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1 Dataset Checklist
1. Submission introducing new datasets must include the following in the supplementary

materials:
(a) Dataset documentation and intended uses. Recommended documentation frame-

works include datasheets for datasets, dataset nutrition labels, data statements for
NLP, and accountability frameworks. A: Available on the dataset website (https:
//nanobaselib.github.io/dataset.html).

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded
by the reviewers. A: The raw data download instruction: https://nanobaselib.
github.io/raw.html. The benchmarks and processed datasets are available at
https://doi.org/10.5281/zenodo.10889896.

(c) URL to Croissant metadata record documenting the dataset/benchmark available for
viewing and downloading by the reviewers. You can create your Croissant metadata
using e.g. the Python library available here: https://github.com/mlcommons/croissant
A: NA.

(d) Author statement that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license. A: Yes.

(e) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as
long as you ensure access to the data (possibly through a curated interface) and will
provide the necessary maintenance. A: The dataset is hosted on Zenodo. The website
is hosted on GitHub, where it will be maintained and regularly updated.

2. To ensure accessibility, the supplementary materials for datasets must include the following:
(a) Links to access the dataset and its metadata. This can be hidden upon submission if the

dataset is not yet publicly available but must be added in the camera-ready version. In
select cases, e.g when the data can only be released at a later date, this can be added
afterward. Simulation environments should link to (open source) code repositories.
A: https://nanobaselib.github.io or https://doi.org/10.5281/zenodo.
10889896.

(b) The dataset itself should ideally use an open and widely used data format. Provide
a detailed explanation on how the dataset can be read. For simulation environments,
use existing frameworks or explain how they can be used. A: Available on the dataset
website.

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,
either by uploading to a data repository or by explaining how the authors themselves
will ensure this. A: Zenodo is a long-time storage open repository.

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or
an open source license for code (e.g. RL environments). A: The processed dataset is
licensed under CC BY license.

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like
schema.org and DCAT): This allows it to be discovered and organized by anyone. If
you use an existing data repository, this is often done automatically. A: The dataset
structure is available on the dataset website (https://nanobaselib.github.io/
dataset.html).

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by
a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.
GitHub, GitLab,...) for code. If this is not possible or useful, please explain why. A:
DOI: 10.5281/zenodo.10889896.

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-
ducible. Where possible, use a reproducibility framework such as the ML reproducibility
checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary
datasets, code, and evaluation procedures must be accessible and documented. A: The
code for the benchmarks is available at GitHub (https://github.com/nanobaselib/
NanoBaseLib).

4. For papers introducing best practices in creating or curating datasets and benchmarks, the
above supplementary materials are not required. A: NA.
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2 Appendix Figures

Download 

Raw File

ont_fast5_api

• single-fast5

• multi-fast5

• pod5

All datasets are 

converted into the 

multi-fast5 format.

Guppy 
Convert the raw 

signal into nucleotide

sequence.

minimap2
Map the base called 

reads to the reference 

genome.

Tailfindr

Detect the polyA 

signal of each read, 

one can choose either 

software.

Step 1: Data standardization

Step 2: Base calling

Step 3: Mapping to reference

Reference

 Genome

Step 4 (optional) : 

PolyA detection

Nanopolish

polya

Nanopolish

eventalign

SegPore

eventalign

Tombo 

resquiggle

m6Anet etc.

polyA 

result file

multi-fast5 

raw data

FASTQ 

file

BAM file

Segment the raw signal 

and align the derived 

segments to the 

reference sequence 

(kmer list). 

eventalign 

result file

modification 

probability

Estimate the modification 

probability at different 

genomic sites.

Step 5 : Segmentation 

and event alignment

Step 6 (optional) : 

Modification detection

The polyA result can 

be used to filter out 

low-quality reads.

Figure 1: NanoBaseLib dataset processing workflow.
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Figure 2: Illustration of the single fast5 file. The top panel displays the raw signal, while the bottom
panel presents some meta information.

