NanoBaseLib: A Multi-Task Benchmark Dataset for Nanopore Sequencing *Supplementary Material*

Guangzhao Cheng¹ Chengbo Fu¹ Lu Cheng^{1,2,∗}

¹ Department of Computer Science, Aalto University, Finland ² Institute of Biomedicine, University of Eastern Finland, Finland

Contents

[∗]Correspondence to: lu.cheng.ac@gmail.com.

1 Dataset Checklist

- 1. Submission introducing new datasets must include the following in the supplementary materials:
	- (a) Dataset documentation and intended uses. Recommended documentation frameworks include datasheets for datasets, dataset nutrition labels, data statements for NLP, and accountability frameworks. A: Available on the dataset website ([https:](https://nanobaselib.github.io/dataset.html) [//nanobaselib.github.io/dataset.html](https://nanobaselib.github.io/dataset.html)).
	- (b) URL to website/platform where the dataset/benchmark can be viewed and downloaded by the reviewers. A: The raw data download instruction: [https://nanobaselib.](https://nanobaselib.github.io/raw.html) [github.io/raw.html](https://nanobaselib.github.io/raw.html). The benchmarks and processed datasets are available at <https://doi.org/10.5281/zenodo.10889896>.
	- (c) URL to Croissant metadata record documenting the dataset/benchmark available for viewing and downloading by the reviewers. You can create your Croissant metadata using e.g. the Python library available here: https://github.com/mlcommons/croissant A: NA.
	- (d) Author statement that they bear all responsibility in case of violation of rights, etc., and confirmation of the data license. A: Yes.
	- (e) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as long as you ensure access to the data (possibly through a curated interface) and will provide the necessary maintenance. A: The dataset is hosted on Zenodo. The website is hosted on GitHub, where it will be maintained and regularly updated.
- 2. To ensure accessibility, the supplementary materials for datasets must include the following:
	- (a) Links to access the dataset and its metadata. This can be hidden upon submission if the dataset is not yet publicly available but must be added in the camera-ready version. In select cases, e.g when the data can only be released at a later date, this can be added afterward. Simulation environments should link to (open source) code repositories. A: <https://nanobaselib.github.io> or [https://doi.org/10.5281/zenodo.](https://doi.org/10.5281/zenodo.10889896) [10889896](https://doi.org/10.5281/zenodo.10889896).
	- (b) The dataset itself should ideally use an open and widely used data format. Provide a detailed explanation on how the dataset can be read. For simulation environments, use existing frameworks or explain how they can be used. A: Available on the dataset website.
	- (c) Long-term preservation: It must be clear that the dataset will be available for a long time, either by uploading to a data repository or by explaining how the authors themselves will ensure this. A: Zenodo is a long-time storage open repository.
	- (d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an open source license for code (e.g. RL environments). A: The processed dataset is licensed under CC BY license.
	- (e) Add structured metadata to a dataset's meta-data page using Web standards (like schema.org and DCAT): This allows it to be discovered and organized by anyone. If you use an existing data repository, this is often done automatically. A: The dataset structure is available on the dataset website ([https://nanobaselib.github.io/](https://nanobaselib.github.io/dataset.html) [dataset.html](https://nanobaselib.github.io/dataset.html)).
	- (f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g. GitHub, GitLab,...) for code. If this is not possible or useful, please explain why. A: DOI: <10.5281/zenodo.10889896>.
- 3. For benchmarks, the supplementary materials must ensure that all results are easily reproducible. Where possible, use a reproducibility framework such as the ML reproducibility checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary datasets, code, and evaluation procedures must be accessible and documented. A: The code for the benchmarks is available at GitHub ([https://github.com/nanobaselib/](https://github.com/nanobaselib/NanoBaseLib) [NanoBaseLib](https://github.com/nanobaselib/NanoBaseLib)).
- 4. For papers introducing best practices in creating or curating datasets and benchmarks, the above supplementary materials are not required. A: NA.

2 Appendix Figures

Figure 1: NanoBaseLib dataset processing workflow.

Figure 2: Illustration of the single fast5 file. The top panel displays the raw signal, while the bottom panel presents some meta information.

Figure 3: Illustration of Base Calling (BC) task ground truth acquisition. We perform base calling (using Guppy v6.0.1) firstly, then align the base-called sequence with the reference genome and run Nanopolish "eventalign". Finally, we extract the matched raw signal segments and reference sequence fragments as the ground truth.

