
Appendix A Videos503

- Video 1 (https://drive.google.com/open?id=1aVL7fmNp_rMpU2E0OPXq6BGtDNvmvCTu)504

- Video 2 (https://drive.google.com/open?id=1s16Mz66ETV_dpLXi0yyaJLJHZpFN0luv)505

Appendix B Extra Figures506

Figure 3: A diagram on how evolution and learning affect the development of the brain.

Figure 4: a) (CMA-ES vs E-VDN) Average and 95% confidence interval of two CMA-ES and two
E-VDN family sizes computed over 90 episodes. b, c and d) the macro-statistics obtained in the
non-binary environment. To speed up the training we used the smaller NN and the denser evolutionary
reward described in the Appendix G.3.

Appendix C Optimally Aligned Reward: Formal Description507

The notion of an optimal reward function for a given fitness function was introduced by Singh [21, 33],508

here we adapt his original formulation. From the perspective of agent i the environment is defined by509

the state transition distribution; Ei := p(sit+1|sit, ait,π−i). Where π−i is the concatenation of the510

policies of all agents except agent i; π−i := {πj}∀j 6=i. Formally we say: hiπ ∼ 〈L(Ri), Ei〉, where511

hiπ is the sampled history of the adaptations of policy πi which resulted from agent i learning L(·) to512

maximise its reward functionRi by interacting 〈·〉 with the environment. If agent i is the only agent513

learning then π−i is static and so is the environment Ei. In this case, the optimally aligned reward514

function is given by:515

R∗ = arg max
Ri

Ehiπ∼〈L(Ri),Ei〉 F(hiπ, E
i), (10)

where F is the fitness function. In the general case, all agents are learning, and therefore, the516

environment is non-static, the fitness for hiπ is changing and so is the optimally aligned rewardR∗.517
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Appendix D Value-Decomposition Networks518

Our work builds on VDN [38], which was designed to address the binary cooperative MARL setting.519

In this setting, the agents are grouped into teams and all the agents within a team receive the520

same reward. VDN’s main assumption is that the joint action-value function of the whole team of521

cooperative agents can be additively decomposed into the action-value functions across the members522

of the team.523

QT ((h1t , h
2
t , . . . , h

|T |
t ), (a1t , a

2
t , . . . , a

|T |
t )) ≈

∑
i∈T

Q̃i(hit, a
i
t), (11)

where T is the set of agents belonging to the team, and Q̃i(hit, a
i
t) is the value function of agent i524

which depends solely on its partial observation of the environment and its action at time t. Q̃i are525

trained by back-propagating gradients from the Q-learning rule through the summation.526

gi = ∇θi(yTt −
∑
i∈T

Q̃(hit, a
i
t|θi))2, yTt = rTt + γ

∑
i∈T

max
ait+1

Q̃(hit+1, a
i
t+1|θi), (12)

where θi are the parameters of Q̃i, gi is its gradient and rTt is the reward for the team T at the time527

instant t. Note that even though the training process is centralised, the learned agents can be deployed528

independently, since each agent acting greedily with respect to its own Q̃i will also maximise its529

team value function arg maxait Q
T
t (. . . ) ≈ arg maxait Q̃

i(hit, a
i
t).530

Appendix E Environment531

In this section, we go through the game loop of the environments summarised in the main article.532

Both the binary and non-binary environment have the same game loop, their only difference is in the533

way agents reproduce and in the length of the genome agents carry (the genome has a single gene in534

the binary environment and 32 genes in the non-binary one). The states of the tiles and agents are535

described in table 1.536

Tile state Agent state

Type Boolean (food source/dirt) Position (x,y) Integer, Integer
Occupied Boolean Health Integer
Food available Float Age Integer

Food stored Float
Genome Integer Vector

Table 1: The state of the tiles and agents.

We now introduce the various components of the game loop:537

Initialisation The simulation starts with five agents, each one with a unique genome. All agents538

start with age 0 and e units of food (the endowment). The environments are never-ending. Table 2539

describes the configuration used in the paper.540

Endowment
(e)

Initial
health

Start of
fertility

age

End of
fertility

age
Longevity World

size

Food
growth

rate (fr)

Maximum
food

capacity
(cf )

10 2 5 40 50 50x50 0.15 3
Table 2: Configuration of the environment used in the paper.

