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ABSTRACT

Autonomous agents powered by large language models (LLMs) have the potential
to enhance human capabilities, assisting with digital tasks from sending emails to
performing data analysis. The abilities of existing LLMs at such tasks are of-
ten hindered by the lack of high-quality agent data from the corresponding envi-
ronments they interact with. We propose LEARN-BY-INTERACT, a data-centric
framework to adapt LLM agents to any given environments without human an-
notations. LEARN-BY-INTERACT synthesizes trajectories of agent-environment
interactions based on documentations, and constructs instructions by summariz-
ing or abstracting the interaction histories, a process called backward construction.
We assess the quality of our synthetic data by using them in both training-based
scenarios and training-free in-context learning (ICL), where we craft innovative
retrieval approaches optimized for agents. Extensive experiments on SWE-bench,
WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and
desktop environments show the effectiveness of LEARN-BY-INTERACT in various
downstream agentic tasks — baseline results are improved by up to 11.1% for ICL
with Claude-3.5 and 23.1% for training with Codestral-22B. We further demon-
strate the critical role of backward construction, which provides up to 10.6% im-
provement for training. Our ablation studies demonstrate the efficiency provided
by our synthesized data in ICL and the superiority of our retrieval pipeline over
alternative approaches like conventional retrieval-augmented generation (RAG).
We expect that LEARN-BY-INTERACT will serve as a foundation for agent data
synthesis as LLMs are increasingly deployed at real-world environments.

1 INTRODUCTION

Pre-trained large language models (LLMs) offer great potential for assisting humans with various
tasks in digital settings, such as editing images, performing data analysis, resolving software en-
gineering issues, and navigating commercial platforms (Xie et al., 2023; 2024; Yao et al., 2022a;
Jimenez et al., 2023). By streamlining these, LLM agents can greatly enhance human efficiency and
productivity, allowing individuals to shift their focus toward higher-level, creative, and strategic en-
deavors. To explore this potential, many benchmarks (Jimenez et al., 2023; Zhou et al., 2023b; Xie
et al., 2024; Cao et al., 2024; Koh et al., 2024) and agentic frameworks (Yang et al., 2024; Zhan &
Zhang, 2023; Yang et al., 2023; Gur et al., 2023; Chen et al., 2024a) have been established based on
realistic digital environments, spanning web applications, code development, desktop computing,
etc. However, current LLMs often fall short of expected performance in these tasks, consistently
displaying a significant gap compared to human capabilities. As a result, they remain less practical
and reliable for real-world applications.

Efficient adaptation to new environments can be the key part of the performance improvements.
Prior works have explored various prompt-based approaches (Yao et al., 2022b; Yang et al., 2024;
Gur et al., 2023; Zhan & Zhang, 2023), that are constrained by the capabilities of underlying foun-
dation models. Other studies on training LLMs with human-labeled examples (Chen et al., 2023;
2024b; Li et al., 2020) on the other hand, come with the fundamental limitation of high annotation
costs when new environments are considered. In particular, annotating agentic data can be quite
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Figure 1: Overview of the data synthesis and adaptation processes. Given an environment and stan-
dard resources, we first leverage self-instruct to create a diverse set of instructions. LLMs are then
employed to complete these tasks, resulting in long trajectories of agent-environment interactions.
We construct task instructions using LLMs for each sub-trajectory, a process called backward con-
struction. The synthesized data are then filtered and used for both training and in-context learning,
where we design agentic retrieval to retrieve demonstration examples based on information at each
step, using both model-based and observation-based approaches. See Appendix F for the complete
data synthesis example and Algorithm 2 for more details on agentic retrieval.

difficult and expensive due to long-trajectory interactions with environments and specific domain
expertise required. Few works have explored fully-autonomous data construction pipelines towards
self-adaptive agents that can efficiently learn new environments (Gulcehre et al., 2023; Aksitov et al.,
2023).

In this paper, we introduce LEARN-BY-INTERACT, a data-centric framework for LLMs to self-adapt
to new environments, utilizing agent data synthesis via interactions. Intuitively, the effects of ac-
tions executed in environments (e.g., the next webpage after clicking a button) serve as informa-
tive demonstrations that help LLMs in future navigation. Inspired by this, we design LEARN-BY-
INTERACT that first uses self-instruct (Wang et al., 2022b) to develop a variety of task instructions,
referring to standard resources such as documentations and tutorials for a given environment. This
covers most important scenarios that human users are interested in and avoids intensive prompt en-
gineering to control the distribution and diversity of the generated data. We then collect diverse tra-
jectories from interactions between LLMs and environments, as illustrated in Fig. 1. However, given
the low performance of LLMs in existing agentic benchmarks (Xie et al., 2024; Cao et al., 2024), it is
likely that a large percentage of synthesized trajectories do not match with the instructions. To tackle
this challenge, we construct new instructions by summarizing or abstracting each sub-trajectory,
leveraging the strong summarization capabilities of LLMs (Pu et al., 2023; Liu et al., 2023). We
call this process backward construction. After obtaining synthesized instruction-trajectory pairs and
filtering low-quality ones, we apply it to both training and ICL, where we craft innovative retrieval
pipelines optimized for agents. Concretely, it consists of two parts: (1). model-based approach that
leverages LLMs to first write queries based on instructions, interaction histories and current obser-
vations, and uses retrieval models to retrieve demonstration examples from synthesized data; (2).
observation-based approach that finds examples with the current observation appearing in trajecto-
ries (which indicates that the current state has been encountered in the data synthesis process).

Our comprehensive evaluations across four challenging benchmarks: SWE-bench (Jimenez et al.,
2023), WebArena (Zhou et al., 2023b), OSWorld (Xie et al., 2024), and Spider2-V (Cao et al., 2024),
highlight the efficacy of the data generated by LEARN-BY-INTERACT. With ICL, both Gemini-1.5-
pro (Reid et al., 2024) and Claude-3.5-sonnet (Anthropic, 2024) show consistent and remarkable im-
provements – for OSWorld (Xie et al., 2024), our generated data nearly doubles Claude-3.5-sonnet’s
baseline performance, increasing it from 11.4% to 22.5%. Furthermore, substantial improvements
are observed by training models of varying sizes and architectures with our synthesized data. As
an example, Codestral-22B’s (Team, 2024b) performance in WebArena significantly increases from
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4.7% to 27.8% after training. These results underscore the high quality of our generated agent data
and its broad applicability across diverse agent environments.

Our extensive ablation studies reveal that backward construction not only increases the quantity of
the synthesized data, but also improves its overall quality (§3.5). With data synthesized by LEARN-
BY-INTERACT, we observe significant improvements in both performance and efficiency during
LLM inference (§4.1). Our empirical results demonstrate the superiority of the agentic retrieval
in ICL (§4.2). We anticipate that this research will spark innovative developments in enhancing
agent performance using LLMs and contribute to its wider-spread adoption in real-world application
scenarios.

2 LEARN-BY-INTERACT

We introduce the LEARN-BY-INTERACT pipeline to synthesize agent data in an autonomous way by
leveraging interactions between LLMs and environments. We first formalize the agent canonical task
(§2.1), and introduce the detailed synthesis (§2.2) and filtering (§2.3) procedures. We then describe
the application of the synthesized data in adapting LLMs in both training-free and training-based
settings (§2.4).

2.1 TASK FORMULATION

Given an environment E and a task instruction I , the objective of an agent A is to achieve the target
G through multi-step interactions with E. At each step i, A predicts the next action ai based on the
instruction I and the previous history H = (o0, a1, o1, a2, ..., oi−1), which is then executed in the
environment E to get a new observation oi. The interactions terminated until A predicts the action
stop or the maximum number of steps m is reached.

2.2 AGENTIC DATA SYNTHESIS

Algorithm 1 Agent data synthesis
1: Input: LLM : Large Language Model; E: envi-

ronment; Doc: standard resources like documenta-
tion; N : the number of instructions to generate per
document; F : data filter.

