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Abstract

The presence of uncertainty in policy evaluation significantly complicates the1

process of policy ranking and selection in real-world settings. We formally consider2

offline policy selection as learning preferences over a set of policy prospects given3

a fixed experience dataset. While one can select or rank policies based on point4

estimates of their expected values or high-confidence intervals, access to the full5

distribution over one’s belief of the policy value enables more flexible selection6

algorithms under a wider range of downstream evaluation metrics. We propose7

a Bayesian approach for estimating this belief distribution in terms of posteriors8

of distribution correction ratios derived from stochastic constraints. Empirically,9

despite being Bayesian, the credible intervals obtained are competitive with state-of-10

the-art frequentist approaches in confidence interval estimation. More importantly,11

we show how the belief distribution may be used to rank policies with respect to12

arbitrary downstream policy selection metrics, and empirically demonstrate that this13

selection procedure significantly outperforms existing approaches, such as ranking14

policies according to mean or high-confidence lower bound value estimates.15

1 Introduction16

Off-policy evaluation (OPE) [53] in the context of reinforcement learning (RL) is often motivated as17

a way to mitigate risk in practical applications where deploying a policy might incur significant cost18

or safety concerns [60]. Indeed, by providing a point estimate of the value of a target policy solely19

from a static offline dataset of logged experience in the environment, OPE can help practitioners20

determine whether a target policy is or is not safe and worthwhile to deploy. Still, in many practical21

applications the ability to accurately estimate the online value of a specific policy is less of a concern22

than the ability to select or rank a given set of policies (one of which may be the currently deployed23

policy). For example, in recommendation systems, a practitioner may have a large number of policies24

trained offline using various hyperparameters, while cost and safety constraints only allow a few of25

those policies to be deployed as live experiments. Which policies should be chosen to form the small26

subset that will be evaluated online?27

This problem, related to but subtly different from OPE, is offline policy selection [17, 51, 36]. The28

original motivations for OPE were arguably with offline policy selection in mind [53, 28], the idea29

being that one can use estimates of the value of a set of policies to rank and then select from this set.30

Accordingly, there is a rich literature of approaches for computing point estimates of the value of31

the policy [19, 4, 31, 59, 45, 69, 62, 32, 66], as well as estimating high-confidence lower and upper32

bounds on a target policy’s value [60, 36, 4, 25, 22, 11, 34].33

These existing OPE approaches may be readily applied to the recommendation systems example above34

by using either mean or high-confidence bounds estimates on each candidate policy to rank the set35

and picking the top few to deploy online. However, such a naïve approach ignores crucial differences36

between the OPE problem setting and the downstream evaluation criteria a practitioner prioritizes.37

For example, when choosing a few policies out of a large number of policies, a recommendation38

systems practitioner may have a number of objectives in mind: They may strive to ensure that the39
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policy with the overall highest groundtruth value is within the small subset of selected policies (akin40

to top-k precision). Or, in scenarios where the practitioner is sensitive to large differences in achieved41

value, a more relevant downstream metric may be the difference between the largest groundtruth42

value within the k selected policies compared to the groundtruth of the best possible policy overall43

(akin to top-k regret). With these potential offline policy selection metrics, it is far from obvious that44

ranking according to OPE mean or high-confidence bound estimates is ideal [17].45

The diversity of downstream metrics for offline policy selection presents a challenge to any algorithm46

that produces a point estimate for each policy. In fact, any one approach to computing point estimates47

will necessarily be sub-optimal for some adversarially chosen policy selection criteria. To circumvent48

this challenge, we propose to compute a belief distribution over groundtruth values for each policy.49

Specifically, with the posteriors of the policy values, one can calculate the distribution of a variety of50

criteria over the value for each policy. These posteriors can be used in a straightforward procedure that51

takes estimation uncertainty into account to rank the policy candidates. While this belief distribution52

approach to offline policy selection is attractive, it also presents its own challenge: how should one53

estimate such a distribution in the purely offline setting?54

We propose Bayesian Distribution Correction Estimation (BayesDICE) to address this challenge.55

BayesDICE works by estimating posteriors over correction ratios for each state-action pair, corre-56

sponding to a belief distribution over density ratios between the off-policy data and the stationary57

distribution of the target policy. In contrast to the point estimates of state-of-the-art DICE estima-58

tors [45, 69, 66], BayesDICE maintains a distribution from which the sampled ratio satisfies the59

stationary distribution condition with high probability. Given belief distributions over these correction60

ratios, the belief distribution over a policy value may be estimated by averaging these correction61

distributions over offline data, weighted by rewards or other nonlinear utilities in the case of more62

exotic downstream policy selection criteria.63

As a preliminary experiment, we show that the proposed BayesDICE is highly competitive to existing64

frequentist approaches when applied to confidence interval estimation. Then, we demonstrate the65

superiority of BayesDICE applied to offline policy selection under different utility measures, across a66

variety of discrete and continuous RL tasks. Our policy selection experiments suggest that, while67

conventional wisdom in the OPE literature focuses on using lower bound estimates to select policies68

(due to safety concerns) [36], policy ranking based on the lower bound estimates may not always69

lead to lower downstream regret. Furthermore, when other metrics of policy selection are considered,70

such as top-k precision, being able to sample from the posterior enables significantly better policy71

selection than only having access to the mean or confidence bounds of the estimated policy values.72

We note that the offline policy selection problem is distinct from offline policy optimization (OPO)73

[39, 24, 35, 6], where one seeks a policy from a parameterized class that optimizes a pointwise74

objective without consideration of its performance relative to an ensemble of reference policies. (This75

distinction will become clear in Section 2 below.) In summary, the contributions of this paper are76

three-fold:77

• We formally define offline policy selection and compare and contrast it to traditional OPE (and78

OPO).79

• We propose BayesDICE for characterizing the posterior of the stationary state-action ratio, derived80

from the perspective of stochastic constraints.81

• We design a simulation-based policy ranking algorithm, OfflineSelect, that converts the estimated82

posteriors from BayesDICE to a ranking of policies with respect to a selection criterion.83

2 Offline Policy Selection84

We consider an infinite-horizon Markov decision process (MDP) [54] denoted as M =85