Figure 4: PolyA tail length distribution on test dataset ont_polya_standard. The black line and the numbers (10, 15, 30, 60, 80, 100) represent the ground truth. The results are based on Nanopolish (v0.14), Tailfindr (v1.4), and Dorado (v0.5.3).

contig		position reference kmer read index		strand		event index event level mean event stdv event length			model kmer	model mean	model stdv	standardized level start idx end idx		
JU00096.31	0	ATGTCC			81	71.02	0.582	0.00075	ATGTCC	81.5	2.83	-2.81	429	432
1000096.31	Ω	ATGTCC			82	73.3	0.793	0.00075	ATGTCC	81.5	2.83	-2.20	432	435
JU00096.31	Ω	ATGTCC			83	72.07	0.22	0.00075	ATGTCC	81.5	2.83	-2.53	435	438
IU00096.31	Ω	ATGTCC			84	73.07	0.855	0.001	ATGTCC	81.5	2.83	-2.26	438	442
JU00096.31	Ω	ATGTCC			85	70.4	0.634	0.00125	NNNNNN	$^{\circ}$	$^{\circ}$	inf	442	447
1000096.31		TCCGTA			86	94.26	4.994	0.00175	TCCGTA	91.55	2.13	0.97	447	454
IU00096.31		CCGTAG			87	76.73	1.508	0.0015	CCGTAG	81.09	2.14	-1.55	454	460
IU00096.31		CCGTAG			88	79.92	0.876	0.00075	CCGTAG	81.09	2.14	-0.42	460	463
JU00096.31		CCGTAG			89	77.17	0.465	0.00075	CCGTAG	81.09	2.14	-1.39	463	466
1000096.31		CCGTAG	л		90	78.36	2.252	0.00225	CCGTAG	81.09	2.14	-0.97	466	475
1000096.31		CGTAGA			91	99.58	2.077	0.00075	CGTAGA	104.43	2.78	-1.33	475	478
1000096.31		CGTAGA			92	100.22	2.018	0.002	CGTAGA	104.43	2.78	-1.15	478	486
1000096.31	ь.	GTAGAA	а		93	84.06	0.786	0.00125	GTAGAA	89.37	2.32	-1.74	486	491
blU00096.31:		TAGAAA			94	81.43	1.959	0.00125	TAGAAA	80.56	1.83	0.36	491	496

Figure 5: Illustration of Nanopolish "eventalign" output

Figure 6: Illustration of segmentation and event alignment.

Figure 7: m5C modification detection benchmark on test dataset ecoli_eligos (IVT_m5C and IVT_normalC).

3 Appendix Tables

Dataset	Accession	Sample	Kit	Flowcell
ont_polya_standard	PRJEB28423	10xpolyA 15xpolyA 30xpolyA 60xpolyA 80xpolyA 100xpolyA	rna001 rna001 rna001 rna001 rna001 rna001	flo-min106 $flo-min106$ flo-min106 flo-min106 flo-min106 flo-min106
eGFP_polyA_DNA	PRJEB31806	dna_rep1_sqklsk108_flipflop dna_rep2_sqklsk109_flipflop	lsk108 lsk109	flo-min106 flo-min106
eGFP_polyA_RNA	PRJEB31806	rna_rep1_sqkrna001_plus_rt rna_rep2_sqkrna001_plus_rt rna_rep3_sqkrna002_minus_rt	rna001 rna001 rna002	flo-min106 flo-min106 flo-min106
lambda_phage	PRJNA926802	VER5940	lsk109	flo-flg001
NA12878	PRJEB23027	FAB42828 FAF04090 FAF09968	lsk108 lsk108 lsk108	flo-min106 flo-min106 flo-min106
curlcake	PRJNA511582	m6A-mod-rep1 m6A-mod-rep2 non-mod-rep1 non-mod-rep2	rna001 rna001 rna001 rna001	flo-min106 flo-min106 flo-min106 flo-min106
scBY4741 m5C	PRJNA563591	m5C_modified	rna001	flo-min106
scBY4741_hm5C	PRJNA548268	hm5C_modified	rna001	flo-min106
$scBY4741_pU$	PRJNA549001	pU_modified	rna001	flo-min106
hct116	PRJEB44348	HCT-WT-rep1 HCT-WT-rep2 HCT-WT-rep3	rna002 rna002 rna002	flo-min106 flo-min106 flo-min106
hek293t_wt	PRJEB40872	HEK293T-WT-rep1 HEK293T-WT-rep2 HEK293T-WT-rep3	rna001 rna002 rna002	flo-min106 flo-min106 $flo-min106$
hek293t ko	PRJEB40872	HEK293T-WT-rep1 HEK293T-WT-rep2 HEK293T-WT-rep3	rna001 rna002 rna002	flo-min106 flo-min106 flo-min106
mESCs_eligos	PRJNA497103	mESCs_Mettl3_WT mESCs_Mettl3_KO	rna002 rna002	flo-min106 flo-min106
ecoli_eligos	PRJNA497103	IVT_Inosine IVT_m5C IVT_m6A IVT_normalA IVT_normalC	rna002 rna002 rna002 rna002 rna002	$flo-min106$ flo-min106 flo-min106 flo-min106 flo-min106
dinopore_ivt	SRP363295	gBlock_pureI gBlock G	rna001 rna001	flo-min106 flo-min106
dinopore_xenopus	SRP363295	rep3_stage1_20200812 rep3_stage1_20201005 rep3_stage9_20200812 rep3_stage9_20201008	rna002 rna002 rna002 rna002	$flo-min106$ flo-min106 flo-min106 flo-min106

