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ABSTRACT

Graphs are a complex and versatile data structure used across various domains,
with possibly multi-label nodes playing a particularly crucial role. Examples
include proteins in PPI networks with multiple functions and users in social or
e-commerce networks exhibiting diverse interests. Tackling multi-label node
classification (MLNC) on graphs has led to the development of various ap-
proaches. Some methods leverage graph neural networks (GNNs) to exploit label
co-occurrence correlations, while others incorporate label embeddings to capture
label proximity. However, these approaches fail to account for the intricate influ-
ences between labels in non-Euclidean graph data. To address this issue, we de-
compose the message passing process in GNNs into two operations: propagation
and transformation. We then conduct a comprehensive analysis and quantification
of the influence correlations between labels in each operation. Building on these
insights, we propose a novel model, Label Influence Propagation (LIP). Specif-
ically, we construct a label influence graph based on the integrated label correla-
tions. Then, we propagate high-order influences through this graph, dynamically
adjusting the learning process by amplifying labels with positive contributions and
mitigating those with negative influence. Finally, our framework is evaluated on
comprehensive benchmark datasets, consistently outperforming SOTA methods
across various settings, demonstrating its effectiveness on MLNC tasks1.

1 INTRODUCTION

Graphs, as a complex data structure, are prevalent across various fields (Jiang et al., 2019; Kipf
& Welling, 2016; Ying et al., 2018; Liu et al., 2023; Fang et al., 2024). Among these, graphs
with multi-label nodes are common and of great importance. For instance, proteins in ogbn-protein
dataset have multiple functions (Hu et al., 2020). Accurately identifying all the functions can assist
with understanding biological processes and advancing biomedical research. Thus, we focus on
this realistic but challenging problem named multi-label node classification on graphs, which we
abbreviate as MLNC in the following paper.

Prior studies. Current methods typically adopt three strategies to address this problem. The first
strategy is to neglect the multi-label information and predict the labels without mining label cor-
relations (Shi et al., 2020b; Li et al., 2023). The second strategy is to explicitly treat labels as a
new type of node and incorporate them into the original graph, thereby enhancing task performance
through propagation and aggregation information between nodes and label nodes (Gao et al., 2019;
Shi et al., 2020a). Since only incomplete connections between nodes and label nodes are available
in the training set, the third strategy is to integrate label representations into the neighbor aggrega-
tion and classification processes, thereby improving the utilization of multi-label information (Zhou
et al., 2021; Xiao et al., 2022). However, these strategies underestimate the complex label correla-
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1Our code is available at https://github.com/Xtra-Computing/LIP_MLNC.
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Figure 1: Observations showing positive (red) and negative (blue) influence between different labels.
Each value in the heat maps3 represents the performance on the column label when trained together
with the row label, minus the result of training the column label individually.

tions in graph data, only assessing label proximity without modeling their influence, thereby failing
to fully utilize these correlations to improve MLNC.

Observations. Our observations (Fig. 1) further show that, for graph data, different labels can
mutually enhance or harm each other’s performance. Specifically, we compare the performance
differences when training a graph neural network (GNN) using both row and column labels simul-
taneously versus training with only column labels individually. A positive difference indicates that
jointly training with row and column labels outperforms training with column label alone, imply-
ing that the row label can enhance the column label. Conversely, a negative difference suggests a
negative influence. As shown in Fig. 1, most graph datasets exhibit both positive and negative influ-
ence between labels. Therefore, in this paper we aim to analyze and quantify these complex label
influences on graphs to enhance or mitigate the positive or negative effects.

Challenges. However, given the intricate nature of graph, several challenges emerges. First, the in-
fluences existing not only between labels themselves but between nodes entangled together through
graph structure. Thus, how to quantify the influences between labels on the complex non-Euclidean
graph data is the first challenge. Second, since any label may exert both positive and negative influ-
ences on multiple other labels simultaneously, the second challenge is how to capture the high-order
influence correlations between all labels. Finally, our goal is to encourage or suppress labels that
bring positive or negative influences, respectively. Thus, how to leverage the quantified high-order
influence correlations to enhance the performance of MLNC task is the third challenge.

Present work. To address the first challenge, we decompose the message passing into propagation
and transformation operations (Zhang et al., 2022a), allowing for a detailed analysis of the label
influence correlation on graph data. Moreover, we provide a theoretical analysis, grounded in the
inductive biases inherent in graph models (Xu et al., 2018a; Wang & Leskovec, 2020), revealing
that the graph structure itself is a key driver of label influence during propagation operation. As for
transformation operation, our analysis revealed that the dynamic interactions between labels during
training are caused during each back propagation on model parameters. The above two parts of the
label influence analysis not only provide a deep insight into multi-label correlations on graph data
but also lay a solid foundation for improving MLNC on graphs.

To tackle the second challenge, we construct a high-order label influence propagation graph based
on the pair-wise correlations. Thus, we can quantify the propagated influence from one label to any
other labels on graph data. For the third challenge, we propose a novel method, Label Information
Propagation (LIP), which contains the above quantification steps and crafts the training dynam-
ics among multiple labels to improve the overall performance. By calculating the importance of
each label in this propagation graph, we dynamically adjusted its learning proportion throughout
the training process. This ensures that labels with more positive influence on others are learned
more effectively, while minimizing negative interactions between labels, ultimately enhancing the
performance of MLNC. As a plug-and-play approach, our method can be applied to various GNN
backbones. We validated its effectiveness using multiple settings on the most comprehensive col-
lection (Zhao et al., 2023) of MLNC datasets.

3These heat maps are asymmetric because each value represents the degree to which the row label helps (+)
or harms (−) the column label. Without loss of generality, we selected the first 10 labels as observation targets
(except for DBLP) due to space limitations.
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Contributions. To summarize, our contributions are three-fold.

• We offer a novel perspective on label correlation analysis by dissecting the pipeline into forward
and backward propagation segments, where we conduct a thorough analysis and quantification of
the influence correlation between labels.

• Building on the quantified pairwise label influence, we design LIP, which calculates high-order
label correlation and the influence propagation between labels to dynamically guide the learning
process of the model.

• Empirically, we validate the superiority of our method on MLNC graph data across various do-
mains, showing improvements (AUC) of 3.06% and 3.42% on average under the node split and
label split settings, respectively.

2 RELATED WORK

Multi-label Node Classification (MLNC). To promote research on MLNC, MLGNC (Zhao et al.,
2023) provides three biological datasets and performs a detailed analysis on both datasets and exist-
ing methods. From the methodology perspective, some methods consider using textual embeddings
of labels to incorporate label proximity. LARN (Xiao et al., 2022) incorporates the all label em-
beddings during the neighbor aggregation process. Similarly, LANC (Zhou et al., 2021) proposes
attention mechanism to aggregates the label embeddings with each node. Another line of work con-
struct additional label-label network to use the label co-occurrence correlations. ML-GCN (Gao
et al., 2019) construct both node-centric and label-centric graphs to aggregate information, while
MLNE (Shi et al., 2020a) use random walk to get embedding on both label-label network and
original graph. There are also some methods that modify the approach to modeling graphs from
multi-label perspective. MLGW (Akujuobi et al., 2019) leverage label-specific agents to walk on
graphs. VariMul (Song et al., 2021) utilizes VGAE to derive node and label embeddings and designs
a confidence ranking loss to mine pairwise label correlations. Recent work improves MLNC by ad-
dressing the ambiguity in multi-label graph structures (Bei et al., 2024) and the limited expressive
power for multi-label tasks (Zhao & Khosla, 2024). However, these work do not explicitly analyze
and quantify the influences between labels and exploit them to enhance the MLNC task.

Decoupled GNNs. Compared to conventional GNNs, decoupled GNNs explicitly isolate the two
operations and aggregate all propagation (P) and transformation (T) operations separately for pro-
cessing. APPNP Gasteiger et al. (2019) and DAGNN Liu et al. (2020) first propose that decoupling
the two operations can enable GNNs to go much deeper without causing over-smoothing. Although
SGC Wu et al. (2019) and lightGCN He et al. (2020) do not discuss the decouple paradigm, it demon-
strate superior efficiency and performance. PTA Dong et al. (2021) further explore the paradigm
from the perspective of label propagation. Since the APPNP is more suitable for homophily graphs,
GPRGNN Chien et al. (2020) improves it by adaptively learning GPR weights. This method
not only avoids over-smoothing but also enables adaptive filtering to handle heterophily graphs.
NCGNN Chen et al. (2024a) improves model capacity and training efficiency by pre-propagating
node features, then employs a CNN-based approach to aggregate the propagated features, adap-
tively capturing contextual information to boost the performance. Our work is inspired by above
studies that decouple or disentangle Zhang et al. (2022a) the message passing process. We focus
more on analyzing the influence correlations between labels during the P and T operations, rather
than designing specific P and T operations to increase model performance Gasteiger et al. (2019);
Chien et al. (2020); Sun et al. (2022) or enhance model capacity and scalability Chen et al. (2024a).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Given a graphG = (V,E) with the adjacency matrix A ∈ Rn×n, where n = |V | and e = |E| are the
total number of nodes and edges. Each node vi ∈ V is associated with a feature vector xi ∈ Rf , and
all these feature vectors constitute the feature matrix X ∈ Rn×f = [x1,x2, . . . ,xn]

T of the graph
G. Among all the nodes, nl of n are labeled while the remaining nu of n are not. For every node vi
in the labeled dataset Dl = {(vi, yseq

i ) | 1 ≤ i ≤ nl}, it also contains a set of labels yseq
i ⊆ Y drawn
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from the given label space Y = {y1, y2, . . . , yk} with k possible class labels at most. Furthermore,
the label sets for the rest of the unlabeled nodes Du = {vi | nl + 1 ≤ i ≤ nl + nu} are not
available. The goal of MLNC on graphs under the semi-supervised learning setting is to learn a
model h : V → 2Y with training data D = Dl ∪ Du by taking both graph structure A and node
feature X into consideration. Moreover, we denote the nodes with label yj ∈ Y (1 ≤ j ≤ k), as a
node set Yj = {v1, v2, . . . , vmj

}, where mj is the number of nodes belong to label yj .

