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Abstract

The data management of large companies often prioritize more recent data, as a source of
higher accuracy prediction than outdated data. For example, the Facebook data policy retains
user search histories for 6 months while the Google data retention policy states that browser
information may be stored for up to 9 months. These policies are captured by the sliding window
model, in which only the most recent W statistics form the underlying dataset.

In this paper, we consider the problem of privately releasing the L2-heavy hitters in the sliding
window model, which include Lp-heavy hitters for p ≤ 2 and in some sense are the strongest
possible guarantees that can be achieved using polylogarithmic space, but cannot be handled by
existing techniques due to the sub-additivity of the L2 norm. Moreover, existing non-private
sliding window algorithms use the smooth histogram framework, which has high sensitivity.

To overcome these barriers, we introduce the first differentially private algorithm for L2-heavy
hitters in the sliding window model by initiating a number of L2-heavy hitter algorithms across
the stream with significantly lower threshold. Similarly, we augment the algorithms with an
approximate frequency tracking algorithm with significantly higher accuracy. We then use
smooth sensitivity and statistical distance arguments to show that we can add noise proportional
to an estimation of the L2 norm. To the best of our knowledge, our techniques are the first
to privately release statistics that are related to a sub-additive function in the sliding window
model, and may be of independent interest to future differentially private algorithmic design in
the sliding window model.

1 Introduction

Differential privacy [Dwo06, DMNS16] has emerged as the standard for privacy in the both the
research and industrial communities. For example, Google Chrome uses RAPPOR [EPK14] to
collect user statistics such as the default homepage of the browser or the default search engine,
etc., Samsung proposed a similar mechanism to collect numerical answers such as the time of usage
and battery volume [NXY+16], and Apple uses a differentially private method [Gre16] to generate
predictions of spellings.

The age of collected data can significantly impact its relevance to predicting future patterns,
as the behavior of groups or individuals may significantly change over time due to either cyclical,
temporary, or permanent change. Indeed, recent data is often a more accurate predictor than older
data across multiple sources of big data, such as stock markets or Census data, a concept which is
often reflected through the data management of large companies. For example, the Facebook data
policy [Fac] retains user search histories for 6 months, the Apple differential privacy [Upa19] states
that collected data is retained for 3 months, the Google data retention policy states that browser
information may be stored for up to 9 months [Goo], and more generally, large data collection
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agencies often perform analysis and release statistics on time-bounded data. However, since large
data collection agencies often manage highly sensitive data, the statistics must be released in a
way that does not compromise privacy. Thus in this paper, we study the (event-level) differentially
private release of statistics of time-bounded data that only use space sublinear in the size of the
data.

Definition 1.1 (Differential privacy [DMNS16]). Given ε > 0 and δ ∈ (0, 1), a randomized algorithm
A operating on datastreams is (ε, δ)-differentially private if, for every pair of neighboring datasets
S and S′ and for all sets E of possible outputs, we have,

Pr [A(S) ∈ E] ≤ eε ·Pr
[
A(S′) ∈ E

]
+ δ.

In the popular streaming model of computation, elements of an underlying dataset arrive one-
by-one but the entire dataset is considered too large to store; thus algorithms are restricted to using
space sublinear in the size of the data. Although the streaming model provides a theoretical means
to handle big data and has been studied thoroughly for applications in privacy-preserving data
analysis, e.g., [MMNW11, BBDS12, JRUW20, HKM+20, HQYC21], it does not properly capture
the ability to prioritize more recent data, which is a desirable quality for data summarization. The
time decay model [CS06, KP08, SYC18, BLUZ19] emphasizes more recent data by assigning a
polynomially decaying or exponentially decaying weight to “older” data points, but these functions
cannot capture the zero-one property when data older than a certain age is completely deleted.

The sliding window model. By contrast, the sliding window model takes a large data stream
as an input and only focuses on the updates past a certain point in time by implicitly defining
the underlying dataset through the most recent W updates of the stream, where W > 0 is the
window parameter. Specifically, given a stream u1, . . . , um such that ui ∈ [n] for all i ∈ [m] and a
parameter W > 0 that we assume satisfies W ≤ m without loss of generality, the underlying dataset
is a frequency vector f ∈ Rn induced by the last W updates of the stream um−W+1, . . . , um so that

fk = |{i : ui = k}|,

for all k ∈ [n]. Then the goal is to output a private approximation to the frequency fk of each
heavy-hitter, i.e., the indices k ∈ [n] for which fk ≥ αLp(f), which denotes the Lp norm of f for a
parameter p ≥ 1:

Lp(f) = ∥f∥p =

(
n∑

i=1

fp
i

)1/p

.

In this case, we say that streams S and S′ are neighboring if there exists a single update i ∈ [m]
such that ui ̸= u′i, where u1, . . . , um are the updates of S and u′1, . . . , u

′
m are the updates of S′.

Note that if k is an L1-heavy hitter, i.e., a heavy-hitter with respect to L1(f), then fk ≥ αL1(f)
so that

fk ≥ α

(
n∑

i=1

fi

)
≥ α

(
n∑

i=1

f2
i

)1/2

,

and k is also an L2-heavy hitter. Thus, any L2-heavy hitter algorithm will also report the L1-
heavy hitters, but the converse is not always true. Indeed, for the Yahoo! password frequency
corpus [BDB16] (n ≈ 70 million) with heavy-hitter threshold α = 1

500 there were 3, 972 L2-heavy
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hitters, but only one L1-heavy hitter. On the other hand, finding Lp-heavy hitters for p > 2 requires
Ω(n1−2/p) space [CKS03, BJKS04], so in some sense, the L2-heavy hitters are the best we can hope
to find using polylogarithmic space. Although there is a large and active line of work in the sliding
window model [DGIM02, BO07, BGO14, BLLM16, BGL+18, BDM+20, BEL+20, WZ21, BWZ21,
JWZ21], there is surprisingly little work in the sliding window model that considers differential
privacy [Upa19, UU21].

1.1 Our Contributions

In this paper, we consider the problem of privately releasing approximate frequencies for the heavy-
hitters in a dataset defined by the sliding window model. We give the first differentially private
algorithm for approximating the frequencies of the L2-heavy hitters in the sliding window model.

Theorem 1.2. For any α ∈ (0, 1), c > 0, window parameter W on a stream of length m that induces
a frequency vector f ∈ Rn in the sliding window model, and privacy parameter ε > 1000 logm

α3
√
W

, there

exists an algorithm such that:

(1) (Privacy) The algorithm is (ε, δ)-differentially private for δ = 1
mc .

(2) (Heavy-hitters) With probability at least 1− 1
mc , the algorithm outputs a list L such that k ∈ L

for each k ∈ [n] with fk ≥ αL2(f) and j /∈ L for each j ∈ [n] with fj ≤ α
2 L2(f).

(3) (Accuracy) With probability at least 1− 1
mc , we simultaneously have |fk − f̃k| ≤ α

4 L2(f) for

all k ∈ L, where f̃k denotes the noisy approximation of fk output by the algorithm.

(4) (Complexity) The algorithm uses O
(
log7 m
α6η4

)
bits of space and O

(
log4 m
α3η4

)
operations per update

where η = max{1, ε}.

Along the way, we develop techniques for handling differentially private heavy-hitter algorithms
in the sliding window model that may be of independent interest. In particular, we also use our
techniques to obtain an L1-heavy hitter algorithm for the sliding window model that guarantees pure
differential privacy. Finally, we give an algorithm for continual release of L1 and L2-heavy hitters in

the sliding window model that has additive error α
√
W
2 for each estimated heavy-hitter frequency

and preserves pure differential privacy, building on a line of work [CLSX12, Upa19, HQYC21] for
continual release. By comparison, the algorithm of [Upa19] only guarantees O

(
W 3/4

)
additive

error while the algorithm of [HQYC21] gives (ε, δ)-differential privacy. We remark that since√
W ≤ L2(t−W +1 : t) for any t ∈ [m], where L2(t−W +1 : t) denotes the L2 norm of the sliding

window between times t −W + 1 and t, then our improvements over [Upa19] for the continual
release of L1-heavy hitters actually also resolve the problem of continual release of L2-heavy hitters.
Nevertheless, the approach is somewhat standard and thus we defer discussion to the appendix.

1.2 Related Work

Dynamic structures vs. linear sketching. Non-private algorithms in the streaming model
generally follow one of two main approaches. The first main approach is the transformation from
static data structures to dynamic structures using the framework of [BS80]. Although the approach
has been a useful tool for many applications [DNP+10, CSS11, CLSX12, LMWY20], it does provide
a mechanism to handle the implicit deletion of updates induced by the sliding window model. The
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second main approach is the use of linear sketching [BBDS12, BS15, BNS19, BNST20, HQYC21],
where the data x is multiplied by a random matrix A to create a small-space “sketch” Ax of the
original dataset. Note that sampling can fall under the umbrella of linear sketching in the case
where the random matrix only contains a single one as the nonzero entry in each row. Unfortunately,
linear sketching again cannot handle the implicit deletions of the sliding window model, since it is
not entirely clear how to “undo” the effect of each expired element in the linear sketch Ax.

Adapting insertion-only streaming algorithms to the sliding window model. Algorithms
for the sliding window model are often adapted from the insertion-only streaming model through
either the exponential histogram framework [DGIM02] or its generalization, the smooth histogram
framework [BO07]. These frameworks transform streaming algorithms for either an additive function
(in the case of exponential histograms) or a smooth function (in the case of smooth histograms)
into sliding window algorithms by maintaining a logarithmic number of instances of the streaming
algorithm, starting at various timestamps during the stream. Informally, a function is smooth if
once a suffix of a data stream becomes a (1 + β)-approximation of the entire data stream for the
function, then the suffix is always a (1 + α)-approximation, regardless of the subsequent updates in
the stream. Thus at the end of the stream of say length m, two of the timestamps must “sandwich”
the beginning of the window, i.e., there exists timestamps t1 and t2 such that t1 ≤ m−W + 1 < t2.
The main point of the smooth histogram is that the streaming algorithm starting at time t1 must
output a value that is a good approximation of the function on the sliding window due to the
smoothness of the function. Therefore, the smooth histogram is a cornerstone of algorithmic design
in the sliding window model and handles many interesting functions, such as Lp norm estimation
(and in particular the sum), longest increasing subsequence, geometric mean, distinct elements
estimation, and counting the frequency of a specific item.