Table 1: NanoBaseLib dataset comprehensive information.

Dataset	Type	Sample	#Reads	Avg. L_{signal}	Avg. L_{base}
ont_polya_standard	RNA	10xpolyA 15xpolyA 30xpolyA 60xpolyA 80xpolyA 100xpolyA	92,428 91,084 63,886 108,314 409,634 279,895	59001.85 56518.49 54111.54 57397.07 47166.28 61938.01	1207.22 1216.28 1192.65 1172.57 859.32 1173.39
eGFP_polyA_DNA	cDNA	dna_rep1_sqklsk108_flipflop dna_rep2_sqklsk109_flipflop	484,000 280,428	8956.69 21619.23	763.46 1667.14
eGFP_polyA_RNA	RNA	rna_rep1_sqkrna001_plus_rt rna_rep2_sqkrna001_plus_rt rna rep3_sqkrna002_minus_rt	922,826 1,452,042 592,571	57068.67 50103.37 30888.61	1126.53 928.41 465.02
lambda_phage	DNA	VER5940	113,514	116272.62	9561.99
NA12878	DNA	FAB42828 FAF04090 FAF09968	33,633 62,833 21,947	131148.91 509826.89 334920.97	6810.35 17801.22 53615.01
curlcake	RNA	m6A-mod-rep1 m6A-mod-rep2 non-mod-rep1 non-mod-rep2	134,374 638,860 66,736 846,595	69745.77 58341.88 57930.60 61719.51	850.16 835.01 866.98 1066.53
scBY4741_m5C	RNA	m5C_modified	415,453	40792.42	539.89
scBY4741_hm5C	RNA	hm5C_modified	111,015	81528.20	1022.88
$scBY4741_pU$	RNA	pU_modified	42,386	46652.89	475.18
hct116	RNA	HCT-WT-rep1 HCT-WT-rep2 HCT-WT-rep3	987,488 1,015,893 1,673,394	66363.12 57524.51 65628.29	1217.43 1023.03 1153.23
hek293t_wt	RNA	HEK293T-WT-rep1 HEK293T-WT-rep2 HEK293T-WT-rep3	1,040,661 1,396,000 513,561	60169.77 54077.71 56785.55	939.80 1077.61 1005.06
hek293t_ko	RNA	HEK293T-WT-rep1 HEK293T-WT-rep2 HEK293T-WT-rep3	1,490,210 1,815,589 1,677,075	58140.70 52569.78 50185.96	952.63 993.85 970.32
mESCs_eligos	RNA	mESCs_Mettl3_WT mESCs_Mettl3_KO	3,163,286 1,527,561	33202.35 28350.74	526.23 437.70
ecoli_eligos	RNA	IVT_Inosine IVT_m5C IVT_m6A IVT_normalA IVT_normalC	811,953 573,674 1,482,437 383,209 452,806	32978.04 45397.06 41642.13 33499.75 44566.76	845.43 719.52 708.29 620.83 731.75
dinopore_ivt	RNA	gBlock_pureI gBlock_G	165,628 150,405	29869.74 32047.08	450.32 641.17
dinopore_xenopus	RNA	rep3_stage1_20200812 rep3_stage1_20201005 rep3_stage9_20200812 rep3_stage9_20201008	1,451,289 1,812,200 1,560,032 1,251,130	46688.45 27213.72 44621.79 31185.45	917.23 532.63 894.37 448.15

Table 2: NanoBaseLib dataset statistics. Avg. L_{signal} represents the average raw current signal length. Avg. L_{base} represents the average base sequence length, which are from Guppy 6.0.1.