3.2 DECOMPOSITION OF MLNC PIPELINE

Since MLNC is considered as correlated multiple binary classification problems on graphs, each
determining the presence or absence of a certain label (Zhang & Zhou, 2013). If a multi-label task
is modeled as unrelated single-label tasks, it not only wastes the information brought by the other
labels but also squanders model parameters. Therefore, almost all the multi-label methods adopt
a common style which utilize a graph encoder Φθ as the backbone to explore both the individual
information of multiple labels and their correlation information. The graph encoder Φθ takes in the
graph structure A and the node feature X and generate node embeddings Z ∈ Rn×d as

Z = Φθ(A,X), (1)

where backbone Φθ parameterized by θ can be any existing GNNs, such as GCN (Kipf & Welling,
2017), GAT (Velicković et al., 2018), GraphSAGE (Hamilton et al., 2017).

Thereafter, the node embeddings Z are further mapped into different label spaces by multiple shal-
low classifiers Ψ = {ψ1, ψ2, . . . , ψk} with fewer parameters. For each label yj , the objective is to
train a classifier ψj that computes the prediction ỹj ∈ Rn as

ỹj = ψj(Z). (2)

By considering both Eqs. 1 and 2 simultaneously, we observe that Eq. 1 is designed to generate node
representations that are shared across all labels (i.e., all classifiers) for subsequent tasks such as label
prediction. In contrast, Eq. 2 is specific to the label yj and is utilized privately by the corresponding
classifier ψj for label prediction. Consequently, the architecture of the entire framework can be
delineated into two main components: the shared component and the private component, with Z
serving as the central bridge of the two components.
Definition 1 (Shared component in MLNC). The shared component in MLNC boils down to the
GNN backbone, parameterized by θ, which can be denoted as Φθ(A,X). This component is to
encode nodes collectively to generate embeddings Z, irrespective of their associated labels.
Definition 2 (Private components in MLNC). The private components in MLNC boils down to the
classification head for each label yj , denoted as ψj , corresponding to the operations Wj

−1Yj .
This component is tasked with calibrating the node embeddings Z for label-specific prediction.

4 LABEL INFLUENCE PROPAGATION

4.1 OVERVIEW

The core idea of LIP is to capture the influence between labels to guide the training process of
model that need to be encouraged or suppressed within the overall set of labels. To achieve this,
we first need to quantify the relationships of mutual influence between labels. Then, based on this
influence relationship, we further capture high-order relationship between labels and calculate the
importance score of loss corresponding to each label during training. Finally, we combine the losses
with their respective importance levels to improve the MLNC tasks.

The analysis from message passing. While the graph structure makes analyzing label influence
relationships highly challenging, these influences arise through the shared GNN backbone decom-
posed from Sec. 3.2. GNN relies on message passing as its core mechanism, enabling solutions to a
wide range of graph applications (Wu et al., 2020). Therefore, we begin by breaking down the mes-
sage passing into two independent operations: propagation (P) and transformation (T) (Zhang et al.,
2022a). In short, the P step is a form of Laplacian smoothing that aggregates the information of
neighbors, while the T step applies non-linear transformations to capture the data distribution of the
training samples. On the one hand, in Sec. 4.2, theoretical analysis shows that the influence values
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Figure 2: The overall framework of LIP: (a) quantify the influence correlations in P operation
(Sec. 4.2) where the arrows with colors represents the mutual influence between labels; (b) quantify
the influence correlations in T operation (Sec. 4.3) where Lbi separately calculates the loss of each
label; (c) combine these two influence correlations to get the high-order label influence, and propa-
gate through the constructed graphGLIP to calculate the important scoreR for each label (Sec. 4.4).

in P operation are independent of the node embeddings, and therefore unrelated to the parameters
of message passing. On the other hand, Sec. 4.3 analyzes the influence between labels in T opera-
tion which does not affect the topological structure between node sets with different labels, and is
thus unrelated to the aggregation in message passing. Since the two operations are independent, the
quantified influence can be further combined as the foundation of computing high-order influence
correlations and help to improve MLNC task (Sec. 4.4).

The overall framework is shown in Fig. 2 with three main parts: (a) calculating the influence between
labels in P operation, (b) calculating the influence between labels in T operation, and (c) propagating
the influence on the label information propagation graph to form the final learning objective.

4.2 INFLUENCES IN PROPAGATION OPERATION

This propagation operation involves aggregating information from their contextual nodes, which
may belong to different labels. Consequently, the intertwined distribution of nodes from various
labels facilitates their interactions. During propagation, the interaction we seek to analyze is between
two label sets Ya and Yb (1 ≤ a, b ≤ k), which is shown in Fig. 2(a). Specifically, we decompose the
computation of influence correlations among labels during the P step into two parts: the magnitude
of influence between all pairs of nodes (”Influence between node pairs”) and the positive or negative
direction of influence between node pairs with different labels (”Influence between label sets”).

Influence between node pairs. We start the analysis by investigating the influence between node
pairs vi and vj . Inspired by previous work (Xu et al., 2018a; Wang & Leskovec, 2020; Zhang
et al., 2021a), the influence from vi to vj can be quantified by measuring how alterations in the input
feature xi of vi affect the node embedding zj of vj after l iterations of message passing. In particular,
for vi and vj , supposing the message passing of the shared backbone Φθ as Z(k) = ÂkZ(0)θ where
Z(0) = X and Â = D̃−1/2ÃD̃−1/2 is the symmetrically normalized adjacency matrix with self-
loops, the influence of vi on the final embedding of vj , i.e., I(i, j), can be defined as

I(i, j) =
∂z

(k)
j

∂z
(0)
i

. (3)

Although the calculation of I(i, j) initially involves node features, inspired by (Xu et al., 2018a), we
prove that the magnitude of I(i, j) is actually independent of the features themselves and is instead
proportional in expectation to a random walk distribution π(ji)

lim , namely I(i, j) ∝ π
(ji)
lim . To further

quantify and compute this distribution πlim, inspired by (Gasteiger et al., 2019), we find that we can
solving the Personalized PageRank (PPR) πppr instead. By iteratively computing the PPR, we can
obtain the influence correlations between any two nodes. Thus, we derive the quantification of the
influence between any pair of nodes vi, vj during the P phase as:
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INFP (vi, vj) := I(i, j) ∝ π(ji)
ppr = {α(In − (1− α)Â)−1svi

}vj , (4)

where In ∈ Rn×n is the identity matrix, α ∈ (0, 1] is the teleport (or restart) probability, svi is a
one-hot indicator vector, and {·}vj means the vj-th element of {·}. Detailed discussion is in App. A.

Label: 0,1

INFP+ INFP-

Label: 1,0

Figure 3: Illustration of the direction of
positive and negative influence during P
step. The nodes with both colors indi-
cates the ones with both labels.

Influence between label sets. Having computed the
influence correlations magnitude INFP (vi, vj) between
any pair of nodes during the P phase, represented as an
n×n node influence correlations matrix, the second part
involves integrating the influence from all nodes in Ya
(with label ya) on all nodes in Yb (with label yb) to get
the label influence correlation between ya and yb. This
part yields a k × k label influence relationship matrix
INFP (ya, yb). A straightforward way would be to di-
rectly sum up the node level influence. However, as
shown in our analysis in Fig. 1, there are both positive
and negative influences between labels.

Therefore, we proceed to analyze the combinations of
two node sets Ya and Yb with different labels to de-
termine which node pairs exert positive influence and
which exert negative influence. Specifically, if a node
vi is labeled with yj , it can be seen that this node is la-
beled as 1 in the binary classification of whether it has
the label yj ; conversely, if it does not have the label yj , it can be seen as being labeled as 0. Based
on the Laplacian smoothing in the P operation (Zhang et al., 2022a), the information transmitted by
source node vi labeled with 1 makes it easier for target nodes vj to be identified as labeled 1 in the
same label space. Note that we break down the discussion of the influence direction between Ya and
Yb by first analyzing the influence from Ya to Yb. The reverse direction can be inferred by analogy.
Thus, we first analyze the influence from Ya to Yb, where the target is the set of all nodes with label
yb. From analysis in Fig. 3, we discuss the source from the following two aspects:

• In the label set Ya, the nodes are labeled as [1, 0] (possessing ya), it therefore has negative influence
on label set Yb ([0, 1]). However, the overlapping nodes are labeled as [1, 1] where the positive and
negative influences to target nodes are neutralized.