〈S,A,R, T, µ0, γ〉, which consists of a state space, an action space, a deterministic reward function,86

a transition probability function, an initial state distribution, and a discount factor γ ∈ (0, 1]. For87

simplicity, we restrict our analysis to deterministic rewards, and extending our methods to stochastic88

reward scenarios is straightforward. In this setting, a policy π(at|st) interacts with the environment89

starting at s0 ∼ µ0 and receives a scalar reward rt = R(st, at) as the environment transitions into a90

new state st+1 ∼ T (st, at) at each timestep t. The value of a policy is defined as91

ρ (π) := (1− γ)Es0,at,st [
∑∞
t=0 γ

trt] . (1)
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Figure 1: An overview of our proposed approach to offline policy selection. While traditional
approaches compute a point estimate for the value of each policy and then rank according to these
estimates, BayesDICE approximates an entire belief distribution over the value of each policy
conditioned on the provided finite experience dataset. The BayesDICE approximate posteriors are
passed to OfflineSelect (Algorithm 1), which simulates samples from the posteriors and chooses
the policy ranking which achieves the best expected utility (top-2 regret in this example). In many
scenarios, leveraging the belief distribution leads to better policy selection than traditional approaches.

We formalize the offline policy selection problem as providing a ranking O ∈ Perm([1, N ])92

over a set of candidate policies {πi}Ni=1 given only a fixed dataset D = {x(j) :=93

(s
(j)
0 , s(j), a(j), r(j), s′(j))}nj=1 where s(j)

0 ∼ µ0, (s(j), a(j)) ∼ dD are samples of an unknown94

distribution dD, r(j) = R(s(j), a(j)), and s′(j) ∼ T (s(j), a(j)). 195

The vanilla approach to the offline policy selection problem is to characterize the value of each policy96

under some utility function u(π) and then sort the policies accordingly; i.e.,97

O ← ArgSortDescending({u(πi)}Ni=1).

The utility u(πi) is typically the result of an OPE algorithm applied to D and πi; i.e., u(πi) is either98

a mean or lower-confidence bound estimate of the policy’s normalized per-step reward in (1).99

2.1 Selection evaluation100

A proposed ranking O will eventually be evaluated according to how well its policy ordering aligns101

with the groundtruth policy values. In this section, we elaborate on several potential forms of this102

evaluation score.103

The groundtruth policy value for πi is given by ρ(πi), and we use ρi as shorthand for this expression.104

As part of the offline policy selection problem, we are given a ranking score S, which serves as the105

downstream selection criterion we want to optimize. The ranking score is a function that produces a106

scalar evaluation metric given a proposed ranking O and groundtruth policy values of {ρi}Ni=1. The107

S can take on many forms and is application specific; e.g.,108

• top-k precision: This is an ordinal ranking score. The score considers the top k policies in terms109

of groundtruth means ρi and returns the proportion of these which appear in the top k spots of O.110

• top-k accuracy: Another ordinal ranking score, this score considers the top-k policies in sorted111

order in terms of groundtruth means ρi and returns the proportion of these which appear in the112

same ordinal location in O.113

• top-k correlation: Another ordinal ranking score, this represents the Pearson correlation coefficient114

between the ranking of top-k policies in sorted order in terms of groundtruth means ρ(πi) and the115

truly best top-k policies.116

• top-k regret: This is a cardinal ranking score. This score respresents the difference in groundtruth117

means ρi between the overall best policy – i.e., maxi ρi – and the best policy among the top-k118

ranked policies – i.e., maxi∈[1,k] ρO[k].119

• Beyond expected return: One may define the above ranking scores in terms of statistics of the120

policy value other than the groundtruth means {ρi}Ni=1. For example, in safety-critical applications,121

one may be concerned with the variance of the policy return. Accordingly, one may define CVaR122

analogues to top-k precision and regret. For simplicity, we will restrict the discussion in this paper123

to ranking scores which only depend on the groundtruth expected returns {ρi}Ni=1.124

1This tuple-based representation of the dataset is for notational and theoretical convenience, following [11, 34].
In practice, the dataset is usually presented as finite-length trajectories {(s(j)0 , a

(j)
0 , r

(j)
0 , s

(j)
1 , . . . )}mj=1, and

this can be processed into a dataset of finite samples from µ0 and from dD ×R× T . We further assume, for
mathematical simplicity, that the dataset is sampled i.i.d., as is common in the OPE literature [62]. In some cases
this may be relaxed by assuming a fast mixing time [45].
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2.2 Bayes ranking simulation from the posterior125

It is not clear whether ranking according to vanilla OPE (either mean or confidence based) is ideal for126

any of the ranking scores above, including, for example, top-1 regret in the presence of uncertainty.127

However, if one has access to an approximate belief distribution over the policy values, one can128

simply simulate the Bayes risk over all candidate ranks to find a near-optimal ranking [18] with129

respect to an arbitrary specified downstream ranking score, and we elaborate on this Bayes decision130

procedure here.131

Algorithm 1 OfflineSelect

Inputs Posteriors q({ρi}Ni=1), ranking score Ŝ
Initialize O∗;L∗ � Track best score
for O in Perm([1, ..., N ]) do
L = 0
for j = 1 to n do

sample {ρ̂(j)
i }Ni=1 ∼ q({ρi}Ni=1)

� Sum up sample scores
L = L+ Ŝ({ρ̂(j)

i }Ni=1,O)
end for
if L < L∗ then

� Update best ranking/score
L∗ = L; O∗ = O

end if
end for; return O∗, L∗

In the ideal case if we have access to the true132

groundtruth policy values {ρi}Ni=1, and the rank-133

ing score function S , we can calculate the score134

value of any ranking O and find the ranking O∗135

that optimizes this score. However, we are lim-136

ited to a finite offline dataset and the full return137

distributions are unknown. In this offline setting,138

we propose to instead compute a belief distribu-139

tion q({ρi}Ni=1), and then we can optimize over140

the expected ranking score, i.e.,141

Õ∗ := argmin
O

Eq
[
S(O, {ρi}Ni=1)

]
(2)

as shown in Algorithm 1. This algorithm com-142

putes the Bayes risk by simulating realizations143

of the groundtruth values {ρi}Ni=1 with samples144

from the belief distribution q({ρi}Ni=1), and in145

this way estimates the expected realized ranking146

score S over all possible rankings O. As we will show empirically, matching the Bayes selection147

process (the S used in Algorithm 1) to the downstream ranking score naturally leads to improved148

performance. The question left now becomes how to effectively learn a belief distribution over149