4



Base Calling 

Segmentation & Event Alignment 
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Figure 3: Illustration of Base Calling (BC) task ground truth acquisition. We perform base calling
(using Guppy v6.0.1) firstly, then align the base-called sequence with the reference genome and
run Nanopolish “eventalign”. Finally, we extract the matched raw signal segments and reference
sequence fragments as the ground truth.
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Figure 4: PolyA tail length distribution on test dataset ont_polya_standard. The black line and the
numbers (10, 15, 30, 60, 80, 100) represent the ground truth. The results are based on Nanopolish
(v0.14), Tailfindr (v1.4), and Dorado (v0.5.3).
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contig position reference_kmer read_index strand event_index event_level_mean event_stdv event_length model_kmer model_mean model_stdv standardized_level start_idx end_idx
b|U00096.3|: 0 ATGTCC 4 t 81 71.02 0.582 0.00075 ATGTCC 81.5 2.83 -2.81 429 432
b|U00096.3|: 0 ATGTCC 4 t 82 73.3 0.793 0.00075 ATGTCC 81.5 2.83 -2.20 432 435
b|U00096.3|: 0 ATGTCC 4 t 83 72.07 0.22 0.00075 ATGTCC 81.5 2.83 -2.53 435 438
b|U00096.3|: 0 ATGTCC 4 t 84 73.07 0.855 0.001 ATGTCC 81.5 2.83 -2.26 438 442
b|U00096.3|: 0 ATGTCC 4 t 85 70.4 0.634 0.00125 NNNNNN 0 0 inf 442 447
b|U00096.3|: 3 TCCGTA 4 t 86 94.26 4.994 0.00175 TCCGTA 91.55 2.13 0.97 447 454
b|U00096.3|: 4 CCGTAG 4 t 87 76.73 1.508 0.0015 CCGTAG 81.09 2.14 -1.55 454 460
b|U00096.3|: 4 CCGTAG 4 t 88 79.92 0.876 0.00075 CCGTAG 81.09 2.14 -0.42 460 463
b|U00096.3|: 4 CCGTAG 4 t 89 77.17 0.465 0.00075 CCGTAG 81.09 2.14 -1.39 463 466
b|U00096.3|: 4 CCGTAG 4 t 90 78.36 2.252 0.00225 CCGTAG 81.09 2.14 -0.97 466 475
b|U00096.3|: 5 CGTAGA 4 t 91 99.58 2.077 0.00075 CGTAGA 104.43 2.78 -1.33 475 478
b|U00096.3|: 5 CGTAGA 4 t 92 100.22 2.018 0.002 CGTAGA 104.43 2.78 -1.15 478 486
b|U00096.3|: 6 GTAGAA 4 t 93 84.06 0.786 0.00125 GTAGAA 89.37 2.32 -1.74 486 491
b|U00096.3|: 7 TAGAAA 4 t 94 81.43 1.959 0.00125 TAGAAA 80.56 1.83 0.36 491 496

Figure 5: Illustration of Nanopolish “eventalign” output
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Figure 6: Illustration of segmentation and event alignment.
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Figure 7: m5C modification detection benchmark on test dataset ecoli_eligos (IVT_m5C and
IVT_normalC).
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3 Appendix Tables

Table 1: NanoBaseLib dataset comprehensive information.
Dataset Accession Sample Kit Flowcell

ont_polya_standard PRJEB28423

10xpolyA rna001 flo-min106
15xpolyA rna001 flo-min106
30xpolyA rna001 flo-min106
60xpolyA rna001 flo-min106
80xpolyA rna001 flo-min106
100xpolyA rna001 flo-min106

eGFP_polyA_DNA PRJEB31806 dna_rep1_sqklsk108_flipflop lsk108 flo-min106
dna_rep2_sqklsk109_flipflop lsk109 flo-min106