On the other hand, there remain interesting functions that are not smooth, such as cluster-
ing [BLLM16, BEL+20, EMMZ21], submodular optimization [CNZ16, ELVZ17], sampling [JWZ21],
regression and low-rank approximation [BDM+20, UU21], and crucially for our purposes, heavy
hitters [BGO14, BGL+18, Upa19, WZ21]. These problems cannot be handled by the smooth his-
togram framework and thus for these problems, sliding windows algorithms were developed utilizing
the specific properties of the objective functions.

Previous Work in the DP setting. Among the previous literature, the work most related to
the subject of our study is [Upa19] who proposed the study of differentially private L1-heavy hitter
algorithms in the sliding window. Although [Upa19] gave a continual release algorithm, which was
later improved by [HQYC21], the central focus of our work is the “one-shot” setting, where the
algorithm releases a single set of statistics at the end of the stream, because permitting a single
interaction with the data structure can often achieve better guarantees for both the space complexity
and the utility of the algorithm. Indeed, in this paper we present L2-heavy hitter algorithms for
both the continual release and the one-shot settings, but the space/accuracy tradeoffs in the latter
are much better than the former. [Upa19] also proposed a “one-shot” algorithm, which empirically
performs well, but lacks the theoretical guarantees claimed in the paper. We refer to Section 1.3 for
more details.

Privately releasing heavy-hitters in other big data models has also received significant attention.
[DNP+10] introduced the problem of L1-heavy hitters and other problems in the pan-privacy
streaming model, where the goal is to preserves differential privacy even if the internal memory
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of the algorithm is compromised, while [CLSX12] considered the problem of continually releasing
L1-heavy hitters in a stream. The heavy-hitter problem has also been extensively studied in the local
model [BS15, DKY17, AS19, BNS19, BNST20]. In the local model, individual users locally add
privacy to their data, e.g., through randomized response, before sending their private information
to a central and possibly untrusted server to aggregate the statistics across all users.

1.3 Overview of Our Techniques

We first use the smooth histogram to obtain a constant factor approximation to the L2 norm
of the sliding window similar to existing heavy-hitter non-DP algorithms in the sliding window
model [BGO14, BGL+18]. We maintain a series of timestamps t1 < t2 < . . . < ts for s = O (log n),
such that L2(t1 : m) > L2(t2 : m) > . . . > L2(ts : m) and t1 ≤ m−W +1 < t2. Hence, L2(t1 : m) is
a constant factor approximation to L2(m−W + 1 : m), which is the L2 norm of the sliding window.
For each timestamp ti with i ∈ [s], we also run an L2-heavy hitter algorithm CountSketchi,
which outputs a list Li of size at most O

(
1
α2

)
that contains the L2-heavy hitters of the suffix of

the stream starting at time ti, as well as approximations to each of their frequencies. It might be
tempting to simply output a noisy version of the list L1 output by CountSketch1, since t1 and
t2 sandwich the start of the sliding window, m−W + 1. Indeed, this is the approach by [Upa19],
although they only consider the L1-heavy hitter algorithm CountMin because they study the
weaker L1-heavy hitter problem and they do not need to run a norm estimation algorithm because
L1 can be computed exactly. However, [BGO14, BGL+18] crucially note that L1 can also include a
number of items that are heavy-hitters with respect to the suffix of the stream starting at time t1
but are not heavy-hitters in the sliding window because many or even all of them appeared before
time m−W + 1. Thus although L1 can guarantee that all the L2-heavy hitters are reported by
considering a lower threshold, say α

2 , the frequencies of each reported heavy-hitter can be arbitrarily
inaccurate.

Observe it does not suffice to instead report the L2-heavy hitters starting from time t2. Although
this will remove the false-positive issue of outputting items that are not heavy-hitters, there is now
a false-negative issue; there may be heavy-hitters that appear after time m−W + 1 but before time
t2 that will not be detected by CountSketch2. Hence, there may be heavy-hitters of the sliding
window that are not reported by L2. See Figure 1 for an example.

Stream:

Active elements (sliding window)

Fig. 1: Informally, we start a logarithmic number of streaming algorithms (the grey rectangles)
at different points in time. We call the algorithm with the shortest substream that contains the
active elements at the end of the stream (the blue rectangle). The challenge is that there may be
heavy-hitters with respect to the blue rectangle that only appear before the active elements and
therefore may be detected as heavy-hitters of the sliding window even though they are not.
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Approximate counters. The fix by [BGO14, BGL+18] that is missed by [Upa19] is to run
approximate counters for each item k ∈ [n] reported by some heavy-hitter algorithm CountSketchi,
i.e., there exists i ∈ [s] such that k ∈ Li. An approximate counter is simply a sliding window
algorithm that reports a constant factor approximation to the frequency of a specific item k ∈ [n].
One way to achieve an approximate counter is to use the smooth histogram framework [BO07],
but we show that an improved accuracy can be guaranteed if the maintenance procedure instead
considers additive error rather than multiplicative error. Given the approximate counter that reports
an estimate f̂k as the frequency for an item k ∈ [n], we can then compare f̂k to the estimated L2

norm of the sliding window to determine whether k could possibly be an L2-heavy hitter. This rules
out the false positives that can be returned in L1 without incurring false negatives omitted by L2.

Large sensitivity of subroutines. So far we have only discussed the techniques required to
release L2-heavy hitters in the non-DP setting. In order to achieve differential privacy, a first
attempt might be to add Laplacian noise to each of the procedures. Namely, we would like to add
Laplacian noise to the estimate of the L2 norm of the sliding window and the frequency of each
reported heavy-hitter. However, since both the estimate of the L2 norm of the sliding window
and the frequency of each reported heavy-hitter is governed by the timestamps t1, . . . , ts, then
the sensitivity of each quantity can be rather large. In fact, if the frequency of each reported
heavy-hitter has sensitivity α · L2(m−W + 1 : m) through the approximate counters, then with
high probability, the Laplacian noise added to the frequency of some reported heavy-hitter will
completely dominate the actual frequency of the item to the point where it is no longer possible
to identify the heavy-hitters. Thus the approximate counters missed by [Upa19] actually pose a
significant barrier to the privacy analysis of the algorithm.

Noisy timestamps. Instead of adding large Laplacian noise to each of the estimates, another
possible attempt might be to make the timestamps in the histogram themselves noisy, e.g., by adding
Laplacian noise to each of the timestamps. At first, it seems that the timestamps crucially govern
the approximation guarantees by the smooth histogram and so adding noise would disrupt any sort
of quality-of-approximation guarantee. However, upon closer examination, one can observe that due
to the properties of L2 and the count of an item, the Laplacian noise added to a timestamp would
induce only a small additive error on each of the estimations. Unfortunately, we would no longer
have sketches that correspond to the noisy timestamps. That is, suppose the smooth histogram
maintains a heavy-hitter algorithm CountSketch1 starting at a time t1. Prior to releasing the
statistics, suppose we add noise to the value of t1 and obtain a noisy timestamp t̃1. We would like
to release the statistics of the dataset that begins with the t̃1-th update of the stream, but it is
not clear how to do so because we do not actually have a streaming algorithm starting at a time
t̃1. We could use CountSketch1 as a proxy but that defeats the purpose of adding noise to the
timestamp in the first place.

Lower smooth sensitivity through better approximations. Instead, we guarantee differential
privacy using the notion of smooth sensitivity [NRS07]. The idea is the following — given an α-
approximation algorithm A for a function with sensitivity ∆f , we would like to intuitively say
the approximation algorithm has sensitivity α∆f . Unfortunately, this is not true because A(X)
may report α · f(X) and A(Y ) may report 1

α · f(Y ) for adjacent datasets X and Y . However, if
A is instead a (1 + α)-approximation algorithm, then difference of the output of A on X and Y

6



can be bounded by α · f(X) + α · f(Y ) + ∆f through a simple triangle inequality, conditioned on
the correctness of A. In other words, if α is sufficiently small, then we can show that the local
sensitivity of A is sufficiently small, which allows us to control the amount of Laplacian noise that
must be added through existing mechanisms for smooth sensitivity. Unfortunately, if A is not
correct, then even the local sensitivity could be quite large; we handle these cases separately by
analyzing the smooth sensitivity of an approximation algorithm that is always correct and then
arguing indistinguishability through statistical distance. Therefore, we can set the accuracy of
the L2 norm estimation algorithm, each L2-heavy hitter algorithm, and each approximate counter
algorithm to be sufficiently small and finally we can add Laplacian noise to each procedure without
significantly impacting the final check of whether the estimated frequency for each item exceeds the
heavy-hitter threshold.

Pure differential privacy for L1-heavy hitters in the sliding window model. Due to
the linearity of L1, our algorithm for differentially private L1-heavy hitters in the sliding window
model is significantly simpler than the L2-heavy hitters algorithm. For starters, each set of c
updates must contribute exactly c to the L1 norm, whereas their contribution to the L2 norm
depends on the particular coordinates they update. Therefore, not only do we not require an
algorithm to approximate the L1 norm of the active elements of the sliding window, but also we
can fix a set of static timestamps in the smooth histogram, so we do not need to perform the
same analysis to circumvent the sensitivity of the timestamps. Instead, it suffices to initialize a
deterministic L1-heavy hitter algorithm at each timestamp and maintain deterministic counters for
each reported heavy-hitter. Pure differential privacy then follows from the lack of failure conditions
in the subroutines, which was not possible for L2-heavy hitters.

