
A Baseline Implementation Details

We repurpose nuImages (CC BY-NC-SA 4.0) for all few-shot experiments in the main paper. We
evaluate detection performance using 1600→ 900 images across 18 classes for all models tested. We
create three random splits for each of K = {5, 10, 30}-shots following the data creation process
from [49] and report results averaged across these three seeds. Our test-set is a subset of the (densely
annotated) nuImages val-set. We construct our test-set to only include validation images which
have at least one annotation from the Few or Medium cohorts (cf. Fig 5). We train all baselines with
one RTX 3090 GPU. Our baseline code is available on GitHub and dataset splits are available on
HuggingFace.

Figure 5: We visualize the distribution of classes in out test-set compared to the cardinalities of classes in the
full nuImages val-set. Notably, our sub-sampling strategy of selecting validation images that have at least one
annotation from medium or few classes does not significantly alter the true distribution.

Prompt Engineering: We leverage rich text descriptions provided by the annotator instructions
to select synonyms for each nuImages class. We manually identify the best performing synonyms
in Table 6. At test time, we compute the average text embedding of all synonyms to improve
classification accuracy.

Language Prompt Tuning We train GLIP (SWIN-L backbone) for our prompt tuning experiments
for 60 epochs with a learning rate of 0.025, batch size of 4, and weight decay of 0.25.

Federated Fine-tuning. We use Detic (Swin-B backbone) pre-trained on LVIS + COCO and
ImageNet-21k data for our federated fine-tuning experiments (described in detail in the next section).
We use a batch size of 8 and an AdamW optimizer with learning rate of 3.75e↑ 6. We fine-tune this
model for 8000 iterations on nuImages. We sample 6 categories for each training image, i.e |S| = 6
for the FedLoss and InvFedLoss experiments. We derive negatives from pseudolabels with atleast
20% confidence for the Psuedo-Negative experiment.

Multi-Modal Prompting. We use MQDet (text-only, vision-only, text + vision for our
in-context learning baselines. Unlike the original code base, we tokenize our few shot examples
instead of using random queries. Note that zero-shot results for MQ-GLIP-Text and GLIP-L are the
same since these models are identical.

B Analysis of Federated Fine-Tuning

Prior works follow the K-shot dataset creation process established by [49]. Importantly, each image
in the dataset is exhaustively annotated for a subset of all classes. Recall, a federated dataset is also
comprised of images that are exhaustively annotated for a specific category. This suggests that we can
leverage existing insights about federated datasets [15, 68] to train better few-shot object detectors.
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Table 6: Synonyms used for Prompt Engineering. We manually inspect the nuImages annotator instructions
to derive a set of synonyms to improve classification accuracy.

Original Classes Class Names with Synonyms

car car

truck truck, pick-up, lorry, semi-tractor

construction_vehicle construction_vehicle, crane

bus bus, bendy_bus, rigid_bus

trailer trailer

emergency emergency, ambulance, police_car, police_motorcycle

motorcycle motorcycle

bicycle bicycle

adult adult, person

child child

police_officer police_officer

construction_worker construction_worker

personal_mobility personal_mobility, skateboard, segway, scooter

stroller stroller

pushable_pullable pushable_pullable, wheel_barrow, garbage_bin, cart

barrier barrier, K-rail, fence, bollard, guard_rail

traffic_cone traffic_cone

debris debris, trash_bag

Fine-Tuning with FedLoss. We fine-tune Detic with Federated Loss (FedLoss) [68] using a subset
S of classes C for each training image. Specifically, we use a binary cross-entropy loss on all classes
in S and ignore classes outside of S during training. S is comprised of the ground-truth annotation
class along with randomly sampled negative classes for each image. We sample these negative
classes in proportion to their square-root frequency in the training set. We find that probablistically
sampling negatives rather than labeling all unannotated classes as negatives improves fine-tuning
results, reliably beating zero-shot performance. Importantly, although FedLoss has been explored
in the context of long-tailed detection, applying it to FSOD provides considerable performance
improvements, reaffirming that FSOD benchmarks are actually federated datasets.