Food production Each tile on the grid world can either be a food source or dirt. Food sources541

generate fr units of food per iteration until reaching their maximum food capacity (cf ).542
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Foraging At each iteration, an agent can move one step to North, East, South, West or choose to543

remain still. When an agent moves to a tile with food it collects all the available food in it. The map544

boundaries are connected (e.g. an agent that moves over the top goes to the bottom part of the map).545

Invalid actions, like moving to an already occupied tile, are ignored.546

Attacking At each iteration, an agent can also decide to attack a random adjacent agent: this is an547

agent within one step to N, E, S or W. Each attack takes 1 unit of health from the victim’s. If the548

victim’s health reaches zero, it dies, and the attacker will “eat it” and receive 50% of its food reserves.549

Asexual Reproduction An agent is considered fertile if it has accumulated more than twice the550

amount of food it received at birth (i.e. twice its endowment e) and its age is within a given fertile551

age. The fertile agent will give birth once they have an empty tile nearby, when that happens the552

parent transfers e units of food to its newborn child. The newborn child will have the same genome553

has its parent.554

Sexual Reproduction An agent is considered fertile if it has accumulated more than the amount of555

food it received at birth and its age is within a given fertile age. The fertile agent will give birth once556

it is adjacent to another fertile agent and one of them has an empty tile nearby, when that happens557

each parent transfers e
2 units of food to its newborn child. A random half of the newborn’s genes558

come from the first parent, and the second half comes from the second parent.559

Game loop At every iteration, we randomise the order at which the agents execute their actions.560

Only after all the agents are in their new positions, the attacks are executed (with the same order as561

the movement actions). The complete game loop is summarized in the next paragraph.562

At each iteration, each agent does the following:563

• Execute a movement action: Stay still or move one step North, East, South or West.564

• Harvest: Collect all the food contained in its tile.565

• Reproduce: Give birth to a child using asexual or sexual reproduction (see their respective566

sections).567

• Eat: Consume a unit of food.568

• Age: Get one year older.569

• Die: If an agent’s food reserves become empty or it becomes older than its longevity570

threshold, then it dies.571

• Execute an attack action: After every agent has moved, harvested, reproduced, eaten and572

aged the attacks are executed. Agents that reach zero health get eaten at this stage.573

Additionally, at each iteration, each food source generates fr units of food until reaching the given574

maximum capacity (cf ).575

Appendix F Evolution Strategies576

In the binary environment, we compare the E-VDN algorithm with a popular ES algorithm. ES577

algorithms optimise an agent’s policy by sampling policy weights from a multivariate Gaussian578

distribution, evaluating those weights on the environment, giving them a fitness score and updating579

the Gaussian distribution parameters so that the next samples are more likely to achieve a higher580

fitness. There are a few different methods on how to update the distribution parameters, we chose to581

use CMA-ES [14] because it has been successful in optimising NN for a wide range of sequential582

decision problems [16, 17, 18]. However, note that CMA-ES was not designed for multi-agent583

settings where the fitness function landscape changes as the other agents learn. Nevertheless, we584

used five independent multivariate Gaussians distributions each one associated with a unique gene585

and each one being updated by the CMA-ES algorithm. In the beginning, when the agents can not586

survive for long, the fitness function is given by the total sum of family members along time, once587

the agents learn how to survive and reproduce we change the fitness function to be the number of588

family members at the end of an episode with 500 steps. Since the CMA-ES algorithm computation589
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time grows quadratic with the number of parameters, O(N2), we had to use the smaller NN for this590

comparison. The algorithm was implemented using an available python library [15].591

In the non-binary environment, if the initial five agents have different policies it creates the problem592

of deciding which policy should a child inherit. At the same time, the initial five agents can’t all share593

the same policy because it then becomes impossible to define the fitness function for each policy. For594

these reasons, we didn’t implement CMA-ES on the non-binary environment.595

Appendix G Algorithm details596

G.1 Effective time horizon597

We want to find the number of iterations (he) that guarantee an error between the estimate of the final
reward and the actual final reward to be less or equal than a given ε, |riT i−1 − r̂

i
T i−1| ≤ ε.

Remember that the final reward is given by:

riT i−1 =

∞∑
t=T i

γt−T
i ∑
j∈At

k(gi, gj) =

∞∑
t′=0

γt
′
kit′

Where t′ = t− T i and kit′ =
∑
j∈At′

k(gi, gj). The estimate of the final reward is computed with598

the following finite sum r̂it =
∑he−1
t′=0 γt

′
kit′ .599

600

Note that kit is always positive so the error riT i−1 − r̂
i
T i−1 is always positive as well. To find the he601

that guarantees an error smaller or equal to epsilon we define rb as the upper bound of kit and ensure602

that the worst possible error is smaller or equal to epsilon:603

∞∑
t′=0

γt
′
rb −

he−1∑
t′=0

γt
′
rb ≤ ε (13)

rb
1− γ

− rb
1− γhe
1− γ

≤ ε (14)

rbγ
he

1− γ
≤ ε (15)

he log γ ≤ log
ε(1− γ)

rb
(16)

he ≤
log ε(1−γ)

rb

log γ
(17)

We go from (1) to (2) by using the known convergences of geometric series:
∑∞
k=0 ar

k = a
1−r604

and
∑n−1
k=0 ar

k = a 1−rn
1−r for r < 1. Since he needs to be a positive integer we take the ceil605

he =

⌈
log

ε(1−γ)
rb

log γ

⌉
and note that this equation is only valid when ε(1−γ)

rb
< 1. For example, an606

environment that has the capacity to feed at most 100 agents has an rb = 100 (which is the best607

possible reward, i.e. the kinship between every agent is 1). If we use ε = 0.1 and γ = 0.9 then608

he = 88.609

G.2 Experience buffer610

When using Q-learning methods with DQN, as we are, it’s common practice to use a replay buffer.611