eGFP_polyA_RNA PRJEB31806
rna_rep1_sqkrna001_plus_rt rna001 flo-min106
rna_rep2_sqkrna001_plus_rt rna001 flo-min106
rna_rep3_sqkrna002_minus_rt rna002 flo-min106

lambda_phage PRJNA926802 VER5940 lsk109 flo-flg001

NA12878 PRJEB23027
FAB42828 lsk108 flo-min106
FAF04090 lsk108 flo-min106
FAF09968 lsk108 flo-min106

curlcake PRJNA511582

m6A-mod-rep1 rna001 flo-min106
m6A-mod-rep2 rna001 flo-min106
non-mod-rep1 rna001 flo-min106
non-mod-rep2 rna001 flo-min106

scBY4741_m5C PRJNA563591 m5C_modified rna001 flo-min106

scBY4741_hm5C PRJNA548268 hm5C_modified rna001 flo-min106

scBY4741_pU PRJNA549001 pU_modified rna001 flo-min106

hct116 PRJEB44348
HCT-WT-rep1 rna002 flo-min106
HCT-WT-rep2 rna002 flo-min106
HCT-WT-rep3 rna002 flo-min106

hek293t_wt PRJEB40872
HEK293T-WT-rep1 rna001 flo-min106
HEK293T-WT-rep2 rna002 flo-min106
HEK293T-WT-rep3 rna002 flo-min106

hek293t_ko PRJEB40872
HEK293T-WT-rep1 rna001 flo-min106
HEK293T-WT-rep2 rna002 flo-min106
HEK293T-WT-rep3 rna002 flo-min106

mESCs_eligos PRJNA497103 mESCs_Mettl3_WT rna002 flo-min106
mESCs_Mettl3_KO rna002 flo-min106

ecoli_eligos PRJNA497103

IVT_Inosine rna002 flo-min106
IVT_m5C rna002 flo-min106
IVT_m6A rna002 flo-min106
IVT_normalA rna002 flo-min106
IVT_normalC rna002 flo-min106

dinopore_ivt SRP363295 gBlock_pureI rna001 flo-min106
gBlock_G rna001 flo-min106

dinopore_xenopus SRP363295

rep3_stage1_20200812 rna002 flo-min106
rep3_stage1_20201005 rna002 flo-min106
rep3_stage9_20200812 rna002 flo-min106
rep3_stage9_20201008 rna002 flo-min106
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Table 2: NanoBaseLib dataset statistics. Avg. Lsignal represents the average raw current signal
length. Avg. Lbase represents the average base sequence length, which are from Guppy 6.0.1.

Dataset Type Sample #Reads Avg. Lsignal Avg. Lbase

ont_polya_standard RNA

10xpolyA 92,428 59001.85 1207.22
15xpolyA 91,084 56518.49 1216.28
30xpolyA 63,886 54111.54 1192.65
60xpolyA 108,314 57397.07 1172.57
80xpolyA 409,634 47166.28 859.32
100xpolyA 279,895 61938.01 1173.39

eGFP_polyA_DNA cDNA dna_rep1_sqklsk108_flipflop 484,000 8956.69 763.46
dna_rep2_sqklsk109_flipflop 280,428 21619.23 1667.14

eGFP_polyA_RNA RNA
rna_rep1_sqkrna001_plus_rt 922,826 57068.67 1126.53
rna_rep2_sqkrna001_plus_rt 1,452,042 50103.37 928.41
rna_rep3_sqkrna002_minus_rt 592,571 30888.61 465.02

lambda_phage DNA VER5940 113,514 116272.62 9561.99

NA12878 DNA
FAB42828 33,633 131148.91 6810.35
FAF04090 62,833 509826.89 17801.22
FAF09968 21,947 334920.97 53615.01

curlcake RNA

m6A-mod-rep1 134,374 69745.77 850.16
m6A-mod-rep2 638,860 58341.88 835.01
non-mod-rep1 66,736 57930.60 866.98
non-mod-rep2 846,595 61719.51 1066.53

