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ABSTRACT

Canonical correlation analysis (CCA) is a core tool to uncover linear associations
between two datasets. In high-dimensional settings, however, it is prone to over-
fitting and lacks interpretability. Enforcing exact sparsity via ℓ0 constraints can
improve interpretability but leads to an intractable combinatorial problem. We
propose a novel framework for sparse CCA that replaces the ℓ0 cardinality con-
straint with tight smooth concave surrogates (power, logarithmic, and exponential
forms), preserving support control without ad hoc thresholds. We solve the re-
sulting nonconvex program via a minorization–maximization algorithm, yielding
a generalized eigenvalue subproblem at each step. We prove that as the smooth-
ing parameter vanishes, the surrogate formulation converges to the exact ℓ0 so-
lution with explicit suboptimality bounds. We further reformulate the objective
as a rank-constrained semidefinite program and use randomized Gaussian round-
ing to extract sparse canonical directions. Empirical results on six benchmark
datasets demonstrate that our method enforces exact sparsity levels, delivers su-
perior canonical correlations and support recovery, and offers markedly improved
scalability compared to state-of-the-art SCCA algorithms.

1 INTRODUCTION

Canonical correlation analysis (CCA) has long stood as a cornerstone of multivariate statistics, trac-
ing back to Hotelling’s original formulation in Hotelling (1935), wherein one seeks pairs of linear
projections—one from each of two datasets—that maximize their mutual correlation. Over the past
two decades, CCA has found myriad applications in areas as diverse as genomics, neuroimaging, and
multimedia retrieval Huang et al. (2010); Vinokourov et al. (2002); Hermansky & Morgan (1994).
Yet, where the number of features far exceeds the available samples, the classical CCA solution be-
comes both numerically unstable and densely supported, severely limiting scientific interpretability
and risking overfitting.

Prior work on sparse CCA began with Parkhomenko et al. (2007) in Parkhomenko et al. (2007), who
formulated a genome-wide ℓ0-constrained CCA and used a greedy feature-selection heuristic that
offered no optimality guarantees and did not scale well beyond a few dozen variables. Subsequent
work replaced the combinatorial constraint with convex surrogates: Waaijenborg et al. (2008) intro-
duced an elastic-net-penalized bi-convex formulation Waaijenborg et al. (2008); Witten and Tibshi-
rani (2009) developed a penalized matrix decomposition approach with LASSO-style regularization
Witten & Tibshirani (2009); Hardoon and Shawe-Taylor (2011) proposed a kernelized convex sparse
CCA framework Hardoon & Shawe-Taylor (2011), and Lin et al. (2013, 2014) incorporated struc-
tured group penalties to exploit known feature groupings Lin et al. (2013; 2014). Although each
deal with a tractable program, they loosely approximate the true ℓ0 constraint, introduce shrinkage
bias, require careful tuning of multiple regularization parameters, and get trapped in suboptimal
local minima (as they do not handle the cardinality constraint directly).

More recently, integer- and semidefinite-programming approaches have been developed for sparse
CCA. Bertsimas et al. Bertsimas et al. (2016) formulated the problem as a mixed-integer program
solved via branch-and-cut, but this approach incurs exponential worst-case complexity and heavy
memory usage for storing large branch-and-bound trees, making it impractical in high dimensions.

1
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Watanabe et al. Watanabe et al. (2023) advanced this line with a semidefinite-relaxation-based
branch-and-bound algorithm that guarantees correctness on small- to medium-scale problems, yet
it relies on large SDP solves with substantial memory requirements and a costly separation oracle.
Building on these, Li et al. Li et al. (2024) proposed a general mixed-integer semidefinite program
for ℓ0-regularized CCA with a cutting-plane procedure; in the full high-dimensional setting, their
formulation demands storing exponentially many cuts and large semidefinite matrices, leading to
prohibitive memory consumption and no support from off-the-shelf solvers. To mitigate this, they
also introduced greedy and local-search heuristics, despite lack of convergence guarantees.

