/1d7—17ﬂ2> = T2(B2)4 58Dl;0d2
g min 10 ) 2 (2’1’0)'2} - O T St
Dqd
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This finishes the proof, with

~ 2V10T,(B2)
C=—"%pa (39)
O

Proof of Theorem[4.3]
Since f is L-Lipschitz, by descent lemma and Lemma|C.1]

L
f(@rt10) = f(2r0) <V (@r0) s Thr1,0 — To) + 5 lzk+1,0 — Tr0l|”

— Gk i,Ti. L nfnd (40)
=" M<W( 02" o >+2(1—ﬁg)k

1=0

Summing both sides of the inequality ranging k from ¢;,,;; to T,

n—1 i T L 2 d
f@rii0) = f (Tti00 Z <Vftazgf/’1ﬁ/>+ Z 5%.

k= tlnzt k=tinit

Since f (z7410) > f*, we have

n—1 . T L d
> W<Vftvzgk¢wl>< S S et )

k=tinit k=tinit

Let t;,,;+ = 4 for specially initialized version, and 1 + [
the result from Lemma[E3] for all k& > t;,,:4,

n—1
kit 1 vak0||1 ”vka”z Ay
V fr.0, = ) > min 0Cs5 — —C4.
< fr0 ; T > ToDd {— T;l b= VDoC5 — —Ca

e ]for zero initialized version, and apply

We can further simplify it as

T 2
m 1 - IV feolly IV frolls
—— : — /DoC
k;, ok \ vVioDd d \/@ VDoCs
Wt b 1)
T s
<D ot @) - 1
sz@nﬂ't
where
d CyVd
Co = Lt | 5= + 7))
co (2(1—62) = (42)

On the right hand side, we have a summation proportional to

T

1 T+1
Z — <log * .
k:tinit k t?TILt

On the left hand side, we have a summation proportional to:

T
= f nit — .
k;t \/E ( NG 1)
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For Algorithm we can set ;,,;+ = 4, while for Algorithm 2, we should set ;,,;; = max{log 81 i 1+

. . 2 Dld 1
< log (T + 1))++/D
kegjgﬂmm{ﬂvfk,ollp||ka,0||2 Dy } < ﬁ_m(Q1,3+Q2,3 og (T'+1))+vDoQ3,3
where ol
- tznz
Qry = L Ftin0) = Qfm 608 Tmit \ /10n D, dd, (43)
Cs/10nD1dd
Qo= =g —— (44)

Q3’3 = 05 VvV 10D1dnd7 (45)
Cs is defined in (2)), and Cs is defined in (39).
Note that C'5 proportional to /7% and so is Q3. Seemingly, Cs depends on 55 . Thus, it increases

exponentially with the number of batch samples n. However, our choice of 35 can prevent this: to
keep T%» which also contains 5, ™ terms small enough, we implicitly add an upper bound on 35"
V1-p2 (1* b1 )\/E

.
Ve

[F2] and [F3]still hold without further modifications. We will begin by finding an upper bound of the
difference between my i, ; and gy 1 i -, ,» followed by a replacement for Lemma

G PROOF OF THEOREM (4.4

n1LVd(1—B1%bc) , results of Lemma

Similar to the full batch version Adam, if we set A; =

Lemma G.1. For k > 1, we have

: < 3 L= )4 A 2 175 (1192
’ml,k,z —9L,k0, 7| = Bl Z ’gl,k,O,Tk,q’ ﬁ + +\/% n —+ ﬂln m + .
1

q=0

Proof. First, we upper bound m; ;1 ,—1 by

k—1)
Imik—1n—1] = [(1 = B1) (grh—1n—1ires s + BLOlk—1—2m 1o n( Zgl,l,—l i

<(1-p1) ( (|gtk—1m—1mesms | + |Gkt 2o |+ | Grk—1,0,m010]) +

n—1
1 Gk—2mn—1,m o1 | T |9Lk—2n—27%_0m_o| T+ |G1,k—2,0,m_20|) T+ ) T D1 - gi1,—1,i
G |+ l | ) Br N |