Task	Input	Output	Category	Typical Model
Base calling (BC)	Raw current signal sequence	Nucleotide sequence	Supervised Learning, Generative Model	$CNN + LSTM + CTC-CRF[1]$ UNet + GRU + CE $[2]$ $CNN + Transfer + CTC$ [3] ResNet CNN + CTC $[4]$
PolyA detection (PD)	Raw current signal sequence	PolyA tail length and borders	Unsupervised or Supervised Learning, Predictive Model	Hidden Markov model ^[5,6]
Segmentation and event alignment (SA)	Raw signal and reference sequence	Event alignment results	Unsupervised Learning, Predictive Model	Hidden Markov model [7, 8]
Modification detection (MD)	Event alignment results	Modification probability for each site & read	Supervised Learning, Predictive Model, Multiple Instance Learning	SVM [9] CNN [10]

Table 3: NanoBaseLib task overview.

Table 4: Data preprocessing software overview and limitations.

Table 5: ONT basecaller configuration parameters

4 Appendix Methods

4.1 Pros and Cons of Nanopore Sequencing

Pros. Compared with Illumina sequencing, Nanopore sequencing has three advantages. First, it sequences long reads (10-100 kb), where a "read" refers to a measured DNA/RNA sequence composed of the nucleotide bases adenine (A), cytosine (C), guanine (G), thymine (T) or uracil (U). The read length of Illumina sequencing is less than 300 bp, which is \sim 1% of a long read. Long reads greatly facilitate genome assembly by reducing ambiguities in the genome backbone, especially in repetitive genomic regions. Second, the sequencing library preparation is generally simpler than second-generation sequencing, which makes it ideal for pathogen surveillance in wild environments. Third, the current signals directly carry chemical information on DNA and RNA molecules, e.g., DNA/RNA modifications, which makes it perfect for epi-genetic applications, such as epi-genetic disease studies [\[11\]](#page-11-10), RNA structures [\[12\]](#page-11-11), and mRNA vaccine development [\[13\]](#page-11-12).

Cons. The most significant disadvantage of Nanopore sequencing compared with Illumina sequencing is its low accuracy in base calling. The average base calling accuracy of Nanopore RNA sequencing is around 90% [\[14\]](#page-11-13), while the accuracy is 99.9% for Illumina cDNA sequencing [\[15\]](#page-11-14). This makes Nanopore sequencing not ideal for many classic biological applications, e.g., detection of single nucleotide variants (SNVs). The costs of Nanopore sequencing are higher than Illumina sequencing, while the throughput is lower. Also, current methods could not provide a satisfactory alignment of the raw current signal and the reference sequences, which limits its performance in DNA/RNA modification estimation. In short, there is plenty of room for improvement in various computational tasks of Nanopore sequencing data analysis. We believe these disadvantages could be overcome by developing new machine learning models.

4.2 Raw signal processing and normalization

Appendix Figure [2](#page-3-0) illustrates the structure of a single-fast5 file from Nanopore sequencing. In the above panel, the "Signal" data represents the raw current passing through the pore (type: int16). Oxford Nanopore Technology employs different pores (proteins) in various products. A single flow cell in the sequencing device can contain between 512 and 2675 pores, each referred to as a channel. As shown in the below panel, the fast5 file also includes attributes associated with the channel through which the read passes. These parameters include channel_number (the channel number from which the read was acquired), digitisation (the digitisation is the number of quantisation levels in the Analog to Digital Converter (ADC)), offset (the ADC offset error), range (the full scale measurement range in pico amperes), and sampling_rate (sampling frequency of the ADC).

The raw signal can be converted into pico Ampere (pA) values using attributes available in the channel_id group by the equation:

$$
signal_in_pico_ampere = \frac{(raw_signal_value + offset) \times range}{digitisation}.
$$
 (1)

To improve the accuracy of analyses for various downstream tasks, some tools aim to further standardize or normalize the signal (pA).