2 Preliminaries

For an integer n > 0, we use the notation [n] := {1, . . . , n}. We use the notation poly(n) to represent
a constant degree polynomial in n and we say an event occurs with high probability if the event holds
with probability 1− 1

poly(n) . We say that A is an (α, δ)-approximation algorithm for the function

f : U∗ → R if for any X ∈ U∗, we have that

Pr [(1− α)f(X) ≤ A(X) ≤ (1 + α)f(X)] ≥ 1− δ.

2.1 Differential Privacy

In this section, we first introduce simple or well-known results from differential privacy. We say
that streams S and S′ are neighboring, if there exists a single update i ∈ [m] such that ui ̸= u′i,
where u1, . . . , um are the updates of S and u′1, . . . , u

′
m are the updates of S′.

Definition 2.1 (L1 sensitivity). The L1 sensitivity of a function f : U∗ → Rk is defined by

∆f = max
x,y∈U∗|,∥x−y∥1=1

∥f(x)− f(y)∥1.

The L1 sensitivity of a function f bounds the amount that f can change when a single coordinate
of the input to f changes and is often used to parameterize the amount of added noise to ensure
differential privacy. For example, random noise may be generated from the Laplacian distribution:
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Definition 2.2 (Laplace distribution). We say a random variable X is drawn from a Laplace distri-

bution with mean µ and scale b > 0 if the probability density function of X at x is 1
2b exp

(
− |x−µ|

b

)
.

We use the notation X ∼ Lap(b) to denote that X is drawn from the Laplace distribution with scale
b and mean µ = 0.

Fact 2.3. If Y ∼ Lap(b), then Pr[|Y | ≥ ℓ · b] = exp(−ℓ).

In particular, the Laplace mechanism adds Laplacian noise with scale ∆f , the L1 sensitivity of
the function f .

Definition 2.4 (Laplace mechanism). Given a function f : U∗ → Rk, the Laplace mechanism is
defined by:

ML(x, f, ε) = f(x) + (X1, . . . , Xk),

where Xi ∼ Lap(∆f/ε) for 1 ≤ i ≤ k.

The Laplace mechanism is one of the most common methods of guaranteeing pure differential
privacy.

Theorem 2.5 ([DR14]). The Laplace mechanism preserves (ε, 0)-differential privacy when ∆f is
the L1 sensitivity.

We define the following notion of local L1 sensitivity for a fixed input, which can be much smaller
than the (global) L1 sensitivity.

Definition 2.6 (Local sensitivity). For f : U∗ → R and x ∈ U∗, the local sensitivity of f at x is
defined as

LSf (x) = max
y:∥x−y∥1=1

∥f(x)− f(y)∥1.

Unfortunately, the local sensitivity can behave wildly for specific algorithms. Thus we have the
following definition that smooths such behavior for local sensitivity.

Definition 2.7 (Smooth upper bound on local sensitivity). For β > 0, a function S : U∗ → R is a
β-smooth upper bound on the local sensitivity of f : U∗ → R if

(1) For all x ∈ U∗, we have S(x) ≥ LSf (x).

(2) For all x, y ∈ U∗ with ∥x− y∥1 = 1, we have S(x) ≤ eβ · S(y).

Even though the local sensitivity can be much smaller than the global L1 sensitivity, the Laplace
mechanism as defined in Definition 2.4 adds noise scaling with the global L1 sensitivity. Hence it
seems natural to hope for a mechanism that adds less noise. The following result shows that this is
indeed possible.

Theorem 2.8 (Corollary 2.4 in [NRS07]). Let f : U∗ → R and S : U∗ → R be a β-smooth upper
bound on the local sensitivity of f . If β ≤ ε

2 ln(2/δ) and δ ∈ (0, 1), then the mechanism that outputs

f(x) +X, where X ∼ Lap
(
2S(x)

ε

)
is (ε, δ′)-differentially private, for δ′ = δ

2

(
1 + exp

(
ε
2

))
.

We have the following theorems on the composition and post-processing of differentially private
mechanisms.
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Theorem 2.9 (Composition and post-processing of differential privacy [DR14]). LetMi : U∗
i → Xi

be an (εi, δi)-differential private algorithm for i ∈ [k]. Then M[k](x) = (M1(x), . . . ,Mk(x)) is(∑k
i=1 εi,

∑k
i=1 δi

)
-differentially private. Moreover, if gi : Xi → X ′

i is an arbitrary random mapping,

then gi(Mi(x)) is (εi, δi)-differntially private.

Theorem 2.10 (Advanced composition of differential privacy [DR14]). For all ε, δ ≥ 0 and
δ′ > 0, the advanced composition of k algorithms, each of which is (ε, δ)-differentially private, is
(ε̃, δ̃)-differentially private, where

ε̃ = ε
√
2k ln(1/δ′) + kε

(
eε − 1

eε + 1

)
, δ̃ = kδ + δ′.

2.2 Norm Estimation

In this section, we introduce preliminaries for norm or frequency moment estimation.

Definition 2.11 (Norm/moment estimation). Given p > 0 and a frequency vector f ∈ Rn, we define
the moment of f by Fp(f) =

∑n
k=0 f

p
k and the Lp norm of f by ∥f∥p = Lp(f) = (Fp(f))

1/p. For an
accuracy parameter α ∈ (0, 1), the Fp moment estimation problem is to output an estimated moment

F̂ such that |F̂ −Fp(f)| ≤ αFp(f) and the norm estimation problem is to output an estimated norm

L̂ such that |L̂− Lp(f)| ≤ αLp(f).

We note that Lp is not a norm for p ∈ (0, 1), but the problem is nevertheless well-defined
and also well-motivated due to the importance of frequency moment estimation for p ∈ (0, 1).
Specifically, the norm and moment estimation problems are often used interchangeably because a
(1 +α)-approximation to Lp also gives a (1 +α)p = (1+O (α))-approximation to Fp, for sufficiently
small α. Thus an algorithm that achieves (1 +α)-approximation to Lp given an accuracy parameter
α > 0 can also be adjusted to achieve a (1 + α)-approximation to Fp by scaling the input accuracy
α.

Theorem 2.12 (Norm estimation algorithm AMS [AMS99, BCIW16, BDN17]). Given an accuracy
parameter α > 0 and a failure probability δ ∈ (0, 1), there exists a one-pass streaming algorithm AMS

for the L2 norm estimation problem, using O
(
logn+logm

α2 log logm
αδ

)
bits of space and O

(
1
α2 log

logm
αδ

)
operations per time.

We first recall the AMS algorithm for F2 frequency estimation, which is formalized in Algorithm 1
for constant probability of success. The algorithm outputs a (1 + α)-approximation to the second
moment of the frequency vector using O

(
1
α2 log n log 1

δ

)
space. The algorithm first generates a

random sign vector s of length n, so that si ∈ {−1,+1} for each i ∈ [n]. The algorithm then
computes the inner product Z = ⟨s, f⟩, so that Z2 is an unbiased estimator of F2 with variance
O
(
F 2
2

)
. It follows from a standard variance reduction argument through Chebyshev’s inequality that

the mean of O
(

1
α2

)
such inner products is a (1± α) approximation of F2 with constant probability

and thus the median of O
(
log 1

δ

)
such means is a (1± α) approximation of F2 with probability at

least 1− δ. Thus by taking the median of O
(
log 1

δ

)
independent instances of Algorithm 1 boosts the

probability of success to 1− δ. Similarly, the square root of the median is a (1± α) approximation
of L2 with probability at least 1− δ, though one could also view the L2 estimation algorithm as
taking the median of means of the absolute value of each inner product Z, which is equivalent to
taking the square root of Z2.

We first show the global L1 sensitivity of the L2 norm.
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Algorithm 1 Algorithm AMS for F2 estimation

Input: Stream S, threshold/accuracy parameter α ∈ (0, 1)
Output: (1 + α)-approximation of F2 with probability at least 2/3
1: Set r = O

(
1
α2

)
2: Generate r random sign vectors s(1), . . . , s(r)

3: Initialize sums S1, . . . , Sr = 0
4: for each update ui ∈ [n], i ∈ [m] do
5: for each j ∈ [r] do

6: Update Sj ← Sj + s
(j)
ui

7: return 1
r

∑r
j=1(Sj)

2

Lemma 2.13 (Sensitivity of L2). Let f and f ′ be frequency vectors on a universe of size n such
that n− 2 coordinates of f and f ′ have the same value and the remaining two coordinates differ by
exactly one. Then |L2(f)− L2(f

′)| ≤ 2.

Proof. Observe that by the concavity of the square root function, we have
√
(x+ 1)2 + y−

√
x2 + y ≤

1 for all x, y ≥ 0. Let i and j be the indices where the coordinates of f and f ′ differ, i.e., |f [i]−f ′[i]| =
1, |f [j]− f ′[j]| = 1, and f [k] = f ′[k] for all k ∈ [n] \ {i, j}. Now we define f ′′ to be an intermediate
frequency vector such that it differs by only one coordinate to f and f ′, respectively, i.e., f ′′[i] = f [i],
f ′′[j] = f ′[j], and f ′′[k] = f [k] = f ′[k] for all k ∈ [n]\{i, j}. Then by the previous observation and the
triangle inequality, we have |L2(f)−L2(f

′)| ≤ |L2(f)−L2(f
′′)|+ |L2(f

′′)−L2(f
′)| ≤ 1+1 = 2.

2.3 Heavy Hitters

In this section, we formally introduce the Lp-heavy hitter problem and the algorithm CountSketch,
which is commonly used to find the L2-heavy hitters.

Definition 2.14 (Lp-heavy hitter problem). Given an accuracy/threshold parameter α ∈ (0, 1),
p > 0, and a frequency vector f ∈ Rn, report all coordinates k ∈ [n] such that fk ≥ αLp(f) and
no coordinates j ∈ [n] such that fj ≤ α

2 Lp(f). For each reported coordinate k ∈ [n], also report an

estimated frequency f̂k such that |f̂k − fk| ≤ α
4 Lp(f).