{ρi}Ni=1, and this is answered by the BayesDICE algorithm.150

3 BayesDICE151

We propose BayesDICE for estimating the belief distribution over {ρi}Ni=1. We first investigate152

alternative characterizations of policy value to justify a representation in terms of stationary density153

correction ratios (generally known as DICE or marginalized importance weights). These correction154

ratios are characterized by a set of constraints, one for each state-action pair, which presents a155

challenge for posterior inference. However, by re-expressing Bayesian inference as an optimization,156

we bypass this difficulty via stochastic constraints, a derivation that is of independent interest. We157

then apply the resulting constrained posterior inference to DICE, yielding a novel estimator that is158

computationally attractive while supporting a broad range of ranking scores for downstream tasks.159

3.1 Alternative Representations of Policy Value160

To accomplish offline policy selection one must choose a specific expression to represent the value of161

a policy. There are several principal requirements for such a representation:162

• Offline: Since we focus on ranking policies given only offline data, the policy value should not163

depend on on-policy samples or access to a known behavior policy.164

• Versatility: Since the downstream task may utilize different ranking scores, the policy value165

representation should be compatible with efficient evaluation of these scores.166

With these considerations in mind, we review choices for representing the value of a policy π. Define167

Qπ (s, a) = E
[∑∞

t=0 γ
tR(st, at)|s0 = s, a0 = a

]
and dπ (s, a) = (1− γ)

∑∞
t=0 γ

tdπt (s, a) ,

with dπt (s, a) = P(st = s, at = a|s0 ∼ µ0, ∀i < t, ai ∼ π (·|si) , si+1 ∼ T (·|si, ai)),

which are the state-action value function and stationary visitations of π. These quantities satisfy the168

recursions169

Qπ(s, a) = R(s, a) + γ · PπQπ(s, a), where PπQ(s, a) := Es′∼T (s,a),a′∼π(s′)[Q(s′, a′)]; (3)
dπ(s, a) = (1− γ)µ0(s)π(a|s) + γ · Pπ∗ dπ(s, a), where Pπ∗ d(s, a) := π(a|s)

∑
s̃,ã T (s|s̃, ã)d(s̃, ã). (4)
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From these identities, the policy value can be expressed in two equivalent ways:170

ρ(π) = (1− γ) · Ea0∼π(s0)
s0∼µ0

[Qπ(s0, a0)] (5)

= E(s,a)∼dπ [r(s, a)]. (6)

Current OPE methods are generally based on one of the representations (1), (5) or (6). For example,171

importance sampling (IS) estimators [53, 44, 19] are based on (1); LSTDQ [37] is a representative172

algorithm for fitting Qπ and thus based on (5); the DICE algorithms [66] estimate the stationary173

density ratio ζπ (s, a) := dπ(s,a)
dD

so that ρ (π) = EdD [ζπ · r], and are thus based on (6). To reduce174

notational clutter, we omit the superscripted π on ζ when it is clear from context.175

Among the three representations, the stationary density ratio representation fully supports the stated176

requirements, and hence is the most promising for the ultimate selection task. First, IS estimators177

suffer from an exponential growth in variance [42] and require knowledge of the behavior policy.178

By contrast, the functions Qπ and dπ share common minimax properties [62] and can be estimated179

without knowledge of the behavior policy enabling behavior-agnostic learning. However, Qπ exhibits180

a linear dependence on R (s, a), hence, even if Qπ is estimated accurately, it is still infeasible to181

evaluate ranking scores that involve (1− γ)E [
∑∞
t=0 γ

tσ(rt)] with a nonlinear σ (unless one learns182

a different Q function for each possible ranking score, which may be computationally expensive).183

By contrast, the stationary density ratios ζ(s, a) are independent of reward, which enables efficient184

ranking on a variety of downstream ranking scores. For example, in the case of a nonlinear utility185

σ, the policy value may be easily computed from the stationary density ratio as EdD [ζ · σ (r)].186

Based on these considerations, representing policy value via stationary density ratios best satisfies the187

requirements: it enjoys statistical advantages for offline setting [67, 29] and is flexible for downstream188

ranking score calculation. Therefore, we focus on developing a Bayesian estimator for ζπ .189

3.2 Stationary Ratio Posterior Estimation190

Typically, a posterior q (ζπ|D) is defined in terms of a prior p (ζπ) and likelihood function p (D|ζπ)191

via Bayes’ rule i.e., q(ζπ|D) ∝ p (D|ζπ) p (ζπ). However, the posterior can also be equivalently192

expressed as the result of an optimization problem [63, 68]193

min
q∈P

−Eq(ζπ) [log p (D|ζπ)] +KL (q‖p) , (7)

= min
q

ξ +KL (q‖p) , s.t. q ∈ P ∩
{
ξ = −Eq(ζπ) [log p (D|ζπ)]

}
. (8)

where P is the space of valid densities. This optimization interpretation of Bayesian inference has194

been generalized in well known work on posterior regularization and reguarlized Bayes [43, 41, 70],195

which considers more complex loss functions on ξ and richer constraints on the “posterior”196

min
q∈P(D,ξ)

λU (ξ) +KL (q‖p) , (9)

where P (D, ξ) := P ∩ Ω (D, ξ) with Ω (D, ξ) as a set defined by data-dependent constraints with197

slack variable ξ and U (·) a loss function. Although (9) can easily express (8), they key advantage is198

that the more general formulation allows Bayesian inference to be practically applied in scenarios199

when the likelihood does not have an explicit, tractable form, or when there are additional constraints200

that cannot be conveniently encoded in the prior or likelihood [43, 41, 70].201

This framing allows us to naturally incorporate constraints arising from the stationary density ratio202

representation (4). However, previous work only considers finitely many constraints on posterior203

expectations, while the constraints for ζ induced by (4) consider each ratio function individually on204

arbitrary (s, a) ∈ S×A, which can potentially be infinitely many. Therefore, to apply the generalized205

Bayesian framework (9) to our scenario, we first need to extend the formulation by considering a206

function space embedding to reduce the number of constraints to finitely many [12, 38, 11], then207

reformulate these as chance constraints to ensure ζ satisfies the constraints with high probability [47].208

