
A Properties of a Division Module1

When building a division module, the following properties should be included:2

Ability to multiply: Without multiplication the module is limited to expressing reciprocals.3

Intepretable weights: Having a discrete set of weight values to represent specific operations, e.g.,4

-1 to divide, 1 to multiply, 0 to not select. Doing this also has the additional benefit of producing5

generalisable solutions to out-of-bounds data.6

Calculating the output: This can be decomposed into three tasks: input selection, magnitude7

calculation, and sign calculation.8

Magnitude: This is achieved using discrete weights. The Real NPU and NRU use -1 for reciprocals,9

1 for multiplication. The NMRU uses 1 for selecting an input element which represents either a10

multiplication or reciprocal depending on its position.11

Sign of the output: Calculating the sign value (1/-1) of the output can occur at an element level in12

which the sign is calculated for each intermediary value as each input element is being processed, or13

at the higher input level in which the sign is calculated separately for the magnitude and then applied14

once the final output magnitude is calculated. The NRU uses the prior method while the Real NPU15

and NMRU use the latter method. If an input is 0 or considered irrelevant then the output sign will be16

1. (Ablation studies on the NMRU, Figure 7, suggest the latter option which separately calculates the17

sign to be more beneficial).18

The Real NPU and NMRU use the cosine function to calculate the final sign of the module’s output19

neuron. Below shows the state diagram of how the sign value (i.e. the state) of the output would20

change depending on the inputs and relevant parameters being processed. We only consider the21

discrete parameters for simplicity. Both the Real NPU and NMRU use the same state diagram but22

have different conditions for a state transition to occur.23

s = −1 s = 1b(s) b(s)
a(s)

24

The conditions for the Real NPU transition functions a(s) = −s and b(s) = s, where s is the state25

value -1, or 1, are defined as follows:26

a(s) :xi < 0 ∧ wi,o ∈ {−1, 1} ∧ gi = 1 ,

b(s) :xi ≥ 0 ∨ wi,o = 0 ∨ gi = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative and is27

considered relevant i.e. the gate (gi) and weight value (wi,o) is non-0. In contrast, to remain at a state28

requires either the input element to be ≥ 0 or not be considered relevant.29

The conditions for the NMRU transition functions a(s) = −s and b(s) = s, where s is the state value30

-1, or 1, are defined as follows:31

a(s) :xi < 0 ∧ wi,o = 1 ,

b(s) :xi ≥ 0 ∨ wi,o = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative and is32

considered relevant i.e. the weight value (wi,o) is 1. To remain at a state requires either the input33

element to be ≥ 0 or the weight value to not select the input.34

Selection: Not all inputs are relevant for the output value. To process any irrelevant input elements35

can be interpreted as converting to the identity value of multiplication/division (=1). The identity36

property means that any value multiplied/divided by the identity value remains at the original number.37

Hence, irrelevant inputs are converted into 1 (rather than being masked out to 0). For the multiplication38

case, this stops the output becoming 0, and for division it avoids the divide by 0 case. For all the39

explored modules, a weight value of 0 will deal with the irrelevant input case. However, the Real40

NPU goes a step further by also having an additional gate vector with the purpose of learning to41

select relevant inputs. Such gating has been proven to be helpful for an NPU based module [Heim42

et al., 2020], but may not be necessary when dealing with weights between [0,1] like in the NRMU43

(see Appendix H).44
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B Neural Addition and Neural Multiplication Units’ (NAU & NMU)45

Madsen and Johansen [2020] develop two modules: one for dealing with addition and subtraction46

(the NAU) and the other for multiplication (the NMU). NAU output element ao is defined as47

NAU : ao =

I∑
i=1

(Wi,o · xi) (1)

where I is the number of inputs. The NMU output element mo is defined as48

NMU : mo =

I∏
i=1

(Wi,o · xi + 1−Wi,o) . (2)

Before passing a input through a module, the weight matrix is clamped to [-1,1] for the NAU or49

[0,1] for the NMU. Weights are ideally discrete values, where the NAU is 0, 1, or -1, representing no50

selection, addition and subtraction, and the NMU is 0 or 1, representing no selection and multiplication.51