Theorem 2.15 (Heavy-hitter algorithm CountSketch [CCF04]). Given an accuracy parameter
α > 0 and a failure probability δ ∈ (0, 1), there exists a one-pass streaming algorithm CountSketch
for the L2-heavy hitter problem that uses O

(
1
α2 log

n
δ

)
words of space and O

(
log n

δ

)
update time.

The CountSketch data structure [CCF04] is an r by b table, which can be thought of as r
rows of b buckets, each with counters that are initialized to zero. In each row j ∈ [r], each item of
the universe i ∈ [n] is assigned to one of the b buckets by a hash function h(j) : [n]→ [b], so that
the bucket for item i is h(j)(i). If i appears in the stream, then the random sign s(j)(i) is added to
the counter corresponding to the bucket assigned to the item in row j for each j ∈ [r]. At the end
of the stream, the mean across all r rows of the magnitude of the counters for the buckets assigned
to i corresponds to the estimate of the frequency of i. Due to the O (log n) rows, the algorithm has
failure probability 1− 1

poly(n) . For completeness, we provide the full details in Algorithm 2.
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Algorithm 2 Algorithm CountSketch for heavy-hitter estimation

Input: Stream S, threshold/accuracy parameter α ∈ (0, 1)
Output: L2-Heavy hitter algorithm
1: Set r = O (log n), b = O

(
1
α2

)
2: Generate r hash functions h(1), . . . , h(r) : [n]→ [b] and s(1), . . . , s(r) : [n]→ {−1,+1}
3: Initialize sums Si,j = 0 for (i, j) ∈ [r]× [b]
4: for each update ui ∈ [n], i ∈ [m] do
5: for each j ∈ [r] do
6: Set bi,j = h(j)(ui) and si,j = s(j)(ui)
7: Update Sj,bi,j = Sj,bi,j + si,j

8: for each i ∈ [n] do
9: Set bi,j = h(j)(ui) for each j ∈ [r]

10: return f̂i =
1
r

∑
j∈[r] |Sj,bi,j | as the estimated frequency for fi

2.4 Sliding Window Model

In this section, we introduce simple or well-known results for the sliding window model.

Definition 2.16 (Sliding window model). Given a universe U of items, which we associate with
[n], let a stream S of length m consist of updates u1, . . . , um to the universe U , so that ui ∈ [n] for
each i ∈ [m]. After the stream, a window parameter W is given, which induces the frequency vector
f ∈ Rn so that fk = |{i : ui = k ∧ i ≥ m−W +1}| for each k ∈ [n]. In other words, each coordinate
k of the frequency vector is the number of updates to k within the last W updates.

We say A and B are adjacent substreams of a stream S of length m if A consists of the updates
ui, . . . , uj and B consists of the updates uj+1, . . . , uk for some i, j, k ∈ [m]. We have the following
definition of a smooth function for the purposes of sliding window algorithms, not to be confused
with the smooth sensitivity definition for differential privacy.

Definition 2.17 (Smooth function). Given adjacent substreams A and B, a function g : U∗ → R
is (α, β)-smooth if (1 − β)g(A ∪ B) ≤ g(B) implies (1 − α)g(A ∪ B ∪ C) ≤ g(B ∪ C) for some
parameters 0 < β ≤ α < 1 and any adjacent substream C.

Smooth functions are a key building block in the smooth histogram framework by [BO10], which
creates a sliding window algorithm for a large number of functions using multiple instances of
streaming algorithms starting at different points in time. See Algorithm 3 for more details on the
smooth histogram.

Theorem 2.18 (Smooth histogram [BO10]). Given accuracy parameter α ∈ (0, 1), failure probability
δ ∈ (0, 1) and an (α, β)-smooth function g : Um → R, suppose there exists an insertion-only streaming
algorithm A that outputs a (1 + α)-approximation to g with high probability using space S(α, δ,m, n)
and update time T (α, δ,m, n). Then there exists a sliding window algorithm that outputs a (1 + α)-

approximation to g with high probability using space O
(

1
β (S(β, δ,m, n) + logm) logm

)
and update

time O
(

1
β (T (β, δ,m, n)) logm

)
.

The following smoothness parameters for the Fp frequency moment and Lp norm functions
suffice for our purposes:

11



Algorithm 3 Smooth histogram [BO10]

Input: Stream S, accuracy parameter ρ ∈ (0, 1), streaming algorithm A for (ρ, β(ρ))-smooth
function

Output: (1 + ρ)-approximation of predetermined function with probability at least 1− δ
1: H ← ∅
2: for each update ut with t ∈ [m] do
3: H ← H ∪ {t}
4: for each time ts ∈ H do
5: Let xs be the output of A with failure probability δ

poly(n,m) starting at time ts and ending
at time t.

6: if xs−1 ≤
(
1− β(ρ)

2

)
xs+1 then

7: Delete ts from H and reorder the indices in H

8: Let s be the smallest index such that ts ∈ H and ts ≤ m−W + 1.
9: Let xs be the output of A starting at time ts at time t.

10: return xs

Lemma 2.19 ([BO10]). For any ρ ∈ (0, 1), the Fp and Lp functions are
(
ρ, ρ

p

p

)
-smooth for p ≥ 1

and (ρ, ρ)-smooth for 0 < p ≤ 1.

Approximate frequency in the sliding window model. Finally, we present a deterministic
algorithm Counter that can be parametrized to give an additive M -approximation to the estimated
frequency f̂i of a particular element i ∈ [n] in the sliding window model. The algorithm initializes
counters for i starting at multiple times in the stream. To maintain additive error M , the algorithm
removes a counter starting at a certain time, if the difference between the previous counter and the
next counter is at most M , since it suffices to simply use the previous counter instead. For more
details, see Algorithm 4.

Algorithm 4 Algorithm Counter for frequency estimation in the sliding window model

Input: Stream S, window parameter W > 0, additive error M , index i ∈ [n]
Output: f̂i such that 0 ≤ fi − f̂i ≤M
1: H ← ∅
2: for each update ut ∈ [n] with t ∈ [m] do
3: if ut = i then
4: H ← H ∪ {t}
5: for each time ts ∈ H do
6: Let cs be the number of instances of i from ts.
7: if cs−1 − cs+1 < M then
8: Delete ts from H and re-index H

9: Let s be the largest index such that ts ∈ H and ts > m−W + 1.
10: Let f̂i be the number of instances of i from ts.
11: return f̂i

12



Lemma 2.20. There exists a deterministic algorithm Counter that outputs an additive M
approximation to the frequency of an element i ∈ [n] in the sliding window model. The algorithm

uses O
(

fi
M logm

)
bits of space.

3 Differentially Private Heavy-Hitters in the Sliding Window
Model

In this section, we give a private algorithm for L2-heavy hitters in the sliding window model.
Our algorithm will initially use a smooth histogram approach by instantiating a number of L2

norm estimation algorithm starting at various timestamps in the stream. Through a sandwiching
argument, these L2 norm estimation algorithms will provide a constant factor approximation to the
L2 norm of the sliding window, which will ultimately allow us to determine whether elements of the
stream are heavy-hitters. Moreover, by using a somewhat standard smooth sensitivity argument,
we can show that these subroutines can be maintained in a way that preserves differential privacy.

To identify a subset of elements that can be heavy-hitters, we also run a private L2-heavy hitters
algorithm starting at each timestamp. Unfortunately, because the timestamps do not necessarily
coincide with the beginning of the sliding window, it may be possible that depending on our
approach, we may either output a number of elements with very low, possibly even zero, frequency,
or we may neglect to output a number of heavy-hitters. To overcome this issue, we maintain private
approximate counters for each item that is reported by our private L2-heavy hitters algorithms,
which allows us to rule out initially reported false positives without incurring false negatives.

The crucial observation is all elements that are heavy-hitters with respect to the sliding window
must first be reported by our heavy-hitter algorithm at some timestamp (not necessarily correspond-
ing to the beginning of the sliding window). Although our private approximate counter for a universe
element i is initiated only after the heavy-hitter algorithm outputs element i, the approximate
counter only misses a small number of the instances of i, because we run our heavy-hitter algorithm
with a significantly lower threshold. Hence the approximate counter subroutine will still estimate the
frequencies of the potential heavy-hitters elements with a sufficiently small error that is enough to
differentiate whether an element is heavy with respect to the sliding window. We give the algorithm
in full in Algorithm 5.

We first describe the procedure for the approximate frequency estimation for each reported
heavy-hitter. Let CountSketcha be an L2-heavy hitter algorithm starting at timestamp ta, where
a = max{i ∈ [s] : ti ≤ m −W + 1} on window query W > 0. For a coordinate k ∈ [n] that is
reported by CountSketcha from times t through m, we use Counter to maintain a number of
timestamps such that the frequency of k on the suffixes induced by the timestamps are arithmetically
increasing by roughly α2 L2(f)/16. We emphasize that we run the Counter for each reported
heavy-hitter in the same pass as the rest of the algorithm.

