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1 GENERAL LOG-LIKELIHOOD

The general likelihood-based loss hypothesis that accounts for informative censoring is formulated
as:

*ghﬁb,v(tav Cay Y, 5) = Ingh,{),v(TAa CA‘X = x) (1)

= log pp,o(TalX = x) + log py,e (Cal X =), 2)

where follows from the conditional independence (informative censoring) assumption 7" 1L

C|X, A. For some parametric formulations of event pj, ¢ (74| X = x) and censoring p, ¢ (C4|X =

x) time distributions, e.g., exponential, Weibull, log-Normal, etc., then —¢j, ¢ 1, (ta; Cq, ¥, 9) is the
closed-form log-likelihood, where:

logpn.a(TalX = 2) £ 5 -log fu.e(ta]z) + (1 —0) - log Sp.a(ta|®), 3)
log py.a(CalX =z) £ (1 —6) -loge, a(ca|z) + 0 - log Gy e (cal®), 4)
where {Sh.¢(-), Gv,a(-)} and {fr,a(-), es,5(-)} are survival and density functions respectively.

2 METRICS

2.1 ESTIMANDS OF INTEREST

Several common estimands of interest include (Zhao et al., [2012; Trinquart et al.,[2016):

» Difference in expected lifetime: ITE(?, x) = fot"’a"{Sl (t|lz) — So(t|x)Ydt = E{Ty — Tp|X = x}.
* Difference in survival function: ITE(¢, x) = S (¢t|z) — So(t]x).
* Hazard ratio: ITE(¢, 2) = A1 (t|z)/Ao(t]2).

In our experiments, we consider both the hazard ratio and difference in expected lifetime. The
difference of expected lifetime is expressed in terms of both survival functions and expectations:

E[T|X = 2] :/_OO L (1) dt
0o 0
:/ (1—F(t|x))dt—/ F(t|z)dt ®)
0 —o0
_ / " Stw)dt, (©)
0

where () follows from standard properties of expectations and (6) from 1 — F(t|z) = S(t|z)

and fi)oo F(t|z)dt = 0. Below we formulate an approach for estimating the individualized and
population hazard ratio.

2.2 NONPARAMETRIC HAZARD RATIO

From standard survival function definitions (Kleinbaum & Klein, |2010), the relationship between
survival and hazard function is formulated as
Pi<T<t+dt|X = dlog S(t t
\to) — tim L FdX =x)  dlogS(tlr) _ fl) -
dt—0  P(T > t|X = x)dt dt S(t|x)
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We propose a new nonparametric hazard ratio, model-free estimator for computing HR(¢).

Definition 1 We define the nonparametric marginal Hazard Ratio and its approximation, HAR(t), as

M) So) SO g - PN )

MR =50 = 50 50" = Semaig) mo()

(®)

where for HR(#) we leveraged (7) and S’ (t) £ d.S(t)/dt. For the estimator HR(t), provided that S(t)
is a monotonically decreasing function, for simplicity, we fit a linear function S(¢) = m - t + ¢ and
set S'(t) ~ m. Further, we leverage STXM(#) in (Chapfuwa et al.} 2020), defined as the model-free
population point-estimate-based nonparametric Kaplan-Meier (Kaplan & Meier; |1958)) estimator.
We denote J distinct and ordered observed event times (censored and non-censored) by the set
T = {t;|t; > tj—1 > ... > to} from N realizations of Y. Formally, the population survival

SEKM (1) is recursively formulated as

~ En:énzl I tj—l < ’Y(T,an)) < tj ~
SEM @) = [1- ( ) SEEM(1, ), 9)

N =S 1 (vT) < t0)

where SE¥M(#0) = 1, and I(b) represent an indicator function such that I(b) = 1 if b holds or
I(b) = 0 otherwise. Further, y(-) is a deterministic transformation for summarizing T4, in our
experiments, y(-) = median(-), computed over samples from ¢, ~ pp,o(T4|X = z). Note from (9),
we marginalize both factual and counterfactual predictions given covariates x.

