
A Appendix

A.1 Proof of (7)

This statement follows closely the arguments by Dusson et al. (2022); Drautz (2020) and others.
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A.2 Custom notation and indexing

We briefly contrast our notation for Clebsch–Gordan coefficients (11) with the standard notation.
By means of example, consider the group SO(3) in which case the Clebsch–Gordan equations are
written as
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In this setting, our index α simply enumerates all possible such coefficients. One can often assign a
natural meaning to this index, e.g., for the group SO(3) it is given by the pair of angular quantum
numbers (l1, l2). Specifically, in this case, we obtain

Cα,LM
l1m1l2m2

=

{
CLM
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, if α = (l1, l2),

0, otherwise,
(26)

where CLM
l1m1l2m2

are the Clebsch–Gordan coefficients in the classical notation. Thus, the additional
index α is not really required in the case of SO(3), nor our other main example, SO(1, 3). Our
notation is still useful to organize the computations of equivariant models, especially when additional
channels are present, which is usually the case. Moreover, it allows for easy generalization to other
groups where such a simple identification is not possible (Steinberg, 1961).

A.3 Equivariance of G-cluster expansion

The equivariance of the G-cluster expansion is easily verified by applying a transformation g to the
input,
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A.4 Completeness of the basis and Universality of MACE

We explain in which sense the basis BK
α is a complete basis, and briefly sketch how to prove this

claim. The argument is contained almost entirely in (Dusson et al., 2022) and only requires a single
modification, namely Step 3 below, using a classical argument from representation theory. We will
therefore give only a very brief summary and explain that necessary change.

We start with an arbitrary equivariant property ΦV embedded in V where we have a representation, i.e.
the actual target property is Φ is then given as a linear mapping from V to Z. For technical reasons,
we require that only finitely many entries ΦV

K may be non-zero, but this is consistent with common
usage. For example, if G = O(3) and if Φ is a scalar, then ΦV

0 = Φ, while all other ΦV
LM ≡ 0. If Φ

is a covariant vector, then ΦV
LM is non-zero if and only if L = 1; and so forth. For other groups, the

labeling may differ but the principle remains the same.

1. Convergence of the cluster expansion. The first step in our parameterisation is to approximate
ΦV in terms of a truncated many-body expansion (4). It is highly application-dependent on how fast
this expansion converges. Rigorous results in this direction in the context of learning interatomic
potentials can be found in (Bachmayr et al., 2021; Thomas et al., 2022). A generic statement can
be made if the number of input particles is limited by an upper bound, in which case the expansion
becomes exact for a finite N . This case leads to the uniform density result stated in Theorem 4.1. We
adopt this setting for the time being and return to the pointwise convergence setting below.

In the uniform convergence setting we also require that the domain Ω is compact.

Throughout the remainder of this section we may therefore assume that an N can be chosen as well
as smooth components φ(n) such that the resulting model ΦV,N approximates ΦV to within a target
accuracy ϵ,

|ΦV,N
K (x)− ΦV

K(x)| ≤ ϵ ∀x ∈ msets(Ω).

2. The density of the embedding. As already stated in the main text, if the components φ
(n)
K

are smooth, and the embedding {ϕk}k is dense in the space of one-particle functions (5) then it
follows that the φ

(n)
K can be expanded in terms of the tensor product basis ϕk := ⊗n

s=1ϕks
to within

arbitrary accuracy. The precise statement is the following standard result of approximation theory: if
span{ϕk}k are dense in C(Ω), then span{ϕk}k are dense in C(Ωn). That is, for any ϵ > 0, there
exist approximants p(n)K such that

∥φ(n)
K − p

(n)
K ∥∞ ≤ ϵ.

3. The density of the symmetrized basis. The next and crucial step is to show that, if the φ
(n)
K are

equivariant, then the p
(n)
K may be chosen equivariant as well without loss of accuracy. If the group

G is compact then the representations ρ can be chosen unitary (Broecker, 1985). In that case, the
argument from (Dusson et al., 2022) can be used almost verbatim: let

p̄(n)(x) :=

∫
G

ρ(g)−1p(n)(gx)H(dg),

where H is the normalized Haar measure then p̄(n) is equivariant by construction and∣∣φ(n)(x)− p̄(n)(x)
∣∣

=

∣∣∣∣ ∫
G

ρ(g)−1
(
φ(n)(gx)− p(n)(gx)

)
H(dg)

∣∣∣∣
≤
∫
G

∣∣∣φ(n)(gx)− p(n)(gx)
∣∣∣H(dg)

≤
∫
G

∥φ(n) − p(n)∥∞ H(dg) ≤ ϵ.

If the group is not compact, then one can apply “Weyl’s Unitary Trick” (see (Bourbaki, 1989), Ch. 3):
first, one complexifies the group (if it is real) and then constructs a maximal compact subgroup KC of
the complexification. This new group K will have the same representation as G and in virtue of being
compact, that representation may again be chosen unitary. Therefore, symmetrizing p(n) with respect
to KC results in an approximant that is not only equivariant w.r.t. KC but also equivariant w.r.t. G.
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4. The density of the basis BK
α . As the last step one can readily observe that the symmetrization

and cluster expansion steps can be exchanged. I.e. first symmetrizing and then employing the steps
(7) result in the same model. Letting ϵ → 0 in the foregoing argument while fixing the number of
particles #x results in all errors vanishing. Note that this will in particular require taking N → ∞.