Lemma 3.1. Let E be the event that (1) the smooth histogram data structure does not fail, (2)

all instances of CountSketch do not fail, and (3) X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤ αL2(f)

10 . Let
CountSketcha be the instance of CountSketch starting at time ta. Conditioned on E, then for
each reported heavy-hitter k by CountSketcha, Algorithm 5 outputs an estimated frequency f̂k
such that

|fk − f̂k| ≤
α3ε

500 log n
L2(f).
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Algorithm 5 Differentially private sliding window algorithm for L2-heavy hitters

Input: Stream S, accuracy parameter α ∈ (0, 1), differential privacy parameters ε, δ > 0, window
parameter W > 0, size n of the underlying universe, upper bound m on the stream length

Output: A list L of L2-heavy hitters with approximate frequencies
1: Process the stream S, maintaining timestamps t1, . . . , ts at each time t ∈ [m] so that for each

i ∈ [s], either i = s, ti+1 = ti +1 or L2(ti, t) ≤
(
1 +

(
ε

1000 logm

)2)
L2(ti+1, t) through a smooth

histogram with failure probability δ
2m2

2: Implement heavy-hitter algorithm CountSketch on the substream starting at ti for each
i ∈ [s] with threshold α3ε

500 logm and failure probability δ
2m2

3: Set a = max{i ∈ [s] : ti ≤ m−W + 1} on window query W > 0

4: Set L̂2 to be an
(
1 + ε

500 logm

)
-approximation to L2(ta, t) from the smooth histogram and

X ← Lap
(

1
40 logm L̂2

)
5: for each heavy-hitter k ∈ [n] reported by CountSketch starting at ta do

6: Run Counter with additive error α3ε
1000 logm L̂2 for each reported heavy-hitter

7: Let f̂k be the approximate frequency reported by Counter

8: Yk ← Lap
(

α
75 logm L̂2

)
, Zk ← Lap

(
α

75 logm L̂2

)
, f̃k = f̂k + Zk

9: if f̃k ≥ 3α
4 (L̂2 +X) + Yk then

10: L ← L ∪ {(k, f̃k)}
11: return L

The algorithm uses O
(

1
α6ε2

log3m
)
space and O

(
log2 m
α4ε2

)
update time per instance of CountSketch.

Proof. An approximate frequency counter for k maintains a series of additional timestamps t
(k)
1 <

. . . < t
(k)
r that denotes suffixes of the stream, with the property that for each i ∈ [r − 2], the

frequency of k from time t
(k)
i to m is more than an additive α3ε

500 logm L̂2 amount than the frequency

of k from time t
(k)
i+2. Suppose without loss of generality that the stream has length m and coordinate

k ∈ [n] is reported by CountSketcha from times t through m so that t
(k)
1 = t. By a combination

of casework on the time t compared to m−W +1 and a standard sandwiching argument, we bound
the error of the estimated frequency f̂k for k.

We have two cases: either t < m−W +1 or t ≥ m−W +1. First suppose that t < m−W +1 so

that t
(k)
1 = t < m−W +1. Then there exists an index i ∈ [r− 1] such that t

(k)
i ≤ m−W +1 < t

(k)
i+1.

Let Ti be frequency of k between times t
(k)
i to m and Ti+1 be frequency of k between times t

(k)
i+1 to

m, so that Ti+1 ≤ fk ≤ Ti. Then by Lemma 2.20 and the smoothness of L1 of the frequency vector
restricted to coordinate k in Lemma 2.19, we have Ti+1 ≤ Ti ≤ Ti+1 +

α3ε
1000 logm L̂2. Thus, both Ti

and Ti+1 are additive α3ε
1000 logm L̂2-additive approximations to fk, so that

|fk − f̂k| ≤
α3ε

1000 logm
L̂2.

Conditioning on E , then by the smooth histogram and the smoothness of L2, i.e., Lemma 2.19, we
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have that L̂2(f) ≤
(
1 + ε

500 logm

)
L2(f), so it follows that

|fk − f̂k| ≤
α3ε

500 logm
L2(f).

On the other hand, suppose t ≥ m − W + 1. Then conditioning on E (the correctness of

CountSketcha), at most α3ε
500 logm L̂2 instances of k have arrived between times ta and t; otherwise

item k would have also been reported as an L2-heavy hitter by CountSketcha with threshold
α3ε

500 logm at time t− 1. Since t
(k)
1 = t, then the frequency Ti of k between times t

(k)
i to m is exactly

the number of updates to k since time t. Thus for f̂k = Ti, we have that |f̂k − Ti| ≤ α3ε
500 logm L2(f).

To analyze the space complexity, note that by the invariance of the timestamp maintenance, we

have Ti − Ti+2 >
α3ε

1000 logm L̂2 for each index i ∈ [r] corresponding with timestamps t
(k)
1 < . . . < t

(k)
r .

Similarly, the same invariance holds for the timestamps corresponding to the counters for other

heavy-hitters j ∈ [n] reported by CountSketcha. Since L̂2 >
(
1 + ε

500 logm

)
L2(f), then it follows

that there can only be O
(
log2 m
α3ε2

)
timestamps. Each timestamp corresponds to a counter that

is encoded using O (logm) bits, so the counters use O
(
log3 m
α3ε2

)
space. On the other hand, by

Theorem 2.15, each instance of CountSketch with threshold α3ε
500 logm uses O

(
1

α6ε2
log4m

)
bits of

space, which gives the space complexity.
To analyze the time complexity, note that each update corresponds to whether each of the counters

corresponding to the O
(
log2 m
α3ε2

)
timestamps satisfies the invariant that Ti − Ti+2 > α3ε

1000 logm L̂2.

Thus the update time is O
(
log2 m
α3ε2

)
operations.

We first show that the list L output by Algorithm 5 does not contain any items with “low”
frequency.

Lemma 3.2 (Low frequency items are not reported). Let E be the event that (1) the smooth
histogram data structure does not fail, (2) all instances of CountSketch do not fail, and (3)

X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤ αL2(f)

10 . Let f be the frequency vector induced by the sliding
window parameter W and suppose fk ≤ α

2 L2(f). Then conditioned on E, k /∈ L.

Proof. Let CountSketcha be the instance of CountSketch starting at time ta. Let Ha be the
set of heavy-hitters reported by CountSketcha with threshold α/16 at time m. Then conditioned
on E , either (1) k /∈ Ha so that k /∈ L and thus k will not be reported by Algorithm 5 or (2) k ∈ Ha,
so that k is an α/16 heavy-hitter of some suffix of the stream. In the latter case, an approximate
frequency estimate f̂k for k is output by an instance of Counter.

By Lemma 3.1, we have that

|fk − f̂k| ≤
α3ε

500 logm
L2(f).

Thus, f̂k ≤ fk + αL2(f)/8. By the smooth histogram, we also have that
(
1 + ε

500 logm

)
L̂2 ≥ L2(f).

Hence fk ≤ α
2 L2(f) along with the assumption that X ≤ L2(f)

10 and maxj∈[n](Yj , Zj) ≤ αL2(f)
10

conditioned on E implies that f̂k < 3α
4 (L̂2 + X) + Yk so k will not be added to L and thus not

reported by Algorithm 5.
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We now show that the heavy-hitters are reported and bound the error in the estimated frequency
for each reported item.

Lemma 3.3 (Heavy-hitters are estimated accurately). Let f be the frequency vector induced by the
sliding window parameter W . Let E be the event that (1) the smooth histogram data structure does not

fail, (2) all instances of CountSketch do not fail, and (3) X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤ αL2(f)

10 .
Conditioned on E, then k ∈ L for each k ∈ [n] with fk ≥ αL2(f). Moreover, for each item k ∈ L,

|fk − f̂k| ≤
α3ε

500 logm
L2(f).

Proof. Let CountSketcha be the instance of CountSketch starting at time ta. Since fk ≥
αL2(f) and L2(ta, t) ≤

(
1 + ε

500 logm

)
L2(f) implies fk ≥ α

16 L2(ta, t), then fk will be reported

by CountSketcha, conditioned on E (the correctness of CountSketcha). We thus have an
approximate frequency estimate f̂k for k output by an instance of Counter. By Lemma 3.1,

|fk − f̂k| ≤
α3ε

500 logm
L2(f).

Furthermore, we have that L̂2 ≤
(
1 + ε

500 logm

)
L2(ta, t) ≤

(
1 + ε

500 logm

)2
L2(f). Given the

assumption that X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤ αL2(f)

10 conditioned on E , then f̂k < 3α
4 (L̂2 +

X) + Yk so k ∈ L.
Let Ha be the set of heavy-hitters reported by CountSketcha with threshold α3ε

500 logm at time

m. For each j ∈ L, we have that j ∈ Ha so that an approximate frequency estimate f̂j for j is

output by an instance of Counter. By Lemma 3.1, we have that |fj − f̂j | ≤ α3ε
500 logm L2(f), as

desired.

We now show that the event E conditioned by Lemma 3.1, Lemma 3.2, and Lemma 3.3 occurs
with high probability.

Claim 3.4. Let Pr
[
L̂2(f) ≤ 2L2(f)

]
≤ δ. Suppose X ∼ Lap

(
1

40 logm L̂2(f)
)
, and for j ∈ [n],

Yj , Zj ∼ Lap
(

α
75 logm L̂2(f)

)
. Then, Pr

[
X ≤ L2(f)

10 ∧ maxj∈[n](Yj , Zj) ≤ αL2(f)
10

]
≥ 1−

(
1
m2 + 2

m
11
4
+ δ
)
.

Proof. Using Fact 2.3,

Pr

[
|X| > L̂2(f)

20

]
= Pr

[
|X| > L̂2(f)

40 logm
· 2 logm

]
=

1

m2

Also using Fact 2.3, for a fixed j,

Pr

[
|Yj | >

αL̂2(f)

20

]
= Pr

[
|Yj | >

L̂2(f)

75 logm
· 75
20

logm

]
=

1

m
15
4

By a union bound over all j ∈ [n],

Pr

[
max
j∈[n]
|Yj | >

αL̂2(f)

20

]
≤ n

m
15
4
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Since Zj is identically distributed and over j ∈ [n], and n < m, we have that

Pr

[
max
j∈[n]
|(Yj , Zj)| >

αL̂2(f)

20

]
≤ 2n

m
15
4

≤ 2

m
11
4

We know that with probability 1 − δ, L̂2(f) ≤ 2L2(f), therefore, by a union bound, and using
n < m,

Pr

[
(L̂2(f) > 2L2(f)) ∨

(
max
j∈[n]
|(Yj , Zj)| >

αL̂2(f)

20

)
∨
(
|X| > 1

20
L̂2(f)

)]
≤ 2

m
11
4

+
1

m2
+ δ.