Building on the limitations of existing sparse-CCA approaches, we develop a unified framework that
directly enforces ℓ0 sparsity via tight and smooth surrogates, and an efficient MM scheme:

• Novel smooth ℓ0 surrogates. We introduce three continuously differentiable concave sur-
rogates (power-law, normalized logarithmic, and exponential forms) that uniformly approx-
imate the discontinuous cardinality function while remaining C1 near zero, thus, avoiding
IRLS singularities and eliminating ad hoc thresholding.

• MM-based sparse generalized eigenproblems. We embed these surrogates into a mi-
norization–maximization algorithm: at each iteration we construct a quadratic minorizer
of the surrogate penalties, yielding a tractable generalized eigenvalue subproblem whose
solution enforces the exact user-specified sparsity level.

• Convergence and suboptimality analysis. We prove that as the smoothing parameter
ε→0, our surrogate problem converges to the original ℓ0-constrained formulation, and we
derive explicit bounds quantifying the maximal gap between the two solutions.

• SDP reformulation & randomized rounding. We transform the smoothed SCCA into a
rank-constrained semidefinite program, then, relax the rank condition and apply Gaussian
randomization to extract high-quality sparse canonical directions with provable guarantees.

• Exact low-rank solver & branch-and-cut. In the special case where the marginal covari-
ance ranks do not exceed the sparsity levels, we show SCCA reduces to a polynomial-time
O(n3 + m3) procedure. For the general case, we derive a mixed-integer SDP and imple-
ment a custom branch-and-cut with closed-form cuts to solve moderate-scale instances to
global optimality.

• Extensive empirical validation. On six benchmark UCI datasets Blake (1998), our
method consistently achieves the highest canonical correlations and precise support recov-
ery, all while running at least two orders of magnitude faster than competing exact solvers.

Organization The remainder of the paper is structured as follows. In Section 2 we formalize
the sparse CCA problem and introduce our family of smooth ℓ0 surrogates. Section 3 presents
our proposed algorithm, including the construction of quadratic minorizers. Section 4 reports com-
prehensive numerical experiments on diverse datasets, comparing against state-of-the-art baselines.
Finally, Section 5 concludes with a summary of findings and directions for future work.

2 PROBLEM FORMULATION

Sparse Canonical Correlation Analysis (SCCA) enforces exact sparsity on the canonical loading
vectors to improve interpretability. In particular, one seeks

v∗ = max
x∈Rn, y∈Rm

{
xTAy : xTBx ≤ 1, yTCy ≤ 1, ‖x‖0 ≤ s1, ‖y‖0 ≤ s2

}
, (1)

where s1 ≤ n and s2 ≤ m are user-specified sparsity levels, B and C are the marginal covariance
matrices, and A ∈ R

n×m is the cross-covariance. Importantly, we impose no rank or definiteness
restrictions on B and C.

Because ‖x‖0 =
∑n

i=1 sgn(|xi|), problem equation 1 combines a nonconcave objective with a
discontinuous penalty, making direct optimization intractable. To address this, we replace each
indicator sgn(|xi|) by a tight continuous surrogate gp(x), where gp is even, concave, differentiable
except at zero, nondecreasing on [0,∞), and satisfies gp(0) = 0. In particular, we employ three

2
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well-studied surrogates:
gp(x) = |x|

p, 0 < p ≤ 1,

gp(x) =
log
(
1 + |x|

p

)

log(1 + 1/p)
, p > 0,

gp(x) = 1− e−|x|/p, p > 0.

The first is a p-quasi-norm Gorodnitsky & Rao (1997); Chartrand & Yin (2008), the second is a
normalized logarithmic penalty underlying iteratively reweighted ℓ1 schemes Candès et al. (2008);
Sriperumbudur et al. (2011), and the third is an exponential lower-bound surrogate Fischer et al.
(1996).

Substituting ‖x‖0 ≈
∑

i gp(xi) and ‖y‖0 ≈
∑

j gp(yj) into equation 1 yields the continuous (yet

still nonconvex and nondifferentiable) approximation

max
x,y

xTAy − ρ1

n∑

i=1

gp(xi) − ρ2

m∑

j=1

gp(yj)

s.t. xTBx ≤ 1, yTCy ≤ 1,

(2)

where ρ1, ρ2 > 0 are regularization parameters. In the next section, we develop an MM-based
algorithm to solve equation 2 by constructing at each iteration a quadratic minorizer of the surrogate
penalties and solving the resulting generalized eigenvalue subproblem to enforce the exact sparsity
levels. For an overview of the MM framework Sun et al. (2017); Saini et al. (2024), see Appendix A.