5. Pointwise convergence. To obtain density in the sense of pointwise convergence we first introduce
the canonical cluster expansion without self-interacting terms

ΦK(x) =

∞∑
n=0

∑
j1<···<jn

v
(n)
K (xj1 , . . . xjn).

The difference here is that the summation is only over genuine sub-clusters. Because of this restriction
the series is finite for all multi-set inputs x. In other words, it converges in the pointwise sense.

One can easily see that vn can be chosen (explicitly) to make this expansion exact. After truncating
the expansion at finite n ≤ N and then expanding the potentials v(n)K one can exactly transform the
canonical cluster expansion into the self-interacting cluster expansion. This procedure is detailed in
(Dusson et al., 2022; Drautz, 2020).

The arguments up to this point establish the claimed universality for the linear ACE model. The
corresponding universality of the TRACE model follows immediately from (Darby et al., 2022).
Since a single layer of the MACE model is a TRACE model, this completes the proof of Theorem 4.1.

A.5 Product of groups

Let G1 and G2 be two reductive Lie groups, and form the direct product group G1 ×G2. and ρ1 be a
associated irreducible representations then ρ1 ⊗ ρ2 is an irreducible representation of G1 ×G2. One
can then generate any Clebsch–Gordan coefficient of the product group G1 ×G2 using the algorithm
presented above. It is of particular interest in the case of the equivariant message passing networks
on points clouds, where the group of interest is G× Sn.

A.6 Symmetric Tensor products

The permutation group is an important concept in the context of tensor products. It can be useful to
focus on a subset of the full tensor product space that exhibits certain permutation equivariance. For
example, the spherical harmonics are defined as the permutation-invariant part of a tensor product.

The symmetric tensor product can be thought of as a change of basis, or projector, from the tensor
product to the symmetric part of the tensor product. In the case of a tensor product of correlation
order four we have,

Sν = Bν;ijklxiyjzkwl (28)

where B is the change of basis that satisfies:

Bν;ijkl = Bν;σ(ijkl)∀σ ∈ S4 (29)

We propose in lie-nn a new algorithm used to calculate B. The Symmetric Tensor Product is
calculated using a tree structure, starting at the leaves and progressing towards the trunk. The leaves
are the basis of the individual indices, and they are combined and constrained at each step to impose
symmetry.

A.7 Computing the irreps from input representations

For some groups, the computation of the generators X can become a very involved task. However
in most applications, the data itself is already given in a form of a representation. One approach
proposed by (Finzi et al., 2021) is to not work in the space of irreps but the space of polynomials of
the input representation. This approach has the advantage of requiring little previous knowledge of
the group. However it is also much less efficient than using irreps. One alternative way is to consider
polynomials of the input representation, that are reducible and then compute the block diagonalisation
to project down to irreps subspace. One can then work directly as polynomials in this subspace and
compute Clebsch–Gordan coefficients numerically. We provide routines in lie-nn to carry out these
operations from any given input representation.
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A.8 Details of numerical experiments

A.8.1 Jet Tagging

Dataset The dataset (Butter et al., 2019) was generated using a Pythia, Delphes, and FastJet
(using cuts for the jet’s kinematics on ∆η = 2, R = 0.8) to simulate the response of the ATLAS
detector at the Large Hadron Collider (LHC). The dataset is released under the "Creative Commons
Attribution 4.0" license. The entire dataset contains 2 millions jets with a 60/20/20 for training,
validation, and testing balanced splits.

Model The model uses 3 layers of the G-MACE architecture to generate the Lorentz group
equivariant representation of each jet. For the 1 particle basis, we use a product of radial features on
the Minkowski distances, and SO(1, 3) spherical harmonics. The radial features are computing by
passing a logarithmic radial basis as in (Bogatskiy et al., 2022) into a [64, 64, 64, 512] MLP using
SiLU nonlinearities on the outputs of the hidden layers. The internal representations used are (0, 0)
and (1, 1). We use 72 channels for each representation. For the embedding, and readout out, we use
similar achitectures to LorentzNet.

Training Models were trained on an NVIDIA A100 GPU in single GPU training. Typical training
time for the dataset is up to 72 hours. Models were trained with AMSGrad variant of Adam, with
default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We used a learning rate of 0.0035 and a
batch size of 64. The model was trained for 80 epochs with 2 epochs of linear learning rate warmup
and followed by a phase of cosine annealing LR scheduling.

A.8.2 3D shape recognition

Dataset ModelNet10 (Wu et al., 2015) is a synthetic 3D object point clouds dataset containing
4,899 pre-aligned shapes from 10 categories. The dataset is split into 3,991 (80%) shapes for training
and 908 (20%) shapes for testing. We were unable to find a license.

Model The model uses a three-layer encoder architecture following the PointNet++ one. We use an
encoder of the full point cloud into sub-point clouds of sizes [1024, 256, 128]. Each PointNet layer
maps a point cloud of size N t to one of size N t+1. We compute the node features as the sum of the
PointNet output and the MACE output,

h(t+1) = PointNet(xyz(t), h(t)) + MACE(xyz(t), h(t)) (30)

Training Models were trained on an NVIDIA A100 GPU in single GPU training. The typical
training time for the dataset is up to 12 hours. Models were trained with the AMSGrad variant of
Adam, with default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

A.9 Limitations and Future Work

The spectrum of potential applications of the present method is very large. In this paper, we focus on
a subset of applications that have known benchmarks and baselines. A broader range of groups is
implemented in the lie-nn library. Future work should focus on applying this architecture to tasks
with domain-specific knowledge.
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