2: Initialization: D = []: synthesized data.
3: for d in Doc do
4: // self-instruct to generate N task instructions
5: Instructions = LLM(d,N)
6: for I in Instructions do
7: E.reset()
8: T = [] // initialize interaction trajectory
9: while not E.finished() do

10: o = E.get_observation()
11: a = LLM(I, T, o)
12: T += [o, a]
13: end while
14: T.append(E.get_observation())
15: // backward construction
16: for i in range(0, len(T )− 1, 2) do
17: for j in range(i+ 2, len(T ), 2) do
18: T ′ = T [i : j]
19: I ′ = LLM(T ′)
20: D.append([I ′, T ′])
21: end for
22: end for
23: end for
24: end for
25: D = F (D) // Filter low-quality data
26: Return: D

The essential idea of LEARN-BY-INTERACT
is manifested in synthesizing environment-
specific agent data with zero human effort.
In Algorithm 1, we show the overall pro-
cess with pseudo-code. Given an environ-
ment for a downstream application (such as vi-
sual studio code), we first leverage commonly-
accessible resources like documentation to
generate diverse task instructions using self-
instruct (Wang et al., 2022b) (line 5). These
resources are usually created by human experts
to address common concerns and provide usage
suggestions, e.g., how to navigate a website or
operate a software. Intuitively, such references
often cover representative usecases of an ap-
plication. Therefore the task instructions gen-
erated conditioned on them could cover most
popular scenarios in the domain and avoids po-
tentially unreasonable cases that may be of less
value.

For each generated task, LLMs then aim to
solve it, which results in a long trajectory
T = (o0, a1, o1, ..., an, on) (line 9-14 in Algo-
rithm 1). To address the potential misalignment
between the instruction I and the generated tra-
jectories T , we introduce a novel mechanism,
backward construction, to construct instruc-
tions based on trajectories (line 15-22 in Algo-
rithm 1). Specifically, for each sub-trajectory
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T ′ = (oi, ai+1, oi+1, ..., aj , oj), 0 ≤ i < j ≤ n, we obtain two types of new instructions: (1).
summarizations of trajectory steps; (2). abstractions of the trajectory purpose. In Fig. 1, the sub-
trajectory (Obs1, Act2, Obs2) is summarized into a new task instruction that requires to replicate
the Act2. The abstraction of the full trajectory updates the original task objective, which is no
longer aligned with the generated trajectory due to the wrong prediction in the action 3. Overall, the
LEARN-BY-INTERACT pipeline offers two notable advantages:

• It corrects the potential misalignment between instructions and predicted trajectories by updating
task objectives, which enhances the data quality as verified by the experimental results in §3.5.

• It maximizes the utility of each generated trajectory by crafting new instructions for each sub-
trajectory. This results in a quadratic increase in the number of synthesized examples with respect
to the steps in the sequence per generated trajectory. For a given target dataset size, backward
construction substantially decreases the necessary interactions, which is particularly valuable in
scenarios where such interactions are challenging and costly to obtain such as Robotics (Keipour,
2022).

2.3 FILTERING

To further enhance the data quality, we design the following criteria to filter inferior synthesized data:
(1). Remove duplicate states: We remove duplicate (ai, oi) from T ′ if (ai, oi)=(ai−1, oi−1), which is
potentially introduced by the invalid action or the environment error (inactivity). (2). LLM commit-
tee check: We feed the generated instruction-trajectory pair (I ′, T ′) into a committee of LLMs, and
only classify it of high-quality if all LLMs consider the trajectory coherent, natural, reasonable and
aligned with the instruction. The listed criteria are all fully-autonomous and canonically-applicable
for filtering data synthesized in general agent scenarios. See Table 35 for our prompts used in LLM
committee check.

2.4 ADAPTATION

Algorithm 2 ICL with agentic retrieval
1: Input: LLM : Large Language Model; E: envi-

ronment; D: synthesized data; RM : retriever; I:
task instruction; m1: maximum number of exam-
ples from observation-based retrieval; m2: max-
imum number of examples from model-based re-
trieval.

2: Initialization: H = []: interaction history; R: re-
trieved examples.

3: while not E.finished() do
4: o = E.get_observation()
5: // observation-based retrieval
6: for i, t in D do
7: // iterate through the trajectory
8: for o1 in t do
9: if o1=o then

10: R.append([i, t])
11: end if
12: end for
13: end for
14: R = R[:m1]
15: // model-based retrieval
16: q = LLM(I,H, o)
17: R += RM(q,D,m2, R)
18: a = LLM(I,H, o,R)
19: H+ = [o, a]
20: end while

After obtaining the synthesized data D, we ap-
ply it to both ICL and training. Given the
unique characteristics of multi-round interac-
tions with environments in agent settings, we
design agentic retrieval (pseudo-code in Al-
gorithm 2) to maximize the effectiveness of
the synthesized data. Specifically, we propose
two retrieval pipelines: observation-based (line
5-14) and model-based retrieval (line 15-17).
In observation-based retrieval, we compare the
current observation o to the trajectory of each
example e in the synthesized data, where e =
[I ′, [o0, a1, o1, ..., an, on]]. If o matches one of
the observations in e, i.e., o = oi, then we
consider e as a helpful example to the current
task. For the model-based retrieval, we lever-
age LLMs to first write queries based on the
instruction, the interaction history and the cur-
rent observation (line 16), and then employ re-
trieval models to retrieve non-duplicate exam-
ples (line 17). LLMs are then augmented with
the retrieved examples to predict the next action
(line 18). Refer to Table 36 to 39 for prompts
to write queries and predict actions.

Apart from using the synthesized data as
demonstration examples in ICL, we further uti-
lize them to fine-tune models. For a given generated example, we convert it to the format of action
prediction (Table 36), and prepare input-output pairs for supervised fine-tuning. More details on the
experimental settings can be found in §3.3.
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Table 1: Statistics for the number of crawled documents, generated raw trajectories, examples
(instruction-trajectory pairs) and examples after filtering.

SWE-bench WebArena OSWorld Spider2-V

Documents 6,464 3,578 7,362 11,231
Raw trajectories 19,392 10,734 22,086 33,693

Examples 180,752 185,635 437,635 652,786
Filtered examples 101,523 109,276 103,526 125,683

3 EXPERIMENTS

3.1 BASELINES

We compare ICL with agentic retrieval to the following prompt-based approaches.

• Baseline: The vanilla prediction pipeline in each benchmark that includes the task instruction,
interaction history and the state observation in the prompt. See more implementation details in
Appendix A.

• RAG: The conventional RAG pipeline that first retrieves from the resources like documentation
based on the instruction, and augments LLMs with the retrieved content.

• Data distill: We follow the same pipeline to synthesize data in Algorithm 1 except backward
construction (replace line 15-22 with D.append(I, T )), and follow Algorithm 2 during the evalu-
ation.

• Reflexion (Shinn et al., 2024): A general framework to reinforce language agents through linguis-
tic feedback from both executors and LLMs.

• Language Agent Tree Search (LATS) (Zhou et al., 2023a): It integrates the combinatorial tree
search into expanding ReAct (Yao et al., 2022b) and combine agent online reasoning, acting and
planning throughout the trajectory.

For the training-based evaluation, we primarily compare to the data distillation, which also con-
structs data from scratch and requires no human effort to annotate seed or preference data. Addi-
tionally, we include the model performance before training as another baseline.

3.2 DATASETS

We consider 4 agent datasets that involve multi-round interactions with realistic environments. They
span diverse domains of code, web, computer desktop and professional software. Appendix C illus-
trates details of each dataset with examples.

• SWE-bench (Jimenez et al., 2023) is an evaluation benchmark on realistic software engineering
problems from realistic Github issues. We use the Lite version by default throughout the experi-
ments.