Definition 3 (Source of Negative Influence INFP− ).

Vneg = Ya \ (Ya ∩ Yb) → Yb, (5)

where \ means set difference and ∩ means intersection.

• Intuitively, nodes with the label yb, noted as [∗, 1], may contribute positive influence to all nodes
in Yb (those with the label [0, 1]). However, nodes that simultaneously have both ya and yb labels
(noted as [1, 1]) neutralize their positive and negative influences on Yb. Therefore, the source of
positive influence from Ya to Yb can be defined as follows:

Definition 4 (Source of Positive Influence INFP+ ).

Vpos = Ya \ Ya ∪ Yb = Ya ∩ Yb → Yb, (6)

where · means complement and ∪ means union.

Thus, by simply substituting INFP+ as the index into Eq. 4 and normalizing by number of nodes,
we can obtain the value of positive influence from Ya to Yb; similarly, we can obtain the value of
negative influence by substituting INFP− . Adding the positive and negative influence together yields
the complete influence in propagation operation INFP between any two labels.

4.3 INFLUENCES IN TRANSFORMATION OPERATION

In this section, we analyze interactions between label sets in transformation operation from message
passing. The shared GNN backbone learns from the training data through model parameters in
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this transformation operation. Moreover, the direction and magnitudes of parameter updates in
the shared backbone Φθ is determined by each label yi, but different labels may require different
directions and magnitudes of updates to reach their own optimal solutions. Thus, labels influence
each other through parameter transformation during back propagation, which is through gradient
descent. Next, we further quantify and analyze the gradient influence exerted by different labels.

Note that we use binary cross-entropy losses as Lbi for each label individually, which can be changed
to other types of binary classification loss:

Lbi(y, ŷ) = − 1

M

M∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] , (7)

where y ∈ {0, 1} is a binary label indicating whether a node possess a certain label and M is the
number of the training nodes.

Therefore, the binary classification loss Lbi of each label exerts specific gradient ∇bi to the shared
component during the transformation operation:

∇bi =
∂Lbi

∂Φθ
. (8)

These different gradients generated by the losses of different labels may either be mutually bene-
ficial or mutually harmful. Therefore, during this transformation operation, any pair of labels will
influence each other through their respective gradients as shown in Fig. 2(b).

Inspired by the definition of gradients conflicting (Yu et al., 2020), we propose that as the angle
between the gradients of two losses increases, the positive influence between the labels becomes
less significant. Conversely, the smaller the angle between the gradients generated by different
labels, the smaller the negative influence they have on each other. Accordingly, here we give a
formal definition on measuring the influence in transformation T step.

Definition 5 (T step Influence INFT ). Given two losses La and Lb (1 ≤ a, b ≤ k) from label ya and
yb respectively, the influence in transformation operation is the accumulated differences between the
gradients ∇a and ∇b:

INFT (a, b) = INFT (b, a) = −
∑

θ ANGLE(∇a(θ),∇b(θ)), (9)

where ∇a(θ) is the gradient of binary loss La on shared backbone Φθ, and ANGLE(·) can measure
the angle between directions of two gradients. In our implementation, we determine the angle
between the two gradients by calculating the cosine similarity.

4.4 INFLUENCE PROPAGATION ON LABEL GRAPH

Label graph construction. From the previous work (Zhang et al., 2022a; Wu et al., 2019; Zhang
et al., 2022b) and the above analysis, it can be seen that the influence between labels during prop-
agation and transformation operation is independent of each other. Therefore, the influences from
these two parts can be combined through multiplication to obtain the final relationship matrix of
label influence:

INFMAT = INFP ∗ INFT , INFMAT ∈ Rk×k, (10)
where ∗ means element-wise multiply. Each value in INFMAT reflects the relationship between each
pair of labels. However, we still need to analyze the higher-order correlations between labels.

Thus, we propose to build a label graph GLIP . Note that INFMAT contains both positive and
negative values. Our goal is to enhance the positive influence and suppress the negative influence
between labels. Thus, we introduce a simple method yet can preserve higher-order influence to
convert the INFMAT into label graph GLIP :
Definition 6. Given the label influence matrix INFMAT ∈ Rk×k, we define label graph as

GLIP = (Vy,ALIP ), with ALIP = SOFTMAXrow(INFMAT), (11)

where SOFTMAXrow(·) represents calculating softmax along the rows which means that we tend
to treat the negative influence as weak positive influence in the higher-order view. Vy denotes the
label nodes (triangle nodes in Fig. 2(c)) which represent a certain label type. ALIP is the weighted
adjacent matrix denoting the overall higher-order correlations between all the labels.

7
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Overall loss function. Intuitively, if a label is detrimental to many other labels, we suppressed
it by reducing its coefficient of the loss corresponding to this label to lessen its negative impact.
Conversely, if a label is beneficial to many other labels, we encourage it by increasing the coefficient
of the loss to enhance its positive impact. Thus, we propose to quantify the importance coefficient
(score) based on the label graph GLIP . Since the higher-order influence propagation take place on
the graph GLIP , we turn to the computation of PageRank (Page et al., 1999) for GLIP .

Formally, we calculate the importance score R ∈ [0, 1]k of each label node as

R = (Ih − βALIP )
−1

(
1− β

h

)
1, (12)

where Ih is the identity matrix, β ∈ (0, 1) is the teleport (or restart) probability here, 1 is an h-
dimensional vector in which all elements are equal to 1.

Incorporating this importance coefficient R, we present the overall loss function as

LLIP =
∑k

j=0RjLbi(ŷj ,yj), (13)

where Lbi is from Eq. 7 which can be changed to other imbalanced classification loss (Chen et al.,
2024b; Zhuo et al., 2024).

5 EXPERIMENTS

In this section, we evaluate LIP and aim to answer the following research questions:

• RQ1. How does LIP perform on MLNC task with different settings and label ratios?
• RQ2. Can LIP serve as a plug-and-play booster to be equipped with any backbone?
• RQ3. How reliable are the label influence relationships we proposed to capture?

5.1 EXPERIMENTAL SETTINGS

To comprehensively validate our framework, we conduct experiments on 2 classical MLNC datasets
(DBLP (Akujuobi et al., 2019), BlogCat (Shi et al., 2020a)), 1 large scale OGB dataset (Ogbn-
proteins (Hu et al., 2020), OGB-p in short), and 3 new biological datasets (PCG, HumLoc, Euk-
Loc (Zhao et al., 2023)) from different domains. The statistics of datasets are in App. D. We use
three types of baselines for comparison. First, we combine unsupervised embedding and multi-label
classifier. We adopt the frequently used unsupervised graph embedding methods Node2Vec (Grover
& Leskovec, 2016), the classic multi-label classifiers binary relevance (BR) (Tsoumakas et al., 2010)
and classifier chain (CC) (Read et al., 2009). Second, we combine semi-supervised backbone with
SOTA multi-label methods. We adopt the same backbone for baselines and our own for fairness. We
choose GCN (Kipf & Welling, 2017) as main backbone, ML-KNN (Zhang & Zhou, 2007) and lat-
est work PLAIN (Wang et al., 2023) as multi-label methods. The third group is backbone-relevant
methods which specifically designed for MLNC on graphs. We choose MLGW (Akujuobi et al.,
2019), ML-GCN (Gao et al., 2019), LARN (Xiao et al., 2022), LANC (Zhou et al., 2021) and the
latest work VariMul (Song et al., 2021). Furthermore, “backbone+Auto” means the coefficients of
losses of different labels are learned automatically. More details are in App. E.1.

5.2 COMPARISON WITH BASELINES

To answer RQ1, we evaluate LIP against various kinds of baselines on classic and latest benchmark
datasets, ranging from multi-label techniques used on any data form to methods tailored for MLNC
on graphs. To fully evaluate the effectiveness against baselines, we adopt 2 split settings: node split
and label split. Refer to App. E.1 to see the details and differences between them. We also evaluate
under different training ratio (App. E.2).

