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1 GENERAL LOG-LIKELIHOOD

The general likelihood-based loss hypothesis that accounts for informative censoring is formulated
as:

−`h,Φ,ν(ta, ca, y, δ) = log ph,Φ,ν(TA, CA|X = x) (1)
= log ph,Φ(TA|X = x) + log pν,Φ(CA|X = x) , (2)

where (2) follows from the conditional independence (informative censoring) assumption T ⊥⊥
C|X,A. For some parametric formulations of event ph,Φ(TA|X = x) and censoring pν,Φ(CA|X =
x) time distributions, e.g., exponential, Weibull, log-Normal, etc., then −`h,Φ,ν(ta, ca, y, δ) is the
closed-form log-likelihood, where:

log ph,Φ(TA|X = x) , δ · log fh,Φ(ta|x) + (1− δ) · logSh,Φ(ta|x), (3)

log pν,Φ(CA|X = x) , (1− δ) · log eν,Φ(ca|x) + δ · logGν,Φ(ca|x), (4)
where {Sh,Φ(·), Gν,Φ(·)} and {fh,Φ(·), eν,Φ(·)} are survival and density functions respectively.

2 METRICS

2.1 ESTIMANDS OF INTEREST

Several common estimands of interest include (Zhao et al., 2012; Trinquart et al., 2016):

• Difference in expected lifetime: ITE(t, x) =
∫ tmax

0
{S1(t|x)− S0(t|x)}dt = E{T1 − T0|X = x}.

• Difference in survival function: ITE(t, x) = S1(t|x)− S0(t|x).
• Hazard ratio: ITE(t, x) = λ1(t|x)/λ0(t|x).

In our experiments, we consider both the hazard ratio and difference in expected lifetime. The
difference of expected lifetime is expressed in terms of both survival functions and expectations:

E[T |X = x] =

∫ ∞
−∞

tf(t|x)dt

=

∫ ∞
0

(1− F (t|x)) dt−
∫ 0

−∞
F (t|x)dt (5)

=

∫ tmax

0

S(t|x)dt , (6)

where (5) follows from standard properties of expectations and (6) from 1 − F (t|x) = S(t|x)

and
∫ 0

−∞ F (t|x)dt = 0. Below we formulate an approach for estimating the individualized and
population hazard ratio.

2.2 NONPARAMETRIC HAZARD RATIO

From standard survival function definitions (Kleinbaum & Klein, 2010), the relationship between
survival and hazard function is formulated as

λ(t|x) = lim
dt→0

P (t < T < t+ dt|X = x)

P (T > t|X = x)dt
= −d logS(t|x)

dt
=
f(t|x)

S(t|x)
. (7)
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We propose a new nonparametric hazard ratio, model-free estimator for computing HR(t).

Definition 1 We define the nonparametric marginal Hazard Ratio and its approximation, ĤR(t), as

HR(t) =
λ1(t)

λ0(t)
=
S0(t)

S1(t)
· S
′
1(t)

S′0(t)
, ĤR(t) =

ŜPKM
0 (t)

ŜPKM
1 (t)

· m1(t)

m0(t)
, (8)

where for HR(t) we leveraged (7) and S′(t) , dS(t)/dt. For the estimator ĤR(t), provided that S(t)
is a monotonically decreasing function, for simplicity, we fit a linear function S(t) = m · t+ c and
set S′(t) ≈ m. Further, we leverage ŜPKM(t) in (Chapfuwa et al., 2020), defined as the model-free
population point-estimate-based nonparametric Kaplan-Meier (Kaplan & Meier, 1958) estimator.
We denote J distinct and ordered observed event times (censored and non-censored) by the set
T = {tj |tj > tj−1 > . . . > t0} from N realizations of Y . Formally, the population survival
ŜPKM
A (t) is recursively formulated as

ŜPKM
A (tj) =

1−

∑
n:δn=1 I

(
tj−1 ≤ γ(T

(n)
A ) < tj

)
N −

∑N
n=1 I

(
γ(T

(n)
A ) < tj−1

)
 ŜPKM

A (tj−1) , (9)

where ŜPKM
A (t0) = 1, and I(b) represent an indicator function such that I(b) = 1 if b holds or

I(b) = 0 otherwise. Further, γ(·) is a deterministic transformation for summarizing TA, in our
experiments, γ(·) = median(·), computed over samples from ta ∼ ph,Φ(TA|X = x). Note from (9),
we marginalize both factual and counterfactual predictions given covariates x.

A similar formulation for the conditional, individualized HR(t|x), can also be derived, where the
cumulative density FA(t|x) = 1− SA(t|x), is estimated with a Gaussian Kernel Density Estimator
(KDE) (Silverman, 1986) on samples from the model, ta ∼ ph,Φ(TA|X = x). Then we have:

HR(t|x) =
λ1(t|x)

λ0(t|x)
=
S0(t|x)

S1(t|x)
· S
′
1(t|x)

S′0(t|x)
, ĤR(t|x) =

ŜKDE
0 (t|x)

ŜKDE
1 (t|x)

· m1(t|x)

m0(t|x)
, (10)

where, S′(t|x) , dS(|t|x)/dt is also approximated with fitting a linear function S(t|x) = m · t+ c,
and setting S′(t|x) ≈ m. Note that for some parametric formulations, HR(t|x), can be readily
evaluated because f(ta|x) and S(ta|x) are available in closed form.

