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1 IMPLEMENTATION DETAILS
1.1 Benchmark Details
A detailed illustration of the 15 interactive poses introduced in this
paper is presented in Fig. 1.
Training: For each of these interactions, we collect 10 diverse ex-
emplar images by searching with a set of keywords on the internet.
Evaluation: We use 200 descriptions to generate 2,000 images,
where each description generates 10 images. The used description
consists of the learned tokens [𝑃∗1 ], [𝑃

∗
2 ] and [𝑅∗] for the 15 interac-

tive poses and diverse subjects to fully examine the generalization
of our method. A total of 30 kinds of subject categories are used in
the description, such as ‘seal’, ‘sloth’, ‘kangaroo’ and ‘frog’.

1.2 List of the Verb and Preposition
This paper employs two kinds of language priors (verb and prepo-
sition) to promote the learning of token embeddings 𝑃∗1 , 𝑃

∗
2 and 𝑅∗.

As for computing the verb prior, a list of verbs corresponding to
commonly used action are shown in Tab. 1. As for computing the
preposition prior, we collect several prepositions, shown in Tab. 2.

1.3 Training Details
Here, we present more training details of the proposed two-stage
inversion framework. In this paper, we mainly focus on the interac-
tion of two subjects, which is more common in daily life.

In the single pose inversion stage, we employ ViTPose[8] to
detect the pose of subjects𝑂1 and𝑂2 in the exemplar images. Then,
we utilize ControlNet conditional on each pose to generate 5 images
with different backgrounds and styles, with each image containing
only a single subject while maintaining its pose as the original
exemplar image. To avoid the model generating the subject with
deformed limbs, we perform a closed-loop detector. Specifically,
we also use ViTPose to detect the pose for the generated image
and filter out the image where the pose of the subject is highly
different from the exemplar image. The learnable tokens of pose
[𝑃∗1 ] and [𝑃∗2 ] are separately optimized with 500 iterations with
Adamw[5] optimizer by setting 𝛽1 = 0.9 and 𝛽2 = 0.999. Each mini-
batch consists of 8 samples. The learning rate is set to 2 × 10−4.

In the interactive pose inversion stage, the original exemplar im-
ages are used. We set loss weight 𝜆 = 0.01 for LCA and optimize the
interactive pose token [𝑅∗] with 1000 iterations using Adamw[5]
optimizer by setting 𝛽1 = 0.9 and 𝛽2 = 0.999. Each mini-batch con-
sists of 8 samples. The learning rate is set to 2 × 10−4.

We finetune token embedding in the CLIP Text Encoder based
on Stable Diffusion V1-51.

1.4 Detailed Explanation of Evaluation Metrics
To evaluate pose consistency between interactive poses of generated
images and given exemplar images, we propose Pose-S and Pose-KP

1https://huggingface.co/runwayml/stable-diffusion-v1-5

Table 1: List of the Verbs for computing the verb prior.

attack act box blow bounce brush carry catch
chase cheer clap climb come cough crawl cross
cut cycle dine dive drink drop eat fall
feed flick fly fold follow give glide go
grab growl guide hang hike hit hold hop
hug hush juggle jump kick kiss kneel knock
lie lift look make move nod open pat
pick play point pounce pull punch push put
reach read ride rub run salute shake shoot
sit slap snap sneeze sniff squat stagger stand

staple step stretch swing take talk tear throw
toss touch use walk warp wave wear whisper
wield wipe write yawn

Table 2: List of the prepositions for computing the preposi-
tion prior.

aboard about above across after against along among
amongst astride at atop before behind below beneath
beside between beyond by down from in including
inside into near of off on onto outside
over through to toward under up upon versus
with within

metrics based on classifier accuracy. Specifically, we construct a 15-
class image classification dataset using exemplar images. We utilize
data augmentation strategy including random crop and horizontal
flip, then split the training-testing set into a 4:1 ratio. In the Pose-S,
we extract pose-related features from the generated images using
the encoder of a ViTPose+[9] model trained on a general species
dataset and average pool them into a 2048-dimensional vector. We
train a linear SVM classifier based on the extracted pose-related
features and achieve 91% accuracy(exceeding the 43% accuracy of
using PSGFormer[10] as Reversion[2]) on the split test set. In the
Pose-KP, we directly detect the poses of subjects in the generated
images using ViTPose+. Then, we transform detected poses of each
image into a graph where key points and the connections between
them are respectively regarded as nodes and edges. We train a
two-layer graph convolutional neural network(GCN)[3] on the task
of whole-graph classification and achieve 85% accuracy on the
split test set. For generated images, we compute the classification
accuracy of the generated images as Pose-S and Pose-KP.