• Webarena (Zhou et al., 2023b) evaluates agent capabilities to perform tasks in the web environ-
ments such as e-commerce, social forum discussion, and beyond.

• OSWorld (Xie et al., 2024) is an integrated environment for assessing open-ended computer tasks,
which involve diverse applications like terminal, chrome, etc.

• Spider2-V (Cao et al., 2024) is a multimodal agent benchmark focusing on professional data
science and engineering workflows, which includes BigQuery, Airbyte and more.

3.3 SETTINGS

We synthesize one separate set of environment-specific data for each evaluated benchmark.
Throughout the data synthesis process, we employ the Claude-3.5-sonnet (Anthropic, 2024) as the
generator model and both Gemini-1.5-pro (Reid et al., 2024) and Claude-3.5-sonnet as the LLM
committee for filtering low-quality data. For each document, we sample three task instructions from
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Table 2: Comparison of LEARN-BY-INTERACT to other existing training-free approaches. SWE
refers to SWE-bench, Web refers to WebArena and OS refers to OSWorld. The best results are
highlighted in bold. We include more leaderboard results of SWE-bench and WebArena in Table 6.

Benchmark→ SWE Web OS Spider2-V SWE Web OS Spider2-V

Approach ↓ Gemini-1.5-pro Claude-3.5-sonnet

Existing approaches

Baseline 13.3 17.9 4.9 8.3 26.7 31.5 11.4 7.5
RAG 13.7 19.5 5.1 9.1 27.0 31.8 11.7 7.7
Data distill 14.0 19.8 5.7 9.1 28.0 32.1 11.9 8.5
Reflexion 14.3 20.2 5.7 9.3 28.3 32.4 12.2 8.9
LATS 15.3 21.0 6.5 11.3 29.0 34.2 13.6 10.3

Ours

Learn-by-interact 18.7 25.6 10.3 16.4 34.7 39.2 22.5 16.3
∆ over baseline +5.4 +7.7 +5.4 +8.1 +8.0 +7.7 +11.1 +8.8

LLMs. The statistics for generated raw trajectories, examples before and after filtering are shown
in Table 1. In Appendix E, we list document sources used for each benchmark. During ICL, we
retrieve examples until the maximum length of LLMs and set an upper bound of 5 for both model-
based and observation-based retrieval (m1 = 5, m2 = 5 in Algorithm 2). We leverage Gemini-1.5-
pro (Reid et al., 2024) and Claude-3.5-sonnet (Anthropic, 2024)1, Codegemma-7B (Team, 2024a)
and Codestral-22B (Team, 2024b) in the ICL evaluation, and tune Codegemma-7B and Codestral-
22B with LoRA (Hu et al., 2021) to evaluate the data quality as training sources. By default, we
do not include retrieval content in evaluating the trained model to avoid the confusion in under-
standing the effectiveness of our synthesized data in training. We include more detailed hyper-
parameter settings (both existing approaches and LEARN-BY-INTERACT) and machine information
in Appendix D.

3.4 EVALUATION

We follow the default evaluation metrics designed by the original benchmarks. In SWE-
bench (Jimenez et al., 2023), we apply the generated patch program to the repository codebase, and
measure the agent performance by execution accuracy (pass@1). In WebArena (Zhou et al., 2023b),
we employ both LLM-based fuzzy match and string match that checks keywords in predictions.
Slightly different from the original work that uses gpt-4-0613 as the LLM judge, we use Claude-
3.5-sonnet as a similar replacement. In OSWorld (Xie et al., 2024), we leverage the sample-specific
evaluation scripts to assess the functional correctness of the task completion, which processes en-
vironment states and checks if agents finish the task as expected. In Spider2-V (Cao et al., 2024),
we utilize file-based comparison, information-based validation, execution-based verification to de-
termine whether a task is successfully completed. All performance numbers throughout the paper
are shown in the percentage of resolved instances with % omitted for brevity.

3.5 RESULTS

3.5.1 TRAINING-FREE EVALUATION

We first consider LEARN-BY-INTERACT in the training-free setting, where the proposed methods
can be applied to the commercial LLMs even with prediction-only API access.

Results on Table 2 show marginal improvement of RAG compared to the baseline, which suggests
limited effectiveness by simply concatenating standard reousrces to LLM prompts. By retrieving
examples from distilled data, we observe better performance compared to RAG, but still no more
than 2% improvement over the baseline, which indicates that the distilled data tend to be noisy
in the setting with multi-round agent-environment interactions. This highlights the critical role of

1In the subsequent descriptions, Gemini refers to Gemini-1.5-pro, and Claude refers to Claude-3.5-sonnet.
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Table 3: Downstream task performance of models trained from data generated by Learning-by-
interact and data distillation. We include the models results before training, where the synthesized
data is used as demonstration examples, and after training, where the synthesized data is used to
train models.

Benchmark→ Web OS Web OS Web OS Web OS

Model→ Codegemma-7B Codestral-22B Codegemma-7B Codestral-22B

Approach ↓ Before tuning After tuning
Existing approaches

Baseline 3.3 0.0 4.7 2.2 - - - -
Data distill 4.2 0.0 5.8 2.7 6.2 1.4 10.2 5.4

Ours

Learn-by-interact 7.6 3.5 9.9 5.4 17.9 6.5 27.8 11.7
∆ over baseline +4.3 +3.5 +5.2 +3.2 +14.5 +6.5 +23.1 +9.5

backward construction, which corrects the misalignment between instructions and trajectories by
curating new task objectives.

Both Reflexion and LATS consistently improve over the baseline across 4 benchmarks, which
demonstrate their general applicability to agent tasks. Using the data synthesized from the LEARN-
BY-INTERACT, we can see a significant performance gain compared to all other frameworks in both
Gemini and Claude. For example, in OSWorld, augmenting Claude with synthesized environment-
specific data almost doubles the result compared to the baseline. This signifies the high quality of
the generated data and the effectiveness of the LEARN-BY-INTERACT framework.

3.5.2 TRAINING-BASED EVALUATION

We consider the data synthesized by LEARN-BY-INTERACT in the scenario of LLM tuning, which
is applicable to the LLMs with access to weight updates.

The results presented in Table 3 reveal that LEARN-BY-INTERACT substantially surpasses both the
baseline and data distillation, suggesting its capacity to generate high-quality training data that en-
ables language models to learn and adapt efficiently. We discover that utilizing our synthesized data
for model training yields better results compared to using it as in-context learning (ICL) examples.
A notable instance is in WebArena, where Codestral-22B’s performance jumps from 4.7% to 27.8%
when trained on our synthesized data, while only showing a 5.2% improvement in the ICL scenario.
Remarkably, the Codestral-22B model trained with our synthesized data even outperforms Gemini
when the latter uses our data as demonstration examples.

4 ANALYSIS

4.1 INFERENCE EFFICIENCY

We compare the efficiency of different pipelines at inference. We analyze the trade-off between
downstream task performance and the required computational costs. We focus on measuring the
number of LLM calls and consumed tokens per example, which are averaged across four evalu-
ated datasets (§3.2) using Claude-3.5-sonnet. As illustrated in Fig. 2, while Reflexion and LATS
demonstrate enhanced performance, this comes at the cost of significantly increased computational
resources during inference. Specifically, LATS yields a 2.5% improvement on average, but re-
quires nearly four times used tokens per instance relative to the baseline. In contrast, LEARN-BY-
INTERACT exhibits superior performance while utilizing fewer LLM calls and slightly more tokens
compared to the baseline. Thanks to the rich environment information stored in the examples of
synthesized data, LLMs can potentially make better decisions and thus finish the task in fewer steps.
This removes the performance-efficiency trade-off during inference at the cost of data synthesis in
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Figure 2: Evaluation performance, the number of LLM calls and consumed tokens (per example)
of various training-free pipelines during inference, which are all averaged across four benchmarks:
SWE-bench, Webarena, OSWorld and Spider2-V.