Lemma 3.5. Let E be the event that (1) the smooth histogram data structure does not fail on either

stream, (2) all instances of CountSketch do not fail, and (3) X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤

αL2(f)
10 . Then Pr [E ] ≥ 1− 4

m2 − 2

m
11
4
.

Proof. Let E1 be the event that the smooth histogram data structure does not fail, E2 be the
event that all instances of CountSketch do not fail, and E3 be the event that X ≤ L2(f)

10 and

maxj∈[n](Yj , Zj) ≤ αL2(f)
10 , so that E = E1 ∧ E2 ∧ E3. It suffices to set the probability of failure

δ = 1
m2 in each L2 estimation algorithm to achieve Pr [E1] = 1 − 1

m2 . Similarly, by setting
the probability of failure δ = 1

m2 in Theorem 2.15, it follows that CountSketcha succeeds
with probability 1 − 1

m2 and thus Pr [E2] = 1 − 1
m2 . Finally, note that for window sizes of

length W with W = O
(
log5 m
α2ε2

)
, we can simply store the entire set of active items. Thus we

assume W = Ω
(
log5 m
α2ε2

)
so that L2(f) = Ω

(
log2 m
αε

)
. Let Pr

[
L̂2(f) ≤ 2L2(f)

]
≤ 1/m2, then

since X ∼ Lap
(

1
40 logm L̂2(f)

)
and Yk, Zk ∼ Lap

(
α

75 logm L̂2(f)
)
for each k ∈ [n], it follows from

Claim 3.4 that Pr
[
X ≤ L2(f)

10 ∧ maxj∈[n](Yj , Zj) ≤ αL2(f)
10

]
≥ 1−

(
2
m2 + 2

m
11
4

)
. Hence, by a union

bound, we have Pr [E ] ≥ 1− 4
m2 − 2

m
11
4
.

Before analyzing the privacy guarantees of Algorithm 5, we must analyze the local sensitivity of
its subroutines. We first show a β-smooth upper bound on the local sensitivity of the frequency
moment.

Lemma 3.6 (Smooth sensitivity of the frequency moment). Let S be a data stream of length m that

induces a frequency vector f and let L̂2(f) be the estimate of L2(f) output by the smooth histogram.
Define the function g(f) by

g(f) =


L̂2(f), if

(
1− ε

500 logm

)
L2(f) ≤ L̂2(f) ≤

(
1 + ε

500 logm

)
L2(f),(

1− ε
500 logm

)
L2(f), if L̂2(f) <

(
1− ε

500 logm

)
L2(f), and(

1 + ε
500 logm

)
L2(f), if L̂2(f) >

(
1 + ε

500 logm

)
L2(f).

Then the function S(f) = ε
200 logm g(f) + 2 is a β-smooth upper bound on the local sensitivity of g(f)

for β ≥ ε
150 logm , ε > 1000 logm√

W
, and sufficiently large W .
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Proof. Let S(f) = ε
200 logm g(f) + 2 and suppose ∥f − f ′∥1 = 1. Moreover, suppose without loss

of generality that g(f) ≥ g(f ′). We first show that Condition 1 of Definition 2.7 holds. The local
sensitivity of g(f) is at most

|g(f)− g(f ′)| ≤
∣∣∣∣(1 + ε

500 logm

)
L2(f)−

(
1− ε

500 logm

)
L2(f

′)

∣∣∣∣ .
By Lemma 2.13, we have |L2(f)− L2(f

′)| ≤ 2. Thus for ε > 1000 logm√
W

and sufficiently large W ,

|g(f)− g(f ′)| ≤ 2 +

(
ε

500 logm

)
L2(f) +

(
ε

500 logm

)
L2(f

′)

≤ 2 +

(
ε

500 logm

)
(2L2(f) + 2)

≤ 2 +

(
ε

225 logm

)
L2(f)

≤ 2 +

(
ε

225 logm

)(
1

1− ε/(500 logm)

)
g(f)

≤ 2 +
ε

200 logm
g(f) = S(f).

Thus Condition 1 of Definition 2.7 holds. We next show that Condition 2 of Definition 2.7 holds.
Furthermore, from the above, we have

S(f ′) =
ε

200 logm
g(f ′) + 2

≤
(

ε

200 logm

)(
g(f) + 2 +

(
ε

200 logm

)
L2(f)

)
+ 2

≤
(
1 +

ε

150 logm

)(
ε

200 logm
g(f) + 2

)
≤ eβ S(f).

Therefore, both conditions of Definition 2.7 hold and it follows that the function S(f) = ε
200 logm g(f)+

2 is a β-smooth upper bound on the local sensitivity of g(f) for β ≥ ε
150 logm , ε > 1000 logm√

W
, and

sufficiently large W .

We next show a β-smooth upper bound on the local sensitivity for each estimated frequency
output by Algorithm 5.

Lemma 3.7 (Smooth sensitivity of the estimated frequency). Let S be a data stream of length m
that induces a frequency vector f and let f̂k be the estimate of the frequency of a coordinate k ∈ [n]
output by the smooth histogram. Define the function h(f) by

h(f) =


f̂k, if fk − α3ε

1000 logmL2(f) ≤ f̂k ≤ fk +
α3ε

1000 logmL2(f),

fk − α3ε
1000 logmL2(f), if f̂k < fk − α3ε

1000 logmL2(f), and

fk +
α3ε

1000 logmL2(f), if f̂k > fk +
α3ε

1000 logmL2(f).

Then the function S(f) = α3ε
200 logm h(f) + 2 is a β-smooth upper bound on the local sensitivity of

h(f) for β ≥ α3ε
150 logm , ε > 1000 logm√

Wα3
, and sufficiently large W .
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Proof. The proof is almost identical to that of Lemma 3.6; we include it for completeness. Let
S(f) = α3ε

200 logm h(f) + 2 and suppose ∥f − f ′∥1 = 1. Moreover, suppose without loss of generality

that h(f) ≥ h(f ′). We first show that Condition 1 of Definition 2.7 holds. The local sensitivity of
h(f) is at most

|h(f)− h(f ′)| ≤ |fk − f ′
k|+

α3ε

1000 logm
(L2(f) + L2(f

′)).

By Lemma 2.13, we have |L2(f)−L2(f
′)| ≤ 2. Since |fk − f ′

k| ≤ 2, we further have for ε > 1000 logm√
Wα3

and sufficiently large W ,

|h(f)− h(f ′)| ≤ 2 +
α3ε

1000 logm
(L2(f) + L2(f) + 2)

≤ 2 +

(
α3ε

1000 logm

)
(2L2(f) + 2)

≤ 2 +

(
α3ε

400 logm

)
L2(f)

≤ 2 +

(
α3ε

400 logm

)(
1

1− (α3ε)/(1000 logm)

)
h(f)

≤ 2 +
α3ε

200 logm
h(f) = S(f).

Thus Condition 1 of Definition 2.7 holds. We next show that Condition 2 of Definition 2.7 holds.
Furthermore, from the above, we have

S(f ′) =
α3ε

200 logm
h(f ′) + 2

≤
(

α3ε

200 logm

)(
h(f) + 2 +

(
α3ε

400 logm

)
L2(f)

)
+ 2

≤
(
1 +

α3ε

150 logm

)(
α3ε

200 logm
h(f) + 2

)
≤ eβ S(f).

Therefore, both conditions of Definition 2.7 hold and it follows that the function S(f) = α3ε
200 logm h(f)+

2 is a β-smooth upper bound on the local sensitivity of h(f) for β ≥ α3ε
150 logm , ε > 1000 logm√

Wα3
, and

sufficiently large W .

With the structural results on smooth sensitivity in place, we now show that Algorithm 5 is
(ε, δ)-differentially private.

Lemma 3.8. There exists an algorithm (see Algorithm 5) that is (ε, δ)-differentially private for
α ∈ (0, 1), ε > 1000 logm√

Wα3
, and δ > 6

m2 .

Proof. Let E be the event that (1) the smooth histogram data structure does not fail on either stream,

(2) all instances of CountSketch do not fail, and (3)X ≤ L2(f)
10 and maxj∈[n](Yj , Zj) ≤ αL2(f)

10 . By

Lemma 3.5, we have Pr [E ] ≥ 1− 4
m2 − 2

m11/4 . Conditioned on E , then by Lemma 3.3, the algorithm

releases at most 10
α2 frequencies.
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Let f be the frequency vector defined by the active elements of the sliding window. Let g(f) be
the function defined in Lemma 3.6. Then by Lemma 3.6, we have that ε

125 logm g(f) is a β-smooth
upper bound on the local sensitivity of g(f), for β = ε

2 ln(2m3)
and sufficiently large m. Thus by

Theorem 2.8 it suffices to add Laplacian noise X ∼ Lap
(

1
40 g(f)

)
to the estimated norm L̂2 output

by the smooth histogram to achieve
(
ε
3 ,

δ1
3

)
-differential privacy where δ1

3 = 1
m3 .

Similarly by Lemma 3.7, we have that α3ε
200 logm h(f) is a β-smooth upper bound on the local

sensitivity of each estimated frequency for β = ε
2 ln(2m3)

and sufficiently largem. Thus by Theorem 2.8

it suffices to add Laplacian noise Yk ∼ Lap
(

α
75 logm h(f)

)
to each estimated frequency f̂k output

by the smooth histogram to achieve
(
εα2

30 , δ23

)
-differential privacy where δ2

3 = 1
m3 . Since we only

release at most 10
α2 estimated frequencies, then by Theorem 2.5 and Theorem 2.9, the estimated

frequencies for each heavy-hitter are ( ε3 ,
δ2
3 )-differentially private. Finally, we only release the

estimated frequencies that are above a threshold 3α
4 (L̂2 +X) + Yk, which corresponds to a limited

histogram query. Hence by Theorem 2.9, the algorithm would be (ε, 2δ3 )-differentially private when
using the functions g(f), to which we do not have access. Instead, we note that conditioned on

E , we have that g(f) = L̂2(f) with probability 1− 4
m2 − 2

m
11
4
. Setting δ3

3 = 5
m2 > 4

m2 − 2

m
11
4
, and

consequently, setting δ = 6
m2 > δ1

3 + δ2
3 + δ3

3 = 2
m3 + 5

m2 , this is absorbed into the failure probability.
Thus the entire algorithm is (ε, δ)-differentially private.