Fine-Tuning with Pseudo-Negative Federated Loss (Ours). Despite the effectiveness of FedLoss,
probablistically sampling negatives using dataset-wide statistics is sub-optimal because it does not
consider the content of each image. We can improve the accuracy of sampled negatives with pseudo-
labels to determine which classes are likely not in a particular image. If the maximal score for any
class prediction is less than a threshold, we consider this class to be a negative. Using zero-shot
model predictions to identify pseudo-negatives yields better results than simply using dataset-wide
statistics. We find that this strategy works the best. We present pseudo-code in Alg. 1. All federated
fine-tuning results in the main paper are trained with psuedo-negative federated loss.

Oracle Performance Analysis. We empirically validate the effectiveness of our pseudo-negative
federated loss by computing the upper bound performance when given access to ground-truth
negatives and exhaustive annotations for the few-shot data split. Recall, nuImages is exhaustively
annotated, but is repurposed for Foundational FSOD.

To compute the set of ground-truth negatives for each image, we use exhaustive ground-truth
annotations to determine which categories are not present. Training with ground-truth negatives
provides an upper bound on our pseudo-negatives experiment. Next, we train using exhaustive
ground-truth annotations to provide an upper bound for the specific set of images used during training.
In addition, this experiment highlights the performance gap between having exhaustive negatives and
exhaustive annotations.

Table 7 shows that using pseudo-negatives nearly matches the true negative upper bound (16.67
AP vs 16.99 AP). This demonstrates that we are able to reliably estimate negatives in an image,
alleviating the problem of learning with sparse annotations. Training with exhaustive annotations
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Algorithm 1: Psuedo-Negative Federated Loss

# Inputs

# img: Randomly Sampled Image

# all_classes: All Classes in Dataset

# gt: Ground Truth Annotations for img

# gt_classes: List of Classes in gt

#

# Outputs

# loss: Psuedo -Negative Federated Loss

#

# Functions

# filter: Returns All Predictions w/

# Confidence > Threshold

# get_neg: Returns List of Classes Not

# In Pseudo -Positives

# or: Set Union Operation

# BCE: Binary Cross Entropy Loss

#Step 1: Compute Predictions

# and Filter by Confidence

pred = Detector(img) # predictions

pseudo_pos = filter(pred , thresh=0.2)

#Step 2: Get Pseudo -Negatives for Image

neg_classes = get_neg(pseudo_pos , all_classes)

select_classes = or(neg_classes , gt_classes)

#Step 3: Compute Deterministic Federated Loss

# w/ Pseudo -Negatives

loss = 0

for cls in select_classes:

pred_cls = pred[cls] #predictions for cls

gt_cls = gt[cls] #ground -truth for cls

loss += BCE(pred_cls , gt_cls)

return loss

yields significantly better results for many and medium classes. This is unsurprising because the
10-shot FSOD benchmark includes 10 car annotations, while the exhaustively annotated set includes
over 550 car annotations!

Despite strong performance on classes with many and medium, the upper bound for classes with
few examples remains low (4.21 AP and 3.93 AP). Given the success of training with pseudo-
negatives, a natural next-step is to train with pseudo-positives. Our preliminary results suggest that
incorporating pseudo-positives does not provide significant improvement over simply training with
pseudo-negatives. We posit that training with incorrect pseudo-positives may incur a higher penalty
than training with incorrect pseudo-negatives. This is a promising direction for future work.