scBY4741_m5C RNA m5C_modified 415,453 40792.42 539.89

scBY4741_hm5C RNA hm5C_modified 111,015 81528.20 1022.88

scBY4741_pU RNA pU_modified 42,386 46652.89 475.18

hct116 RNA
HCT-WT-rep1 987,488 66363.12 1217.43
HCT-WT-rep2 1,015,893 57524.51 1023.03
HCT-WT-rep3 1,673,394 65628.29 1153.23

hek293t_wt RNA
HEK293T-WT-rep1 1,040,661 60169.77 939.80
HEK293T-WT-rep2 1,396,000 54077.71 1077.61
HEK293T-WT-rep3 513,561 56785.55 1005.06

hek293t_ko RNA
HEK293T-WT-rep1 1,490,210 58140.70 952.63
HEK293T-WT-rep2 1,815,589 52569.78 993.85
HEK293T-WT-rep3 1,677,075 50185.96 970.32

mESCs_eligos RNA mESCs_Mettl3_WT 3,163,286 33202.35 526.23
mESCs_Mettl3_KO 1,527,561 28350.74 437.70

ecoli_eligos RNA

IVT_Inosine 811,953 32978.04 845.43
IVT_m5C 573,674 45397.06 719.52
IVT_m6A 1,482,437 41642.13 708.29
IVT_normalA 383,209 33499.75 620.83
IVT_normalC 452,806 44566.76 731.75

dinopore_ivt RNA gBlock_pureI 165,628 29869.74 450.32
gBlock_G 150,405 32047.08 641.17

dinopore_xenopus RNA

rep3_stage1_20200812 1,451,289 46688.45 917.23
rep3_stage1_20201005 1,812,200 27213.72 532.63
rep3_stage9_20200812 1,560,032 44621.79 894.37
rep3_stage9_20201008 1,251,130 31185.45 448.15
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Table 3: NanoBaseLib task overview.
Task Input Output Category Typical Model

CNN + LSTM + CTC-CRF [1]
Base calling Raw current Nucleotide Supervised Learning, UNet + GRU + CE [2]
(BC) signal sequence sequence Generative Model CNN + Transformer + CTC [3]

ResNet CNN + CTC [4]

PolyA Raw current PolyA tail Unsupervised or
detection signal sequence length and Supervised Learning, Hidden Markov model[5, 6]
(PD) borders Predictive Model

Segmentation and Raw signal Event Unsupervised
event alignment and reference alignment Learning, Hidden Markov model [7, 8]
(SA) sequence results Predictive Model

Supervised
Modification Event Modification Learning, SVM [9]
detection alignment probability Predictive Model, CNN [10]
(MD) results for each Multiple Instance

site & read Learning

Table 4: Data preprocessing software overview and limitations.
Software Version Link Limitation
bedtools 2.30.3 https://bedtools.readthedocs.io/en/latest/ NA
Bonito 0.7.3 https://github.com/nanoporetech/bonito NA
causalcall NA https://github.com/scutbioinformatic/causalcall Only for DNA
CHEUI NA https://github.com/comprna/CHEUI m6A and m5C
Dorado 0.5.3 https://community.nanoporetech.com/downloads NA
Epinano 1.2.0 https://github.com/novoalab/EpiNano NA
Guppy 6.0.1 https://community.nanoporetech.com/downloads NA
h5py 1.8.18 https://www.h5py.org/ NA
minimap2 2.24 https://github.com/lh3/minimap2 NA
MINES NA https://github.com/YeoLab/MINES Only for m6A
m6Anet 1.0 https://github.com/GoekeLab/m6anet Only for m6A
Nanopolish 0.14.0 https://github.com/jts/nanopolish NA
Nanom6A 2.0 https://github.com/gaoyubang/nanom6A Only for m6A
ont-fast5-api 4.0.2 https://pod5-file-format.readthedocs.io NA
Rodan NA https://github.com/biodlab/RODAN Only for RNA
SegPore 1.0 https://github.com/guangzhaocs/SegPore Only for RNA
Tailfindr 1.4 https://github.com/adnaniazi/tailfindr NA
Tombo 1.5.1 https://nanoporetech.github.io/tombo NA