From Tab. 1, we can draw several conclusions. First and foremost, LIP is the most effective one
most of the time, which verifies the effectiveness of our approach. Our method outperforms other
baselines by 3.06% on AUC and 2.54% on AUC on average. Note that our methods can boost the
performance based on the backbones. Second, we find that while other methods including VariMul,

8



Published as a conference paper at ICLR 2025

Table 1: Performance (mean ± std. deviation) under node split at 6:2:2 in terms of Macro AUC, AP.
DBLP BlogCat OGB-p

Metrics Macro AUC AP Macro AUC AP Macro AUC AP

Node2vec+BR 71.22 ± 0.31 57.41 ± 1.29 53.76 ± 1.08 6.56 ± 0.75 50.22 ± 3.01 1.92 ± 0.73
Node2vec+CC 72.57 ± 0.24 57.13 ± 1.88 57.97 ± 1.31 8.93 ± 0.82 51.39 ± 2.14 2.07 ± 0.31

GCN+ML-KNN 90.11 ± 1.02 80.01 ± 0.77 60.18 ± 2.33 9.16 ± 0.60 55.07 ± 2.73 2.02 ± 0.33
GCN+PLAIN 80.55 ± 1.23 73.44 ± 1.12 63.95 ± 1.85 10.21 ± 0.56 66.29 ± 3.45 3.26 ± 0.67

MLGW 73.32 ± 1.44 56.03 ± 0.47 60.02 ± 2.19 9.81 ± 0.46 50.70 ± 2.54 1.78 ± 0.73
ML-GCN 72.66 ± 2.73 56.71 ± 2.59 60.97 ± 2.21 9.68 ± 0.39 60.11 ± 2.65 2.19 ± 0.54

LARN 74.29 ± 2.53 58.11 ± 1.25 63.18 ± 1.84 9.77 ± 0.63 68.18 ± 1.33 3.08 ± 0.16
LANC 91.68 ± 0.42 83.50 ± 0.83 67.94 ± 3.30 10.35 ± 0.82 68.75 ± 0.51 4.11 ± 0.23

VariMul 92.14 ± 1.23 85.30 ± 0.92 68.71 ± 2.97 13.74 ± 0.83 70.73 ± 1.67 2.31 ± 0.44

GCN+Auto 92.13 ± 1.57 85.48 ± 1.32 66.05 ± 1.25 12.53 ± 0.51 71.39 ± 1.34 2.11 ± 0.22
GCN+LIP 94.38 ± 1.51 87.45 ± 1.28 70.21 ± 2.02 12.33 ± 0.91 74.82 ± 0.34 5.72 ± 0.28

PCG HumLoc EukLoc
Metrics Macro AUC AP Macro AUC AP Macro AUC AP

Node2vec+BR 52.66 ± 1.73 15.13 ± 0.25 54.17 ± 1.58 10.67 ± 0.42 51.29 ± 1.60 6.00 ± 0.72
Node2vec+CC 52.92 ± 0.62 14.54 ± 0.51 54.81 ± 1.29 11.53 ± 0.36 52.18 ± 1.16 6.55 ± 0.59

GCN+ML-KNN 56.11 ± 0.50 18.60 ± 0.82 57.99 ± 0.35 11.76 ± 0.77 63.95 ± 1.15 9.34 ± 0.77
GCN+PLAIN 59.75 ± 1.70 20.16 ± 1.00 60.15 ± 1.28 14.71 ± 1.51 68.02 ± 1.10 11.72 ± 0.69

MLGW 55.86 ± 3.92 15.59 ± 1.33 56.92 ± 1.03 10.54 ± 0.43 51.77 ± 1.41 6.02 ± 0.55
ML-GCN 57.24 ± 2.44 19.45 ± 1.13 60.79 ± 1.38 14.55 ± 0.46 54.17 ± 1.88 6.92 ± 0.49

LARN 57.79 ± 0.61 19.09 ± 0.38 61.48 ± 1.22 17.89 ± 0.62 57.79 ± 1.28 7.41 ± 0.80
LANC 56.58 ± 0.63 19.51 ± 0.93 59.63 ± 1.21 13.26 ± 0.98 51.25 ± 0.63 6.11 ± 0.89

VariMul 62.77 ± 0.34 21.93 ± 0.52 67.42 ± 2.44 23.34 ± 0.88 71.44 ± 1.66 13.74 ± 0.76

GCN+Auto 58.53 ± 0.47 19.11 ± 0.83 66.07 ± 1.17 21.58 ± 1.09 70.25 ± 1.25 13.05 ± 0.46
GCN+LIP 65.73 ± 0.52 22.97 ± 1.69 73.22 ± 1.76 25.18 ± 1.16 72.92 ± 1.82 15.26 ± 0.56

LARN, and PLAIN achieve good results, methods tailored for MLNC on graph data always outper-
form those designed for all data form. The reason is that integrating multi-label processing into the
encoding of graph structure and node features makes the node embeddings more informative, while
methods that separate node encoding from multi-label correlation mining struggle to achieve optimal
results. Third, the methods using unsupervised node embedding perform even worse since there is
no label information when representing the nodes. Although methods like “backbone+Auto”, which
automatically learn loss coefficients, appear more flexible, setting these coefficients solely based on
the loss is like searching for a needle in a haystack, making it difficult to amplify the loss of benefi-
cial labels during the learning process. On one hand, our method better explores the relevant impact
of the nodes contained by labels from the perspectives of both message passing and gradient update;
on the other hand, during the training process, our method is also constantly related to the current
state of the model. This enables our approach to dynamically mine the relationships of nodes with
different labels in the process of forward and backward information transmission, thereby making
the model more effective.

5.3 COMPARISON WITH DIFFERENT BACKBONES

One of the advantages of LIP is the ability of being plugged into any node embedding methods.
Thus, to answer RQ2, we propose to change the backbone to others with different inductive bias.
Here we compare our method with the “Com”, which directly sums the multi-label loss to train the
model. We also change backbones on more datasets in App. E.2. Since some of the datasets are
heterophily graphs (see Tab. 4), we use backbones designed for homophily and heterophily graphs.

Results. We change backbones on BlogCat dataset in Fig. 4(a). We can see that LIP constantly
achieves large improvement when applied to any backbone, demonstrating the effectiveness of our
approach. Although BlogCat is a heterophily graph, H2GCN does not perform well comparing to
others. Similar results can be found in (Zhao et al., 2023). However, H2GCN perform best on
Abnormal as a heterophily graph in App. E.2. We believe there are two reasons for this. First,
BlogCat has no node features, so we used Node2Vec as feature for all methods, making the input of
backbone actually a homogeneous graph from a feature perspective. However, H2GCN’s strategy
of aggregating more neighbor features makes it harder for nodes to learn the labels. Second, the
heterophily here is calculated from multi-label, but H2GCN is designed for single-label, so it may
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# Epochs

Figure 4: Model Analysis showing the effectiveness of LIP.

not perform better. An interesting observation is that different backbone models exhibit varying
degrees of sensitivity to our method. For instance, GCN show greater improvements before and
after the application of our method compared to GAT. We think that this may be due to our method’s
relation to gradient calculation, with different models having varying sensitivities to labels.

5.4 DISCUSSION ON LABEL CORRELATIONS

To answer the RQ3, we evaluate the label influence correlation mined by LIP. First, we decom-
pose the proposed two parts of influence correlations to evaluate effectiveness of each correlation
separately. Then, we compare our method with other commonly used approaches for explicitly com-
puting correlations to see which more accurately reflects the influence correlations between labels.

Ablation study on correlations. The “Only P”, “Only T” and “All” means using INFP , INFT and
INFMAT respectively, where GCN is the backbone. As shown in Fig. 4(b), the performance using
the whole INFMAT is the best, which prove the utility of the combination of the influence during
both forward and backward propagation. Moreover, we find that INFP perform better than INFT

on EukLoc while the other way around on DBLP. We believe the reason is that EukLoc is more
heterophilic, making it more dependent on global graph structure. Our INFP focuses on uncover-
ing influence during the propagation process, which emphasizes the structural aspects more during
training compared to INFT . More ablation study on normalization is in App. E.2.

Compare with other label correlations. Here, we can verify if our captured label correlation align
with expectations. Specifically, we aim to capture the pairwise label correlations similar as shown in
Fig. 1, which contain positive and negative correlations. Note that we cannot use this performance
differences as the label correlations in the model, as retraining the performance to calculate them
are not possible. Therefore, we compare which method can obtain the relationship matrix that most
closely matches the influence relationships inferred from the results. Here we collect all methods
used for explicitly calculating multi-label correlations: co-occurrence from (Wang et al., 2023) and
cosine similarity of label embeddings from (Xu et al., 2018b). We calculate the l2-norm difference
between the three methods we compare and the influence correlations as epochs increase (with GCN
backbone on DBLP). As shown in Fig. 4(c), although INFMAT changes over epochs, the difference
between INFMAT and ground truth correlation is the closest. Moreover, it can be observed that the
label co-occurrence measurement is closer compared to the cosine similarity of labels. Additionally,
for a significant portion of epochs, the distance relative to ground truth does not change much, not
because the influence we measure is static, but because the influence between different pairs of labels
waxes and wanes, yet always remains close to the ground truth. Due to space limit, we place the
results of other experiments in the App. E.

6 CONCLUSIONS

In this paper, we address the challenges of the valuable but overlooked MLNC task by introduc-
ing a novel approach to understanding and leveraging label influence correlations on graphs. By
decomposing the influences between labels in message passing mechanism, we provide insights on
analyzing and quantifying label influences during the learning process. Our proposed method, LIP,
boosts the MLNC by ensuring that positive label influences are amplified while mitigating the nega-
tive ones. Empirical results across comprehensive MLNC datasets demonstrate the effectiveness of
LIP, achieving consistent improvements in various metrics.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation, Singapore and Infocomm Media
Development Authority under its Trust Tech Funding Initiative, and the National Research Foun-
dation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-TC-2021-002).
Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research Foundation, Singapore and Info-
comm Media Development Authority. This work is also supported by NSFC (No. 62322606, No.
62441605), Zhejiang NSF (LR22F020005), and CCF-Zhipu Large Model Fund.