Constraints Embedding First, we use a function space embedding to reduce the number of209

constraints to finitely many [12, 38, 11]. Let ∆d (s, a) := (1−γ)µ0(s)π(a|s)+γ·Pπ∗ d(s, a)−d (s, a).210

Consider a feature mapping φ (·, ·) : S×A→ Rm and the induced RKHSHφ, and define 〈φ,∆d〉 :=211

E(1−γ)µ0(s)π(a|s)+γ·Pπ∗ d(s,a) [φ(s, a)]− Ed(s,a) [φ(s, a)].212

Then the constraints (4) can be expressed as ∆d(s, a) = 0. We can match distributions in terms of213

their embeddings [57] by measuring 〈φ,∆d〉> 〈φ,∆d〉, a generalization of the approximation methods214
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in [12, 38]. In particular, when |S| |A| is finite and we set φ(s, a) = δs,a, where δs,a ∈ {0, 1}|S||A| is215

an indicator vector with a single 1 at position (s, a) and 0 otherwise, we are matching the distributions216

pointwise. The feature map φ (s, a) can also be set to general reproducing kernel k ((s, a), ·) ∈ R∞.217

As long as the kernel k (·, ·) is characteristic, the embeddings will match if and only if the distributions218

are identical almost surely [58]. We further re-frame the constraint with Fenchel duality [46]219

〈φ,∆d〉> 〈φ,∆d〉 = max
β∈Hφ

β> 〈φ,∆d〉 − β>β

= ` (ζ,D) := max
β∈Hφ

(1−γ)Eµ0π

[
β>φ

]
−β>β + EdD

[
ζ (s, a)β>(γφ(s′, a′)−φ (s, a))

]
, (10)

resulting in the final constraint ` (ζ,D) = 0.220

Chance Constraints Given that the experience is a finite sample from dD, we have to approximate221

` with a sample estimator ˆ̀and the constraint for ζ in (10) might not hold exactly using ˆ̀. However,222

under mild conditions, we have dπ(s,a)
dD

∈ Ξ :=
{
ζ : ˆ̀(ζ,D) 6 ε

}
with high probability (see Ap-223

pendix A for the precise statement and proof). Thus, we expect a randomly sampled ratio ζ ∼ q (ζ)224

to be in the relaxed feasible set Ξ with high probability. Incorporating this into (9) yields225

min
q

KL (q‖p)− λξ, s.t. Pq (` (ζ,D) 6 ε) > ξ, (11)

where the chance constraint enforces the probability that ζ is feasible under the posterior. This226

formulation can be equivalently rewritten as227

min
q

KL (q‖p)− λPq (` (ζ,D) 6 ε) (12)

Then, by applying Markov’s inequality, i.e., Pq (` (ζ,D) 6 ε) = 1 − Pq (` (ζ,D) > ε) > 1 −228
Eq [`(ζ,D)]

ε , we can obtain an upper bound on (12) as229

min
q

KL (q‖p) + λ

ε
Eq [`(ζ,D)] (13)

= min
q(ζ)

max
q(β|ζ)

KL (q‖p) + λ

ε
Eq(ζ)q(β|ζ)

[
ÊD
[
ζ (s, a) · β>

(
γφ(s′, a′)− φ (s, a)

)
− f∗ (β)

]
+(1− γ)Eµ0π

[
β>φ

] ]
, (14)

where the last equation follows by interchangeability [56, 10]. Note that ` (ζ,D) > 0 since Hφ is230

symmetric, so the outer optimization is lower bounded. We amortize the optimization for β w.r.t. each231

ζ to a distribution q (β|ζ) to reduce the computational effort. The pseudo-code of the BayesDICE232

algorithm is shown in Algorithm 2.233

Finally, with the posterior approximation for ζi, denoting the estimate for candidate policy i,234

we can draw posterior samples of ρ̄i by drawing a sample ζi ∼ q(ζi) and computing ρ̂i =235
1
n

∑
(s,a,r)∈D ζi(s, a)r. This defines a posterior distribution over ρ̄i. For the joint posterior over236

{ρ̄i}Ni=1 we use a mean field approximation to express it as a product of independent marginals,237

i.e., q({ρ̄i}Ni=1) =
∏
i q(ρ̄i). This defines the necessary inputs for OfflineSelect to determine a238

ranking of the candidate policies.239

Given the space limits, please see Appendix B and C for a discussion of other important aspects240

of BayesDICE, including an alternative safe surrogate of the chance constraints, parametrization241

of the posteriors, variants of BayesDICE for undiscounted MDPs, connections to vanilla Bayesian242

stochastic processes, and the application of BayesDICE to exploration.243

4 Related work244

We categorize the relevant related work into five categories: offline policy selection, offline policy245

optimization, off-policy evaluation, Bayesian reinforcement learning, and posterior regularization.246

Offline policy selection The decision making problem we formalize as offline policy selection247

is a member of a set of problems in RL referred to as model selection. Previously, this term has248

been used to refer to state abstraction selection [28, 30] as well as learning algorithm and feature249

selection [23, 50]. More relevant to our proposed notion of policy selection are a number of previous250
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Algorithm 2 BayesDICE

Inputs sampled initial states µ̂0 = {s(j)
0 }mj=1, offline data D = {(s(j)

0 , s(j), a(j), r(j), s′(j))}nj=1,
target policy π, parametrized distributions qθ1(·, ·) and qθ2(·, ·), a prior p, convex function f
(conjugate f∗), constants ε, λ, learning rates ηζ , ηβ , training iterations T , and batch size B.
for t = 1, . . . , T do

Sample batch {(s(j), a(j), r(j), s′(j))}Bj=1 from D, {s(j)
0 }Bj=1 from µ̂0, a′(j) ∼ π(s′(j)) and

a
(j)
0 ∼ π(s

(j)
0 ) for j = 1, . . . , B.

Sample β0 ∼ qθ1(s
(j)
0 , a

(j)
0 ), β ∼ qθ1(s(j), a(j)), β′ ∼ qθ1(s′(j), a′(j)), and ζ ∼ qθ2(s(j), a(j)).

Compute loss Ĵ = KL(p‖qθ1) +KL(p‖qθ2) + λ
εB

∑B
i=1(ζγ(β − β′)− f∗(β)) + (1− γ)β0.