A similar formulation for the conditional, individualized HR(t|x), can also be derived, where the
cumulative density F'4 (t|x) = 1 — Sa(t|x), is estimated with a Gaussian Kernel Density Estimator
(KDE) (Silverman, |1986) on samples from the model, ¢, ~ pp o (T4|X = x). Then we have:

N0 Soltle) St o SEPRa) i)
= %olln) ~ Sit) Sya) R = SR moile)

HR(¢]) (10)

where, S'(t|x) = dS(|t|x)/dt is also approximated with fitting a linear function S(t|x) = m -t + ¢,
and setting S’(t|z) &~ m. Note that for some parametric formulations, HR(¢|x), can be readily
evaluated because f(t,|x) and S(¢,|x) are available in closed form.

2.3 FACTUAL METRICS

Concordance Index C-Index (also related to receiver operating characteristic) is a widely used
survival ranking metric which naturally handles censoring. It quantifies the consistency between
the order of the predicted times or risk scores relative to ground truth. C-Index is evaluated on
point estimates, we summarize individualized predicted samples from CSA and CSA-INFO, i.e.,
to = median ({¢,}2% ), where ¢, is a sample from the trained model.

Calibration Slope Calibration quantifies distributional statistical consistency between model pre-
dictions relative to ground truth. We measure population calibration by comparing population survival
curves from model predictions against ground truth according to Chapfuwa et al.|(2020). We desire
a high calibrated model, with calibration slope of 1, while a slope < 1 and slope > 1 indicates
underestimation or overestimation risk, respectively.

Coefficient of Variation The coefficient of variation (COV) op ™!, the ratio between standard
deviation and mean, quantifies distribution dispersion. A COV > 1 and < 1 indicates a high or
low variance distribution, in practice, we desire low variance distribution. We use Mean COV

N1 Zf\il oy ', where for subject i we compute {1, 0;} from samples {t}2%.

3 BASELINES

Cox proportional hazard (CoxPH) CoxPH assumes a semi-parametric linear model A(t|a) =
Ap(t) exp(af) , thus the hazard ratio between treatment and control can be obtained without specify-



Under review as a conference paper at ICLR 2021

ing the baseline hazard A, (¢):

HR(t) = )\(t|a;(1); = exp(f) . (11)

A simple logistic model é; = o(z;;7), is used to approximate the unknown propensity score
P(A =1|X = z). Methods that adjust for selection bias (or confounding) learn § by maximizing a
propensity weighted partial likelihood (Schemper et al.,2009; Buchanan et al., [2014} Rosenbaum &
Rubin, [1983))

- exp(a;3) "
) =[] (Zj:tj>tz‘ wj-exp(ajﬁ)> : (12)

i:(sizl

We consider three normalized weighting schemes for w , namely, (¢) inverse probability weighting
(TIPW) (Horvitz & Thompson,|1952; Cao et al., 2009), where IPW,; = ZT + t‘;, (i7) overlapping
weights (OW) (Crump et al.,[2006; Li et al.,[2018), where OW; = a; - (1 — &;) + (1 — a;) - é;, and
(4i7) the standard RCT Uniform assumption. Note that this modeling approach requires fitting over
the entire dataset, thus has no inference capability.

Accelerated Failure Time (AFT) We implement IPM regularized neural-based log-Normal and
Weibull AFT baselines. Both approaches have a desirable closed form Sj, ¢ (t,|x), thus enabling
maximum likelihood based estimation, where

—LETT 2 B 50 a)pysx.a) [0 108 faa(talz) + (1 —0) -log Spa(talz)] . (13)

The log-Normal mean and variance parameters are learned such that, logt, = pp e(h(r,a)) + €,
where ¢ ~ N(0,07 4(h(r,a))) and r = ®(x). Further, we learn the Weibull scale and shape

parameters, where t, = A\ o(h(r,a)) - (—log U)(kh”“l’(h(r’a))r1 and U ~ Uniform(0,1). We
regularize (13)) with the IPM loss, for maximum likelihood optimization.

Semi-supervised regression (SR) To demonstrate the effectiveness of our flow-based uncertainty
estimation approach we contrast CSA with a deterministic accuracy objective from Chapfuwa et al.
(2018)), where t, = h(r,a) and:

‘C%‘R £ E(y,é,w,a)wp(y,(S,X,A) [6 : (|y - t(l|) + (1 - 6) : (maX(Ov Yy — ta))] ) (14)
where (I4) is regularized according to the IPM loss.

Survival Bayesian additive regression trees (Surv-BART) Surv-BART (Sparapani et al.,|[2016) is

a nonparametric tree-based approach for estimating individualized survivals S (t,(f ) | X = z) (defined
at pre-specified J time-horizons) from an ensemble of regression trees. Note, Surv-BART does not
adjust for both selection bias and informative censoring. While, we fit two separate models based on
factual treatment and control data, causal metrics are estimated with both factual and counterfactual
predictions.