2.3 FACTUAL METRICS

Concordance Index C-Index (also related to receiver operating characteristic) is a widely used
survival ranking metric which naturally handles censoring. It quantifies the consistency between
the order of the predicted times or risk scores relative to ground truth. C-Index is evaluated on
point estimates, we summarize individualized predicted samples from CSA and CSA-INFO, i.e.,
t̂a = median

(
{ts}200

s=1

)
, where ts is a sample from the trained model.

Calibration Slope Calibration quantifies distributional statistical consistency between model pre-
dictions relative to ground truth. We measure population calibration by comparing population survival
curves from model predictions against ground truth according to Chapfuwa et al. (2020). We desire
a high calibrated model, with calibration slope of 1, while a slope < 1 and slope > 1 indicates
underestimation or overestimation risk, respectively.

Coefficient of Variation The coefficient of variation (COV) σµ−1, the ratio between standard
deviation and mean, quantifies distribution dispersion. A COV > 1 and < 1 indicates a high or
low variance distribution, in practice, we desire low variance distribution. We use Mean COV
N−1

∑N
i=1 σiµ

−1
i , where for subject i we compute {µi, σi} from samples {ts}200

s=1.

3 BASELINES

Cox proportional hazard (CoxPH) CoxPH assumes a semi-parametric linear model λ(t|a) =
λb(t) exp(aβ) , thus the hazard ratio between treatment and control can be obtained without specify-
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ing the baseline hazard λb(t):

HR(t) =
λ(t|a = 1)

λ(t|a = 0)
= exp(β) . (11)

A simple logistic model êi = σ(xi; η), is used to approximate the unknown propensity score
P (A = 1|X = x). Methods that adjust for selection bias (or confounding) learn β by maximizing a
propensity weighted partial likelihood (Schemper et al., 2009; Buchanan et al., 2014; Rosenbaum &
Rubin, 1983)

L(β) =
∏
i:δi=1

(
exp(aiβ)∑

j:tj≥ti ŵj · exp(ajβ)

)ŵi

. (12)

We consider three normalized weighting schemes for w , namely, (i) inverse probability weighting
(IPW) (Horvitz & Thompson, 1952; Cao et al., 2009), where IPWi = ai

êi
+ 1−ai

1−êi , (ii) overlapping
weights (OW) (Crump et al., 2006; Li et al., 2018), where OWi = ai · (1− êi) + (1− ai) · êi, and
(iii) the standard RCT Uniform assumption. Note that this modeling approach requires fitting over
the entire dataset, thus has no inference capability.

Accelerated Failure Time (AFT) We implement IPM regularized neural-based log-Normal and
Weibull AFT baselines. Both approaches have a desirable closed form Sh,Φ(ta|x), thus enabling
maximum likelihood based estimation, where

−LAFT
F , E(y,δ,x,a)∼p(y,δ,X,A) [δ · log fh,Φ(ta|x) + (1− δ) · logSh,Φ(ta|x)] . (13)

The log-Normal mean and variance parameters are learned such that, log ta = µh,Φ(h(r, a)) + ε,
where ε ∼ N (0, σ2

h,Φ(h(r, a))) and r = Φ(x). Further, we learn the Weibull scale and shape

parameters, where ta = λh,Φ(h(r, a)) · (− logU)
(kh,Φ(h(r,a)))−1

and U ∼ Uniform(0, 1). We
regularize (13) with the IPM loss, for maximum likelihood optimization.

Semi-supervised regression (SR) To demonstrate the effectiveness of our flow-based uncertainty
estimation approach we contrast CSA with a deterministic accuracy objective from Chapfuwa et al.
(2018), where ta = h(r, a) and:

LSR
F , E(y,δ,x,a)∼p(y,δ,X,A) [δ · (|y − ta|) + (1− δ) · (max(0, y − ta))] , (14)

where (14) is regularized according to the IPM loss.

Survival Bayesian additive regression trees (Surv-BART) Surv-BART (Sparapani et al., 2016) is
a nonparametric tree-based approach for estimating individualized survivals Ŝ(t

(j)
a |X = x) (defined

at pre-specified J time-horizons) from an ensemble of regression trees. Note, Surv-BART does not
adjust for both selection bias and informative censoring. While, we fit two separate models based on
factual treatment and control data, causal metrics are estimated with both factual and counterfactual
predictions.