C Impact of Box-Level Supervision for Foundational FSOD

We evaluate the importance of using bounding-box supervised data in pre-training. Unlike Detic,
which trains on box-supervised data from LVIS, COCO and image-text data from ImageNet21k,
RegionCLIP[64] only pre-trains on image-text pairs from the Conceptual Captions (CC3M) dataset
[46]. We report RegionCLIP’s zero-shot and fine-tuning performance on nuImages averaged over 3
random splits in Table 8. Detic zero-shot outperforms RegionCLIP zero-shot by ↓ 12 AP (14.26 vs
2.34). While fine-tuning RegionCLIP improves overall performance, Detic achieves higher accuracy
for K = {5, 10, 30} shots. This highlights the importance of supervision type (e.g. box-supervised
data) and data scale used for pre-training.
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Table 7: Analysis of nuImages Upper Bound Performance. We compare the accuracy of our proposed
approach against upper bounds computed for the FSOD task. Our pseudo-negatives strategy approaches the
performance of using ground-truth negatives, demonstrating that pesudo-labels can provide a reliable signal
about negatives, especially across classes with many and medium examples. The performance gap between
our best method and exhaustive annotations can be attributed to the large number of additional annotations,
particularly for classes with many and medium examples. Compared to the baseline (14.3 AP), our approach
(16.7 AP) closes the gap to the (18.5 AP) upper-bound by over 50%.

Approach 10 Shots: Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) [67] 14.26 27.28 15.15 2.36

+ Standard Fine-Tuning 15.53 26.01 18.02 3.88
w/ FedLoss 15.57 27.20 18.13 2.89
w/ Pseudo-Negatives 16.67 29.15 18.71 3.90

w/ True Negatives (Oracle) 16.99 29.60 18.94 4.21
w/ Exhaustive Annotations (Oracle) 18.51 33.51 20.30 3.93

Next, we conduct further analysis to diagnose why RegionCLIP zero-shot inference performs so
poorly on nuImages (Table 9). RegionCLIP relies on an RPN pre-trained on box-supervised data
like LVIS-base to extract regions for pre-training. Notably, RegionCLIP (w/ LVIS-RPN: 2.34 AP)
suffers from poor foreground-vs-background classification compared to Detic. We validate this
hypothesis by evaluating RegionCLIP (w/ GT-RPN) to measure classification performance. Surpris-
ingly, RegionCLIP achieves significantly higher accuracy (26.44 AP), confirming that RegionCLIP
struggles to distinguish between foreground and background in nuImages. This observation high-
lights the challenge of working with nuImages categories, further motivating our Foundational FSOD
benchmark.

Lastly, we evaluate RegionCLIP’s performance with Detic-RPN. Notably, we observe that the
performance improves over RegionCLIP w/ LVIS-RPN demonstrating that reducing the number of
false positive proposals yields better performance. Furthermore, we filter out low confidence Detic
proposals , i.e < 0.5 objectness score (w/ Detic-RPN, 0.5) and find that this doubles RegionCLIP’s
zero-shot performance to 7.64 AP.

D NuImages Annotator Instructions

We present an example of the nuImages annotator instructions below. Notably, such annotator
instructons are naturally few-shot (e.g. providing a few visual and textual examples describing the
target concept), multi-modal, and contain both positive and negative examples. Our proposed Foun-
dational FSOD benchmark, and pseudo-negative federated loss facilitate future work in leveraging
rich annotator descriptions, allowing us to “align” VLMs much like how annotators must be “aligned”
to subtle aspects of the target class.

Table 8: RegionCLIP Experiments. RegionCLIP zero-shot inference performs much worse than Detic.
While fine-tuning improves RegionCLIP’s performance, it still lags far behind Detic. We posit that this
performance difference can be attributed to Detic’s box-supervised pre-training and use of language cues from
CLIP embeddings.