4 EXPERIMENTS

4.1 GENERATING ATCG-SYNTHETIC DATASET

The ACTG-SYNTHETIC, is a semi-synthetic dataset based on ACTG covariates (Hammer et al.| [1996).
We simulate potential outcomes according to a Gompertz-Cox distribution (Bender et al.| [2005))
with selection bias from a simple logistic model for P(A = 1|X = z) and AFT-based censoring
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Table 1: Performance comparisons on ACTG data, with 95% HR(¢) confidence interval. Test set NN
assignment of ycr and dcr yields unbiased ground truth estimator HR(t) = 0.54(0.51,0.61)» since

study is a RCT.

mechanism. Below is our generative scheme:

where {84, a4, A4, b, a,n, 11c, 0.} are hyper-parameters and {agE, Lcpao } are the means for age

P(A=1X =)

X = ACTG covariates

Method Causal Factual

HR(t) | C-Index (A=0, A=1) Mean COV C-Slope (A=0, A=1)
CoxPH-Uniform 0.49(0.38,0.64) NA NA NA
CoxPH-IPW 0.49(0.36,0.68) NA NA NA
CoxPH-OW 0. 49(0 36,0.68) NA NA NA
Surv-BART 3.93(3.93,4.90) (0.665, 0.845) 0.001 (0.394, 0.517)
AFT-Weibull 0.53(0.53,0.53) (0.53,0.351) 3.088 (0.847,0.813)
AFT-log-Normal 3.75(3.75,3.75) (0.717, 0.619) 7.995 (0.847, 0.321)
SR 0.21(9.21,0.28) (0.628, 0.499) 0 (1.388, 0.442)

" CSA (proposed) ~ | 0. 637(01,97 06s) | (0.831,0.814)  ~ ~ 0.132° ~ ~  (1.042,1.129)

CSA-INFO (proposed) | 0.6(0.54,0.66) (0.786, 0.822) 0.13 (0.875, 0.938)

1
=— X (a+ 0 (n(AGE — page + CD40 — picpao)))

b

1
Ty=—1log|l—

A

log C' ~ Normal(p..,
Y =min(T4, C),

agloglU

Aaexp (xTB4) ]’

o2)

U ~ Uniform(0, 1)

0=1ifTy <C,elsed =0,

and CD40 respectively. This semi-synthetic dataset will made publicly available.

4.2 QUANTITATIVE RESULTS

See Table[T] for additional quantitative comparisons on ACTG dataset.

4.3 QUALITATIVE RESULTS

Figure 1: Inferred population HR(¢) comparisons on (a) ACTG and (b) FRAMINGHAM datasets.