Table 5: ONT basecaller configuration parameters
Basecaller Version Sample Configure
Guppy 2.3.1 DNA dna_r9.4.1_450bps.cfg
Guppy 2.3.1 RNA rna_r9.4.1_70bps.cfg
Guppy 4.5.4 DNA dna_r9.4.1_450bps_hac.cfg
Guppy 4.5.4 RNA rna_r9.4.1_70bps_hac.cfg
Guppy 6.0.1 DNA dna_r9.4.1_450bps_hac.cfg
Guppy 6.0.1 RNA rna_r9.4.1_70bps_hac.cfg
Bonito 0.7.3 DNA dna_r9.4.1_e8_hac@v3.3
Dorado 0.5.3 DNA dna_r9.4.1_e8_hac@v3.3
Dorado 0.7.0 DNA dna_r9.4.1_e8_hac@v3.3
Dorado 0.5.3 RNA rna002_70bps_hac@v3
Dorado 0.7.0 RNA rna002_70bps_hac@v3
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4 Appendix Methods

4.1 Pros and Cons of Nanopore Sequencing

Pros. Compared with Illumina sequencing, Nanopore sequencing has three advantages. First,
it sequences long reads (10-100 kb), where a “read” refers to a measured DNA/RNA sequence
composed of the nucleotide bases adenine (A), cytosine (C), guanine (G), thymine (T) or uracil (U).
The read length of Illumina sequencing is less than 300 bp, which is ∼1% of a long read. Long reads
greatly facilitate genome assembly by reducing ambiguities in the genome backbone, especially in
repetitive genomic regions. Second, the sequencing library preparation is generally simpler than
second-generation sequencing, which makes it ideal for pathogen surveillance in wild environments.
Third, the current signals directly carry chemical information on DNA and RNA molecules, e.g.,
DNA/RNA modifications, which makes it perfect for epi-genetic applications, such as epi-genetic
disease studies [11], RNA structures [12], and mRNA vaccine development [13].

Cons. The most significant disadvantage of Nanopore sequencing compared with Illumina sequencing
is its low accuracy in base calling. The average base calling accuracy of Nanopore RNA sequencing
is around 90% [14], while the accuracy is 99.9% for Illumina cDNA sequencing [15]. This makes
Nanopore sequencing not ideal for many classic biological applications, e.g., detection of single
nucleotide variants (SNVs). The costs of Nanopore sequencing are higher than Illumina sequencing,
while the throughput is lower. Also, current methods could not provide a satisfactory alignment
of the raw current signal and the reference sequences, which limits its performance in DNA/RNA
modification estimation. In short, there is plenty of room for improvement in various computational
tasks of Nanopore sequencing data analysis. We believe these disadvantages could be overcome by
developing new machine learning models.

4.2 Raw signal processing and normalization

Appendix Figure 2 illustrates the structure of a single-fast5 file from Nanopore sequencing. In the
above panel, the “Signal” data represents the raw current passing through the pore (type: int16).
Oxford Nanopore Technology employs different pores (proteins) in various products. A single flow
cell in the sequencing device can contain between 512 and 2675 pores, each referred to as a channel.
As shown in the below panel, the fast5 file also includes attributes associated with the channel
through which the read passes. These parameters include channel_number (the channel number
from which the read was acquired), digitisation (the digitisation is the number of quantisation
levels in the Analog to Digital Converter (ADC)), offset (the ADC offset error), range (the full
scale measurement range in pico amperes), and sampling_rate (sampling frequency of the ADC).