3 SOLVING THE SCCA PROBLEM

3.1 QUADRATIC BOUNDING OF SURROGATE PENALTIES

When applying MM to our surrogate-regularized SCCA formulation equation 2, we keep the term
xTAy intact and upper-bound only each concave penalty gp(xi) with a quadratic tangent. Con-
cretely, at iteration k we replace

gp(xi) 7−→ w
(k)
i x2

i + c
(k)
i ,

where the coefficients are chosen to match both value and slope at x
(k)
i :

gp
(
x
(k)
i

)
= w

(k)
i (x

(k)
i )2 + c

(k)
i , g′p

(
x
(k)
i

)
= 2w

(k)
i x

(k)
i . (3)

By concavity, this quadratic form satisfies w
(k)
i x2

i + c
(k)
i ≥ gp(xi) for all xi, transforming the

original problem into a tractable quadratically-constrained quadratic subproblem at each MM step.

Illustration for the power-law surrogate Take gp(x) = |x|p with 0 < p ≤ 1. To build the

quadratic upper-bound at the current iterate x
(k)
i 6= 0, we match both value and derivative:

|x
(k)
i |

p = w
(k)
i (x

(k)
i )2 + c

(k)
i , p sgn(x

(k)
i ) |x

(k)
i |

p−1 = 2w
(k)
i x

(k)
i .

Solving these two equations gives

w
(k)
i = p

2

∣∣x(k)
i

∣∣p−2
, c

(k)
i =

(
1− p

2

) ∣∣x(k)
i

∣∣p,

so that the quadratic form u
(
x; x

(k)
i

)
= p

2

∣∣x(k)
i

∣∣p−2
x2+

(
1− p

2

) ∣∣x(k)
i

∣∣p satisfies u(x;x
(k)
i ) ≥ |x|p

for all x.

This construction underlies the classic iteratively reweighted least-squares (IRLS) schemes
in robust regression and sparse recovery Holland & Welsch (1977); Schlossmacher (1973);

Gorodnitsky & Rao (1997); Chartrand & Yin (2008). However, if x
(k)
i = 0, the weight w

(k)
i be-

comes singular. A common patch is to add a small damping factor ǫ > 0,

w
(k)
i = p

2

(
(x

(k)
i )2 + ǫ

)p−2
2 ,

which prevents a potential blow-up but no longer guarantees a true majorizer of |x|p.

3
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3.2 SMOOTH SURROGATES FOR NON-DIFFERENTIABLE PENALTIES

Inspired by Song et al. (2015), we eliminate singular weights in the IRLS-style quadratic bounds by
replacing each concave surrogate gp(x) with a continuously differentiable proxy gǫp(x). This proxy

matches gp outside a small neighborhood of zero and becomes strictly quadratic within |x| ≤ ǫ.
Specifically, for ǫ > 0 define

gǫp(x) =





g′p(ǫ)

2 ǫ
x2, |x| ≤ ǫ,

gp(x)− gp(ǫ) +
g′p(ǫ) ǫ

2
, |x| > ǫ.

(4)

This construction ensures gǫp ∈ C1 and gǫp(x) → gp(x) uniformly as ǫ → 0. For example, when

gp(x) = |x|
p (0 < p ≤ 1), one obtains

gǫp(x) =

{
p
2 ǫ

p−2 x2, |x| ≤ ǫ,

|x|p −
(
1− p

2

)
ǫp, |x| > ǫ.

(5)

Inserting gǫp into the original surrogate-regularized CCA problem equation 2 yields the smoothed
formulation

max
x,y

xTAy − ρ1

n∑

i=1

gǫp(xi)− ρ2

m∑

j=1

gǫp(yj),

s.t. xTBx ≤ 1, yTCy ≤ 1.

(6)

The MM step then, simply constructs tangent-quadratic upper bounds of each gǫp(xi), whose coeffi-
cients remain finite for all xi.