To enforce discretisation of weights both units have a regularisation penalty for a given period of52

training. The penalty is53

λ · 1

I ·O

O∑
o=1

I∑
i=1

min (|Wi,o|, 1− |Wi,o|) , (3)

where O is the number of outputs and λ is defined as54

λ = λ̂ ·max

(
min

(
iterationi − λstart
λend − λstart

, 1

)
, 0

)
. (4)

Regularisation strength is scaled by a predefined λ̂. The regularisation will grow from 0 to λ̂ between55

iterations λstart and λend, after which it plateaus and remains at λ̂.56
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C Experiment Parameters57

Tables 1 and 2 for the breakdown of parameters used in the Single Module Tasks. Table 3 gives the58

interpolation and extrapolation ranges used in the mixed-sign datasets tasks.59

Table 1: Parameters which are applied to all modules. Parameters have been split based on the
experiment. ∗Validation and test datasets generate one batch of samples at the start which gets used
for evaluation for all iterations. † the Real NPU modules use a value of 1.

Parameter Without redundancy With redundancy
Layers 1 1
Input size 2 10
Total iterations 50,000 100,000
Train samples 128 per batch 128 per batch
Validation samples∗ 10000 10000
Test samples∗ 10000 10000
Seeds 25 25
Optimiser Adam (with default parameters) Adam (with default parameters)
λ̂† 10 10

Table 2: Parameters specific to the Real NPU modules for the Single Module Tasks.

Parameter Value
(βstart,βend) (1e-9,1e-7)
βgrowth 10
βstep 10000
λ̂ 1

Table 3: Mixed-Sign Datasets: The interpolation and extrapolation ranges to sample the two input
elements for a single data sample. The target expression to learn is: input 1 ÷ input 2.

INTERPOLATION EXTRAPOLATION

DATASET INPUT 1 INPUT 2 INPUT 1 INPUT 2

1 U[-2, -0.1) U[0.1, 2) U[-6, -2) U[2, 6)
2 U[-2, -1) U[1, 2) U[-6, -2) U[2, 6)
3 U[-2, 2) U[-2, 2) U[-6, -2) U[2, 6)
4 U[0.1, 2) U[-2, -0.1) U[2, 6) U[-6, -2)
5 U[1, -2) U[-2, -1) U[2, 6) U[-6, -2)

C.1 Parameter Initialisation60

We give the initialisations used on the different module parameters:61

Real NPU: The real weight matrix uses the Pytorch’s Xavier Uniform initialisation. The gate vector62

initialises all values to 0.5. (This is the same initialisation used in Heim et al. [2020].)63

NPU: The imaginary weight matrix is initialised to 0. The rest of the parameters are initialised same64

as the Real NPU. (This is the same initialisation used in Heim et al. [2020].)65

NRU: The weight matrix uses a Xavier Uniform initialisation which can have a maximum range66

between -0.5 to 0.5 (depending on the network sizes). (This is the same initialisation the Neural67

Addition Unit uses [Madsen and Johansen, 2020].)68

NMRU: The weight matrix uses a Uniform initialisation which can have a maximum range between69

0.25 to 0.75 (depending on the network sizes). (This is the same initialisation the Neural Multiplication70

unit uses [Madsen and Johansen, 2020].)71

3



D Hardware and Time to Run Experiments72

All experiments were trained on the CPU, as training on GPUs takes considerably longer. All Real73

NPU experiments were run on XXX (the University of XXX ’s supercomputer), where a compute74

node has 40 CPUs with 192 GB of DDR4 memory which uses dual 2.0 GHz Intel Skylake processors.75

All NRU and NMRU experiments were run on a 16 core CPU server with 125 GB memory 1.2 GHz76

processors.77

Table 4 displays time taken for each experiment to run a single seed for a single range. Timings are78

based on a single run rather than the runtime of a script execution because the queuing time from79

jobs when executing scripts is not relevant to the experiment timings. For a single model, a single80

experiment would have 225 runs (for 9 training ranges and 25 seeds).81

Table 4: Timings of experiments.