REFERENCES

Uchenna Akujuobi, Han Yufei, Qiannan Zhang, and Xiangliang Zhang. Collaborative graph walk
for semi-supervised multi-label node classification. In 2019 IEEE International Conference on
Data Mining (ICDM), pp. 1–10, 2019. doi: 10.1109/ICDM.2019.00010.

Yuanchen Bei, Weizhi Chen, Hao Chen, Sheng Zhou, Carl Yang, Jiapei Fan, Longtao Huang, and
Jiajun Bu. Correlation-aware graph convolutional networks for multi-label node classification.
arXiv preprint arXiv:2411.17350, 2024.

Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou, and Xu Sun.
Topology-imbalance learning for semi-supervised node classification. Advances in Neural In-
formation Processing Systems, 34:29885–29897, 2021.

Jinsong Chen, Boyu Li, and Kun He. Neighborhood convolutional graph neural network.
Knowledge-Based Systems, 295:111861, 2024a.

Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Rizal Fathony, Jun Hu, and Jia Chen. Consis-
tency training with learnable data augmentation for graph anomaly detection with limited super-
vision. In The Twelfth International Conference on Learning Representations, 2024b.

Yao Cheng, Caihua Shan, Yifei Shen, Xiang Li, Siqiang Luo, and Dongsheng Li. Resurrecting
label propagation for graphs with heterophily and label noise. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 433–444, 2024.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In Proceedings
of the Web Conference 2021, pp. 3651–3662, 2021.

Taoran Fang, Wei Zhou, Yifei Sun, Kaiqiao Han, Lvbin Ma, and Yang Yang. Exploring correlations
of self-supervised tasks for graphs. In International Conference on Machine Learning, 2024.
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APPENDIX

A DISCUSSIONS ON INFLUENCE FROM PROPAGATION

This section aims to supplement Sec 4.2 regarding the pair wise influence value from propagation
(P operation). Specifically, inspired by previous work (Xu et al., 2018a; Wang & Leskovec, 2020),
we prove the correctness of the calculation method on influence value between nodes with different
labels in propagation operation.
Theorem 1 (Influence Value in Propagation). During the propagation phase in message passing, the
influence value between two nodes with different labels is equivalent, in expectation, to the transition
probability between them as calculated by Personalized PageRank (PPR) (Gasteiger et al., 2019;
Chen et al., 2021). Namely, the influence value between vi, vj is

INFP (vi, vj) = {α(In − (1− α)Â)−1svi}vj ∝ I(i, j), (14)

where In ∈ Rn×n is the identity matrix, α ∈ (0, 1] is the teleport (or restart) probability, svi
is a

one-hot indicator vector and {·}vj means the vj-th element of {·}.

Proof. We use k layers of GCN Kipf & Welling (2017) as backbone Φθ for analysis. We first prove
the the influence value between vi, vj with different labels is equivalent, in expectation, to the k-step
random walk distribution on graph G starting at node vi.

From the definition of influence from vi to vj in Eq. 3, we proceed with the detailed calculations:

I(vi, vj) =
∂z

(k)
j

∂z
(0)
i

=
1

d̃eg(vi)
· diag

(
1
f
(k)
vi

>0

)
·Wk ·

∑
z∈Ñ(vi)

∂z
(k−1)
j

∂z
(0)
i

, (15)

where f (k)vi is the pre-activated embedding of z(k)j , Wk stands for the last layer weight matrix of
GCN. Furthermore, we use chain rule to calculate any rank l of the derivative as

∂z
(l)
j

∂z
(0)
i

=

λ∑
p=1

[
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(l)
j
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(0)
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]
p
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λ∑
p=1

1∏
m=l

1

˜deg
(
vmp

) · diag
(
1
f
(m)
vm
p

>0

)
·Wm, (16)

where λ is the total number of paths of length l+1 from node vj to vi. For certain path p, vmp is node

vi, v0p is node vj and for m = 1...(l − 1), v(pk − 1) ∈ Ñ(vmp ). More specifically, we can calculate
an entry of the derivative as[

∂z
(l)
j

∂z
(0)
i

](a,b)

p

=

1∏
l=k

1

d̃eg
(
vmp

) γ∑
q=1

Rq

1∏
m=l

w(m)
q , (17)

where γ is the number of paths q from the a to b in the computation directed acyclic graph (DAG)

of
[
∂z

(l)
j

∂z
(0)
i

]
p

. For each layer m, w(m)
q is the entry of Wm which is used in the q-th path. Rq ∈ 0, 1

denote whether the q-th path is active or not as the result of ReLU activation of entries of f (m)
vm
p

’s on
the q-th path. Since the variable R follows a Bernoulli distribution, for all q, Pr(Rq = 1) = ρ, we
have

E
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Thus, we know that

E
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On the other hand, k-step random walk probability at vi can be calculated by summing up the
probability of all paths of length k from vi to vj , which is exactly

∑λ
p=1

∏1
m=l

1
˜

deg(vm
p )

. Moreover,
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the random walk probability starting at vi to the other nodes sum up to 1. By multiplying and
normalizing, the conclusion can be immediately derived.

Moreover, the distribution π of random walk with restart is π(t+1) = αv+(1−α)Aπ(t) in iteration.
We can derive the solution (Gasteiger et al., 2019) as π = α (I − (1− α)A)

−1
v, which is the same

as the calculation equation in Eq. 4.

B TIME COMPLEXITY COMPARISON

B.1 THEORETICAL COMPARISON

We now analyze the time complexity of LIP based on vanilla MLNC (Sec. 3.2). The calculation
of influence in Sec. 4.2 (P step) is part of data pre-processing where we can use fast personalized
PageRank algorithms designed for large graphs. Thus, the additional time includes two parts: (i)
the influence calculation in transformation operation which is the same as the forward calculation of
GNN, namely O(nfd + ed), where f is feature dimension and d is hidden dimension of GNNs, n
and e are the number of nodes and edges in original graph; (ii) the important score calculation from
GLIP costs O(t · eLIP ), where t is the number of iterations and eLIP is the number of influence
edges in ALIP . Thus, the overall time complexity is O(n+ e+ t · eLIP ) since f, d≪ n, e.

We select several representative baselines and analyzed their time complexities, as shown in the
Tab. 2 below.

Table 2: The comparison of time complexity between LIP and other baselines.
Method GCN+ML-KNN MLGW LANC

Complexity O(n · log n+ k · l + e) O(n3 + e · f2) O(n+ e+ n · b2 · f)
Method VariMul GCN+Auto LIP

Complexity O(n+ e+ l · log l) O(n+ e) O(n+ e+ t · eLIP )

In the table above, k represents the hyperparameter for the k-nearest neighbors algorithm, l stands
for the number of labels, b denotes the number of sample neighbors set in LANC, and f refers to
the size of its hidden layer. The table shows that our method has almost the lowest time complexity,
and experiments confirm that it can scale to large graph datasets effectively.

B.2 EMPIRICAL COMPUTATIONAL COST

We add a table below showing the average per-epoch training time and GPU memory usage of
various methods on graph data from two different domains.

Table 3: Computational cost of each methods, including time and space during training.
Cost ML-KNN MLGW LANC VariMul GCN+Auto GCN+LIP

DBLP Time (s/epoch) 0.012 5.710 2.350 1.015 0.003 0.008
BlogCat Time (s/epoch) 0.100 9.710 3.837 2.082 0.051 0.311
DBLP GPU mem (MB) 2200 3530 2204 2980 2271 1595
BlogCat GPU mem (MB) 3010 5036 2800 3572 3073 2369

As observed, our method aligns with the conclusions analyzed in Appendix B, demonstrating rel-
atively shorter training times and especially lower GPU memory usage. This indicates that our
method has better scalability. Specifically, our training time is roughly on the same order of mag-
nitude as a standard GCN but takes a few times bigger. However, compared to other baselines, our
method typically requires one order of magnitude less time. On the other hand, since the quantifica-
tion of influence correlations during the T step involves gradient calculations, our method essentially
splits the gradient calculation into k smaller steps. This trades off some computation time for re-
duced memory usage, allowing our method to achieve even lower GPU memory consumption than
a standard GCN.
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C EXTENDED RELATED WORK

Multi-label correlation mining. Exploring multi-label correlation in other data forms, e.g. com-
puter vision (CV), is also a key challenge. These methods can be divided into three categories: first
order, second order and high-order (Zhang & Zhang, 2010). First-order methods disregard label
correlations, assuming all labels are independent. Binary Relevance (BR) (Tsoumakas et al., 2010),
transforms the problem into separate binary classification tasks. Similarly, ML-KNN (Zhang &
Zhou, 2007) is based on k-nearest-neighbor classification. While these methods are highly efficient,
their neglect of label correlations leads to reduced performance. Second-order methods emphasize
pairwise label correlations. Approaches like calibrated label ranking (CLR) (Fürnkranz et al., 2008)
transform into pairwise ranking problems. While they are generally more effective than first-order
approaches at exploiting label correlations, label relationships can be highly complex in the real-
world applications. High-order methods aim to explore higher-order label correlations. Classifier
chains (CC) (Read et al., 2009) trains a chain of binary classifiers, each predicting the current label
based on the features and previously predicted labels. LACO (Zhang et al., 2021b) introduces two
additional losses for label correlation prediction. HOMI (Si et al., 2023) argue that the label matrix
is approximately full-rank and use the label correlation to regularize the prediction which is similar
to PLAIN (Wang et al., 2023). However, these methods do not analyze the complex non-Euclidean
nature of graphs. For image and text data, where data points are independent, label correlations exist
within label semantics. For graph data, the topological structure between node sets with different
labels makes the analysis more challenging. Moreover, as shown in Fig. 1, we find that MLNC on
graphs requires uncovering the influence correlations rather than the proximity correlations explored
in other works. In other words, there can be both positive and negative influences between labels on
graphs, while previous studies could only capture positive label proximity.