Update θ1 ← θ1 + ηβ∇θ1 Ĵ and θ2 ← θ2 − ηζ∇θ2 Ĵ .
end for; return qθ2(·, ·)

works which use model selection to refer to the problem of choosing a near-optimal Q-function from251

a set of candidate approximation functions [21, 20, 27, 64]. In this case, the evaluation metric is252

typically defined as the L∞ norm of difference of Q versus the state-action value function of the253

optimal policy Q∗. While one can relate this evaluation metric to the sub-optimality (i.e., regret) of254

the policy induced by the Q-function, we argue that our proposed policy selection problem is both255

more general – since we allow for the use of policy evaluation metrics other than sub-optimality – and256

more practically relevant – since in many practical applications, the policy may not be expressible257

as the argmax of a Q-function. Lastly, the offline policy selection problem we describe is arguably258

a formalization of the problem approached in [51] and referred to as hyperparameter selection. In259

contrast to this previous work, we not only formalize the decision problem, but also propose a method260

to directly optimize the policy selection evaluation metric. Offline policy selection has also been261

studied by [17], who consider desirable properties of a point estimator to yield good rankings in262

terms of a notion of ranking score referred to as fairness.263

Offline policy optimization While it is possible to integrate desired criteria such as pessimism into264

offline policy optimization [35, 6], this requires the desired criteria (e.g., maximum high-confidence265

lower bound) to be specified prior to policy learning, which might differ from what a practitioner266

deploying the policy prefers (e.g., policies that achieve top-k precision or regret). Furthermore,267

policies in practical applications may not be amenable to (policy)-gradient-based learning (e.g.,268

policies with business logic and hard-coded rules). In these cases, it is much easier to rank a set of269

candidate policies given a set of criteria rather than learning one policy for each criterion.270

Off-policy evaluation Off-policy evaluation (OPE) is a highly active area of research. While the271

original motivation for OPE was in the pursuit of policy selection [53, 28], the field has historically272

almost exclusively focused on the related but distinct problem of estimating the online value (accu-273

mulated rewards) of a single target policy. In addition to a plethora of techniques for providing point274

estimates of this groundtruth value [19, 4, 31, 59, 32, 45, 69, 66], there is also a growing body of275

literature that uses frequentist principles to derive high-confidence lower bounds for the value of a276

policy [4, 61, 25, 36, 22, 11, 34]. As our results demonstrate, ranking or selecting policies based on277

either their estimated mean or lower confidence bounds can at times be sub-optimal, depending on278

the evaluation criteria.279

Bayesian reinforcement learning Our proposed method for offline policy selection relies on280

Bayesian principles to estimate a posterior distribution over the groundtruth policy value. While281

many Bayesian RL methods have been proposed for policy optimization [14, 52], especially in the282

context of exploration [26, 13, 33], relatively few have been proposed for policy evaluation. In one283

instance, [21] derive PAC-Bayesian bounds on estimates of the Bellman error of a candidate Q-value284

function. In contrast to this work, the BayesDICE estimates a distribution over stationary density ratio,285

and this distribution allows us to directly optimize arbitrary downstream policy selection metrics.286

Distinguish distributional RL Although both distributional RL [2, 8, 7] and BayesDICE learn287

distributions over quantities of interest, these distributions are significantly different and with different288

update rules. Distributional RL fits a distribution of returns over future trajectories, where the289

randomness comes from stochasticity of MDP transitions and policy action selections. In contrast,290
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Figure 2: CI estimation results. The y-axis shows the empirical coverage and median log-interval
width across 200 trials. BayesDICE exhibits near true coverage with narrow interval width.

BayesDICE learns distributions of stationary density ratios in a Bayesian posterior sense, which291

captures uncertainty from both model stochasticity and finite observations, while marginalizing over292

any stochasticity in MDP transitions and policy action selections. More importantly, BayesDICE is293

designed to serve as a component for policy selection derived via Bayes decision theory, with which294

distributional RL is not compatible.295

Bayesian inference with posterior regularization Unlike vanilla Bayesian inference for posterior296

computation, the proposed BayesDICE does not rely on an explicitly computed log-likelihood, but297

instead estimates the posterior of the stationary density ratio by enforcing a stochastic constraint. This298

formulation of BayesDICE is inspired by the functional optimization view of Bayesian inference [63,299

68, 9]. There are several works introducing the data-dependent constraints or regularization to encode300

the side information of the posterior into the optimization framework, e.g., generalized expectation301

criteria [43], learning from measurements [41], and regularized Bayes [70]. The most important302

difference lies in the formulation of the constraints: the existing works only considers expectation303

constraints/regularization, while we largely extend the framework to more general chance constraints.304

5 Experiments305

We empirically evaluate BayesDICE in estimating confidence intervals (which can be used for policy306

selection) and offline policy selection under linear and neural network posterior parametrizations307

on tabular Bandit, Taxi [16], FrozenLake [5], and continuous-control Reacher [5] tasks. As shown308

in Figure 2, BayesDICE outperforms existing methods for confidence interval (CI) estimation based309

on concentration inequalities, producing accurate coverage while maintaining tight interval width,310

suggesting that BayesDICE achieves accurate posterior estimation in practice while being robust311

to approximation errors and potentially misaligned Bayesian priors. Moreover, in offline policy312

selection settings, matching the selection criteria (Algorithm 1) to a variety of ranking scores (enabled313

by the estimated posterior) shows clear advantage over policy ranking based on point estimates or314

confidence intervals. See Appendix D for additional results and implementation details.315

5.1 Confidence interval estimation316

We first evaluate the BayesDICE approximate posterior by computing the accuracy of the credible317

intervals [40] it produces. To make comparisons with previous work, we evaluate frequentist confi-318

dence interval properties of BayesDICE against a known set of CI estimators based on concentration319

inequalities, and against CoinDICE [11], which is based-on empirical likelihood. While the frequen-320

tist confidence interval is analagous to the Bayesian credible interval, they have different statistical321

properties, so we expect that evaluating the credible intervals BayesDICE produces under frequentist322

measures will give a pessimistic estimate of its true performance. To compute the concentration-323

inequality-based baselines, we follow [11] by first using weighted (i.e., self-normalized) per-step324

importance sampling [59] to obtain a policy value estimate for each logged trajectory. These trajecto-325

ries provide a finite sample of value estimates. We use self-normalized importance sampling in MDP326

environments (which has been found to yield better empirical results on these tasks [42, 45] despite327

being biased). We then use empirical Bernstein’s inequality [61], bias-corrected bootstrap [60], and328