Table 4: Model performance based on different retrieval paradigms. Observation-based and Model-
based retrieval prove to be particularly effective in agent tasks, whose combination (ours) gives the
best results.

Benchmark→ SWE Web OS Spider2-V SWE Web OS Spider2-V

Retrieval ↓ Gemini-1.5-pro Claude-3.5-sonnet

No retrieval 13.3 17.9 4.9 8.3 26.7 31.5 11.4 7.5
Instruction-based 14.7 21.6 7.0 10.2 27.7 33.6 15.7 9.1
Observation-based 16.3 23.5 8.7 14.6 32.3 36.3 18.7 13.2
Model-based 17.0 24.3 9.5 15.4 33.7 37.2 20.3 14.5
Ours 18.7 25.6 10.3 16.4 34.7 39.2 22.5 16.3

advance and suggests that LEARN-BY-INTERACT is particularly well-suited for real-world deploy-
ment that demonds both low latency and high performance.

4.2 THE IMPACT OF RETRIEVAL

As mentioned in §2.4, we employ both model-based and observation-based retrieval in our evalu-
ation with ICL. We analyze their effectiveness by incorporating only one of them (skip line 5-14
in Algorithm 2 for model-based retrieval only and skip line 15-17 for observation-based retrieval
only). In addition, we compare to two baselines: (1). no retrieval: LLMs predict each action in the
zero-shot setting; (2). instruction-based: only use instructions to retrieve synthesized data and apply
the same demonstration examples in every action prediction throughout the trajectory.

The results presented in Table 4 illustrate how various retrieval methods impact LLMs when us-
ing the synthetic data as the retrieval source. Despite having access to the same example pool
(except the baseline without using retrieval), there are notable differences in performance across
different retrieval strategies, highlighting the crucial role of agentic retrieval in effectively utilizing
synthesized data. Traditional Retrieval-Augmented Generation (RAG) methods, which only em-
ploys instructions for retrieval, show the least improvement across four benchmarks and two LLMs.
In contrast, the observation-based approach proves particularly effective for agent-based tasks, sig-
nificantly outperforming the instruction-based retrieval, for instance, achieving a 4.4% absolute im-
provement in Spider-2V when using Gemini. By leveraging task instructions, interaction history and
the current observation, model-based retrieval demonstrates even better results compared to using
the observation-based version. Ultimately, the most impressive scores are achieved by combining
both model-based and observation-based retrieval, which results in our agentic retrieval pipeline.
These findings underscore the importance of carefully designing retrieval pipelines to maximize the
potential of synthetic data and LLMs in agent scenarios.

4.3 DATA GRANULARITY
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Table 5: Effectiveness of synthetic data with various granularity. In general, short-trajectory data is
more advantageous to both training and ICL, while mixing all of short, medium and long-trajectory
data provides the best performance.

Benchmark→ SWE Web OS Spider2-V Web OS

Granularity ↓ Claude-3.5-sonnet Codestral-22B

Baseline 26.7 31.5 11.4 7.7 4.6 2.2
Short 28.7 33.3 14.9 10.3 13.5 4.9
Medium 28.0 32.5 13.8 9.5 12.6 4.0
Long 27.3 31.9 13.0 8.9 10.6 3.4
Short+Medium 30.0 34.4 15.7 10.7 14.6 5.7
Short+Long 29.3 33.9 15.2 10.5 14.4 5.3
Medium+Long 28.7 32.9 14.4 10.1 13.2 4.5
Short+Medium+Long 31.0 34.9 16.3 11.3 15.4 6.3
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Figure 3: Scaling laws of the synthesized data.
Compared to in-context learning, tuned models
achieves more significant improvements as the
data scales up. The performance is averaged
across WebArena and OSWorld.

As mentioned in §2.2, we synthesize data by
taking contiguous sub-trajectories from the full
generation paths of LLMs, i.e. T ′ = T [i : j],
which results in trajectories of diverse lengths
in the synthesized data. We divide the syn-
thetic data into three groups: (1). trajec-
tory steps < 5 (short); (2). 5 ≤ trajec-
tory steps < 10 (medium); (3). trajectory
steps ≥ 10 (long), and leverage each group
and their combinations in both the training-
free and the training-based process. To en-
sure a fair comparison, we constraint the data
size in each group and combined group to
200M tokens2, utilizing Su et al. (2022) for
sub-sampling. Table 5 presents the results.
In both training-free and training-based eval-
uation, LLMs derive greater advantages from
short-trajectory data, as demonstrated by its
consistently superior performance compared to
medium and long-trajectory data with Claude-
3.5-sonnet and Codestral-22B. This can be at-
tributed to the versatility of short-trajectory data, which usually serves as a sub-step or a partial
workflow in downstream tasks. The combination of any two data groups proves more effective than
relying on a single group, showcasing the complementary nature of diverse data sets. For instance,
in Webarena with Codestral-22B, incorporating examples with both short and medium-length tra-
jectories shows additional improvement over using either one exclusively (14.6 vs 13.5 and 14.6 vs
12.6). This underscores the value of considering the trajectory length as a unique dimension of agent
data synthesis.

4.4 SCALING LAWS

We examine how the model performance improves as the synthetic data size scales up. Figure 3
presents two sets of results, with training-free (where Claude, Gemini, Codegemma and Codestral
use retrieval augmentation without training) and with training-based (where fine-tuned Codegemma
and Codestral models are evaluated without retrieval). All results are averaged across Webarena
and OSworld due to the limit of computational resources. The findings indicate that both learning
paradigms benefit from larger data, suggesting the synthetic data is diverse and high-quality. In
the training-free evaluation, more substantial improvements are observed for larger models (Claude
and Gemini) compared to smaller ones (Codegemma and Codestral), possibly due to the enhanced

2We use the number of tokens to measure the data size due to the fact that long-trajectory example may
contain more information compared to the short version.
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in-context learning abilities of larger models. Our analysis also reveals that for a given amount of
synthetic data, fine-tuning smaller models is more effective than using the data as demonstration
examples during evaluation.

5 RELATED WORK

Various agents based on LLMs have been developed (Wang et al., 2024; Zhang et al., 2024; Shinn
et al., 2024; Huang et al., 2022; Wang et al., 2023a;b). React (Yao et al., 2022b) proposes to
synergize reasoning and acting in LLMs. By integrating Monte Carlo Tree Search (Kocsis &
Szepesvári, 2006; Coulom, 2006), Zhou et al. (2023a) leverages LLM-powered value functions
and self-reflection (Madaan et al., 2024) to encourage proficient exploration and decision-making.
However, it comes with increased computational costs and relies on the premise that the environ-
ment allows for state reversals. In contrast, LEARN-BY-INTERACT removes such assumptions and
improves both agent efficiency and performance by synthesizing high-quality data in advance.

Another line of research to improve agent models relies on training on human-labeled exam-
ples (Zeng et al., 2023; Yin et al., 2023; Deng et al., 2024; Chen et al., 2024b; Wang et al., 2022a)
or data distilled from LLMs like GPT-4 (Chen et al., 2023; Zhao et al., 2024). AgentGen (Hu et al.,
2024) explores automatic synthesis of both environments and tasks and then leverages FastDown-
ward3 to generate trajectory data. AgentTuning (Zeng et al., 2023) utilizes both existing datasets
and self-instruct (Wang et al., 2022b) to derive instructions and then samples trajectories from GPT-
4 (Achiam et al., 2023). In contrast, LEARN-BY-INTERACT focuses on realistic environments and
generate tasks and trajectories using backward construction. Some other researchers are also ex-
ploring ways to use data more efficiently with reinforcement learning (Ball et al., 2023; Schwarzer
et al., 2020; Nachum et al., 2018; Thomas & Brunskill, 2016; Schwarzer et al., 2021). Gulcehre et al.
(2023) suggests using data created by an LLM’s policy can enhance itself via offline reinforcement
learning algorithms. Aksitov et al. (2023) takes this further by combining with ReAct (Yao et al.,
2022b) to train agent models iteratively on experience trajectories. These typically require a reward
model as the scoring function or LLM/execution-generated feedback to enhance data quality. Our
work, however, takes a different approach by employing the backward construction to improve the
data quality by aligning instructions and trajectories.