Since Algorithm 5 further adds Laplacian noise Z ∼ Lap
(

α
75 logm L̂2(f)

)
to each f̂k with k ∈ L,

then Lemma 3.3 implies that the additive error to fk is α
50 logm L2(f) + Lap

(
α

75 logm L̂2(f)
)
for each

reported coordinate k ∈ [n].
Thus we now have our main result for differentially private L2-heavy hitters in the sliding window

model.

Theorem 1.2. For any α ∈ (0, 1), c > 0, window parameter W on a stream of length m that induces
a frequency vector f ∈ Rn in the sliding window model, and privacy parameter ε > 1000 logm

α3
√
W

, there

exists an algorithm such that:

(1) (Privacy) The algorithm is (ε, δ)-differentially private for δ = 1
mc .

(2) (Heavy-hitters) With probability at least 1− 1
mc , the algorithm outputs a list L such that k ∈ L

for each k ∈ [n] with fk ≥ αL2(f) and j /∈ L for each j ∈ [n] with fj ≤ α
2 L2(f).

(3) (Accuracy) With probability at least 1− 1
mc , we simultaneously have |fk − f̃k| ≤ α

4 L2(f) for

all k ∈ L, where f̃k denotes the noisy approximation of fk output by the algorithm.

(4) (Complexity) The algorithm uses O
(
log7 m
α6η4

)
bits of space and O

(
log4 m
α3η4

)
operations per update

where η = max{1, ε}.

Proof. Let E be the event that (1) the smooth histogram data structure does not fail on either stream,

(2) all instances of CountSketch do not fail, and (3) maxj∈[n](X,Yj , Zj) ≤ αL2(f)
10 . By Lemma 3.5,

we have Pr [E ] ≥ 1− 1
mc . Conditioned on E , the first and second claims follow immediately from

Lemma 3.2 and Lemma 3.3. The third claim follows from Lemma 3.8.
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To analyze the space complexity, note that by Theorem 2.12, each
(
1 + ε

500 logm

)
-approximation

algorithm for L2 with failure probability δ = 1
mc uses O

(
1
ε2

log2m
)
bits of space. Similarly by

Theorem 2.15, each instance of CountSketch with threshold α3ε
500 logm uses O

(
1

α6ε2
log4m

)
bits

of space. By the smooth histogram data structure, the timestamps t1, . . . , ts satisfy L2(ti,m) ≥(
1 + ε

500 logm

)
L2(ti+2,m). By the smoothness of L2 in Lemma 2.19, this requires the invariant that

L2(ti, t) ≤
(
1 +

(
ε

1000 logm

)2)
L2(ti+1, t) for all t ∈ [m]. Since the L2 of the entire stream is at most

m, s = O
(

1
ε2

log3m
)
. Thus there are at most O

(
1
ε2

log3m
)
instances of CountSketch and AMS.

Hence the total space used by CountSketch and AMS is O
(

1
α6ε4

log7m
)
. By Lemma 3.1, the

total space used by the frequency estimation algorithms Counter across all O
(
1
ε logm

)
instances

is also at most O
(

1
α6ε4

log7m
)
. Therefore, the total space used by the algorithm is O

(
1

α6ε4
log7m

)
bits of space.

To analyze the time complexity, note that by Theorem 2.15 and Lemma 3.1, O
(
logn
α2ε2

+ logm
)

operations are required per update, per instance of CountSketch and Counter. The update
time then follows from the fact that there are O

(
1
ε2

log3m
)
simultaneous instances.

Finally, observe that in the proof of Lemma 3.8, each instance of the frequency estimation
algorithm is required to be

(
ε

30α2 ,
δ
3

)
-differentially private, since we release O

(
1
α2

)
frequencies, by the

standard differential privacy composition theorem, i.e., Theorem 2.9. We can instead use advanced
composition, i.e., Theorem 2.10, to require each instance of the frequency estimation algorithm to be(
O
(

ε
α
√
logm

)
, δ3

)
-differentially private, for ε = O

(
α2
)
. In this case, we can require each frequency

estimation algorithm to have a cruder approximation guarantee, e.g., using CountSketch with

threshold O
(

α2ε
log3/2 m

)
rather than threshold α3ε

500 logm .

Theorem 3.9. For any α, c > 0, window parameter W on a stream of length m that induces a
frequency vector f ∈ Rn in the sliding window model and privacy parameter ε, there exists an
algorithm (see Algorithm 5) such that:

(1) With probability at least 1− 1
mc , the algorithm outputs a list L such that k ∈ L for each k ∈ [n]

with fk ≥ αL2(f) and j /∈ L for each j ∈ [n] with fj ≤ α
2 L2(f).

(2) With probability at least 1− 1
poly(m) , we simultaneously have |fk − f̃k| ≤ α

4 L2(f) for all k ∈ L,
where f̃k denotes the noisy approximation of fk output by Algorithm 5.

(3) The algorithm is (ε, δ)-differentially private for δ = 1
mc .

(4) The algorithm uses O
(
log8 m
α4η3

)
bits of space and O

(
log9/2 m
α2η3

)
operations per update where

η = max{1, ε}.

4 Better L1 Heavy-Hitter Algorithm

In this section, we show how our main technical ideas can be simplified and applied to give a
better L1-heavy hitter algorithm than the one-shot sliding window algorithm given in [Upa19].
Due to the linearity of L1, our algorithm for differentially private L1-heavy hitters in the sliding
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window model is significantly simpler than the L2-heavy hitters algorithm. For starters, each set
of c > 0 updates must contribute exactly c to the L1 norm, whereas their contribution to the L2

norm depends on the particular coordinates they update. Therefore, not only do we not require
an algorithm to approximate the L1 norm of the active elements of the sliding window, but also
we can fix a set of static timestamps in the smooth histogram, so we do not need to perform the
same analysis to circumvent the sensitivity of the timestamps. Instead, it suffices to initialize a
deterministic L1-heavy hitter algorithm at each timestamp and maintain deterministic counters for
each reported heavy-hitter. Pure differential privacy then follows from the lack of failure conditions
in the subroutines, which was not possible for L2-heavy hitters.

We first require the following deterministic algorithm for L1-heavy hitters.

Theorem 4.1 (Heavy-hitter algorithm MisraGries). [MG82] Given an accuracy parameter α > 0,
there exists a one-pass algorithm MisraGries for the L1-heavy hitter problem, using O

(
1
α logm

)
bits of space and update time on a stream of length m and a universe of size n.

The global L1-sensitivity of the MisraGries algorithm is upper bounded as follows:

Fact 4.2. MisraGries on a stream of length m and threshold α has L1 sensitivity αm.

The algorithm for differentially private L1-heavy hitters in the sliding window model is much
simpler than the L2-heavy hitters algorithm due to the linearity of L1. For instance, because we
know that each set of c updates contributes exactly c to the L1 norm, then it suffices to maintain a
static set of timestamps in the smooth histogram. Therefore, the timestamps do not change across
neighboring datasets, so we do not need to analyze the sensitivity of the timestamps. Similarly, we
do not need an algorithm to approximate the L1 norm of the substream starting at each timestamp,
since it is also fixed. Hence, we do not need analysis for the smooth sensitivity of an L1 norm
approximation algorithm and the subsequent statistical distance analysis that we needed for AMS for
L2 norm approximation. Instead, it suffices to maintain a counter for each reported heavy-hitter by
some instance of MisraGries starting at each of the timestamps. We then output the coordinates
whose estimated frequencies by the counters surpass a fixed threshold in terms of W , which again is
deterministic due to the linearity of L1. We give the algorithm in full in Algorithm 6.

We first analyze the accuracy of the estimated frequency for each item output by Algorithm 6.

Lemma 4.3 (Accuracy of frequency estimation). Let E be the event that maxj∈[n](Zj) ≤ α
16 W .

Then for each k ∈ [n] with fk ≥ αL1(f), we have k ∈ L. Moreover, for each item k ∈ L,

|fk − f̃k| ≤
α

8
W.

Proof. Consider a time t ∈ [m] that induces a frequency vector f . We have L1(f) ≤ L1(ta : t) ≤(
1 + 1

100

)
L1(f). Hence for each k ∈ [n] with fk ≥ αL1(f), we have fk ≥ α

16 L1(ta : t) and thus k
will be reported by the instance of MisraGries starting at time ta. For each item k reported by
MisraGries starting at time ta, Counter reports an estimated frequency f̂k such that

|fk − f̂k| ≤
α

32
L1(ta : t) ≤ α

16
W.

Conditioned on the event that maxj∈[n](Zj) ≤ α
16 W , then we have |f̃k − f̂k| ≤ α

16 W . Hence by
triangle inequality,

|fk − f̃k| ≤
α

16
L1(ta : t) ≤ α

8
W

for each item k ∈ L.