F1gureldemonstrates model comparlsons across of population hazard, HR(¢), on ACTG and FRAM-
INGHAM datasets. Figure[2] summarizes the positive and negative covariate statistics from the isolated
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extreme top and bottom quantiles on FRAMINGHAM datasets.
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age6  ascvd_hxé bmi6  bpmeds6 chols dbpé diabé female age6 ascvd_hx6 bmi6  bpmeds6 chols dbp6 diab female
count 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 count 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000
mean 55558140 0069767 29.326328 0317820 202147287 75922481  0.116279 0465116 mean 60666667 0139535 26.375823 0286822 197.581395 71627907 0046512  0.604651
std 9412348 0255748 4800124 0467448 40368053  7.184632 0321809  0.500726 std 10185263 0347855 5325558 0454041 28.029197 11657260 0211411  0.490832
min 35000000 0000000 20777429  0.000000 118.000000 55000000 ~ 0.000000  0.000000 min  37.000000 0000000 17.676632  0.000000 118.000000 49.000000  0.000000  0.000000
25% 50.000000  0.000000 25995640  0.000000 176.000000 71.000000  0.000000  0.000000 25% 53.000000 0.000000 22.687889  0.000000 180.000000 62000000  0.000000  0.000000
50% 54000000 0000000 28835150 0000000 196.000000 76.000000  0.000000  0.000000 50% 60.000000  0.000000 25285077  0.000000 198.000000 70000000  0.000000  1.000000
75% 61.000000  0.000000 31847777  1.000000 225000000 80.000000  0.000000  1.000000 75% 69.000000 0000000 29.230393  1.000000 217.000000 81.000000  0.000000  1.000000
max 84000000  1.000000 45135681  1.000000 312.000000 100.000000  1.000000  1.000000 max 78000000 1000000 45992112  1.000000 290.000000 105.000000  1.000000  1.000000
glucs hdls  pad_hx6 sbp6  smokes stk hx6  mi_hx6 triglys glucs hdi5  pad_hx6 sbps  smokes stk hx6  mihx6 trigly5
count 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 count 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000 129.000000
mean 102201550 43953488  0.007752 123.782046  0.170543  0.015504  0.038760 164.139535 mean 96.023256 58550888  0.054264 128.007752 0217054  0.046512  0.054264 119.937984
std 34450912 11.543979 0088045 13.923879 0377575  0.124027  0.193774 78.358625 std 16391912 16147253 0227420 22.184417 0413847 0211411 0227420 133107261
min 75000000 26.000000  0.000000 ~ 99.000000  0.000000 ~ 0.000000  0.000000  46.000000 min  48.000000 22.000000  0.000000 88.000000  0.000000  0.000000  0.000000  33.000000
25% 90.000000 35.000000  0.000000 114.000000  0.000000 ~ 0.000000  0.000000 119.000000 25% 88.000000 49.000000  0.000000 111.000000  0.000000  0.000000  0.000000  63.000000
50%  95.000000  43.000000 ~ 0.000000 122.000000 ~ 0.000000 ~ 0.000000  0.000000 143.000000 50% 95.000000 59.000000  0.000000 126.000000  0.000000  0.000000  0.000000  87.000000
75% 103.000000  50.000000  0.000000 131.000000  0.000000  0.000000  0.000000 200.000000 75% 101.000000 69.000000  0.000000 140.000000  0.000000  0.000000  0.000000  109.000000
max 289.000000 95.000000 ~ 1.000000 170.000000 ~ 1.000000  1.000000  1.000000 468.000000 max 228.000000 101.000000 ~ 1.000000 214.000000  1.000000  1.000000  1.000000 1149.000000

(a) FRAMINGHAM HR(¢|x) < 0.024 (b) FRAMINGHAM HR(t|z) > 1.916

Figure 2: Covariate statistics for top (a) and bottom (b) quantiles, of the median log HR(¢|x) values
for the test set of FRAMINGHAM.

4.4 ARCHITECTURE OF THE NEURAL NETWORK

We detail the architecture of neural-based methods, namely, baselines (AFT-log-Normal, AFT-
Weibull, SR) and our proposed methods (CSA and CSA-INFO). All methods are trained using one
NVIDIA P100 GPU with 16GB memory. In all experiments we set the minibatch size M = 200,
Adam optimizer with the following hyperparameters: learning rate 3 x 10~*, first moment 0.9,
second moment 0.99, and epsilon 1 x 10~%. Further, all network weights are initialed according to
Uniform(—0.01,0.01). Datasets are split into training, validation and test sets according to 70%,
15% and 15% partitions, respectively, stratified by event and treatment proportions. The validation
set is used for hyperparameter search and early stopping. All hidden units in {h4(-),va(+)}, are
characterized by Leaky Rectified Linear Unit (ReLU) activation functions, batch normalization and
dropout probability of p = 0.2 on all layers. The output layers of predicted times {74, C'4 } have an
additional exponential transformation.

Encoder The encoding function ®(-) for mapping r = ®(z) is shared among all the neural based
methods (proposed and baselines) and specified in terms of two-layer MLPs of 100 hidden units.

0 32 7 H . B0 12 7

g ha AN 60 ®
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(a) AFT-log-Normal (b) AFT-Weibull (¢) SR

Figure 3: Decoding architecture of baselines.
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Figure 4: Decoding architecture of proposed methods.

Decoder Figure 3] shows the architectural details of the baselines, where the decoding function
ha(-) is specified in terms of two-layer MLPs of 100 hidden units. Further, the proposed planar
flow based methods shown in Figure {4} are comprised of two-layer MLPS for {h(-),va(:)} of
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dimensions [100,200]. Moreover, the hidden layers {hff)7 Vf)}, take as input the concatenated
[hfj), €x) and [Vﬁ,l), €,] respectively. Finally, we set the planar flow dimensions for both {€,, €5} to

100.
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