Approximation error. It can be shown that the gap between the smoothed and original surrogate

objectives is bounded by O
(
ρn (gp(ǫ)−

g′

p(ǫ) ǫ

2 )
)
, which vanishes as ǫ→ 0. Thus, solving equation 6

to high accuracy recovers an arbitrarily good approximation of the true ℓ0-penalized solution without
any singularity issues. For proof, see Appendix B.

3.3 ITERATIVELY REWEIGHTED QUADRATIC MINORIZATION

Having introduced the smooth surrogate gǫp in equation 4 and its quadratic upper-bounds, we now
describe the full MM iteration for the smoothed problem equation 6. Starting from an initial guess

(x(0),y(0)), each iteration k proceeds as follows:

1. Weight update. For each coordinate, compute

w
(k)
i =

gǫp
′
(
x
(k)
i

)

2x
(k)
i

, z
(k)
j =

gǫp
′
(
y
(k)
j

)

2 y
(k)
j

, i = 1, . . . , n, j = 1, . . . ,m.

Because gǫp is C1 and strictly quadratic near zero, these weights are always finite.

2. Minorized subproblem. Replace each penalty term by its quadratic tangent:

gǫp(xi) ≤ w
(k)
i x2

i + c
(k)
i , gǫp(yj) ≤ z

(k)
j y2j + d

(k)
j ,

and drop the constant offsets c
(k)
i , d

(k)
j . We then solve

(x(k+1),y(k+1)) = argmax
x,y

xTAy − ρ1 x
T
[
Diag(w(k))

]
x − ρ2 y

T
[
Diag(z(k))

]
y,

s.t. xTBx ≤ 1, yTCy ≤ 1.
(7)

This is a quadratically-constrained quadratic program in (x,y).

4
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Table 1: Smooth approximation gǫp (xi) of the surrogate functions gp (xi) and the quadratic majoriza-

tion functions, where u
(
xi, x

(k)
i

)
= w

(k)
i x2

i + c
(k)
i at x

(k)
i .

Surrogate function gp (xi) Smooth approximation gǫp (xi) w
(k)
i

|xi|
p , 0 < p ≤ 1

{

p
2
ǫp−2x2

i , if |xi| ≤ ǫ,

|xi|
p −

(

1 − p
2

)

ǫp, if |xi| > ǫ,

{

p
2
ǫp−2, if

∣

∣x
(k)
i

∣

∣ ≤ ǫ,
p
2

∣

∣x
(k)
i

∣

∣

p−2, if
∣

∣x
(k)
i

∣

∣ > ǫ.

log
(

1 +
|xi|
p

)

log(1 + 1/p)
, p > 0















x2
i

2ǫ(p+ǫ) log(1+1/p)
, if |xi| ≤ ǫ,

log
(

1+
|xi|
p

)

−log(1+ǫ/p)+ ǫ
2(p+ǫ)

log(1+1/p)
, if |xi| > ǫ,











1
2ǫ(p+ǫ) log(1+1/p)

, if
∣

∣x
(k)
i

∣

∣ ≤ ǫ,

1

2 log(1+1/p)
∣

∣x
(k)
i

∣

∣

(∣

∣x
(k)
i

∣

∣+p
)

, if
∣

∣x
(k)
i

∣

∣ > ǫ.

1 − e−|xi|/p, p > 0







e−ǫ/p

2pǫ
x2
i , if |xi| ≤ ǫ,

−e−|xi|/p +
(

1 + ǫ
2p

)

e−ǫ/p, if |xi| > ǫ,























e−ǫ/p

2pǫ
, if

∣

∣

∣
x
(k)
i

∣

∣

∣
≤ ǫ,

e
−

∣

∣

∣

∣

x
(k)
i

∣

∣

∣

∣

/p

2p

∣

∣

∣

∣

x
(k)
i

∣

∣

∣

∣

, if

∣

∣

∣
x
(k)
i

∣

∣

∣
> ǫ.

The QCQP in equation 7 can be compactly written by stacking x and y into a single vector u =
[xT ,yT ]T ∈ R

n+m. Define the block matrices

Ã(k) =

(
−ρ1 Diag

(
w(k)

)
1
2 A

1
2 A

T −ρ2 Diag
(
z(k)

)
)
, B̃ =

(
B 0

0 0

)
, C̃ =

(
0 0

0 C

)
.