Label Propagation Methods. The Label Propagation Algorithm (LPA) is a classic method whose
application extends even beyond graph-based tasks. The fundamental assumption of LPA is that
labels vary smoothly over the edges of a graph. As a result, given a graph and the labels of some
of its nodes, LPA can infer the labels of the remaining nodes. However, traditional LPA does not
take advantage of node feature information. This limitation has inspired many efforts to incorpo-
rate its principles or combine its ideas with Graph Neural Networks (GNNs) to construct powerful
models. Some work leverage the simplicity and effectiveness of the LPA to assist graph models for
node classification. GMNN Qu et al. (2019) models the joint distribution of labels with node fea-
tures using Conditional Random Fields (CRF) Lafferty et al. (2001) and employs a variational EM
framework Neal & Hinton (1998) for efficient training. In the E-step, a GNN learns representation
to approximate the posterior distribution of labels. In the M-step, another GNN models the depen-
dencies between labels. The M-step is quite similar to LPA, except that it is learnable and nonlinear.
C&S Huang et al. (2020) proposes combining shallow models that ignore graph structure with two
post-processing methods including error correction (correct) and label propagation (smooth), result-
ing in significant performance improvements with a simple model. GCN-LPA Wang & Leskovec
(2021) theoretically analyzes the relationship between GCN and LPA, proving that edge weights that
enhance LPA can also improve GCN. Based on this insight, they proposed the GCN-LPA model,
which incorporates LPA as a regularization term for GCN. Another line of work uses LPA to cor-
rect noisy labels. LPM Xia et al. (2021) utilize the intrinsic graph structure to propagate labels and
combines meta-learning to aggregate labels. Furthermore, R2LP Cheng et al. (2024) extends the use
of LPA to arbitrary heterophily levels, simultaneously propagating labels to unlabeled nodes and
correcting noisy labels. R2LP not only generalizes LPA to more realistic scenarios involving het-
erophily graphs and varying noise levels but also provides a theoretical analysis of its effectiveness
on label denoising.

The differences between our Label Influence Propagation (LIP) and the LPA-related works are three-
fold: Propagation target: We do not propagate labels; instead, we propagate the influence between
labels. Propagation medium: In LPA, the propagation medium is typically the graph structure that
connects nodes. In contrast, the propagation medium in LIP is the label propagation graph, con-
structed by quantified pairwise label influences. In this graph, nodes are labels, and edges are the
influence correlations between labels. Purpose of propagation: The purpose of propagating label
influence is not to infer unknown labels or denoise existing labels, but rather to extend the com-
puted pairwise label influences to high-order label influences. This ultimately encourages labels
with positive influence and suppresses those with negative influence.
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D DATASETS

To validate the proposed framework, we conduct experiments on 8 datasets, including 3 classical
MLNC datasets (Delve-M (Akujuobi et al., 2019), DBLP (Akujuobi et al., 2019), BlogCat (Shi
et al., 2020a)), 1 private dataset (Abnormal), 1 large scale OGB dataset (Ogbn-proteins (Hu et al.,
2020), OGB-p in short), 3 new biological datasets (PCG, HumLoc, EukLoc (Zhao et al., 2023)) from
different domains. The private one is a real-world anonymous graph multi-label anomaly detection
dataset under the premise of ensuring data privacy. At present, the data Abnormal is not yet publicly
available, but it may be released in the form of benchmarks in the future. The statistics of these
datasets are in following Tab. 4.

BlogCat. The data lacks inherent node features, so feature initialization is required. Although the
paper (Zhao et al., 2023) uses an identity matrix to initialize node features on BlogCat, their exper-
imental results show that DeepWalk (Perozzi et al., 2014) significantly outperforms other methods
using identity matrix initialization. Thus, we use DeepWalk embedding as node feature of BlogCat
in Tab. 1 and Fig. 4. Moreover, we find that another frequently used feature initialization method on
BlogCat is to use structure-base embedding (Qiu et al., 2020). Hence we use their structure-based
initialization method in Tab. 6 and Tab. 7.

Table 4: The statistics of all the MLNC grap datasets.
DBLP BlogCat OGB-p PCG

# nodes 28,702 10,312 132,534 3,233
# edges 68,335 667,966 39,561,252 37,352
# labels 4 39 112 15
rhomo 0.76 0.10 0.15 0.17

Domain Citation Network Social Network PPI PPI
Node Author Blogger Protein Protein
Edge Co-authorship Friendship Biological associations Biological associations
Label Research areas Interests Functions Phenotypes

HumLoc EukLoc Delve-M Abnomal

# nodes 3,106 7,766 1,229,280 0.1 ∼ 10M
# edges 18,496 13,818 4,322,275 10 ∼ 100M
# labels 14 22 20 11
rhomo 0.42 0.46 0.65 0.05 ∼ 0.20

Domain PPI PPI Wikipidia Network Anomaly detection
Node Protein Protein Paper User
Edge Biological associations Biological associations Citation –
Label Subcellular locations Subcellular locations Topics Anomaly

E MORE EXPERIMENTS

E.1 SETTINGS AND DETAILS

Reproducibility Experiments are conducted using 2 NVIDIA 3090 GPUs. Each experiment is
replicated five times, utilizing different seeds for each run to ensure robustness and reproducibility.
We reproduce the baselines by the released code or corresponding description in their paper. And we
follow the hyper-parameter setting suggested in their papers to ensure the fairness of comparison.
The implementation settings and details are uploaded in the anonymous repository: https://
github.com/Xtra-Computing/LIP_MLNC.

Evaluation metrics. Macro AUC and AP are commonly used non-parametric metrics in prior
works. Macro AUC is the area under the ROC curve, and it provides an aggregate measure of
performance across all possible classification thresholds, reflecting the model’s ability to distinguish
between positive and negative classes. AUC is the official metric provided for comparison on the
OGB leaderboard (Hu et al., 2020), and it is also used in benchmarks (Tang et al., 2023) for highly
imbalanced scenarios. Moreover, as noted in (Zhao et al., 2023; Yang et al., 2015; Sun et al., 2025;
2024), AUC can be misleading for highly imbalanced datasets. (Zhao et al., 2023) also reveals that
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OGB-p has a nearly 90% of unlabeled nodes, indicating extreme imbalance for most labels. Thus,
we also report Macro F1 and AP. Macro F1 computes the F1 score for each class independently
and then takes the average. AP (Average Precision) is a performance metric that summarizes the
precision-recall curve by computing the weighted mean of precisions at different thresholds. It
provides an overall measure of a model’s ability to balance precision and recall, particularly useful
in imbalanced datasets. Higher values of these metrics indicates superior performance of LIP.

Note that AP, F1 and AUC can show significant differences due to their focus on different aspects
of classification performance. F1 is sensitive to the balance between precision and recall, making it
crucial for imbalanced datasets. AUC evaluates the overall ability to discriminate between classes
across all thresholds. Therefore, a model might have a high AUC but a lower F1 if it struggles with
precision or recall for the positive class. Moreover, AUPR (Area Under the Precision-Recall Curve)
is also a well-known classification metric. However, AUPR may overestimate model performance
when the number of thresholds or unique prediction values is limited. Hence we omit this metric.

Hyper-parameter settings. For training process, we use Adam optimizer with early stopping at
100 epochs to train LIP. Moreover, other hyper-parameters are decided using random search strat-
egy and the range of hyper-parameters are listed in Tab. 5. When comparing with other baselines,
we set the same number of layers for the backbone if the same backbone is used.

Backbones. As shown in the Tab. 4, our datasets include both homophily and heterophily datasets,
so we used four different backbones to validate the effectiveness of our method. Among them,
GCN (Kipf & Welling, 2017), GAT (Velicković et al., 2017), and GraphSage (Hamilton et al., 2017)
are commonly used backbones for homophily graphs, while H2GCN (Zhu et al., 2020) is a popular
model for heterophily graphs.

Table 5: The hyperparameter setting in this paper for all datasets
Hyper-parameter RangeValue

Hidden size {32,64,128,256,512}
Learning Rate {1e-3 → 5e-1}
Weight decay {1e-2,5e-3,1e-4,5e-4,1e-5,5e-6,1e-7,0}
Dropout rate {0 → 0.8}

Optimizer Adam
Epoch 1000

Early stopping patience 100

E.2 EVALUATION UNDER LABEL SPLIT

Two split settings. We employ two types of split settings to show the robustness of our method on
MLNC task. The first setting is node split, where the dataset is divided into training, validation, and
test sets based on nodes, meaning that every node in the training set has full label information. This
corresponds to the common single-label split method. However, in real-world scenarios, labels often
come from different sources. For instance, in biological PPI networks, a protein may not have all its
functions or phenotypes collected, or different phenotypes might be annotated by different teams,
meaning not every node in a batch has all labels. Thus, the second setting, label split, was introduced:
each label is assigned to the same number of nodes. Since multi-label classification on graph data
is inherently transductive—where all node features and the graph structure are known—there is no
risk of data leakage. This setting better reflects real-world scenarios. Note that split setting is not
split ratio setting which means different proportions of training samples. Please refer to Tab. 1 for
node split setting. Here in appendix, we show the performance under label split setting in Tab. 6 and
Tab. 7.