Approach Average Precision (AP)
All Many Medium Few

RegionCLIP (Zero-Shot) [64] 2.34 3.33 3.45 0.22
Detic (Zero-Shot) [67] 14.26 27.28 15.15 2.36

RegionCLIP (Fine-Tuning, 5 shots) [64] 3.61 6.20 4.63 0.26
Detic (Fine-Tuning, 5 shots) [67] 14.50 24.09 16.90 3.70

RegionCLIP (Fine-Tuning, 10 shots) [64] 3.58 6.10 4.65 0.24
Detic (Fine-Tuning, 10 shots) [67] 15.28 26.93 18.00 3.27

RegionCLIP (Fine-Tuning, 30 shots) [64] 3.57 6.13 4.61 0.22
Detic (Fine-Tuning, 30 shots) [67] 16.65 27.45 19.46 4.02
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Table 9: Diagnosing RegionCLIP’s Poor Zero-Shot Performance. RegionCLIP’s zero-shot performance
lags far behind Detic. Using RegionCLIP’s classifier on ground-truth region proposals yields high performance,
suggesting that RegionCLIP struggles to accurately distinguish between foreground-vs-background.

Approach Average Precision (AP)
All Many Medium Few

Detic (Zero-Shot) [67] 14.26 27.28 15.15 2.36
GroundingDINO (Zero-Shot) [33] 11.44 17.42 14.08 3.38
RegionCLIP (Zero-Shot) w/ LVIS-RPN [64] 2.34 3.33 3.45 0.22

RegionCLIP (Zero-Shot) w/ Detic-RPN [64] 3.79 6.68 4.01 1.12
RegionCLIP (Zero-Shot) w/ Detic-RPN, 0.5 [64] 7.64 12.81 8.88 1.88
RegionCLIP (Zero-Shot) w/ GT-RPN [64] 26.44 45.33 32.25 3.92

Barrier
➔ Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or 

pedestrian traffic. In particular, includes barriers used at construction zones.
➔ If there are multiple barriers either connected or just placed next to each other, they should be 

annotated separately.
➔ If barriers are installed permanently, then do NOT include them.

Figure 6: NuImages Annotator Instructions. We include the multi-modal annotator instructions barrier.
Our proposed setup allows FSOD methods to learn such multi-modal examples, similar to how human annotators
are taught the labeling policy. Importantly, annotators can also be provided with negative examples (in red) for
classes, i.e what NOT to label for a certain class. Crucially, our proposed fine-tuning with pseudo-negatives can
easily accommodate such negative examples within the proposed setup.

E Empirical Analysis of Baselines (5-shot and 30-shot)

We evaluate all baselines for the nuImages experiments with 5-shot and 30-shot in Table 10 and 11,
respectively. We find that trends from the main paper hold. Notably, MQ-GLIP with-multi-modal
prompting performs the best. However, we find that adding more examples (e.g. MQ-GLIP 5-shot
vs. MQ-GLIP 30-shot) does not seem to help in-context learning based methods nearly as much as
gradient-based fine-tuning approaches.

F Foundational FSOD with LVIS

Although we use nuImages for Foundational FSOD for benchmarking in the main paper and in our
competition, other datasets can still be evaluated under this framework. We include benchmarking
results for LVIS below. LVIS [15] re-annotates COCO images using 1,230 fine-grained classes,
which are divided into frequent, common and rare based on the cardinality of each class. Frequent
and common classes are combined to form LVIS-base and is used for pre-training. Rare classes
are used for LVIS-novel. Following [49, 36], we benchmark with LVIS v0.5 on publicly released
data splits and report performance averaged across 3 splits for frequent, common, and rare groups
(APf , APc, APr) on the LVIS val-set.

As shown in Table 12, Detic outperforms all recent FSOD baselines including DiGeo [36] by ↓6
APc & APf and achieves 16.3 APr without ever seeing any rare class data (e.g., by prompting
Detic (Base Only) with the rare class names). Importantly, these performance improvements can be
attributed to Detic’s CLIP-based classifier, which uses CLIP text embeddings corresponding to class
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Table 10: Empirical Analysis of Baselines (5-shot) on nuImages.