22



Algorithm 6 Differentially private sliding window algorithm for L1-heavy hitters

Input: Stream S, threshold/accuracy parameter α ∈ (0, 1), differential privacy parameters ε, δ > 0,
window parameter W > 0, size n of the underlying universe, upper bound m on stream length

Output: A list L of L1 heavy-hitters with approximate frequencies
1: Process the stream S, maintaining timestamps t1, . . . , ts at each time t ∈ [m] so that for each

i ∈ [s], either i = 1, i = s, or t− ti−1 + 1 >
(
1 + 1

100

)
(t− ti+1 + 1) through a smooth histogram

2: Implement heavy-hitter algorithm MisraGries on the substream starting at ti for each i ∈ [s]
with threshold α

16
3: Set a = max{i ∈ [s] : ti ≤ m−W + 1} on window query W > 0
4: for each heavy-hitter k ∈ [n] reported by MisraGries starting at ta do
5: Run Counter with additive error α

32 (t− ta + 1)

6: Let f̂k be the approximate frequency reported by Counter

7: Zk ← Lap
(

1
εα logm

)
, f̃k = f̂k + Zk

8: if f̃k ≥ 3α
4 W then

9: L ← L ∪ {(k, f̃k)}
10: return L

We now show that Algorithm 6 guarantees pure differential privacy. By comparison, the
algorithm of [Upa19] can only guarantee (ε, δ)-differential privacy due to the failure probability of
their randomized subroutines.

Lemma 4.4. Algorithm 6 is (ε, 0)-differentially private for any constant ε ∈ (0, 1].

Proof. Note that unlike for the L2-heavy hitter algorithm where the times t1, . . . , ts are determined
by the output of the randomized algorithms for L2-norm estimation, the times t1, . . . , ts are
deterministic since the L1 norm of the frequency vector defined from a time t to a time t′ is simply
t′ − t+ 1. Thus the sensitivity of the estimated frequency of each element is the sensitivity of the
instance of MisraGries that starts at time ta. Consequently by Fact 4.2, the sensitivity of each
estimated frequency is at most 2. Hence by Theorem 2.5, it suffices to add Laplacian noise that
scales with 2

ε to each estimated frequency to preserve (ε, 0)-differential privacy.

We now give the full guarantees of Algorithm 6.

Theorem 4.5. For any α, c > 0, window parameter W on a stream of length m that induces a
frequency vector f ∈ Rn in the sliding window model and constant privacy parameter ε, there exists
an algorithm (see Algorithm 6) such that:

(1) With probability at least 1− 1
mc , the algorithm outputs a list L such that k ∈ L for each k ∈ [n]

with fk ≥ αW and j /∈ L for each j ∈ [n] with fj ≤ α
2 W .

(2) With probability at least 1− 1
mc , we simultaneously have |fk − f̃k| ≤ α

4 W for all k ∈ L where

f̃k denotes the noisy approximation of fk output by Algorithm 6.

(3) The algorithm is (ε, 0)-differentially private.

(4) The algorithm uses O
(
log2 m

α

)
bits of space and O

(
log2 m

α

)
update time per arriving symbol.
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Proof. The first three statements follow from Lemma 4.3 and Lemma 4.4. Thus it remains to
analyze the space complexity. Note that for each time ti with i ∈ [s], we have either i = 1, i = s, or
t− ti−1+1 >

(
1 + 1

100

)
(t− ti+1+1), so that s = O (logm) = O (log n). Each time ti corresponds to

a separate instance of MisraGries that uses O
(
1
α log n

)
bits of space and update time per arriving

symbol. The instances of Counter associated with each time ti can also maintain O
(
1
α

)
times,

which use O
(
1
α logm

)
space and update time for each time ti. Hence, the total space and update

time is O
(
log2 m

α

)
.
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A Continual Release of Heavy-Hitters

Our algorithm consists of L := O (logW ) = O (log n) levels of subroutines. In each level ℓ ∈ [L], we

split the stream into continuous blocks of length Sℓ := 2ℓ−2 · α
√
W

100 logW . Given a threshold parameter

α > 0, for each block in level ℓ, we run an instance of MisraGries with threshold 1
2ℓ+1L

. At the
end of the stream, we stitch together a sketch of the underlying dataset represented by the sliding
window through a binary tree mechanism.

Algorithm 7 Differentially private sliding window algorithm for heavy-hitters

Input: Stream S of length m, accuracy parameter α > 0, differential privacy parameter ε > 0,
window parameter W > 0

Output: Continuous release of list L of L1 heavy-hitters with approximate frequencies

1: L←
⌈
log 100ε

α

√
W + log logW

⌉
+ 2, φ← min(ε, 1)

2: for ℓ ∈ [L] do

3: Partition the stream into blocks of length Sℓ := 2ℓ−2 · α
√
W

100 logW

4: Run MisraGries on each block of length Sℓ with threshold φα
√
W

16Sℓ·log3 W

5: for each time i ∈ [m] do
6: Update each MisraGries algorithm
7: Build a binary tree mechanism and output the reported heavy-hitters
8: for each active block B1, . . . , BL in the binary tree mechanism do

9: Set ĝ
(r)
i be the estimate of each i ∈ [n] in Br

10: f̂
(r)
i ← ĝ

(r)
i + Lap

(
α
√
W

16 log2 W

)
11: return f̂i =

∑L
r=1 f̂

(r)
i

From Theorem 4.1, we have the following accuracy guarantees:

Corollary A.1. Suppose MisraGries at level ℓ ∈ [L] on a substream induced by the updates

between
[
t+ 1, t+ 2ℓ−2 ·

√
W

100 logW

]
outputs an estimate ĝi for the frequency gi of item i ∈ [n] between[

t+ 1, t+ 2ℓ−2 ·
√
W

100 logW

]
. Then |gi − ĝi| ≤ α

√
W

16 log3 W
.

Lemma A.2 (Accuracy of frequencies). For all i ∈ [n], we have that |fi − f̂i| ≤ α
√
W
8 .

Proof. Let t be the smallest multiple of α
√
W

200 logW with t ≥ m −W + 1. In other words, t is the

first starting location of a block at level 1 among the active items. For each i ∈ [n], let f̃i be the

frequency of i from time t to m. Since (m−W + 1)− t < α
√
W

200 logW , then we have

fi − f̃i <
α
√
W

200 logW
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for all i ∈ [n].
Our binary tree mechanism partitions the stream from time t to m into at most two disjoint

blocks in each level. Suppose these blocks are B1, . . . , BL across the L levels. For each i ∈ [n] and

r ∈ [L], let g
(r)
i be the frequency of i within the substream allocated to Br. Similarly, let ĝ

(r)
i be the

estimated frequency of i within the substream by the corresponding instance of MisraGries. By

Corollary A.1, we have that |g(r)i − ĝ
(r)
i | <

α
√
W

16 log3 W
. Thus we have by triangle inequality,∣∣∣∣∣f̃i −

L∑
r=1

ĝ
(r)
i

∣∣∣∣∣ =
∣∣∣∣∣

L∑
r=1

g
(r)
i −

L∑
r=1

ĝ
(r)
i

∣∣∣∣∣
≤

L∑
r=1

∣∣∣∣g(r)i − ĝ
(r)
i

∣∣∣∣ ≤ L∑
r=1

α
√
W

16 logW

≤ Lα
√
W

16 logW
≤ α
√
W

16

Hence by another triangle inequality,∣∣∣∣∣fi −
L∑

r=1

ĝ
(r)
i

∣∣∣∣∣ ≤
∣∣∣∣∣f̃i −

L∑
r=1

ĝ
(r)
i

∣∣∣∣∣+ |fi − f̃i| ≤
α
√
W

8
.

The claim then follows from setting f̂i =
∑L

r=1 ĝ
(r)
i .

Theorem A.3. Given threshold/accuracy parameter α > 0, privacy parameter ε = O (1), and
window parameter W on a stream of length m that induces a frequency vector f ∈ Rn in the sliding
window model, there exists an algorithm such that:

(1) The algorithm continually outputs a list L such that k ∈ L for each k ∈ [n] with fk ≥ α
√
W

and with high probability, we have |fk − f̂k| ≤ α
√
W
2 for each k ∈ L.

(2) The algorithm is (ε, 0)-differentially private.

(3) The algorithm uses O
(√

W log4 W
εα

)
bits of space and operations per update.

Proof. Consider Algorithm 7. For each ℓ ∈ [L], the stream is partitioned into blocks of length

Sℓ := 2ℓ−2· α
√
W

100 logW and thenMisraGries is run on each block of length Sℓ with threshold φα
√
W

16·Sℓ log
3 W

,

with φ = min(ε, 1). By Fact 4.2, the sensitivity of each block is φα
√
W

16 log3 W
. Thus by Theorem 2.5,

it suffices to add Laplacian noise Lap
( √

αW
8 log2 W

)
to each block to achieve

(
ε

2 logW , 0
)
-differential

privacy. Then by composition, i.e., Theorem 2.9, we obtain (ε, 0)-differential privacy.
Moreover, we have that the sum of O (logW ) random variables drawn from the distribution

Lap
(

α
√
W

8 log2 W

)
is at most α

√
W
4 with high probability. Thus by Lemma A.2, we have |fk− f̂k| ≤ α

√
W
2

for each k ∈ L with high probability.
By Theorem 4.1, running MisraGries on each block of size Sℓ uses

O
(
Sℓ · log3W
εα
√
W

)
= O

(
2ℓ · log2W

ε

)
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bits of space and update time per operation. There are at most W
Sℓ

= O
(√

W logW
2ℓα

)
blocks of size

Sℓ, thus the total space and update time per operation across the blocks of size Sℓ is O
(√

W log3 W
εα

)
.

Finally, we have ℓ ∈ [L], where L = O (logW ), so the total space and update time per operation of

Algorithm 7 is O
(√

W log4 W
εα

)
.

Finally, we remark that for a window of W updates, we have L2(t−W + 1 : t) ≥
√
W . Thus

Theorem A.3 outputs a list L such that k ∈ L for each k ∈ [n] with fk ≥ α
√
W and in particular,

fk ≥ αL2(t−W + 1 : t). Moreover, the algorithm achieves additive error α
√
W
2 ≤ αL2(t−W+1:t)

2 for
each k ∈ L. Therefore, Theorem A.3 not only improves upon the continual L1-heavy hitters of
[Upa19], but it also solves the continual L2-heavy hitters problem.
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