Results. In our experiments, we employed two different split ratios, specifically, 6 : 2 : 2 and
2 : 2 : 6. Under the same split ratio, we repeat the random splitting process with different random
seeds five times.
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Due to its abundance of labels, better reveals whether the model truly uncovers the rich relationships
among labels. From the Tab. 6, we can draw several conclusions. First and foremost, our method is
the most effective one most of the time, which verifies the effectiveness of our approach.

Table 6: Performance under label split setting with the split of 6:2:2 (mean ± std. deviation) in terms
of macro F1 , macro ROC AUC. The top performance are bolded and second ones are underlined.

DBLP Delve-M BlogCat Abnomal
Metrics Macro F1 Macro AUC Macro F1 Macro AUC Macro F1 Macro AUC Macro F1 Macro AUC

Node2vec+BR 75.92±0.34 83.78±0.48 50.34±1.11 64.03±1.49 52.01±1.41 60.08±0.97 43.55±1.88 76.59±1.17
Node2vec+CC 73.61±0.31 80.34±0.32 50.66±1.29 65.47±1.44 52.22±1.39 60.59±1.58 45.12±.143 79.28±1.44

GCN+ML-KNN 77.64±0.35 86.62±0.41 51.98±1.24 69.45±1.81 53.61±1.14 63.56±2.62 47.22±3.24 80.28±1.81
GCN+PLAIN 82.27±0.34 91.28±0.44 53.61±1.74 78.72±1.57 56.30±2.29 70.69±1.38 52.16±3.27 93.23±1.89

MLGW 79.13±0.66 90.14±0.63 52.25±0.43 74.15±0.18 52.97±1.20 68.70±1.14 49.12±2.27 82.14±1.92
ML-GCN 78.64±0.44 89.30±0.28 51.92±0.34 83.21±0.84 55.29±0.22 70.64±0.68 51.27±1.30 86.61±1.21

LARN 83.86±0.28 92.77±0.33 54.31±1.29 85.85±1.15 55.61±1.11 72.44±2.12 51.34±1.44 88.61±1.49
LANC 80.37±0.62 89.58±0.49 55.14±0.58 86.48±0.62 54.48±0.84 70.55±1.04 50.23±0.66 84.02±0.33

VariMul 84.81±0.67 93.17±0.38 56.81±0.23 86.91±0.13 57.88±1.34 71.35±0.49 52.32±0.50 88.56±0.36

GCN+Com 86.00±0.24 94.00±0.05 56.82±0.28 88.74±0.12 57.39±1.75 70.29±2.38 50.86±0.25 87.08±0.26
GCN+Auto 85.43±0.10 93.47±0.14 54.71±0.29 79.08±0.17 53.44±1.50 66.41±2.37 52.35±0.23 90.31±0.31
GCN+LIP 86.50±0.34 93.91±0.19 58.87±1.26 90.89±1.14 59.02±0.21 74.30±0.36 53.98±0.34 94.91±0.45

Here we show the second setting of training label ratio in Tab. 7. We simulated a scenario with
sparse training samples, as often seen in real-world applications. In this setting, the limited training
labels make it more challenging to capture label relationships. Methods that introduce labels as new
nodes and construct a new graph with label-node edges are more affected, as fewer training labels
result in fewer connections between the new label nodes and the original nodes, potentially leading
to poorer performance.

Table 7: Performance under label split setting with the split of 2:2:6 (mean ± std. deviation) in terms
of macro F1, macro ROC AUC. The top performance are bolded and second ones are underlined.

DBLP Delve-M BlogCat Abnomal
Metrics Macro F1 Macro AUC Macro F1 Macro AUC Macro F1 Macro AUC Macro F1 Macro AUC

Node2vec+BR 72.02±1.15 77.76±1.14 40.19±0.82 53.42±1.54 48.33±0.37 54.08±1.41 45.51±1.82 71.32±2.12
Node2vec+CC 71.52±2.14 75.59±1.59 42.45±1.03 56.56±1.44 49.57±1.51 55.84±1.00 45.41±2.88 71.33±2.32

GCN+ML-KNN 74.43±2.12 79.59±2.18 45.34±1.76 57.49±2.29 51.08±1.82 59.24±1.22 45.81±1.72 73.39±0.33
GCN+PLAIN 79.34±1.32 88.67±0.52 49.23±1.25 61.25±1.54 55.34±1.26 67.35±2.11 48.23±1.32 87.11±2.42

MLGW 78.62±2.27 85.95±1.19 47.24±2.56 57.83±2.13 51.82±0.36 60.48±0.24 45.68±1.15 74.35±1.29
ML-GCN 78.62±1.45 83.63±1.21 49.37±1.12 58.00±1.18 53.55±1.03 61.77±1.29 47.57±1.44 77.24±1.18

LARN 81.45±0.74 92.47±1.83 50.71±1.98 62.08±1.86 54.11±1.66 63.56±1.62 49.35±1.22 80.22±1.57
LANC 79.63±0.91 88.43±0.72 49.80±1.12 57.85±3.18 54.18±1.82 62.18±1.87 49.24±0.88 83.52±1.41

VariMul 83.23±0.43 91.06±1.18 50.39±1.18 59.08±1.27 57.02±1.23 69.31±1.18 50.54±1.05 88.51±2.15

GCN+Auto 83.96±0.13 91.26±0.16 47.17±0.32 64.44±2.69 56.34±1.27 62.64±1.01 48.14±1.04 85.12±1.51
GCN+LIP 84.05±0.19 92.21±0.28 52.56±1.21 69.33±1.34 57.07±0.43 72.40±0.66 51.91±1.18 90.58±0.52

As shown in Tab. 7, our method once again achieved the best performance, with greater improvement
over the baseline compared to scenarios with richer training samples.

E.3 CHANGING BACKBONE OF LIP

As shown in Fig. 5(a), our model consistantly achieves improvement when applied to any backbone,
demonstrating the effectiveness of our approach. The difference in performance among backbones
not using our method depends entirely on the inductive bias inherent in the graph data itself. An
interesting observation is that different backbone models exhibit varying degrees of sensitivity to
our method. For instance, GCN show greater improvements before and after the application of
our method compared to GAT. We think that this may be due to our method’s relation to gradient
calculation, with different models having varying sensitivities to labels. Possibly, during training,
GAT’s gradient changes more rapidly, leading to quicker changes in label correlation. Moreover,
since our method can be flexibly applied to any backbone capable of obtaining node embeddings, it
allows our approach to serve as a plug-and-play enhancement for MLNC.

Moreover, we further conducte a series of experiments by replacing the backbone with more ad-
vanced decoupled GNNs: APPNP Gasteiger et al. (2019) and GPRGNN Chien et al. (2020). APPNP
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Table 8: Changing backbones (AUC) under node split on MLNC datasets.
AUC DBLP BlogCat PCG EukLoc
GCN 92.83 ± 1.13 66.14 ± 1.74 59.54 ± 0.90 70.53 ± 1.97
GCN+LIP 94.38 ± 1.51 70.21 ± 2.02 65.73 ± 0.52 72.92 ± 1.82
GIN 93.00 ± 0.46 68.32 ± 0.67 63.44 ± 1.15 73.13 ± 1.24
GIN+LIP 94.75 ± 1.29 70.87 ± 0.93 66.10 ± 1.64 75.10 ± 1.29
APPNP 94.17 ± 0.92 70.33 ± 1.10 64.96 ± 1.33 74.67 ± 0.98
APPNP+LIP 95.21 ± 1.08 71.82 ± 1.45 65.51 ± 1.74 75.86 ± 1.02
GPRGNN 93.09 ± 1.12 68.31 ± 1.26 68.02 ± 1.17 72.91 ± 0.99
GPRGNN+LIP 95.07 ± 1.84 72.36 ± 0.97 68.74 ± 1.58 74.88 ± 1.06

is a classical yet powerful model, while GPRGNN achieve state-of-the-art (SOTA) on both ho-
mophily and heterophily graphs. Here, we evaluate the effectiveness of our method, LIP, on these
advanced decoupled GNNs and present a comparison of the results between the original models and
the LIP-enhanced models on MLNC tasks in the Tab. 8.

From the Tab. 8, we can observe that even for high-performance decoupled GNN models, LIP con-
sistently achieves performance improvements. LIP provides enhancements across different domains
and demonstrates exceptional results on certain datasets. For example, LIP improved the perfor-
mance of GPRGNN by approximately 4% on the BlogCat dataset. In many cases, the performance
improvement brought by LIP exceeds the performance differences between different models, high-
lighting the value of incorporating LIP. This is because these backbones primarily focus on modeling
the input graph structure and node features. Regardless of the type of GNNs used, our LIP can pro-
vide additional support by modeling the influence correlation between labels.
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(a) Comparison of backbones on Abnormal. (b) Comparison of normalization on DBLP.