Approach Backbone Pre-Train Average Precision (AP)
Data All Many Med Few

Zero-Shot Detection

RegionCLIP [64] RN50 CC3M 2.50 3.20 3.80 0.40
Detic [67] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32
GroundingDINO [33] SWIN-T Objects365,GoldG,Cap4M 12.05 17.29 15.45 3.72
GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40
MQ-GLIP-Text [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 17.01 23.36 19.85 8.41

Prompt Engineering

Detic [67] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53
GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.15 23.82 19.36 9.02

Standard Fine-Tuning

RegionCLIP [64] RN50 CC3M 3.84 6.13 5.07 0.49
Detic [67] SWIN-B LVIS, COCO, IN-21K 15.12 22.74 18.99 4.25

Federated Fine-Tuning (Ours)

Detic [67] SWIN-B LVIS, COCO, IN-21K 16.58 27.12 19.71 4.13
Detic [67] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 16.96 27.89 19.94 4.37

Language Prompt Tuning

GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.79 21.07 22.87 9.12

Visual Prompting

MQ-GLIP-Image [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 13.42 23.05 15.00 3.54

Multi-Modal Prompting

MQ-GLIP [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.45 32.23 23.31 10.30

Multi-Modal Chat Assistants

GPT-4o Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71

Table 11: Empirical Analysis of Baselines (30-shot) on nuImages.

Approach Backbone Pre-Train Average Precision (AP)
Data All Many Med Few

Zero-Shot Detection

RegionCLIP [64] RN50 CC3M 2.50 3.20 3.80 0.40
Detic [67] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32
GroundingDINO [33] SWIN-T Objects365,GoldG,Cap4M 12.05 17.29 15.45 3.72
GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40
MQ-GLIP-Text [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 17.01 23.36 19.85 8.41

Prompt Engineering

Detic [67] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53
GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.15 23.82 19.36 9.02

Standard Fine-Tuning

RegionCLIP [64] RN50 CC3M 3.87 6.05 5.14 0.57
Detic [67] SWIN-B LVIS, COCO, IN-21K 17.22 25.98 21.64 4.78

Federated Fine-Tuning (Ours)

Detic [67] SWIN-B LVIS, COCO, IN-21K 18.64 29.13 22.44 5.46
Detic [67] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 18.67 29.13 22.43 5.57

Language Prompt Tuning

GLIP [30] SWIN-L FourODs,GoldG,Cap24M 20.73 24.95 25.60 11.54

Visual Prompting

MQ-GLIP-Image [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 14.26 24.55 16.73 2.79

Multi-Modal Prompting

MQ-GLIP [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.40 32.08 23.31 10.27

Multi-Modal Chat Assistants

GPT-4o Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71

names. Such embeddings are a result of large-scale pre-training, which we can effectively leverage
for the few-shot task. This highlights the role of language in data-constrained settings.

Further, fine-tuning Detic with pseudo-negatives improves overall performance by 1.6 AP (30.0 vs
31.6) over naive fine-tuning. To contextualize the improvement in performance, we note that between
TFA (ICML 2020) and DiGeo (CVPR 2023), the community improved on LVIS FSOD by only 0.5
AP (cf. Table 12). Finally, we note that simply replacing the ResNet-50 backbone with a Swin-B
transformer yields a sizeable 12.8 AP improvement for rare classes (19.8 vs. 32.6).

