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A APPENDIX

A.1 RISK ANALYSIS OF RIDGE REGRESSION UNDER SPARSE RANDOM PROJECTION

In this section, we characterize how a sparse random projection of the data matrix X affects the
regression error in ridge regression. Our analysis is based on combining the random projection
matrix analysis in Achlioptas (2003) and the ridge regression analysis technique in Lu et al. (2013).

Let X ∈ Rn×d be the data matrix containing n i.i.d. samples from a d-dimensional independent
random variable x such that d >> n. Y ∈ Rn×1 is the real valued response vector. µ ∈ Rn×1 is the
Homoscedastic noise vector with zero mean and common variance σ2. Let β ∈ Rd be the parameter
vector, and we have Y = Xβ + µ. We infer the parameter vector β̂λ ∈ Rd×1 by solving the ridge
regression optimization problem:

β̂λ = arg min
β∈Rd×1

1

n
∥Y −Xβ∥22 + λ∥β∥22 (1)

where β̂λ = (X⊤X + nλId)
−1X⊤Y . Since inverting (X⊤X + nλId ∈ Rd×d is expensive,

alternatively we can consider the dual formulation of the ridge regression by first defining its kernel
matrix K = XX⊤:

α̂λ = arg min
α∈Rn×1

1

n
∥Y −Kα∥22 + λα⊤Kα (2)

where the optimal solution is α̂λ = (K+ nλIn)
−1Y which yields β̂λ = X⊤α̂λ.

Let β > 0 and 0 < ϵ < 3
2 . Pick k ≥ 4+2β

ϵ2/2−ϵ3/3 log(n). Define the projection matrix Θ ∈ Rk×d as
in Achlioptas (2003).

Θij =

√
3

k
×


+1 with probability 1/6
0 with probability 2/3

−1 with probability 1/6
(3)

Theorem 1.1 in Achlioptas (2003) shows that, with probability at least 1− n
1
β ,

(1− ϵ)∥u− v∥22 ≤ ∥Θu−Θv∥22 ≤ (1 + ϵ)∥u− v∥22, ∀u, v ∈ Rd (4)

This implies that, with probability at least 1 − n
1
β , the singular values of Θ can be bounded as

follows (Eldar & Kutyniok, 2012, Ch.5):

(1− ϵ) ≤ σmin(Θ) ≤ σmax(Θ) ≤ (1 + ϵ) (5)

Furthermore, we can characterize the projected kernel matrix (XΘ⊤)(ΘX⊤) with the following
result.

Lemma 1. Let β > 0 and 0 < ϵ < 3
2 . Pick k ≥ 4+2β

ϵ2/2−ϵ3/3 log(n). Define Θ ∈ Rk×d as in (3), then

with probability at least 1− n
1
β ,

∥Θ⊤Θ− Id∥2 ≤ ϵ (6)

Proof. From Theorem 1.1 in Achlioptas (2003) and the singular value bounds on the random pro-
jection matrix in Chapter 5 of Eldar & Kutyniok (2012), we have with probability at least 1− n

1
β ,

∥Θ⊤Θ− Id∥2 ≤ σmax(Θ)− 1 ≤ ϵ (7)

Define K := XX⊤, and KΘ := (XΘ⊤)ΘX⊤.

Corollary 1. Assuming the same conditions as in Lemma 1, we have, with probability at least
1− n

1
β ,

(1− ϵ)K ⪯ KΘ ⪯ (1 + ϵ)K (8)
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Let Z = Eµ(Y ) = Xβ. Under the fixed design setting (Lu et al., 2013), the risk of a prediction
Ŷ is 1

nEµ∥Ŷ − Z∥22. For any positive semidefinite matrix M ∈ Rn×n, let ŶM = Xβ̂λ(M) be the
prediction obtained by solving the ridge regression problem (2) using M in place of K. It turns
out that the risk of this prediction can be expressed using the following function R of M (Lu et al.,
2013):

R(M) :=
σ2

n
Tr(M2(M + nλIn)

−2) + nλ2Z⊤(M + nλIn)
−2Z (9)

Note that the expectation in the risk function is only over the random noise µ.

Similar to Theorem 1 in Lu et al. (2013), we have the following result:

Proposition 1. Let β > 0 and 0 < ϵ < 3
2 . Pick k ≥ 4+2β

ϵ2(1/2−ϵ/3) log(n). Consider a random

projection matrix Θ ∈ Rd×k defined as in equation 3. With probability at least 1− n
1
β ,

R(KΘ) ≤ (1− ϵ)−2R(K) (10)

Proof. For the symmetric positive semi-definite matrix KΘ, from Bach (2013), we have that the
function

B(KΘ) := nλ2Z⊤(KΘ + nλIn)
−2Z (11)

is non-increasing in KΘ, and the function

V (KΘ) :=
σ2

n
Tr(K2

Θ(KΘ + nλIn)
−2) (12)

is non-decreasing in KΘ. Note that R(K) = B(K) + V (K). By Corollary 1, we have

R(KΘ) = V (KΘ) +B(KΘ)

≤ V ((1 + ϵ)K) +B((1− ϵ)K)

≤ (1 + ϵ)2V (K) + (1− ϵ)−2B(K)

≤ (1− ϵ)−2R(K)

(13)

Proposition 1 shows that the risk of ridge regression under a sparse random projection can be up-
per bounded as a function of ϵ with high probability (at least 1 − n