The replay buffer stores the experiences (st, at, rt, st+1) for multiple time steps t. When training, the612

algorithm randomly samples experiences from the replay buffer. This breaks the auto-correlation613

between the consecutive examples and makes the algorithm more stable and sample efficient. How-614

ever, for non-stationary environments, past experiences might be outdated. For this reason, we don’t615

use a replay buffer. Instead, we break the auto-correlations by collecting experiences from many616

independent environments being sampled in parallel. After a batch of experiences is used we discard617
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Figure 5: Macro-statistics when evolving bacteria using the standard evolutionary reward. I: learning
to survive (blue line), II: learning to reproduce (orange), III: learning to detect kin (green), IV:
learning to self-sacrifice (red). The red bands correspond to the First and Second Family Wars.

them. In our experiments, we simulated 400 environments in parallel and collected one experience618

step from each agent at each environment to form a training batch.619

G.3 Denser reward function620

In some situations, we used a denser version of the evolutionary reward to speed up the training621

process. We call it the sugary reward, r′it =
∑
j∈At k(gi, gj)f jt where f jt is the food collected by622

agent j at the time instant t. In these simple environments, the sugary and the evolutionary reward are623

almost equivalent since a family with more members will be able to collect more food and vice-versa.624

However, the sugary reward contains more immediate information whilst the evolutionary reward has625

a lag between good (bad) actions and high (low) rewards; a family that is not doing a good job at626

collecting food will take a while to see some of its members die from starvation. Nonetheless, the627

evolutionary reward is more correct since it describes exactly what we want to maximise. Note that628

this reward was not used to produce the results when comparing E-VDN with CMA-ES.629

When using the standard evolutionary reward to evolve the larger NNs, the same four eras, that were630

observed with the sugary reward, emerge. However, their progression is not as linear. In this case, the631

families take longer to learn and sometimes one family evolves much faster than the others. When this632

happens, the families left behind eventually catch up with the most developed ones. The behaviour of633

the emerging families successfully interferes with the developed ones creating a temporary disruption634

in the environment which disrupts its macro-statistics. Two disruptions were observed in one of our635

simulations and we named them the First and the Second Family Wars (fig. 5).636

Appendix H Results details637

H.1 Cannibalism and suicide as a tool for gene survival638

In the evolutionary history of the binary environment we saw the rise of cannibalism in the fourth era.639

Figure 6.a shows how the average age of cannibals and their victims grows apart in this era. After640

observing this behaviour, we wanted to know how important cannibalism was for gene survival. To641

answer this question, we measured the family size of a certain family when its members were not642

allowed to attack each other and compared it with the normal situation where intra-family attacks643

were allowed (see Figure 6.b). Figure 6.b clearly shows that, in this environment, cannibalism is644

essential for long-term gene survival. We also ran this exact experiment before the fourth era and645
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Figure 6: a) The average age of intra-family cannibals and cannibals’ victims. The vertical red line
marks the start of era IV. b) the size of family 1 averaged along 90 test episodes. To compute the
orange line we simply blocked all the attacks between members of the family 1. The shaded bands
represent the 95% confidence interval.

achieved the opposite results, suggesting that before this era the agents didn’t yet know how to use646

cannibalism to their gene’s advantage (results not shown).647

H.2 Genetic drift648

The environment starts with a unique set of alleles1, and there is no mechanism to add diversity to649

this initial set (no mutations) but there is a mechanism to remove diversity: death. When a death650

occurs, there is a chance that the last carrier of a particular allele is lost and if there are no mutations,651

this is a permanent loss in diversity. This evolutionary mechanism that changes allele frequencies652

using chance events is called genetic drift. In the binary environment, this means that if we simulate653

the environment for long enough all the agents will end up sharing the same allele. In the non-binary654

environment, all the agents will have the same genome, however, this genome will likely be composed655

by alleles coming from all the five founders (see Video 2).656

We found that in the binary environment kin detection speeds up this decrease in allele diversity.657

This was expected since agents cooperate with kin and compete with non-kin. Therefore, as a family658

gets bigger, its members become more likely to encounter cooperative family members rather than659

competitive unrelated agents. This improves the survival and reproduction success of that family,660

making it even bigger. Figure 7 shows the decrease in diversity with and without kin selection (we661

removed kin selection by zeroing out the kinship feature in the agents’ observations). From the figure,662

it is evident that kin selection speeds up the decrease in diversity. However, note that before the663

100th iteration, kin detection leads to a slightly higher diversity. This happens because kin detection664

reduces intra-family violence, leading to fewer deaths and consequently to a slower genetic drift.665

The environment usually reaches its maximum capacity around the 100th iteration, at this time the666

inter-family competition is at its highest and the positive feedback loop created by kin selection starts667

having a larger importance.668
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