Figure 5: More model analysis on different datasets.

E.4 ABLATION STUDY

Normalization. As shown in Fig. 5(b), the softmax normalization we use is more effective. From
our empirical analysis, Softmax offers two key advantages compared to Row normalization. First,
Softmax provides stronger differentiation. In the case of the influence matrix, failing to capture dif-
ferences in influence may result in similar learning weights for labels that either negatively impact
or provide only minimal positive impact, potentially leading to a vicious cycle. Second, Softmax
provides stable gradients, contributing to smoother model optimization. In contrast, Row normal-
ization, being a simple normalization operation, may gradually flatten the differences in influence
relationships over successive iterations.

Influence Correlations in P and T steps. We supplement the ablation study across all datasets (the
full version of Fig. 4b), which is shown in the Tab. 9. ”None” stands for simply using the backbone
model without any quantification of influence correlations between labels.

It can be observed that in all cases, utilizing the influence correlations from both propagation (P)
and transformation (T) steps (noted as All in the table) achieves the best performance than using
the influence from either phase alone. Moreover, individually quantifying and utilizing either type
of influence correlations yields better performance than not using them at all. This indicates that

22



Published as a conference paper at ICLR 2025

Table 9: Ablation study of label influences (GCN as backbone).
AUC DBLP BlogCat OGB-p PCG HumLoc EukLoc
None 92.83 ± 1.13 66.14 ± 1.74 71.26 ± 1.45 59.54 ± 0.90 66.57 ± 0.67 69.27 ± 1.97
Only P 92.08 ± 1.06 68.27 ± 1.88 73.72 ± 0.63 62.01 ± 1.21 70.17 ± 1.42 70.87 ± 1.64
Only T 93.94 ± 1.00 67.11 ± 1.51 73.58 ± 1.24 63.82 ± 1.04 69.30 ± 1.02 69.93 ± 1.01
All 94.38 ± 1.51 70.21 ± 2.02 74.82 ± 0.34 65.73 ± 0.52 73.22 ± 1.76 72.92 ± 1.82

leveraging the influence relationships from both the P and T steps is crucial for the MLNC task.
Additionally, the table reveals that using the influence correlations from either the P step or the
T step alone can achieve better results on different datasets. We hypothesize that this is due to
the varying demands of different datasets for the P and T processes. Some datasets may require
minimizing negative influence during the P process, while others may benefit from maximizing
positive influence during the T process.

E.5 SENSITIVITY STUDY

Settings. We examine the sensitivity of the model to hyper-parameters by varying the values of α
and β. We draw inspiration from APPNP’s (Gasteiger et al., 2019) experimental setup. When we
vary α, β is fixed at 0.28; when we vary β, α is fixed at 0.15.

Results. The conclusion is that our method demonstrates robustness across a range of hyper-
parameter settings. Specifically, the performance remains stable within reasonable parameter ranges,
indicating that the model does not heavily depend on fine-tuned hyper-parameters for achieving
effective results. Moreover, we find that regardless of the dataset characteristics, the optimal range
for α is approximately between 0.08 and 0.30, while the optimal range for β is approximately
between 0.10 and 0.56.

Figure 6: Changing hyper-parameters of α and β on datasets DBLP and PCG.

E.6 EVALUATION UNDER INDUCTIVE SETTING

Settings. In this section, we perform the inductive train/val/test split (6:2:2) and conducted exper-
iments to validate the effectiveness in such setting. We used GraphSage as the backbone because it
is naturally suited for the inductive setting. We also excluded certain baselines that are not suitable
for the setting, such as VariMul and MLGW.

Results. The results are shown in the Tab. 10. It shows that our method also achieves satisfactory
performance under the inductive setting. Although the model cannot observe the complete graph in
the inductive setting, the subgraph containing the nodes whose labels need to be predicted is visible.
Therefore, our model’s quantification of influence correlation during the P step remains meaningful
and effective. Since inductive training also involves mutual interactions between gradients of differ-
ent labels, modeling the influence relationships between labels in the T step is also necessary. As a
result, our method achieves performance surpassing the baselines even under the inductive setting.

E.7 CHANGING NUMBER OF LABELS

Settings. We used GCN as the backbone to compare and analyze the performance of our method
across different label number of label categories k.
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Table 10: Performance (AUC) comparison under inductive setting.
SAGE+ML-KNN SAGE+PLAIN LARN LANC SAGE+Auto SAGE+LIP

DBLP 72.45 ± 1.77 74.16 ± 0.91 73.87 ± 1.79 73.54 ± 1.95 77.11 ± 2.42 79.32 ± 1.96
EukLoc 53.31 ± 1.51 55.02 ± 1.73 63.39 ± 2.01 65.97 ± 1.67 62.82 ± 2.19 66.35 ± 2.36

Results. From the Tab. 11, we can observe that our method consistently achieves performance
boosting regardless of the number of labels. We also identified some interesting phenomena from
the experiments. First, for GCN, the performance is actually the best when the number of labels is 2.
This phenomenon can be understood from two perspectives: On one hand, statistical analysis shows
that label 2 is the category with the highest number of training nodes across all training datasets.
Therefore, when the total number of labels is 2, the contribution of label 2 leads to a higher average
performance. On the other hand, this also indicates that, to some extent, an increase in the number
of labels results in a decline in GCN’s prediction performance.

Moreover, with our method, the performance generally improves as the number of labels increases.
In contrast, GCN’s performance fluctuates as the number of labels increases, sometimes improving
and sometimes deteriorating. This indirectly indicates that our method reduces the negative influence
between labels while enhancing the positive influence.

Table 11: Performance (AUC) when changing the number of label categories k on HumLoc.
HumLoc (AUC) 2 4 6 8 10 12 14
GCN 70.29 ± 1.74 64.44 ± 0.92 66.35 ± 1.49 65.14 ± 1.85 66.52 ± 1.22 66.73 ± 0.86 68.14 ± 1.88
GCN+LIP 72.17 ± 1.56 65.99 ± 1.02 68.41 ± 1.55 68.82 ± 0.97 72.13 ± 1.29 72.22 ± 1.76 73.22 ± 1.76

E.8 CASE STUDY

Settings. To better illustrate the positive and negative mutual influences between labels, we take
a specific node and its surrounding neighbors as an example to demonstrate the mutual influences
between labels. We aim to show how these influences contribute to either improving or impairing
the prediction performance of the node. We selected a node with a degree of 3 from the DBLP
dataset, identified as node 197. Its adjacency structure in the original graph is shown in the Fig. 7.

Analysis. It is worth noting that, as discussed in Sec. 4 of the main text, the influence between
labels is quite complex. The influence from Ya to Yb is the combined effect of a group of nodes with
label ya on a group of nodes with label yb during both the P and T processes. Here, we attempt to
visualize the positive and negative influences, as well as their ultimate effect on performance, using
the local structure of a single node rather than a group of nodes with the same label. This provides
a simplified perspective on these interactions.

Node id: 197 
GT: [0,0,0,0]

Node id: 18566
GT:[0,1,0,0]

Node id: 0
GT: [0,0,0,0]

Node id: 22
GT: [0,0,0,0]

Figure 7: Case study on node 197 from dataset
DBLP.

From the local structure of node 197, we can
observe its connections to nodes 0, 18566, and
22, along with their respective node indices and
ground truth labels, as shown in the figure. How-
ever, when GCN predicts the labels for node 197,
the resulting predicted probabilities are shown in
the bar chart. Based on the observations from Fig.
1(a), we can roughly infer the reasons for this phe-
nomenon:

Positive and Negative Influences: From Fig. 1(a),
it is evident that the other three labels generally
provide positive support for label 0 and label 2,
while they mostly exert negative influence on la-
bel 1 and label 3. This implies that the influence
from other labels makes it easier for node 197 to
be correctly identified as label 0 or label 2, but not necessarily for label 1 or label 3.
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Localized Negative Influence: Among the neighboring nodes of node 197, only node 18566 has
label 1, which is different from its surroundings. Consequently, its negative influence is received by
node 197 during the P process, resulting in label 1’s probability exceeding 0.5.

Impact on label 3: The high predicted probability for label 3 is likely due to the influence of other
labels during backpropagation, which affects the GNN parameters. This, in turn, increases the
probability of label 3 during the T process. In conclusion, the combined effects of positive and
negative influences ultimately impact the final prediction. As a result, Labels 0 and 2 are correctly
predicted for node 197, while Labels 1 and 3 are incorrectly predicted.

F LIMITATIONS AND FUTURE WORK

From a scenario perspective, our work currently focuses on the most common case: static and ho-
mogeneous graphs. That is, the nodes, edges, and labels do not change over time, and all nodes in
the dataset are of the same type, with all edges sharing the same physical meaning. From a goal
perspective, our work is currently focused on improving the performance of MLNC tasks by analyz-
ing and quantifying the influence correlations between labels on graph datasets, without considering
potential noise in the labels or graph structure. We leave these complex challenges in both aspects
for future exploration.
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