1
β ). However, there are still

two differences between the methodology in our work and the above analysis. First, we use modi-
fied probabilities for the entries of Θ that enable faster projections at the cost of a small additional
approximation error, as described in Li et al. (2006), which is important for efficiently extracting fea-
tures from a large number of samples. Second, we use banded ridge regression (which is equivalent
to multiple-kernel ridge regression (Dupré la Tour et al., 2022)) instead of regular ridge regression.
We leave an extension of our analysis to multiple-kernel ridge regression to future work.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 SUPPLEMENTARY FIGURES

Figure 4: Features from the LAV DNN explain more variance across the brain than an image
classification CNN. In each subplot, voxels are colored based on the explained variance (R2) of the
model derived from LAV DNN activations (orange) and that of a model derived from the activations
of an AlexNet CNN. The AlexNet CNN received the same RGB inputs as the LAV DNN, but no
lidar inputs or destination waypoint. The four RGB images at each frame were used as separate
inputs to AlexNet, and then the activations corresponding to each image were concatenated before
performing dimensionality reduction with a sparse random projection with K = 20000 components.
a): Comparison between LAV and an AlexNet CNN trained on ImageNet (using the best weights in
the torchvision library) at the group level (top) and for individual subjects (below). LAV ex-
plains more variance across the brain, especially in high-level vision areas. b): Comparison between
LAV and an untrained AlexNet CNN with random weight initializations at the group level (top) and
for individual subjects (below). LAV explains more variance across the brain.
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Figure 5: Subject-level figures corresponding to the group-level figures in Fig.2c

A.3 MORE DETAILS ON METHODOLOGY

A.3.1 SCANNING PROCEDURE

BOLD activity were acquired on a 3T Siemens Trio with a 32-channel head coil, located at
[redacted], with a T2*-weighted gradient-echo EPI sequence customized with a water-excitation
radiofrequency pulse to prevent contamination from fat signal (TR = 2.0045 s, echo time = 35 ms,
flip angle = 74°, voxel size = 2.24 × 2.24 × 3.5 mm3, field of view = 224 × 224 mm2, matrix size =
100 × 100, and 30 axial slices to cover the entire cortex). Custom personalized headcases (caseforge,
Power et al. (2019)) were used to stabilize the head and to reduce motion artifacts. Anatomical data
were also collected to reconstruct the cortical surface (three-dimensional T1-weighted MP-RAGE
sequence, 1 × 1 × 1 mm3 voxel size and 256 × 212 × 256 mm3 field of view).

Data were collected across multiple scanning sessions. Each session consisted of six 11-minute
functional runs. Pilot experiments showed that good voxelwise models could be fit with about two
hours of data, so at least two hours of data were recorded from each participant (3 hours each from
subjects 1 and 2 and 2 hours from subject 3). Respiration and heart rate were recorded using a
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Figure 6: Subject-level figures corresponding to the group-level plot in Fig.2b

BIOPAC MP150 system (BIOPAC Systems, Inc.). Gaze location were recorded using an Avotec
dark-pupil IR eyetracker at 60 Hz.

A.3.2 FMRI DATA PREPROCESSING

Each functional run was first motion-corrected using the FMRIB Linear Image Registration Tool
from FSL 5.0 (Jenkinson & Smith, 2001; Jenkinson et al., 2002). Next, functional images were
unwarped by applying FUGUE from FSL to fieldmaps collected between functional runs. All vol-
umes in the run were then averaged across time to obtain a high-quality template volume. Data
across multiple sessions and runs were then registered to the template volume from the first session.
Pycortex (Gao et al., 2015) was then used to register the functional data to the anatomical surface.
Alignment was checked manually and adjusted as necessary to improve accuracy. Low-frequency
voxel response drift was identified using COMPCOR (Behzadi et al., 2007) and removed from the
signal. Finally, physiological signals from respiration and heartbeats were regressed out. Voxel ac-
tivity in each 11-minute run was z-scored separately; that is, within each run, the mean response for
each voxel was subtracted and the remaining response was scaled to have unit variance. To remove
confounds from the eyetracking calibration sequence and detrending artifacts, the first 35 and last 5
TRs were then discarded from each run.
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A.3.3 LOCALIZERS FOR KNOWN FUNCTIONAL REGIONS

Separately from the functional data collection, five sets of localizer data were collected from each
subject. These included a retinotopic localizer used to delineate V1, V2, V3, V4, V3A, V3B, and V7
(Hansen et al., 2007), a MT localizer to delineate the human middle temporal complex (hMT+), a
visual category localizer to delineate the fusiform face area (FFA), the extrastriate body area (EBA),
the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex
(RSC), a motor localizer to delineate the primary motor and somatosensory areas for hands (M1H,
S1H), feet (M1F, S1F), and mouth (M1M, S1M), and also the intraparietal sulcus (IPS), frontal eye
fields (FEF), the frontal operculum (FO), the superior ventral premotor speech area (sPMv), and
Broca’s area.

A.3.4 STATISTICAL TESTS

Permutation tests were used to establish statistical significance for per-voxel encoding model per-
formances. Model predictions were permuted 1,000 times to establish a null distribution for model
performance. Significant voxels were then selected at the Bejamini-Hochberg FDR-corrected p <
0.01 threshold.

The Moran’s I statistic was used to quantify the spatial autocorrelation of the best-performing LAV
DNN modules across the brain. The weight matrix was set so that the i, jth index was 1 for voxels
adjacent to or diagonal from each other in 3D space, and 0 otherwise. The best performing modules
at each voxel were permuted 1,000 times to establish a null distribution for the significance of the
statistic. A threshold of p < 0.01 was used to determine significance.
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