Tombo. Tombo uses median shift and MAD (median absolute deviation) scale parameters to normalize the signal [\[16\]](#page-11-15):

$$
norm_signal = \frac{signal_in_pico_ampere - median}{MAD}.\tag{2}
$$

Nanopolish. For each read, Nanopolish estimates a scale parameter to standardize the signal. You can add the --scale-events option in the nanopolish eventalign command to enable this feature [\[5\]](#page-11-4).

SegPore. SegPore first detects the polyA tail and calculates its mean (μ_{polyA}) and standard deviation (σ_{poluA}) . These values are then used to standardize the signal [\[7\]](#page-11-6):

$$
stand_signal = \frac{signal_in_pico_ampere - \mu_{polyA}}{\sigma_{polyA}} \times \sigma_{stand_polyA} + \mu_{stand_polyA}
$$
 (3)

where the μ_{stand_polyA} and σ_{stand_polyA} represent the mean and standard deviation of the kmer "AAAAA" from ONT's standard kmer table [\[17\]](#page-11-16).

4.3 Segmentation and event alignment

Appendix Figure [5](#page-5-0) is an example of the Nanopolish eventalign output, which illustrates the segmentation and event alignment results. Each line represents an "event", which contains mapped chromosome/transcript t (contig), the location on the chromosome/transcript p (position), the corresponding k mer s (reference_kmer), the estimated mean of this "event" $\mu_s^{(est)}$ (event_level_mean), the estimated std of this "event" $\sigma_s^{(est)}$ (event_stdv), model_mean, model_stdv, and other information. Columns model_mean and model_stdv are from a standard kmer parameter table, which is provided by ONT [\[17\]](#page-11-16). This kmer table contains the standard mean $\mu_s^{(ref)}$ and std $\sigma_s^{(ref)}$ for each kmer s. For example, the standard mean is 81.5 and std is 2.83 for kmer ATGTCC (Row 1∼ 4 in Appendix Figure [5\)](#page-5-0).

Given the eventalign results, we use two metrics to evaluate the performance of the segmentation and event alignment task: (1) the average std $\hat{\sigma}$, and (2) the average log-likelihood \hat{L} . Assuming there are N reads in total, and the nth read has K_n events. We denote the kth event of the nth read by $e_{n,k}$ = $(t_{n,k}, p_{n,k}, s_{n,k}, \mu_{s_{n,k}}^{(est)}, \sigma_{s_{n,k}}^{(est)}, \mu_{s_{n,k}}^{(ref)}, \sigma_{s_{n,k}}^{(ref)}, \cdots)$, where $t_{n,k}$ is the mapped chromosome/transcript, $p_{n,k}$ is the mapped genomic location, $s_{n,k}$ is the corresponding kmer. The average std $\hat{\sigma}$ is defined as

$$
\hat{\sigma} = \frac{1}{N} \sum_{n=1}^{N} \left\{ \frac{1}{K_n} \sum_{k=1}^{K_n} \sigma_{s_{n,k}}^{(est)} \right\}
$$
(4)

and the average log-likelihood \hat{L} is defined as

$$
\hat{L} = \frac{1}{N} \sum_{n=1}^{N} \left\{ \frac{1}{K_n} \sum_{k=1}^{K_n} \log \mathcal{N} \left(\mu_{s_{n,k}}^{(est)} | \mu_{s_{n,k}}^{(ref)}, \sigma_{s_{n,k}}^{(ref)} \right) \right\}
$$
(5)

As shown in Appendix Figure [6,](#page-5-1) the red line represents the event mean $\mu_k^{(est)}$ $k^{(est)}$ and the shaded area represents the std $\sigma_k^{(est)}$ $\binom{est}{k}$ for event k. A poorly segmented raw signal corresponding to an event will exhibit a large standard deviation. Therefore, a smaller $\hat{\sigma}$ indicates lower variations within the raw signal segment, signifying better performance.

If an event is aligned to the correct reference kmer, the mean $\mu_{n,k}^{(est)}$ will be close to the reference $\mu_{s_{n,k}}^{(ref)}$ and the log-likelihood \hat{L} will be large. So higher \hat{L} means more similar results to ONT's estimates and better performances.

4.4 Potential negative societal impact

All raw datasets were collected from public resources, and we only preprocessed them using a standard pipeline. However, the datasets could still be exploited for unforeseen purposes, such as commercialization. In which, the anonymized genetic data might be used by companies to develop targeted products, potentially compromising privacy or leading to social inequities, like expensive drugs limited to specific populations. Additionally, the data might be repurposed for unintended research, possibly contradicting the original data providers' intent or causing societal harm.