4 EXPERIMENTS

4.1 GENERATING ATCG-SYNTHETIC DATASET

The ACTG-SYNTHETIC, is a semi-synthetic dataset based on ACTG covariates (Hammer et al., 1996).
We simulate potential outcomes according to a Gompertz-Cox distribution (Bender et al., 2005)
with selection bias from a simple logistic model for P (A = 1|X = x) and AFT-based censoring
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Table 1: Performance comparisons on ACTG data, with 95% HR(t) confidence interval. Test set NN
assignment of yCF and δCF yields unbiased ground truth estimator HR(t) = 0.54(0.51,0.61), since
study is a RCT.

Method Causal Factual
HR(t) C-Index (A=0, A=1) Mean COV C-Slope (A=0, A=1)

CoxPH-Uniform 0.49(0.38,0.64) NA NA NA
CoxPH-IPW 0.49(0.36,0.68) NA NA NA
CoxPH-OW 0.49(0.36,0.68) NA NA NA
Surv-BART 3.93(3.93,4.90) (0.665, 0.845) 0.001 (0.394, 0.517)
AFT-Weibull 0.53(0.53,0.53) (0.53,0.351) 3.088 (0.847,0.813)
AFT-log-Normal 3.75(3.75,3.75) (0.717, 0.619) 7.995 (0.847, 0.321)
SR 0.21(0.21,0.28) (0.628, 0.499) 0 (1.388, 0.442)
CSA (proposed) 0.63(0.59,0.68) (0.831, 0.814) 0.132 ( 1.042, 1.129)
CSA-INFO (proposed) 0.6(0.54,0.66) (0.786, 0.822) 0.13 (0.875, 0.938)

mechanism. Below is our generative scheme:

X = ACTG covariates

P (A = 1|X = x) =
1

b
× (a+ σ (η(AGE− µAGE + CD40− µCD40)))

TA =
1

αA
log

[
1− αA logU

λA exp (xTβA)

]
, U ∼ Uniform(0, 1)

logC ∼ Normal(µc, σ
2
c )

Y = min(TA, C) , δ = 1 if TA < C, else δ = 0 ,

where {βA, αA, λA, b, a, η, µc, σc} are hyper-parameters and {µAGE, µCD40} are the means for age
and CD40 respectively. This semi-synthetic dataset will made publicly available.

4.2 QUANTITATIVE RESULTS

See Table 1 for additional quantitative comparisons on ACTG dataset.

4.3 QUALITATIVE RESULTS

(a) ACTG HR(t) (b) FRAMINGHAM HR(t)

Figure 1: Inferred population HR(t) comparisons on (a) ACTG and (b) FRAMINGHAM datasets.

Figure 1 demonstrates model comparisons across of population hazard, HR(t), on ACTG and FRAM-
INGHAM datasets. Figure 2, summarizes the positive and negative covariate statistics from the isolated
extreme top and bottom quantiles on FRAMINGHAM datasets.
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(a) FRAMINGHAM HR(t|x) < 0.024 (b) FRAMINGHAM HR(t|x) > 1.916

Figure 2: Covariate statistics for top (a) and bottom (b) quantiles, of the median log HR(t|x) values
for the test set of FRAMINGHAM.

4.4 ARCHITECTURE OF THE NEURAL NETWORK

We detail the architecture of neural-based methods, namely, baselines (AFT-log-Normal, AFT-
Weibull, SR) and our proposed methods (CSA and CSA-INFO). All methods are trained using one
NVIDIA P100 GPU with 16GB memory. In all experiments we set the minibatch size M = 200,
Adam optimizer with the following hyperparameters: learning rate 3 × 10−4, first moment 0.9,
second moment 0.99, and epsilon 1× 10−8. Further, all network weights are initialed according to
Uniform(−0.01, 0.01). Datasets are split into training, validation and test sets according to 70%,
15% and 15% partitions, respectively, stratified by event and treatment proportions. The validation
set is used for hyperparameter search and early stopping. All hidden units in {hA(·), νA(·)}, are
characterized by Leaky Rectified Linear Unit (ReLU) activation functions, batch normalization and
dropout probability of p = 0.2 on all layers. The output layers of predicted times {TA, CA} have an
additional exponential transformation.

Encoder The encoding function Φ(·) for mapping r = Φ(x) is shared among all the neural based
methods (proposed and baselines) and specified in terms of two-layer MLPs of 100 hidden units.

(a) AFT-log-Normal (b) AFT-Weibull (c) SR

Figure 3: Decoding architecture of baselines.

(a) CSA (b) CSA-INFO

Figure 4: Decoding architecture of proposed methods.

Decoder Figure 3 shows the architectural details of the baselines, where the decoding function
hA(·) is specified in terms of two-layer MLPs of 100 hidden units. Further, the proposed planar
flow based methods shown in Figure 4, are comprised of two-layer MLPS for {hA(·), νA(·)} of
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dimensions [100, 200]. Moreover, the hidden layers {h(2)
A , ν

(2)
A }, take as input the concatenated

[h
(1)
A , ε̃h] and [ν

(1)
A , ε̃ν ] respectively. Finally, we set the planar flow dimensions for both {ε̃ν , ε̃h} to

100.
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