To better understand the proposed metrics and their complemen-
tarity , we visualize the generated images for different prediction
results, as Fig. 2. We present detected poses of generated images and
the predicted result by Pose-S and Pose-KP. As the first and fourth
columns of Fig. 2, the Pose-S and Pose-KP can effectively assess the
interactive poses between subjects. However, pose-S, which relies
on the visual feature of the generated image, is confusing when
assessing the image where the appearance of the subject’s limbs is
vague. For example, in the second column of Fig. 2, one feet of the
left wolf is not visual salience and the Pose-S misclassifies the kick-
ing as handshaking. However, the Pose-KP correctly evaluates the
results thanks to the robustness of the pose detector. Furthermore,
as shown in the third column of Fig. 2, the metric Pose-S, based on
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𝑂! dance the waltz with 𝑂"

𝑂! give a high-five to 𝑂"

𝑂! hold 𝑂" above head

𝑂! give a piggyback ride to 𝑂"

𝑂! sit back to back with 𝑂"

𝑂! box with 𝑂"

𝑂! carry 𝑂" on his/her arms

𝑂! and 𝑂" both hold their 
hands in the shape of heart

𝑂! hug with 𝑂"

𝑂! ride on the back of 𝑂"

𝑂! kneel down and kiss 𝑂"’s hand

𝑂! lie next to 𝑂"	from 
an overhead view.

𝑂! kick with 𝑂"

𝑂! kiss with 𝑂"

𝑂! shake hands with another 𝑂"

Figure 1: Illustration of the introduced 15 interactive poses.

image feature, provides accurate judgments when the pose detector
is influenced by the detection results.

1.5 Implementation Details of the t-SNE
Visualization

To visualize the distribution of the learned token embedding in the
text embedding space, we randomly select 5 interactive poses with
the learned poses embedding 𝑃∗1 , 𝑃

∗
2 and interaction embedding 𝑅∗.

We represent about 50 embeddings of the commonly used words
for each adjective, preposition, adverb, noun, proper noun and verb.
The learned embeddings 𝑃∗1 and 𝑃

∗
2 are closer to the verb embedding

cluster, while the embedding 𝑅∗ are closer to the preposition em-
bedding cluster. Compared to that, the token embeddings without
using the language prior to the optimization process tend to be
clustered in the inaccurate embedding space, such as ‘Adjectives’,
‘noun’ and ‘Conjunction’, which depends on the specific type of
interactive pose and training exemplar images.

2 QUANTITATIVE ABLATION STUDY
In order to further analyze the effectiveness of the proposed compo-
nents, we present a quantitative result of ablation studies as shown
in Tab. 3. As the second row of Tab. 3, we do not use the language
prior for two-stage inversion, i.e., w/o Prior, the results of these

metrics suffer from severe decrease due to failing to decouple inter-
active poses from exemplar images. As shown in the third row of
Tab. 3, we skip the single subject pose inversion stage and directly
invert the interactive pose token [𝑅∗]. Specifically, for a fair com-
parison, we extend token [𝑅] to three pseudo-words [𝑃1] [𝑅] [𝑃2]
using verb prior for the tokens [𝑃1] and [𝑃2], and preposition prior
for the token [𝑅]. The results indicate that, despite using the same
exploration space and prior constraints as the proposed method,
a lack of explicit modelling of the pose of a single subject results
in diminished accuracy of interactive poses. The effectiveness of
the proposed cross-attention loss LCA is shown in the fourth row
of Tab. 3. We observe that the incorrect interaction details appear
in the generated images when the learning of token embedding 𝑅
is not guided by the attention to the key interaction regions, thus
leading to performance degradation in pose accuracy.

3 MORE QUALITATIVE RESULTS
3.1 Single Pose Inversion Results
In Fig. 3, we demonstrate generated images using the trained em-
beddings 𝑃∗1 and 𝑃∗2 in the single subject pose inversion stage. The
results demonstrate the pseudo-words [𝑃∗1 ] and [𝑃∗2 ] can decom-
pose the pose of a single subject from an interactive pose using
generated exemplar images.
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Figure 2: Examples of evaluating interactive pose using Pose-
S and Pose-KP.

Table 3: Quantitative ablation study using proposed met-
rics(%).

Method CLIP-T↑ CLIP-S↑ Pose-S↑ Pose-KP↑
SD [7] 23.51 21.87 7.05 6.36

w/o Prior 23.45 22.06 16.42 13.85
w/o Stage I 24.82 22.68 20.63 16.90
w/o 𝐿𝐶𝐴 25.36 22.79 35.29 33.57
Ours 25.74 22.93 40.81 38.64

3.2 Interactive Pose Inversion Results
We present more generated images of the proposed method as Fig. 4
and Fig. 5. Furthermore, our method also has the power to create
interactive poses between animated characters as shown in Fig. 6.

3.3 Interaction between Subjects of Different
Species

As mentioned in [1, 4, 6], Stable Diffusion[7] is challenging to
generate multiple subjects with different species due to the attribute
binding issue. Precisely, given a text including multiple subjects
with different colors, textures and appearances, SD can not properly
align the attribute information with the specific subject in the
generated image. Therefore, we integrate our method with Divide-
and-Bind[4] to avoid texture entanglement or appearance leakage
between subjects, as shown in Fig. 7. Furthermore, we do not use
Divide-and-Bind in other experiments for fair comparison with
other methods.
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Figure 3: Qualitative results of single subject pose inversion.
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Figure 4: More qualitative results for customized interaction generation.
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Figure 5: More qualitative results for customized interaction generation.
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Figure 6: Generation with customized interactive pose between animated characters.
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Figure 7: Generation with customized interactive pose between subjects of different species.
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