6 CONCLUSION

We introduce LEARN-BY-INTERACT, a data-centric framework to adapt LLM agents to any given
environments without human annotations. Based on commonly-accessible resources like documen-
taion, LLMs propose downstream tasks and complete them with multi-round interactions with en-
vironments. We address the misalignment between instructions and trajectories by updating objec-
tives with new instructions derived from trajectories. Additionally, we design innovative retrieval
pipelines that leverage agent instructions, interaction histories, and current observations to retrieve
synthesized examples. Through extensive experiments, we demonstrate that the synthetic data from
LEARN-BY-INTERACT significantly enhances model performance in ICL and training. Compared
with other leading approaches in agent tasks, LEARN-BY-INTERACT shows much better perfor-
mance with lower latency and computational costs, which make it particularly suitable for large-
scale deployment. Further analysis has also shown the superiority of LEARN-BY-INTERACT over
the classical RAG. In future work, we plan to explore multi-modal settings and train general agent
models widely applicable in realistic environments. We anticipate that LEARN-BY-INTERACT will
inspire future research to push the state-of-the-art in this direction.

7 LIMITATIONS

Although LEARN-BY-INTERACT effectively synthesizes high-quality agentic data with trajectories,
it requires a lot of LLM calls in generation and filtering. We hope that future works will explore more
efficient approaches to complete annotations without sacrificing quality. Additionally, LEARN-BY-
INTERACT leverages the environment-related resources to generate instructions. In some scenarios,
however, these resources may be incomplete or not available.

3https://www.fast-downward.org/
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Table 6: Top-10 results of SWE-bench from the leaderboard at https://www.swebench.
com/. All the numbers are fetched on 2024-10-01.

Approach ↓ site result

CodeStory Aide + Mixed Models https://www.swebench.com/ 43.0
Honeycomb https://honeycomb.sh/ 38.3
AbanteAI MentatBot https://mentat.ai/blog/mentatbot-sota-coding-agent 38.0
Gru https://gru.ai/ 35.7
Isoform https://www.isoform.ai/ 35.0
SuperCoder2.0 https://superagi.com/supercoder/ 34.0
MarsCode https://www.marscode.com/ 34.0
Lingma https://arxiv.org/abs/2406.01422 33.0
Factory Code Droid https://www.factory.ai/ 31.3
AutoCodeRover https://autocoderover.dev/ 30.7
LEARN-BY-INTERACT (ours) This paper 34.7

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023b.

A BASELINE IMPLEMENTATIONS

We follow the existing frameworks to set up baselines in each benchmark. In SWE-bench (Jimenez
et al., 2023), we follow the prompt styles of the Agentless (Xia et al., 2024) pipeline to first localize
suspicious files, then find classes and functions to edit. In WebArena (Zhou et al., 2023b), we follow
the implementation of Step (Sodhi et al., 2024), which concatenates task objectives, action space
descriptions, general instructions (e.g., output formats) and webpage observations in the prompt,
and ask LMs to predict the next action. By default, we use the accessibility tree4 as the observation
space. In OSWorld (Xie et al., 2024) and Spider2-V (Cao et al., 2024), we follow the original
prompt style designed by the benchmark, which also concatenates task objectives, action space
descriptions, general instructions and computer observations in the prompt. By default, we use the
accessibility tree as the observation space for OSWorld, and use the set-of-mark for Spider2-V due
to the significant information loss of the accessibility tree in the original benchmark. See an example
in Table 22 and 23 for more details.

B COMPARISON TO TASK-SPECIFIC APPROACHES

In Table 6, we compare LEARN-BY-INTERACT to top-10 task-specific approaches (with
open-sourced code) that may not broadly applied in agent scenarios for SWE-bench (Zan
et al., 2024) and WebArena (Zhou et al., 2023b). All the information is retrieved
on 2024-10-01 from the official leaderboard https://www.swebench.com/ and
https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_
pF7LdyGU1f_ufZb_NWNBZQ/edit?gid=0#gid=0. To the best of our knowledge, we
are the first to apply our methods in OSWorld (Xie et al., 2024) and Spider2-V (Cao et al., 2024).

C DATASET EXAMPLES

From Table 8 to 21, we provide one example for each dataset with full instructions, interaction
history with the environment.

D EXPERIMENTAL SETTINGS

We retrieve documents until the maximum length of LLMs for RAG and set an upper bound number
of 50 documents, where the retrieved documents remain unchanged throughout agent interaction
trajectory because only instructions are used as the query for retrieval. For Reflexion (Shinn et al.,

4https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree
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Table 7: Top-10 results of WebArena from the leaderboard at https://docs.google.com/
spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit?
gid=0#gid=0. All the numbers are fetched on 2024-10-01.

Approach ↓ site result

Jace.AI https://www.jace.ai/ 57.1
WebPilot https://www.arxiv.org/pdf/2408.15978 37.2
AWM https://arxiv.org/pdf/2409.07429 35.5
Step https://arxiv.org/abs/2310.03720 33.5
BrowserGym https://github.com/ServiceNow/BrowserGym 23.5
Auto Eval https://arxiv.org/abs/2404.06474 20.2
Tree Search https://jykoh.com/search-agents 19.2
AutoWebGLM https://arxiv.org/abs/2404.03648 18.2
gpt-4-0613 https://arxiv.org/abs/2307.13854 14.9
gpt-4o-2024-05-13 https://arxiv.org/abs/2307.13854 13.1
LEARN-BY-INTERACT (ours) This paper 39.2

2024), we use the maximum trials 3. In LATS (Zhou et al., 2023a), we use the number of gener-
ated action 5, depth limit 15, value function weight 0.8, following the original setting in paper with
WebShop (Yao et al., 2022a), which is also an agent task based on website. By default, we use
https://huggingface.co/dunzhang/stella_en_1.5B_v5 as the retriever for model-based retrieval con-
sidering both size and the performance. We use the temperature 0 throughout the experiments to
ensure better reproductivity of the experiments. During training, we the batch size 128, learning
rate 0.00002, warmup ratio 0.03 and maximum length 8192, and tune the model for 3 epochs. All
experiments are conducted in H100 machines with 80GB memeory.

E DOCUMENT SOURCES

We use all the non-repeated python files in SWE-bench-Lite (Jimenez et al., 2023) as the document
sources. Although we may not always find abundant documentations and tutorials for each envi-
ronment, we believe that documentations in the same domain still have a good coverage of frequent
operations. For example, one subset of WebArena (Zhou et al., 2023b) focuses on the navigation
of the shopping website OneStopMarket, we use the Amazon documentation as a good replace-
ment. Regardless of the shopping websites, the frequent tasks usually include order change, product
search, delivery checking, etc. Therefore, we use other documentations in the same domain to sam-
ple task instructions when the exact version for the target environment is not available. Concretely,
we use the following sources for WebArena:

• https://docs.gitlab.com/ee/tutorials/
• https://support.google.com/maps
• https://www.amazon.com/hz/contact-us/foresight/hubgateway
• https://support.reddithelp.com/hc/en-us/articles

The following sources are used for OSWorld:

• https://support.google.com/chrome/?hl=en
• https://www.gimp.org/tutorials/
• https://books.libreoffice.org/en/CG72/CG72.html
• https://books.libreoffice.org/en/WG73/WG73.html
• https://ubuntu.com/tutorials/command-line-for-beginners
• https://support.mozilla.org/en-US/products/thunderbird
• https://wiki.videolan.org/Documentation:Documentation
• https://code.visualstudio.com/docs