References

- [1] Oxford Nanopore Technologies. Bonito: A pytorch basecaller for oxford nanopore reads, . <https://github.com/nanoporetech/bonito> (visited: 2024-05-25).
- [2] Yao-zhong Zhang, Arda Akdemir, Georg Tremmel, Seiya Imoto, Satoru Miyano, Tetsuo Shibuya, and Rui Yamaguchi. Nanopore basecalling from a perspective of instance segmentation. *BMC bioinformatics*, 21:1–9, 2020.
- [3] Neng Huang, Fan Nie, Peng Ni, Feng Luo, and Jianxin Wang. Sacall: a neural network basecaller for oxford nanopore sequencing data based on self-attention mechanism. *IEEE/ACM transactions on computational biology and bioinformatics*, 19(1):614–623, 2020.
- [4] Neven Miculinić, Marko Ratković, and Mile Šikić, Mincall-minion end2end convolutional deep learning basecaller. *arXiv preprint arXiv:1904.10337*, 2019.
- [5] Jared T Simpson, Rachael E Workman, PC Zuzarte, Matei David, LJ Dursi, and Winston Timp. Detecting dna cytosine methylation using nanopore sequencing. *Nature methods*, 14(4): 407–410, 2017.
- [6] Maximilian Krause, Adnan M Niazi, Kornel Labun, Yamila N Torres Cleuren, Florian S Müller, and Eivind Valen. tailfindr: alignment-free poly (a) length measurement for oxford nanopore rna and dna sequencing. *RNA*, 25(10):1229–1241, 2019.
- [7] Guangzhao Cheng, Aki Vehtari, and Lu Cheng. Raw signal segmentation for estimating rna modification from nanopore direct rna sequencing data. *bioRxiv*, 2024. doi: 10.1101/2024.01. 11.575207.
- [8] Haotian Teng, Marcus Stoiber, Ziv Bar-Joseph, and Carl Kingsford. Detecting m6a rna modification from nanopore sequencing using a semi-supervised learning framework. *bioRxiv*, pages 2024–01, 2024.
- [9] Huanle Liu, Oguzhan Begik, Morghan C Lucas, Jose Miguel Ramirez, Christopher E Mason, David Wiener, Schraga Schwartz, John S Mattick, Martin A Smith, and Eva Maria Novoa. Accurate detection of m6a rna modifications in native rna sequences. *Nature communications*, 10(1):4079, 2019.
- [10] Christopher Hendra, Ploy N Pratanwanich, Yuk Kei Wan, WS Sho Goh, Alexandre Thiery, and Jonathan Göke. Detection of m6a from direct rna sequencing using a multiple instance learning framework. *Nature methods*, 19(12):1590–1598, 2022.
- [11] Junjie Zhang, Shuilian Xie, Jingxiang Xu, Hui Liu, and Shaogui Wan. Cancer biomarkers discovery of methylation modification with direct high-throughput nanopore sequencing. *Frontiers in Genetics*, 12:672804, 2021.
- [12] William Stephenson, Roham Razaghi, Steven Busan, Kevin M Weeks, Winston Timp, and Peter Smibert. Direct detection of rna modifications and structure using single-molecule nanopore sequencing. *Cell genomics*, 2(2), 2022.
- [13] Kellie D Nance and Jordan L Meier. Modifications in an emergency: the role of n1 methylpseudouridine in covid-19 vaccines. *ACS central science*, 7(5):748–756, 2021.
- [14] Wang Liu-Wei, Wiep van der Toorn, Patrick Bohn, Martin Hölzer, Redmond Smyth, and Max von Kleist. Sequencing accuracy and systematic errors of nanopore direct rna sequencing. *bioRxiv*, pages 2023–03, 2023.
- [15] Nicholas Stoler and Anton Nekrutenko. Sequencing error profiles of illumina sequencing instruments. *NAR genomics and bioinformatics*, 3(1):lqab019, 2021.
- [16] Oxford Nanopore Technologies. Tombo re-squiggle algorithm, . [https://nanoporetech.](https://nanoporetech.github.io/tombo/resquiggle.html) [github.io/tombo/resquiggle.html](https://nanoporetech.github.io/tombo/resquiggle.html) (visited: 2024-05-25).
- [17] Oxford Nanopore Technologies. K-mer models, . [https://github.com/nanoporetech/](https://github.com/nanoporetech/kmer_models) [kmer_models](https://github.com/nanoporetech/kmer_models) (visited: 2024-05-25).