Experiment Model Approximate time for completing 1 seed (mm:ss)

No redundancy (size 2)
Real NPU 03:20
NRU 02:00
NMRU 03:00

With redundancy (size 10)
Real NPU 05:30
NRU 05:00
NMRU 05:15
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E NRU on the Single Module Task (no redundancy): Effect of Learning82

Rate83

Figure 1 displays the effect of different learning rates for the NRU. An learning rate of 1 gets full84

success on all ranges with performance deteriorating as the learning rate reduces.85

● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ● ●
●

●

●

● ●
●

● ●
● ●

● ●
● ●

●●
●

● ●

●

● ● ● ●

● ●
● ●

●

●
● ●

●
●

●
●

●

● ●

●
●

●

● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

Interpolation range

learning rate ● ● ● ●1e−3 1e−2 1e−1 1

Figure 1: Different learning rates on the NRU for the Single Module Task (no redundancy)
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F Division by small values: Experimental Results86

This section shows the results on trying to learn the reciprocal/division of values close to zero using87

the Real NPU, NRU and NMRU. We train and test on the ranges where the lowest bound is 0 and88

the upper bounds are: 1e-4, 1e-3, 1e-2, 1e-1 and 1. Unless stated otherwise, the hyperparameters89

of a model are set to what is used for the Single Layer Task without redundancy. The first task runs90

for 5,000 iterations with no regularisation for any module. The second and third tasks both run for91

50,000 iterations.92

Due to precision errors, a solution with the ideal parameters will not evaluate to a MSE of 0. Therefore,93

we calculate thresholds which the test MSE should be within. A threshold value for a task is calculated94

from evaluating the MSE of each range’s test dataset for each module, using the ‘golden’ weight95

values and adding an epsilon term1 to the resulting error which takes into account precision errors.96

All experiments are run using 32-bit precision.97

In general, successful runs take longer to solve as the input ranges become smaller. The simplest98

task, of taking the reciprocal when the input size is 1 (Figure 2) is achieved with ease for all modules,99

though for U[0,1e-4), we find the NRU begins to start struggling.
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Figure 2: Input: [a], output 1
a . Learns reciprocal when there is no input redundancy.

100

Introducing a redundant input (Figure 3) greatly impacts performance with only the NMRU able to101

achieve reasonable success for the larger ranges. The successes shown for the Real NPU at range102

U [0, 1e-4) are false positives caused by the ε in the architecture used for stability. Test false positives103

can also be indicated by the high sparsity error of the weights.
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Figure 3: Input: [a,b], output 1
a . Learns reciprocal of the first input when there is redundancy.

104

Modifying the task to division (Figure 4), meaning the redundant input is now relevant, shows105

improvement for the NMRU and NRU for the larger ranges.106

1The term is the pytorch default eps value, torch.finfo().eps
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Figure 4: Input: [a,b], output a
b . Learns division of the first and second value when there is no

redundancy.

G Real NPU; Single Module Task (with Redundancy): Additional107

Experiments108

Figure 5 shows results of using the NPU for the task with redundancy.
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Figure 5: Adapting the Real NPU to use complex weights (NPU) on the Single Module Task with
redundancy. Compares the NPU architecture with the Real NPU modifications (i.e. NPU (no
constraints)) and the same model but with the imaginary weights clipped to [-1,1] and L1 sparsity
regularisation on the complex weights (i.e. NPU (clip & reg)).

109

Figure 6 shows how modifying the weight discretisation to not penalise weights at 0 does not effect110

success.111

7



● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

● ● ●● ●
●

●
●

● ●

●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.000

0.025

0.050

0.075

0.100

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

non−penalised values ● ●{−1,1} {−1,0,1}

Figure 6: Comparing weight discretisation on the NPU weights which penalises not having weight of
{−1, 1} vs {−1, 0, 1}.

H NMRU; Single Module Task with Redundancy (Additional Experiments)112

This section further explores the NMRU architecture.113

Figure 7 shows an ablation study on different components of the NMRU architecture. Removing both114

the sign retrieval and grad norm clipping performs poorly over a majority of ranges (including positive115

ranges). Gradient norm clipping alone is unable to solve the issue in learning negative ranges, however
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Figure 7: Ablation study for the NMRU.
116

fully succeeds on the U[-2,2) range. Using the sign retrieval without the gradient clipping gains117

successes for the negative ranges, though performance on U[2,-2) is effected. However, including118

both gradient clipping and sign retrieval results in separating the calculation of the magnitude of119

the output and its sign while having reasonable gradients, gaining the most improvement over the120

vanilla NMRU. Further including a learnable gate vector (like the Real NPU), which is applied to121

the input vector, hinders performance. The largest solved at iteration step seems to be bounded at122

approximately 50,000 iterations which correlates to the point at which the sparsity regularisation123

begins, which highlights the importance of discritisation. Even with the different ablations, the124

sparsity errors of the successful seeds remain extremely low (which is not always the case for the125