, The following sources are used for Spider2-V:
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https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit?gid=0#gid=0
https://www.jace.ai/
https://www.arxiv.org/pdf/2408.15978
https://arxiv.org/pdf/2409.07429
https://arxiv.org/abs/2310.03720
https://github.com/ServiceNow/BrowserGym
https://arxiv.org/abs/2404.06474
https://jykoh.com/search-agents
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
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• https://docs.getdbt.com/
• https://release-1-7-2.dagster.dagster-docs.io/
• https://docs.astronomer.io/
• https://docs.airbyte.com/
• https://airbyte.com/tutorials/
• https://airbyte-public-api-docs.s3.us-east-2.amazonaws.com/rapidoc-api-docs.html
• https://superset.apache.org/docs/
• https://www.metabase.com/docs/v0.49/
• https://www.metabase.com/learn/
• https://docs.snowflake.com/en/
• https://cloud.google.com/bigquery/docs/
• https://jupyterlab.readthedocs.io/en/4.1.x/

F SYNTHESIZED DATA EXAMPLES

From Table 24 to 30, we provide a complete example of data synthesis. To begin with, an LLM
generates instructions based on standard resources like tutorials, documentations and FAQs: Upload
CSV data in Google Drive to BigQuery. (See prompt in Table 33) It then attempts solve the task by
predicting actions and collecting feedback from environments (interactions). This produces a long
trajectory showing how LLMs try to achieve the goal.

However, it is not guaranteed that the trajectory successfully achieves the target. In our example, the
LLM makes a wrong prediction in the action 4. It selects the table source Google Cloud Storage,
while the correct action should select “Drive" to align with the instruction that reuiqres to upload
CSV data in Google Drive. This results in wrong actions in the subsequent predictions, and the
generated trajectory is not aligned with the initial instruction, which leads to noisy data in this case.

Instead of using the original instruction-trajectory pairs for downstream training and in-context
learning, we fix the mentioned misalignment by crafting new instructions for each sub-trajectory
(backward construction). Concretely, we feed the generated trajectory into LLM prompts, and ask
it to summarize the trajectory or propose a new task based on it. For example, the LLM updates the
task objective to “Link CSV file in Google Cloud Storage to BigQuery" after observing the trajec-
tory, which makes the task instrucion and the trajectory aligned. Additionally, we also generate new
instructions for each sub-trajectory, which would increase the utility of a generated full trajectory.
For instance, based on the sub-trajectory (observation 0, Action 1, observation 1), the LLM gener-
ates a new instruction: When is dataset “demo" created? In Table 31 and 32, we list more generated
instructions based on sub-trajectories.

G CASE STUDY ON FILTERED EXAMPLES

In Table 40-49, we demonstrate the representative synthesized examples that fail to meet our de-
signed criteria. The example in Table 40-45 is filtered because the trajectory shows detour in ac-
complishing the goal, i.e. Action 1-6 are not necessary. The example in Table 46-49 is filtered
because it goes back and forth in states, i.e. repeat the actions of clicking "My Orders" and click-
ing "View Order". We filter these low-quality examples to avoid their negative influences in the
downstream applications.
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Table 8: SWE-bench example
Instruction
Please address the following Github issue.

### GitHub Problem Description ###
ModelChoiceIteratorValue is not hashable.
Description

Recently I migrated from Django 3.0 to Django 3.1. In my code, I add custom data-* at-
tributes to the select widget options. After the upgrade some of those options broke. Error is
TypeErrorunhashable type: ’ModelChoiceIteratorValue’.
Example (this one breaks):

def create_option(self, name, value, label, selected, index, subindex=None, attrs=None):
context = super().create_option(name, value, label, selected, index, subindex, attrs)
if not value:

return context
if value in self.show_fields: # This is a dict 1: [’first_name’, ’last_name’]

context[’attrs’][’data-fields’] = json.dumps(self.show_fields[value])
However, working with arrays is not an issue:

def create_option(self, name, value, label, selected, index, subindex=None, attrs=None):
context = super().create_option(name, value, label, selected, index, subindex, attrs)
if not value:

return context
if value in allowed_values: # This is an array [1, 2]

...

Observation 0 (repository structure)
django/

setup.py
__init__.py
__main__.py
shortcuts.py
forms/

__init__.py
utils.py
fields.py
renderers.py
forms.py
formsets.py
widgets.py
boundfield.py
models.py

db/
__init__.py
transaction.py
utils.py
models/

signals.py
constants.py
fields/

files.py
__init__.py
related.py

...
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Table 9: SWE-bench example cont.
Action 1 (Find related files to edit)
Based on the problem description and the repository structure, here are the most likely files
that would need to be edited to fix the issue:

django/forms/models.py
django/forms/fields.py
django/forms/widgets.py
django/forms/__init__.py
django/db/models/fields/__init__.py
django/db/models/fields/related.py
...

Observation 1 (File skeleton)
### File: django/forms/models.py
def construct_instance(form, instance, fields=None, exclude=None):

...
def model_to_dict(instance, fields=None, exclude=None):

...
class ModelChoiceIteratorValue:

def __init__(self, value, instance):
...

def __str__(self):
...

def __eq__(self, other):
...

class ModelChoiceField(ChoiceField):
def _get_choices(self):

...
### File: django/forms/fields.py
class Field:

widget = TextInput # Default widget to use when rendering this type of Field.
hidden_widget = HiddenInput # Default widget to use when rendering this as "hidden"

def __init__(self, *, required=True, widget=None, label=None, initial=None):
...
def prepare_value(self, value):
...
def to_python(self, value):
...
def validate(self, value):
...
def run_validators(self, value):
...

class ChoiceField(Field):
def validate(self, value):

...
def valid_value(self, value):

...
...
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Table 10: SWE-bench example cont.
Action 2 (Find related classes, methods to edit)
Here are the identified locations that need inspection or editing to fix the problem:

django/forms/models.py
class: ModelChoiceIteratorValue

django/forms/models.py
class: ModelChoiceField
method: _get_choices

django/forms/fields.py
class: ChoiceField
method: valid_value
...

Observation 2 (Classes and methods content)
### File django/forms/models.py
class ModelChoiceIteratorValue:

def __init__(self, value, instance):
self.value = value
self.instance = instance

def __str__(self):
return str(self.value)

def __eq__(self, other):
if isinstance(other, ModelChoiceIteratorValue):

other = other.value
return self.value == other

class ModelChoiceField(ChoiceField):

def _get_choices(self):
return self.iterator(self)

### django/forms/fields.py
class ChoiceField(Field):

def valid_value(self, value):
text_value = str(value)
for k, v in self.choices:

if isinstance(v, (list, tuple)):
# This is an optgroup, so look inside the group for options
for k2, v2 in v:

if value == k2 or text_value == str(k2):
return True

else:
if value == k or text_value == str(k):

return True
return False

...
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Table 11: SWE-bench example cont.
Action 3 (Edit code to address the issue)
Based on the issue description and the provided code segment, it appears that the ‘Model-
ChoiceIteratorValue‘ class is not hashable, which is causing the TypeError when trying to
use it as a dictionary key. To fix this, we need to make the ‘ModelChoiceIteratorValue’ class
hashable by implementing the ‘__hash__’ method. Here’s the proposed fix:

### django/forms/models.py
### Replace the following code
class ModelChoiceIteratorValue:

def __init__(self, value, instance):
self.value = value
self.instance = instance

def __str__(self):
return str(self.value)

def __eq__(self, other):
if isinstance(other, ModelChoiceIteratorValue):

other = other.value
return self.value == other

### with

class ModelChoiceIteratorValue:
def __init__(self, value, instance):

self.value = value
self.instance = instance

def __str__(self):
return str(self.value)

def __eq__(self, other):
if isinstance(other, ModelChoiceIteratorValue):

other = other.value
return self.value == other

def __hash__(self):
return hash(self.value)

Observation 3 (Generated patch)
diff –git a/django/forms/models.py b/django/forms/models.py
index 5a30801..55b3c81 100644
- - - a/django/forms/models.py
+++ b/django/forms/models.py
@@ -1171,6 +1171,9 @@ class ModelChoiceIteratorValue:

other = other.value
return self.value == other

+ def __hash__(self):
+ return hash(self.value)
+

class ModelChoiceIterator:
def __init__(self, field):
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Table 12: Webarena example
Instruction
Tell me the total cost of my latest cancelled order?