p=0
k—1n—1 n—1
1_/81 ZZ’glk —DM—q,Tk—p,m— q|61p 1)n+/6 (= 1)Z|gl,1,—lz|
p=1 qg=0
k—1n—1
<(1-p1) ZZ(!glkom pq|+znﬁn(k t)) p 1)n+z<|glk07—k Pq|+ZnA k— t> (k=1)n
p=1 g=0
k—1n—1
2A1np (p—1)n 2A17’l(l€ - 1) (k—=1)n
<(1- - e LU L i A )
<( 51);;<|917k,0, empa| T n(k—l))ﬁl | 90 pa| T nEnRe
+oon—1 2A1np (p—1
17 - o e=1r p—1)n
5 ;qz;(ygl wanen |+ )

:7§|glko ‘1_51—1- 2Aun7 A
k,0,7k g 18y n(k—1) (1—5?)2
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where the first inequality is because 5; < 1, the second comes from Lipschitz inequality, the third
applies the result of Lemma the fourth combines two terms by the relation 1 = (1 — 81)(1 +
B1+ B? + ...), and the last equality follows the same calculation in Lemma This holds for the
bias corrected version.

Therefore,

|ml,k,i — 9Lk,

k11 + (1= 1) Bigukomo + (1= B1) B gk, +

+ (1= B1) Brgikyi—1,m01 — Brlikire.,
< B1 (B Imip—1m-1] + (1= B1) BT |g1k0,me0| + 7+ (1= B1) |91 kim0 | + |90ksiimes
<h (|ml,k71,n71‘ + |gl,k,o,mo| + fgz,k,i—l,rk,f,_ly + ‘gl,k,z‘,m‘i )

By taking in the upper bound of |my ;_1,,—1| and applying the Lipschitz gradient continuous
condition, we have

)

|ml,k,i — 9Lk, Tk,

n—1 1-75 2A1n? 1- 5 i A
< b (Z |gl,k,0,m,q‘ 11— + nE—1) (1— 5?)2 + Z (‘gl,kﬂ,'rk’q’ + \/%)

q=0 q=0

n—1 1— QA 1—
< b Z |gz,k,0,m,q} (51 + 1> + b1 nhy 1-5 (1 + 2\@)
q=0

1-p7 Vin (1 - 8p)?
and
|ml,k,z’ = gLk, | S |mz,k,i — Gl k| T ‘gl,k,o,mi — Glk,i, T
< ]m g n (7AN]
S |\MUki — Glki,T
S VEn
n—1
1-5 Aq s 1—7
< B |gl7k70,7— ,q’ (n + 1) + n+p/n—— (1 + 2\/5)
(; RN e Vkn (1—pn)?
where we have applied Lipschitz continuity in the first inequality. This completes the proof. O

Lemma G.2. Under assumptions in Theorem{.4| assume that the largest component « satisfies(i)

.. 2
|8af (SC]C7O)‘ Z 32\/5712(1_@%, (ll) \/|8af (fl;k70)| + DDilod Z 4&@% We have:

n—1
Mp; 0 f (xro)| [, _ _ Do _ A
<ka,o,§ Tk:,i> > \/@ (1 Ty (B1) — T2 (B2) — (11 + T>) Dldﬁaf2> mcf?

with Ty defined in (37).

Proof. Similar to Lemma [F.4] we first consider those iradient components large enough, i.e.

|01 f (xk,0)| greater than \ﬁ%k %) n?. By Lemma ,

1-p - A s 1=B
|mz,k,i - gl,k},O,Tk,i’ < B (1 —ar + 1) qgo |gl,k,0,rk7q|+\/ﬁ (n + Bin m (1 + 2\/5)) .

1
(46)

Therefore,

Af (@k,0) M ki > Ouf (Tk,0) Gi,k,0,7

1-— ﬁl ! A1 1- Bl
2
- ‘alf (wk,0)| (51 (1 — B{L + 1) q§:0 |gl,k:,0,-rk,q‘ + \/ﬁ (n‘f‘ﬁln m (1 + 2@))) .