Student’s t-test to derive lower and upper high-confidence bounds on these estimates. We further329

consider Bayesian Deep Q-Networks (BDQN, only applicable to function approximation) [1] with an330
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Figure 3: Left: Policy selection using top-k ranking scores compared to mean/confidence ranking
approaches on two-armed Bandit and Reacher. We fix the posterior to the one approximated by
BayesDICE and evaluate different Ŝ used in Algorithm 1 to compute a policy ranking. Using Ŝ = S
results in the best performace. Right: Policy selection under regret and correlation at top-k compared
to other methods using point estimate (DualDICE) or high-confidence lower bounds. Mean and
standard error across 10 seeds are shown.

average empirical reward prior in the function approximation setting. BDQN applies Bayesian linear331

regression to the last layer of a deep Q-network to learn a distribution of Q-values. Both BayesDICE332

and BDQN output a distribution of parameters, from which we conduct Monte Carlo sampling and333

use the resulting samples to compute a credible interval at a given confidence level.334

We plot the empirical coverage and interval width at different confidence levels in Figure 2. To335

compute the empirical interval coverage, we conduct 200 trials with randomly sampled datasets. The336

interval coverage is the proportion of the 200 intervals that contains the true value of the target policy.337

The interval log-width is the median of the log width of the 200 intervals. As shown in Figure 2,338

BayesDICE’s coverage closely follows the intended coverage (black dotted line), while maintaining339

narrow interval width across all tasks.340

5.2 Policy selection341

Next, we demonstrate the benefit of matching the policy selection criteria to the ranking score342

in offline policy selection. Our evaluation is based on a variety of cardinal and ordinal ranking343

scores defined in Section 2.1. We begin by considering the use of Algorithm 1 with BayesDICE-344

approximated posteriors. By keeping the BayesDICE posterior fixed, we focus our evaluation on345

the performance of Algorithm 1. We plot the groundtruth performance of this procedure applied346

to Bandit and Reacher in Figure 3 (left). These figures compare using different Ŝ to rank the347

policies according to Algorithm 1 across different downstream ranking scores S. We find that348

aligning the criteria Ŝ used in Algorithm 1 with the downstream ranking score S is empirically349

the best approach (Ŝ = S). In contrast, using point estimates such as Mean or Mean ± Std can350

yield much worse downstream performance. We also see that in the Bandit setting, where we can351

analytically compute the Bayes-optimal ranking, using aligned ranking scores in conjunction with352

BayesDICE-approximated posteriors achieves near-optimal performance.353

Having established BayesDICE’s ability to compute accurate posterior distributions as well as the354

benefit of appropriately aligning the ranking score used in Algorithm 1, we compare BayesDICE355

to state-of-the-art OPE methods in policy selection. In these experiments, we use Algorithm 1 with356

posteriors approximated by BayesDICE and Ŝ = S . We compare the use of BayesDICE in this way357

to ranking via point estimates of DualDICE [45] and other confidence-interval estimation methods358

introduced in Section 5.1. We present results in Figure 3, in terms of top-k regret and correlation on359

Bandit and Reacher tasks across different sample sizes and behavior data. BayesDICE outperforms360

other methods on both tasks. See additional ranking results in Appendix D.361

6 Conclusion362

In this paper, we formally defined the offline policy selection problem, and proposed BayesDICE363

to first estimate posterior distributions of policy values before using a simulation-based procedure364

to compute an optimal policy ranking. Empirically, BayesDICE not only provides accurate belief365

distribution estimation, but also shows excellent performance in policy selection tasks. Extending366

BayesDICE to estimating a posterior distribution over return distributions (instead of the expected367

return) is an important direction of future research.368
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Appendix582

A Proofs for Finite Sample Relaxation583

The following lemma will be needed.584

Lemma 1. [[55], Lemma 4] Let X = {xi}ni=1 be i.i.d.random variables in a ball H of radius C
centered around the origin in a Hilbert space. Denote their average by x̄ = 1

n

∑n
i=1 xi. Then for

any δ > 0, with probability at least 1− δ,

‖x̄− Ex̄‖ 6 M√
n

(
1 +

√
2 log

1

δ

)
.

Theorem 2. Denote ζ∗ (s, a) = dπ(s,a)
dD

which is bounded by Cζ , under the assumption that ‖φ‖2 6585

Cφ, ‖β‖2 6 Cβ , ∀β ∈ Hβ and f is Lf -Lipschitz continuous, then ζ∗ ∈ Ξ := {ζ : ` (ζ,D) 6 ε}586

with probability 1− exp
(
−nε

2

2C

)
with C := (1 + γ) (1 + Cζ)CβCφ + LfCβ .587

Proof. Let

ι (ζ,D, β) := (1− γ)Eµ0π

[
β>φ

]
+ ÊD

[
ζ(s, a) · β>(γφ(s′, a′)− φ(s, a))− f∗ (β)

]
,

and
ι
(
ζ, dD, β

)
:= (1− γ)Eµ0π

[
β>φ

]
+ EdD

[
ζ(s, a) · β>(γφ(s′, a′)− φ(s, a))− f∗ (β)

]
.

We also denote β̂ = argmaxβ∈Hφ ι (ζ,D, β).588

Following the discussion in footnote 2 in main text, the D ∼ dD i.i.d., it is obvious that
E [ι (ζ,D, β)] = ι

(
ζ, dD, β

)
. Under the bounded assumption of (β, φ), we can bound ‖ι‖∞ 6 C.

Therefore, by Lemma 1, we have

P
(
ι
(
ζ∗,D, β̂

)
− ι
(
ζ∗,D, β̂

)
> ε
)
6 exp

(
−nε

2

2C

)
.