Observation 0

Action 1
click [4918] // click the button ‘My Account’
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Table 13: Webarena example cont.
Observation 1

Action 2
Stop: The total cost of the latest cancelled order is $365.42
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Table 14: OSWorld example
Instruction
Could you assist me in adding a new layer and naming it ‘Square’?

Observation 0 (Interface of the software GIMP)

Action 1
import pyautogui
pyautogui.hotkey(‘shift’, ‘ctrl’, ‘n’) // shortcut to initialize a new layer.

Observation 1 (Interface of the software GIMP)
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Table 15: OSWorld example cont.
Action 2
import pyautogui
pyautogui.typewrite(‘Square’) // change the layer name to Square.

Observation 2 (Interface of the software GIMP)

Action 3
import pyautogui
pyautogui.click(1096, 892) // click OK to save the change.

Observation 3 (Interface of the software GIMP)
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Table 16: Spider2-V example, cont.
Instruction
I have established a connection from Faker to local .csv file. Could you help me change the
running schedule? I hope it can be replicated at 18:00 pm every day.

Observation 0 (Interface of the software Airbyte)

Action 1
import pyautogui
pyautogui.click(550,280) // click the connection row with the name “Sample Data (Faker)→
Local CSV"

Observation 1 (Interface of the software Airbyte)
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Table 17: Spider2-V example, cont.
Action 2
import pyautogui
pyautogui.click(500,300) // click the button Replication

Observation 2 (Interface of the software Airbyte)

Action 3
import pyautogui
pyautogui.click(500,450) // click the panel Configuration

Observation 3 (Interface of the software Airbyte)
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Table 18: Spider2-V example, cont.
Action 4
import pyautogui
pyautogui.click(1270,430) // reveal the dropdown menu of the schedule type

Observation 4 (Interface of the software Airbyte)

Action 5
import pyautogui
pyautogui.click(1200,565) // select the schedule type Cron

Observation 5 (Interface of the software Airbyte)
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Table 19: Spider2-V example, cont.
Action 6
import pyautogui
pyautogui.click(1020,480) // focus on the content of the Cron expression

Observation 6 (Interface of the software Airbyte)

Action 7
import pyautogui
pyautogui.hotkey(“ctrl",“a") // select all content in the textbox

Observation 7 (Interface of the software Airbyte)
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Table 20: Spider2-V example, cont.
Action 8
import pyautogui
pyautogui.press(“delete") // delete the default content

Observation 8 (Interface of the software Airbyte)

Action 9
import pyautogui
pyautogui.write(“0 0 18 * * ?") // update the content to align 18:00 pm in the instruction

Observation 9 (Interface of the software Airbyte)
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Table 21: Spider2-V example, cont.
Action 10
import pyautogui
pyautogui.click(1450,900) // click the button save changes

Observation 10 (Interface of the software Airbyte)
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Table 22: Observation space of Spider2-V.
Screenshot

Set-of-mark
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Table 23: Observation space of Spider2-V. The accessibility tree suffers from significant information
loss. Compared to the screenshot and set-of-mark shown in Table 22, the presented accessibility
tree fails to retrieve webpage information, and only shows the details of the desktop icons in the left
panel.

[208, 13] menu Chromium Web Browser “"
[1463, 13] menu System “"
[35, 65] push-button Chromium Web Browser “"
[753, 81] label Please download waiting software updates. “"
[135, 109] label Home
[35, 133] push-button Terminal “"
[35, 201] push-button Visual Studio Code “"
[35, 269] push-button Files “"
[35, 337] push-button Text Editor “"
[953, 370] label Updated software is available for this computer. Do you want to install it
now?
[35, 405] push-button LibreOffice Calc “"
[951, 463] table-cell Security updates
[1191, 463] table-cell 638.8 MB
[35, 473] push-button LibreOffice Writer “"
[963, 486] table-cell LibreOffice
[1191, 486] table-cell 23.4 MB
[963, 509] table-cell LibreOffice Calc
[1191, 509] table-cell 8.7 MB
[923, 524] toggle-button Details of updates “"
[963, 532] table-cell LibreOffice Draw
[1191, 532] table-cell 3.0 MB
[35, 541] push-button Document Viewer “"
[963, 555] table-cell LibreOffice Impress
[1191, 555] table-cell 1.3 MB
[963, 578] table-cell LibreOffice Math
[1191, 578] table-cell 673 kB
[35, 612] push-button Software Updater “"
[935, 660] label 1157.8 MB will be downloaded.
[35, 680] push-button Trash “"
[671, 702] push-button Settings. . . “"
[1054, 702] push-button Cancel “"
[1176, 702] push-button Install Now “"
[35, 884] toggle-button Show Applications “"
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Table 24: Example of data synthesis - Bigquery
Instruction
Upload CSV data in Google Drive to BigQuery.

Observation 0 (Bigquery Interface)

Action 1
import pyautogui
pyautogui.doubleClick(332,447) // double click the dataset demo.

Observation 1 (Bigquery Interface)
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Table 25: Example of data synthesis - Bigquery
Action 2
import pyautogui
pyautogui.doubleClick(1002,321) // double click the button CREATE TABLE.

Observation 2 (Bigquery Interface)

Action 3
import pyautogui
pyautogui.click(1458,279) // click the dropdown menu to select table source.

Observation 3 (Bigquery Interface)
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Table 26: Example of data synthesis - Bigquery
Action 4
import pyautogui
// wrong prediction: click the table source Google Cloud Storage.
// The correct prediction should select Drive to align with the instruction.
pyautogui.click(1302,331)

Observation 4 (Bigquery Interface)

Action 5
import pyautogui
pyautogui.click(1389,340) // click BROWSE to find file.

Observation 5 (Bigquery Interface)
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Table 27: Example of data synthesis - Bigquery
Action 6
import pyautogui
pyautogui.click(1341,282) // click to find files under directory.

Observation 6 (Bigquery Interface)

Action 7
import pyautogui
pyautogui.doubleClick(1203,284) // select the CSV file.

Observation 7 (Bigquery Interface)
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Table 28: Example of data synthesis - Bigquery
Action 8
import pyautogui
pyautogui.click(1000,915) // click to select file.

Observation 8 (Bigquery Interface)

Action 9
import pyautogui
pyautogui.click(1000,668) // click to focus on the text box Table.

Observation 9 (Bigquery Interface)
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Table 29: Example of data synthesis - Bigquery
Action 10
import pyautogui
pyautogui.write("test") // name the file "test".

Observation 10 (Bigquery Interface)

Action 11
import pyautogui
pyautogui.click(1425,726) // click to reveal dropdown menu of the table type.

Observation 11 (Bigquery Interface)
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Table 30: Example of data synthesis - Bigquery
Action 12
import pyautogui
pyautogui.click(1297,801) // select the table source external table.

Observation 12 (Bigquery Interface)

Action 13
import pyautogui
pyautogui.click(303,914) // click CREATE TABLE.