1
(47)
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As the sign of gy k0,7, ; can be the same or different to 01 f (z1,0), we again have to treat 2 cases
respectively.

When 0, f (x,0) and g; 10,7, , share the same sign, their product is positive. Then from Lemma

8 lkz
1 (@ho) —5== Nos
GU.k,0,7k ; 1— /s ( 4np2>)
>0 = (11— ~1+
2 Ouf (mo) 252 < 2 By

_ 10 (o)l ( ) A - 6
G2 () a9
> 01f () TR (1 B A (_1 . 4np2>)

VULEO By
1S oo (125 1) A 2 L0 (1423
VBivro (51 gy ) Slawol m {n bt T (1+2v2) )
(43)

On the other hand, if they have different signs, we simply have

M ki
of (xg0) ——=
(@) N

91,k,0,m; 1
> O f (wp,0) =t

VULE,0 \/ﬂz_
_ 10uf ko)l ( ) LA 2 1=B1
\/m <ﬁ1 +1 Z|glk0mq W(n—kﬁm (1_5?)2 (1+2\/§)>>.

(49)

Combining these two inequalities yields

— mlkz
O f (xr,0) §
i=0

Ulkz

alf IkO 1- /B 4”02 9l,k i,

© kS (Zg( () PRANG )‘

_10uf (ko) < > An 11—/ 1493
W(ﬂ 5 Ziglwm W;( ront i (1r2v2) ) ).

(50)
where i+ means the set of the indices of the components with the same sign of 9, f (zx,0) and i—
means the set of the indices of the components with opposite sign. Note that we have added 2
non-positive terms on the right hand side. For simplicity, define

C7éﬁj”/< —&-61717( 1_51) (1+2f)>

Since

> Gikom, T D Gukom., = 0uf (ko)

i€i+ 1€i—
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we have
n—1 m
1,k,i
Of (wx0) Y ——==
(o) 3

OLf (wx0) ( ( 4"/’2)) 1
>——— Tk,i + i |1+ -1+
m (i;rgl,k,o, Z Gl ki \/ﬁ?

1€1—
0f (xk0)] A1
B712|glk01|< )n) \/m m
>3lf(l‘k,o)2 |OLf (xk, o)| Ay

Voo Uiko Vkn
|alfw¢%) (Zgzw 1—ﬁ2>(”4””2ﬁ2+2mm|<} )

i€i+ iCi—

+ 5511 ; 91,10, (11 :gi + 1) n>

>3lf($k,o) nv2n Ay
0 1+4
0 ()] (Zglkm 1 )(nmﬁz+zglkol<

C

Cy
v/ ULE,0 /B VEkn
vl k 0 i€i+ 1€1—

Z|glk01< §n+1>n>.
&)

The last inequality holds due to Lemma and the fact that |0; f (z,0)| < n ’glb & ‘ It can further
reduce to

J@Q

) (52)
>3lf($k,0) |5lf Tko0)|

n\/Qn Al C
v ULk,0 \/ VL,k,0

—C7
VB VEkn
here 01 = (1 — (1+52) L _1)andd, =5t (1=5r 11
where 61 = (1 — 32) 5 + NG and 0y = g | 1—gy T 1)n
2

((1 S ) the inequality is simply:

> 1g1k0.l (51 + 82) —

When |, f (x5,0)| is smaller than -

v
— Mk Ay 32/2 5 M 1-75
O f (xo0 Z s 2 \/7<(1_62)62>n *1*521—\%—2

because of Lemma|C.2] We denote the large gradient components in the first case by "l large" and the
rest components of the gradient by "l small". Summing up all of them, we have

d _
Zalf(ﬂ%o Z Tkt
=1 =0

NG
of (xr0)®  |0uf (xr0) mv2n Ay
= - : Gik.0.i] (61 +6 —LC 53
ZZ<W Vs 2o O8RS ) o
32 1-—
T2 - - (1—\/5;)(*]\/1?761 gi '
[ small 2 _\/E
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Since we have assumed that the largest component of the gradient is sufficiently large, we can further
simplify the inequality to

n—1
i
Zalf (zk,0) Z —
VUl
=0 A (54)
1
—Cy,
"V

oaf(x
>Z o f (xr0)” 10)
[ large \ UL,k,0 [ large lkO

where Cyg = \C%j(] + ( 1326\;‘/)565‘)712 v 17'2}

VAZBE 1=
Since |Ou f (zk,0)| > F T 333\46” n?, we have |0, f (wk,0)| > r T 3%‘,63,171 Thus o € [ large.

Furthermore, we keep only the & component in the first term, yielding

d _
Zazf(ﬂﬂko Z T
= =0

vlkz

3 f(l‘ko OLf (k0] A1
> Z Z ’gl k,0,75, 51 + 52) \/7% (55)

v Va,k,0 I Targe v VLk,0

|90 f (21,0)]
zaaf(%‘k,o)2 1— 2t aee \l/ivl:(? 2i|91k0m| (91 +32)

Al
VUa,k,0 Ouf(wr0) U@”i? \/nk:

We know from Lemma [F1| that for large [,

0uf (wx0)| _ 203
Viiko \ B

By our assumption:

=

n—

d
Z 904 < D1d|0af (z1,0)|* + Do,

=1 i=0
we have
‘@f Tk,0 ‘ Z |
Z 91,k,0,7 5
[ large Vv ULk,0 i=0
2p2 d n—1
< 5*:’ DD ko, (56)
2 =1 4=0
2p3 \/ 2 Do
—=2+/Dind4 /|04 —
o VDundy10u] (o)l + 50
The last inequality can be derived from Cauchy-Schwartz inequality. As a result,
d n—1 m
af (2k.0) n
2 _—
aaf (ka \/Ed Dln\/|a f xkO (51 + (52) B Al
— VPako 90 f(@1.0)” Iy
Va0 57)

ZM (1 Ty (B1, B2) = T2 (B2) — (Th + T2)
(1 Ty (81, B2) — Ta (B2) — (Th + T2)

C
=Cs
Dy Aq
Cy
|00 f (21,0)|” D1d ) Vnk
Dy Ay
Cs
00 f (z10)|° D1d ) vnk
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where we have used Lemmal[E.2]since k > 4. T is still defined as

o [ (=) [
52 (B2) = | 55dp1p3D161 = | o=dpipzDy | (1 — f2) + —-1]], (58
By By 3

and 77 is defined as

Ty (B1, f2) = U 3y d,01,03D152 U 3y dplPSnDl (1 _gll + > (59)

They approach zero when s approaches one and (3; approaches zero. This completes the proof.

If we use the bias corrected version, we need one additional constraint 1 + 18_\{35,1 . O
2

Lemma|G.2)is the Adam counterpart of Lemma[F:4] Further, if we replace C's in Lemma[F4]with Cyg
just defined and replace T by T + 15, we can repeat the rest of the proof in Appendix [Fto prove
Theorem[4.4] We omit the derivation and present the constants below:

(Qu5+ Q2,5 log (T + 1))+v/DoQs3.5

. . Dd
min  min{|V fiol, IV froll3 5 <

k€(tinit,T]

1
VT — Vs — 1

where the constants are given by:

— Cylog t;n:
Qr 5 = L Etms0) = ;m 208 binit /5 Dy dd (60)
Cy/5nDrdd
Q25 = % 61)

Q3.5 = C100/10Dydnd (62)

where Cy and C( defined as

Cy £ Cs + T ! max{32v2n?B; ", 4\[ (
A_ . 4f d ©
n
Inax{l, m maX{32fn252 }}) + ﬁ
_ vV2-1 1 1 V2—1 Dy dn
= \/(T2 1) 55 Dy | viopa M b \/(T2 TS A DT s
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