Real NPU (see Figure 6)).126

Figure 8 shows the effect of using different learning rates on the NMRU (with grad norm clipping127

and sign retrieval) using an Adam optimiser. Too low a learning rate struggles on the mixed-sign128

range U[-2,2). Too high a learning leads to no success on multiple ranges.129

Figure 9 compares training the NMRU with either an Adam and SGD optimiser. As expected,130

Adam outperforms SGD in all ranges (except two, where both perform equally). This difference in131

performance can be accounted for by Adam’s ability to scale the step size of each weight, which can132

compliment the clipped gradient norm of the NMRU, in contrast to the SGD’s global step size.133
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Figure 8: Effect of different learning rates on the NMRU
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Figure 9: Effect of optimiser on the NMRU. SGD = Stochastic Gradient Descent.

I NRU; Single Module Task (with Redundancy): Calculating the Sign134

Separately135

The ‘separate NRU’ module calculates the magnitude and sign separately and then combines them136

using multiplication together once all input elements are accounted for. The following definition is137

used to calculate a NRU with separate magnitude and sign calculation,138

zo =

I∏
i=1

(
|xi|Wi,o · |Wi,o|+ 1− |Wi,o|

)
·

I∏
i=1

sign(xi)
round(Wi,o) . (5)

Figure 10 shows results, where the separate sign method shows no difference in success to the original139

NRU architecture.140
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Figure 10: NRU on the redundancy experiment comparing a module which calculates the magnitude
and sign together vs calculating the magnitude and sign separately and then combining them.

J Effect of Different Losses on the Single Module Task (with Redundancy)141

Table 5: The properties of different loss functions.

MSE PCC MAPE

Batch mean 3 3 3
Standardisation 3 3
Difference of prediction from target 3 3
Projection 3
Mean centering 3

Different losses induce different loss landscapes impacting the areas of success for a module. We142

explore the effects of three different losses including the MSE, Pearson’s Correlation Coefficient143

(Equation 7), and the Mean Absolute Precision Error (Equation 8). We use the division task with 10144

inputs. The properties of each loss is summarised in Table 5. All experiment parameters match the145

original MSE runs in the main experiments. The only difference is the loss used.146

vx,i = (ŷi − ¯̂y), sx =

√√√√clamp(
1

N

N∑
i

v2x,i, ε)

vy,i = (yi − ȳ), sy =

√√√√clamp(
1

N

N∑
i

v2y,i, ε)

r =
1

N

N∑
i

(
vx,i
sx + ε

· vy,i
sy + ε

)

(6)

147

pcc loss :=1− r (7)

where N is the batch size, and the means (¯̂y and ȳ) are taken over the batch. ε is used to provide better148

numerical stability.149

mape loss :=
1

N

N∑
i

(
|yi − ŷi|
yi

) (8)

Real NPU (Figure 11) Both the Real NPU and MAPE are able to get success on the U[-2,2)150

range, which the MSE completely fails on, implying that having a loss with standardisation is useful.151

However, in order to gain successes in the mixed-sign range, the other negative ranges have reduced152
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in success for both PCC and MAPE. Both speed and sparsity retain similar performance to MSE in a153

majority of cases, with PCC solving especially fast for all tested ranges.
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Figure 11: Single Module Task with redundancy on the Real NPU, comparing different loss functions.

154

NRU (Figure 12) Different losses have little effect on the NRU. All three losses perform well on155

the positive ranges. Compared to the Real NPU, the PCC loss on the NRU takes longer to converge156

to a success for negative ranges.
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Figure 12: Single Module Task with redundancy on the NRU, comparing different loss functions.

157

NMRU (Figure 13) All three loses perform reasonably well, with the PCC struggling the most.158

Unlike the other units, U [-20,-10) causes the most trouble, whereas U [-2,2) gains near to full success159

on two of the three losses.160
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Figure 13: Single Module Task with redundancy on the NMRU, comparing different loss functions.

K RMSE Loss Landscapes161

For clarity, we show bigger versions of each subplot from Figure 7.162
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(a) NAU-Real NPU (where ε = 1e− 5)

(b) NAU-NRU
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(c) NAU-NMRU

Figure 14: Enlarged loss landscapes of different stacked summative-multiplicative units.
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