We present fine-tuning results for different variants of Detic on the LVIS 10-shot dataset. Following
the standard FSOD protocol, we pre-train Detic on LVIS-base (e.g. frequent and common classes)
and fine-tune on 10-shots from each class in LVIS-base and LVIS-novel. Importantly, this means
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Table 12: LVIS Foundational FSOD Performance. We present fine-tuning results for different variants of
Detic on the LVIS 10-shot dataset. We follow the standard FSOD setup and pre-train Detic on LVIS-base for
fair comparison with prior work. Detic pre-trained only on LVIS-base outperforms specialized methods like
TFA and DiGeo by →6 AP, without fine-tuning on rare classes. Since we keep the model backbone (ResNet-50)
and pre-training data same for all methods, these performance improvements can be attributed to Detic’s CLIP-
based classifier. This demonstrates that concept leakage through language significantly improve FSOD, and
leveraging language cues should be embraced in data constrained settings. Naively fine-tuning Detic yields a
performance drop of APf and APc because treating common classes as negatives in rare category federated
datasets hurts performance. Instead, we find that embracing the federated nature of FSOD datasets provides
consistent improvements in fine-tuning (30.0 vs. 30.8 for ResNet-50). Further, pseudo-labeling negatives in each
image provides a modest improvement (30.8 vs. 31.6 for ResNet-50). Similar trends hold for the SWIN-B and
SWIN-L backbones.

Approach 10-shots
AP APf APc APr

ResNet-50 Backbone

TFA w/ fc [49] 24.1 27.9 23.9 14.9
TFA w/ cos [49] 24.4 27.7 24.3 16.9
DiGeo [36] 24.9 28.5 24.6 17.3

Detic (Base Only) [67] 30.0 34.4 30.8 16.3
+ Fine-Tuning (Base + Novel) 30.0 33.2 31.9 15.5
w/ FedLoss 30.8 33.9 32.7 17.4
w/ Pseudo-Negatives 31.6 34.8 32.8 19.8

Swin Backbone

Detic (Base Only, SWIN-B) [67] 35.2 38.7 36.8 21.4
+ Fine-Tuning (Base + Novel) 35.9 37.1 37.8 26.7
w/ FedLoss 36.5 36.7 38.3 30.4
w/ Pseudo-Negatives 37.2 37.7 38.2 32.6

MQ-GLIP-Text (SWIN-L) 35.8 40.2 33.1 33.0
MQ-GLIP-Image (SWIN-L) 28.8 33.0 26.6 25.1
MQ-GLIP (SWIN-L) 43.4 46.4 41.8 40.1

that only results for APr are indicative of true few-shot performance. First, we find that naively
fine-tuning Detic on Base + Novel yields lower performance for APf and APr. Intuitively, this
suggests that ignoring the federated nature of FSOD datasets (e.g. by following the standard practice
of assuming common classes are negatives for rare class federated datasets) hurts common class
performance (cf. Table 12). Importantly, simply training with FedLoss significantly improves over
naive fine-tuning, increasing APr by 1.9% (15.5 vs. 17.4) and 3.7% (26.7 vs. 30.4) for the ResNet-50
and Swin backbones respectively. Further, leveraging our proposed negative pseudo-labeling strategy
provides further improvements over the naive federated loss, increasing APr by another 2.4% (17.4
vs. 19.8) and 3.7% (30.4 vs. 32.6) for the ResNet-50 and Swin backbones respectively. Similar to
nuImages, we find that multi-modal prompting with MQ-GLIP performs the best of all baselines
tested, significantly improving over MQ-GLIP-Text and MQ-GLIP-Image. We attribute MQ-GLIP’s
strong performance to its bigger backbone and significantly larger pre-training dataset.

LVIS v0.5 Detic Experiment Details. We select Detic with a Resnet-50 backbone for fair comparison
with prior work. We pre-train Detic on LVIS-base for 90k iterations with a batch size of 32 using an
AdamW optimizer and a learning rate of 2e-3. All images are resized to 640→640 and we also enable
Repeat Factor Sampling [15]. Following [49], we sample up to 10 shots for each class in LVIS (since
all classes may not have 10 examples). We use a batch size of 32, learning rate of 2.5e-5 for 46k
iterations. We do not use Repeat Factor Sampling for fine-tuning. We sample 50 categories for each
training image, i.e., |S| = 50 for the FedLoss experiments. We derive negatives from pseudolabels
with at least 20% confidence for the Psuedo-Negative experiment.
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