Since ζ∗ (s, a) = dπ(s,a)
dD

, we have ι
(
ζ∗, dD, β

)
= 0, ∀β ∈ Hφ. Finally, recall589

maxβ∈Hφ ι (ζ,D, β) > 0 sinceHφ is symmetric. We achieve the conclusion.590

B More Discussions on BayesDICE591

In this section, we provide more details about BayesDICE.592

Remark (Alternative safe surrogates of chance constraints): We apply the Markov’s inequality593

to (12) for the upper bound (13). In fact, the optimization with chance constraints has rich literature [3],594

where plenty of surrogates can be derived with different safe approximations. For example, if the595

parametrization of q is simple, one can directly calculate the CDF for the probability Pq (` (ζ,D) 6 ε);596

or one can also exploit different probability inequalities to derive other surrogates, e.g., condition597

value-at-risk, i.e.,598

min
q

KL (q||p) + λ inf
t

[
t+

1

ε
Eq [` (ζ,D)− t]

]
+

, (15)

and Bernstein approximation [47]. These surrogates lead to tighter approximation to the chance599

probability Pq (` (ζ) 6 ε) with the extra cost in optimization.600

Remark (parametrization of q (ζ) and q (β|ζ)): We parametrize both q (ζ) (and the result-601

ing q (β|ζ)) as Gaussians with the mean and variance approximated by a multi-layer perceptron602

(MLP), i.e.: ζ = MLPw(s, a) + σw′ξ, ξ ∼ N (0, 1). w and w′ denote the parameters of the MLP.603

Remark (connection to Bayesian inference for stochastic processes): Recall the posterior can604

be viewed as the solution to an optimization [63, 68, 70, 9],605

q (ζ|D) = argmin
q∈P

−〈q (ζ) , log p (ζ,D)〉+KL (q (ζ) ||p (ζ)) ,
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Then (13) mathematically equivalent to define a log-likelihood log p (D|ζ) ∝ ` (ζ,D), where p (D|ζ)606

is a Gibbs point process [15, 65]. For example, plug f (β) = 1
2β
>β back into (13), we have607

β∗ = ÊD [ζ (s, a) · (γφ(s′, a′)− φ (s, a))] + (1− γ)Eµ0π [φ], resulting the optimization608

min
q
KL (q||p) +

λ

2ε
EqEµ0πÊD[ζ (s1, a1)

>
k ((s1, a1, s

′
1, a
′
1) , (s2, a2, s

′
2, a
′
2)) ζ (s2, a2)

+ 2h
(
s0, a0, s, a, s′, a′

)
· ζ (s, a)], (16)

with the kernel k ((s1, a1, s′1, a′1) , (s2, a2, s′2, a′2)) := (γφ(s′1, a
′
1)− φ (s1, a1))

>
(γφ(s′2, a

′
2)− φ (s2, a2))609

and h
(
s0, a0, s, a, s′, a′

)
:= (1− γ)φ

(
s01, a

0
1

)>
(γφ(s′2, a

′
2)− φ (s2, a2)). If the prior p (ζ) is a GP ,610

the posterior q (ζ|D) will also a GP . Obviously, with different choices of f∗ (·), the BayesDICE611

framework is far beyond GP .612

However, we emphasize although the model define via stochastic processes likelihood in (16)613

acheives the equivalent optimization, such a likelihood p (D|ζ) is improper in the causality sense as614

we discussed in Section 3.615

Remark (auxilary constraints and undiscounted MDP): As [66] suggested, the non-negative616

and normalization constraints are important for optimization. We use positive activation functions617

(ReLU) to ensure the non-negativity of the mean of the q (ζ). For the normalization, we consider the618

chance constraints P
((

ÊD (ζ)− 1
)2

6 ε1

)
> ξ1. By applying the same technique, it leads to an619

extra term λ1

ε1
Eq
[
maxα∈R α · ÊD [ζ − 1]

]
in (13).620

With the normalization condition introduced, the proposed BayesDICE is ready for undiscounted621

MDP by simply setting γ = 1 in (13) together with the above extra term for normalization.622

C BayesDICE for Exploration vs. Exploitation Tradeoff623

In main text, we mainly consider exploiting BayesDICE for estimating various ranking scores for both624

discounted MDP and undiscounted MDP. In fact, with the posterior of the stationary ratio computed,625

we can also apply it for better balance between exploration vs. exploitation for policy optimization.626

Instead of selecting from a set of policy candidates, the policy optimization is considering all627

feasible policies and selecting optimistically. Specifically, the feasibility of the stationary state-action628

distribution can be characterized as629 ∑
a

d (s, a) = (1− γ)µ0 + P∗d (s) , ∀s ∈ S, (17)

where P∗d (s) :=
∑
s̄,ā T (s|s̄, ā) d (s̄, ā). Apply the feature mapping for distribution matching, we630

obtain the constraint for ζ · π with ζ (s, a) := d(s)
dD(s,a)

as631

max
β∈Hφ

β>EdD

[∑
a

(ζ (s, a)π (a|s))φ (s)− γ (ζ (s, a)π (a|s))φ
(
s′
)]

+(1− γ)Eµ0

[
β>φ

]
−f∗ (β) = 0.

(18)
Then, we have the posteriors for all valid policies should satisfies632

λPq (` (ζ · π,D) 6 ε) > ξ, (19)

with ` (ζ · π,D) := maxβ∈Hφ β>ÊD [
∑
a (ζ (s, a)π (a|s))φ (s)− γ (ζ (s, a)π (a|s))φ (s′)] +633

(1− γ)Eµ0

[
β>φ

]
− f∗ (β). Meanwhile, we will select one posterior from among these poste-634

riors of all valid policies optimistically, i.e.,635

max
q(ζ)q(π)

Eq [U (τ, r,D)] + λ1ξ − λ2KL (q (ζ) q (π) ||p (ζ, π)) (20)

s.t. Pq (` (ζ · π,D) 6 ε) > ξ (21)
where Eq [U (τ, r,D)] denotes the optimistic policy score to capture the upper bound of the policy
value estimation. For example, the most widely used one is