The raw signal can be converted into pico Ampere (pA) values using attributes available in the
channel_id group by the equation:

signal_in_pico_ampere =
(raw_signal_value+ offset)× range

digitisation
. (1)

To improve the accuracy of analyses for various downstream tasks, some tools aim to further
standardize or normalize the signal (pA).

Tombo. Tombo uses median shift and MAD (median absolute deviation) scale parameters to
normalize the signal [16]:

norm_signal =
signal_in_pico_ampere−median

MAD
. (2)

Nanopolish. For each read, Nanopolish estimates a scale parameter to standardize the signal. You
can add the --scale-events option in the nanopolish eventalign command to enable this feature
[5].

SegPore. SegPore first detects the polyA tail and calculates its mean (µpolyA) and standard deviation
(σpolyA). These values are then used to standardize the signal [7]:

stand_signal =
signal_in_pico_ampere− µpolyA

σpolyA
× σstand_polyA + µstand_polyA (3)

10



where the µstand_polyA and σstand_polyA represent the mean and standard deviation of the kmer
“AAAAA” from ONT’s standard kmer table [17].

4.3 Segmentation and event alignment

Appendix Figure 5 is an example of the Nanopolish eventalign output, which illustrates the segmen-
tation and event alignment results. Each line represents an “event”, which contains mapped chromo-
some/transcript t (contig), the location on the chromosome/transcript p (position), the correspond-
ing kmer s (reference_kmer), the estimated mean of this “event” µ

(est)
s (event_level_mean),

the estimated std of this “event” σ
(est)
s (event_stdv), model_mean, model_stdv, and other infor-

mation. Columns model_mean and model_stdv are from a standard kmer parameter table, which is
provided by ONT [17]. This kmer table contains the standard mean µ

(ref)
s and std σ

(ref)
s for each

kmer s. For example, the standard mean is 81.5 and std is 2.83 for kmer ATGTCC (Row 1∼ 4 in
Appendix Figure 5).

Given the eventalign results, we use two metrics to evaluate the performance of the segmentation and
event alignment task: (1) the average std σ̂, and (2) the average log-likelihood L̂. Assuming there are
N reads in total, and the nth read has Kn events. We denote the kth event of the nth read by en,k =(
tn,k, pn,k, sn,k, µ

(est)
sn,k , σ

(est)
sn,k , µ

(ref)
sn,k , σ

(ref)
sn,k , · · ·

)
, where tn,k is the mapped chromosome/transcript,

pn,k is the mapped genomic location, sn,k is the corresponding kmer. The average std σ̂ is defined as

σ̂ =
1

N

N∑
n=1

{ 1

Kn

Kn∑
k=1

σ(est)
sn,k

}
(4)

and the average log-likelihood L̂ is defined as

L̂ =
1

N

N∑
n=1

{ 1

Kn

Kn∑
k=1

logN
(
µ(est)
sn,k

|µ(ref)
sn,k

, σ(ref)
sn,k

)}
(5)

As shown in Appendix Figure 6, the red line represents the event mean µ
(est)
k and the shaded area

represents the std σ
(est)
k for event k. A poorly segmented raw signal corresponding to an event will

exhibit a large standard deviation. Therefore, a smaller σ̂ indicates lower variations within the raw
signal segment, signifying better performance.

If an event is aligned to the correct reference kmer, the mean µ
(est)
n,k will be close to the reference

µ
(ref)
sn,k and the log-likelihood L̂ will be large. So higher L̂ means more similar results to ONT’s

estimates and better performances.

4.4 Potential negative societal impact

All raw datasets were collected from public resources, and we only preprocessed them using a
standard pipeline. However, the datasets could still be exploited for unforeseen purposes, such as
commercialization. In which, the anonymized genetic data might be used by companies to develop
targeted products, potentially compromising privacy or leading to social inequities, like expensive
drugs limited to specific populations. Additionally, the data might be repurposed for unintended
research, possibly contradicting the original data providers’ intent or causing societal harm.
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