Observation 13 (Bigquery Interface)
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Table 31: Instructions generated from trajectory from Table 24 to 30
sub-trajectory type instruction

Observation 0
↓

Action 1 New task When is dataset “demo" created?
↓

Observation 1)

Observation 1 Replicate the following: We are currently at the Google Cloud
↓ Console interface, specifically focused on a BigQuery project.

Action 2 Replicate trajectory The browser window displays details of a dataset named "demo"
↓ within a BigQuery project. The interface provides information

Observation 2 about the dataset, including its creation date, last modified time,
data location (US), and other properties like default table expiry
and rounding mode. On the left side of the screen, there’s a
navigation panel showing the Explorer view with the "demo"
dataset selected. The top of the screen shows the Google Cloud
header with project selection and search functionality.
The overall layout is characteristic of a cloud-based data
management platform, with options to create tables, share data,
and manage dataset properties.
After taking the action to click the CREATE TABLE button,
we go to the user interface for creating a table. The screen
displays a form titled "Create table" with various fields and
options. The source section allows selecting a table to create
from, while the destination section includes fields for project,
dataset, and table name. There’s also a schema section and
partition and cluster settings. The interface is part of the Google
Cloud Console, as evident from the sidebar on the left showing
different Cloud services and project navigation.

Observation 4
↓

Action 5
↓

Observation 5
↓

Action 6
↓

Observation 6 New task Select test.csv in the bucket test-1616 in Google Cloud Storage
↓ as the table source.

Action 7
↓

Observation 7
↓

Action 8
↓

Observation 8
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Table 32: Instructions generated from trajectory from Table 24 to 30
sub-trajectory type instruction

Observation 8 Replicate the following: We are in the the interface for creating
↓ a table in Google Cloud’s BigQuery service. The page is divided

Action 9 into several sections. At the top, it indicates the user is creating
↓ a table from a Google Cloud Storage source, with a CSV file

Observation 9 Replicate trajectory selected. The destination section shows the project ID and allows
↓ input for the dataset and table name. The destination table is

Action 10 empty. The table type is set to “Native table". At the bottom,
↓ there’s an option for schema detection, with buttons to create the

Observation 10 table or cancel the operation. The left side of the screen displays a
navigation menu for the Google Cloud Console, including options
like Explorer and various project-related items. The overall layout
suggests this is part of a larger cloud data management and
analysis platform. After we click on the text box Table, we select
and focus on the text box. We then type “test" into the box, which
gives the table a name. Except the textbox we are working on,
the other parts of the webpage has not changed after clicking
and typing.

Observation 0
↓

Action 1
↓

Observation 1 New task Link CSV file in Google Cloud Storage to BigQuery
↓

Action 2
↓

......
↓

Observation 13

Table 33: self-instruct prompts to propose instructions based on tutorials, documentations and FAQs.
{Documentation}

Based on the tutorial, examplify 3 tasks that users frequently perform.
User the following format to output:
...
...
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Table 34: Prompts to summarize (sub-)trajectories or propose new tasks based on the (sub-
)trajectories.

Prompt 1
Below is a trajectory to complete a task.
Observation:
{Observationi}
Action:
{Actioni+1}
Observation:
{Observationi+1}
Action:
{Actioni+2}
...
Action:
{Actionj−1}
Observation:
{Observationj}

Please write a reasonable task instruction that is completed by the trajectory.
Wrap the instruction with ```.

Prompt 2
Below is a trajectory to complete a task.
Observation:
{Observationi}
Action:
{Actioni+1}
Observation:
{Observationi+1}
Action:
{Actioni+2}
...
Action:
{Actionj−1}
Observation:
{Observationj}

Please summarize the trajectory about each observation and changes after each action.
Wrap the summarization with ```.
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Table 35: LLM prompts to filter low-quality data
Task instruction:
{instruction}
Below is the trajectory to complete the task.
Observation:
{Observationi}
Action:
{Actioni+1}
Observation:
{Observationi+1}
Action:
{Actioni+2}
...
Action:
{Actionj−1}
Observation:
{Observationj}

Here are the criteria to indicate a good pair of the instruction and the trajectory:
1. The instruction and the trajectory are aligned, which means the trajectory successfully
accomplishes the goal in the instruction.
2. The trajectory is coherent, indicating that each action is logical based on its previous
observation and the actions do not contradict with each other based on the task instruction.
3. The trajectory is natural, meaning that the trajectory closely mimics real-world interactions
and a human user would possibly perform it when engaging in the environment.
4. The trajectory is reasonable, indicating that the trajectory finishes the task instruction
using a reasonable solution, e.g., not using an over-complicated method, not over-simply the
problem, not going back and forth in states, etc.

Please answer yes if the task instruction and the trajectory satisfies all the criteria, otherwise,
answer with no.

Table 36: Model inference prompts without external knowledge
SYSTEM MESSAGE:
{system message}
OBJECTIVE:
{task instruction}
INTERACTION HISTORY:
{interaction history}
OBSERVATIONS:
{observations}

Your REASONING and ACTION in the format:
REASON:
Your reason to choose a specific action.
ACTION:
Your action
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Table 37: Model inference prompts with external knowledge
SYSTEM MESSAGE:
{system message}
ADDITIONAL INFORMATION FOR REFERENCE:
{external knowledge}
OBJECTIVE:
{task instruction}
INTERACTION HISTORY:
{interaction history}
OBSERVATIONS:
{observations}

Your REASONING and ACTION in the format:
REASON:
Your reason to choose a specific action.
ACTION:
Your action

Table 38: Expected model outputs
REASON:
...
ACTION:
...

Table 39: Model prompts to write query for retrieval
SYSTEM MESSAGE:
{system message}
Here is the final goal we want to achieve:
{task instruction}
To achieve the goal, we have done the following:
{interaction history}
Now, we have observed:
{observations}

To better finish the task, write a query to ask for useful information, e.g., what kind of exam-
ples or interaction history will be helpful to predict the next action.
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Table 40: OSWorld example (filtered)
Instruction
Sum numbers in the first column.

Observation 0 (Interface of the software LibreOffice Calc)

Action 1
import pyautogui
pyautogui.click(543,126) // click Tools.

Observation 1
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Table 41: OSWorld example (filtered) cont.
Action 2
import pyautogui
pyautogui.click(543,580) // click Solver.

Observation 2

Action 3
import pyautogui
pyautogui.click(772,892) // click Close.

Observation 3
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Table 42: OSWorld example (filtered) cont.
Action 4
import pyautogui
pyautogui.click(520,126) // click Data.

Observation 4

Action 5
import pyautogui
pyautogui.moveTo(520,562) // move to Calculate.

Observation 5
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Table 43: OSWorld example (filtered) cont.
Action 6
import pyautogui
pyautogui.click(498,126) // click Sheet.

Observation 6

Action 7
import pyautogui
pyautogui.click(152,591) // click cell A4.

Observation 7
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Table 44: OSWorld example (filtered) cont.
Action 8
import pyautogui
pyautogui.click(480,302) // click the formula box.

Observation 8

Action 9
import pyautogui
pyautogui.write("=SUM(A1:A3)") // type the formula.

Observation 9
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Table 45: OSWorld example (filtered) cont.
Action 10
import pyautogui
pyautogui.press("enter")

Observation 10
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Table 46: WebArena example (filtered)
Instruction
What are items ordered in the latest cancelled order?

Observation 0

Action 1
click [4918] // click the button "My Account"

Observation 1
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Table 47: WebArena example (filtered) cont.
Action 2
click [4922] // click the button "My Orders".

Observation 2

Action 3
click [6357] // click the button "View Order".

Observation 3
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Table 48: WebArena example (filtered) cont.
Action 4
click [4922] // click the button "My Orders".

Observation 4

Action 5
click [6357] // click the button "View Order".

Observation 5
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Table 49: WebArena example (filtered) cont.
Action 6
click [4922] // click the button "My Orders".

Observation 6

Action 7
click [6357] // click the button "View Order".

Observation 7
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