Eq [U (τ, r,D)] = EqÊD [τ · r] + λuEq
[(

ÊD [τ · r]− EqÊD [τ · r]
)2
]
,
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where the second term is the empirical variance and usually known as one kind of “exploration636

bonus”.637

Then the whole algorithm is iterating between solving (20) and use the obtain policy collecting data638

into D in (20).639

This Exploration-BayesDICE follows the same philosophy of [49, 48] where the variance of posterior640

of the policy value is taken into account for exploration. However, there are several significant641

differences: i), the first and most different is the modeling object, [49, 48] is updating with Q-642

function, while we are handling the dual representation; ii), BayesDICE is compatible with arbitary643

nonlinear function approximator, while [49, 48] considers tabular or linear functions; iii), BayesDICE644

is considering infinite-horizon MDP, while [49, 48] considers fixed finite-horizon case. Therefore,645

the exploration with BayesDICE pave the path for principle and practical exploration-vs-exploitation646

algorithm. The regret bound is out of the scope of this paper, and we leave for future work.647

D Experiment details and additional discussion and results648

D.1 Environments and policies.649

Bandit. We create a Bernoulli two-armed bandit with binary rewards where α controls the propor-650

tion of optimal arm (α = 0 and α = 1 means never and always choosing the optimal arm respectively).651

Our policy selection experiments are based on 5 target policies with α = [0.75, 0.8, 0.85, 0.9, 0.95].652

Reacher. We modify the Reacher task to be infinite horizon, and sample trajectories of length 100653

in the behavior data. To obtain different behavior and target policies, We first train a deterministic654

policy from OpenAI Gym [5] until convergence, and define various policies by converting the optimal655

policy into a Gaussian policy with optimal mean with standard deviation 0.4− 0.3α. Our selection656

experiments are based on 5 target policies with α = [0.75, 0.8, 0.85, 0.9, 0.95].657

D.2 Parametrization Details658

For the convex function f in (14), we used f(x) = x2. We parametrize the distribution correction659

ratio as a Gaussian using a deep neural network for the continuous control task. Specifically, we660

use feed-forward networks with two hidden-layers of 64 neurons each and ReLU as the activation661

function. The networks are trained using the Adam optimizer (β1 = 0.99, β2 = 0.999) with batch662

size 2048 and learning rate 0.0001 on CPUs.663

D.3 Additional empirical discussions664

BayesDICE v.s. CoinDICE. Because BayesDICE is a Bayesian method, it produces credible665

intervals. While the credible interval is analogous to the frequentist confidence interval, it has666

different statistical properties, so it is unsurprising that evaluating the credible intervals BayesDICE667

produces under frequentist measures favors frequentist methods like CoinDICE. The benefit of668

BayesDICE is its applicability and superior performance for policy selection with arbitrary criteria.669

Function approximation in BayesDICE. Constraint embedding can be generalized to use neural670

network function approximators with potential approximation error. Specifically, as long as the671

inner product is well-defined, we can characterize the constraints with maxf∈F 〈f,∆〉 = 0 where672

F , i.e., testing function space, can be composed of neural networks. The solution is then known673

as a “weak solution” in differential equations and finite-element methods. The approximation error674

induced by such embedding depends on the flexibility of the testing function space. The theoretical675

analysis considers an idealized scenario which provides guidance. In practice, however, the limited676

expressibility of the function approximators used, relaxed constraints, and inexact optimization677

introduce approximation errors, which are challenging to quantify analytically. Empirically, Figure 4678

shows that BayesDICE parametrized by kernel and neural network exhibit similar performance,679

demonstrating the practical effectiveness of neural network as function approximators.680

Choice of the prior. The prior of the ratio variables is chosen to be unit Gaussian. We conducted681

experiments where the prior mean ranges from [0.1, 10] and prior variance ranges from [0.1, 1], and682

observed the resulting confidence intervals to be similar to those in the paper.683
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Figure 4: Confidence interval estimation on kernel and neural network parametrized BayesDICE.

Choice of approximate posterior. We chose a Gaussian variational posterior for simplicity. A684

downside of this choice is that sampled correction ratio can be negative. In practice, we found685

that is rarely the case, and Gaussian posterior was sufficient to achieve strong performance. More-686

over, BayesDICE can naturally incorporate advanced parameterizations, e.g., flow and stochastic687

differential equations which can ensure positivity.688

Comparison to point estimators. The posterior mean estimate of BayesDICE differs from the689

point estimate in DualDICE due to the prior (i.e., regularization). We summarize the average (across690

10 seeds) log RMSE of DualDICE (pt) and of the mean estimate from BayesDICE (µ) on Bandit (B),691

FrozenLake (F), Taxi (T) and Reacher (R) with varying number of trajectories in the table below. For692

our choice of prior and these tasks, the performance of the point and mean estimators are similar.693

B50 B100 B200 F50 F100 T20 T50 R25
pt -4.96 -4.79 -5.69 -9.09 -8.31 -3.36 -5.06 -3.31
µ -7.86 -9.14 -7.09 -9.94 -9.59 -3.24 -4.11 -3.06

Scalability of BayesDICE. Depending on the evaluation metric chosen, its structural properties694

can be exploited to nullify the need to test all permutations in Algorithm 1. Such structural properties695

are present in many natural metrics (such as top-k precision or regret). Therefore, BayesDICE can696

easily scale to larger numbers of candidate policies.697

D.4 Additional experimental results698
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Figure 5: Confidence interval estimation with concentration inequality baselines computed from
marginalized importance sampling (as opposed to the per-step importance sampling in the original
paper. BayesDICE and CoinDICE still perform much better than methods based on concentration
inequality.
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Figure 6: Additional k values for top-k ranking on bandit. Ranking results based on Algorithm 1
(blue lines) always perform better than using mean ("Mean") or high-confidence lower bound ("Mean
- Std").
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Figure 7: Additional k values for top-k ranking on reacher and additional selection criteria (precision
and regret). Ranking results based on Algorithm 1 (blue lines) generally perform much better
than using mean ("Mean") or high-confidence lower bound ("Mean - Std") for top-k accuracy and
correlation. Precision and regret are similar between posterior samples and the mean/confidence
bound based ranking.
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Bandit

Figure 8: BayesDICE outperforms other confidence-interval based policy selection approaches under
the minimum regret criteria across all trajectory lengths, behavior data (higher Alpha means behavior
data is closer to optimal policy), and top-k values considered for the bandit task.
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Reacher

Figure 9: BayesDICE outperforms other confidence-interval based policy selection approaches under
the maximum correlation (between true and computed rankings) criteria across all trajectory lengths,
behavior data (higher Alpha means behavior data is closer to optimal policy), and top-k values
considered for the reacher task.
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