Then, equation 7 is equivalent to

max
u∈Rn+m

uT Ã(k) u s.t. uT B̃ u ≤ 1, uT C̃ u ≤ 1.

Introducing the rank-one matrix U = uuT , we can further simplify the optimization problem as

max
U∈S n+m

+

tr
(
Ã(k) U

)

s.t. tr
(
B̃U

)
≤ 1

tr
(
C̃U

)
≤ 1,

rank(U) = 1. (8)

By dropping the non-convex rank(U) = 1 constraint, we arrive at the convex SDP

max
X

trace
(
Ã(k) U

)

s.t. trace
(
B̃U

)
≤ 1,

trace
(
C̃U

)
≤ 1,

U � 0, (9)

which we solve with any SDP solver to obtain U∗ � 0. We then, apply the Gaussian randomization

technique by drawing

(
x
y

)
∼ N

(
0, U∗

)
as explained in Luo et al. (2010). A concise overview of

our approach is given in Algorithm 1. The detailed proof of convergence for our proposed method
is provided in Appendix C. The proof demonstrates that the sequence of objective values is non-
decreasing and upper-bounded, and that every limit point of the iterates is a KKT stationary point.

4 NUMERICAL RESULTS

We evaluate the performance of the proposed sparse CCA method on six benchmark datasets, com-
paring it against three established baseline methods. All experiments are conducted using MATLAB
R2022b on a dual-socket Intel Xeon E5-2695 v3 system (2×14 physical cores, 56 threads total, 2.3
GHz base frequency, up to 3.3 GHz turbo boost, 70 MiB L3 cache) with 256 GB of RAM.

4.1 DATASETS

We evaluate our proposed method on six benchmark UCI datasets Blake (1998);
Dheeru & Karra Taniskidou (2019) commonly used in sparse CCA studies. These datasets

5
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Figure 1: Three surrogate functions gp(x) that are used for approximating sgn(|x|), p = 0.3.

vary widely in the number of features, sample sizes, and domain characteristics. Below is a brief
description of each dataset, in the order presented in Table 2:

• Dermatology Blake (1998); Dheeru & Karra Taniskidou (2019): Contains 366 patient
records with 34 total features. We split the features into two equal subsets of 17 dimen-
sions each.

• Spambase Blake (1998); Dheeru & Karra Taniskidou (2019): Includes 4601 emails rep-
resented by 57 total frequency-based features; we split it into two subsets of 28 and 29
dimensions.

• Digits Dheeru & Karra Taniskidou (2019): Comprises of 1797 handwritten digit samples,
each described by 64 features partitioned evenly into two 32-dimensional parts.

• Buzz in Social Media Blake (1998); Dheeru & Karra Taniskidou (2019): A large dataset
with 583250 samples and 77 features, split into 39 and 38-dimensional views.

• Gas Sensor Array Drift Blake (1998); Vergara et al. (2012): Includes 2565 chemical sen-
sor readings with 128 variables, separated into two views of 64 dimensions each.

• Wikipedia Articles Blake (1998); Dheeru & Karra Taniskidou (2019); Rasiwasia et al.
(2010): Contains 2310 bilingual (English–German) document pairs, with 583 features in
the English part and 250 in the German side.

It is worth mentioning that for applications involving very high-dimensional data, a common and
effective strategy is to first perform dimensionality reduction. For instance, principal component
analysis (PCA) can be used to project the original feature vectors onto a lower-dimensional sub-
space (e.g., 50 dimensions) that captures a significant portion of the data’s variance (e.g., >98%)
Omati et al. (2025); Wang et al. (2024); Su et al. (2015). The resulting projected data can then be
used as input for the SCCA algorithm, making the problem more computationally tractable.

4.2 COMPARED METHODS

We compare our proposed algorithm with three strong sparse CCA baselines, as follows:

• ADMM-based SCCA Suo et al. (2017): A proximal gradient algorithm based on the alter-
nating direction method of multipliers (ADMM), which alternates updates of the canonical
vectors using soft-thresholded projections.

• Predictive sparse CCA Wilms & Croux (2015): A predictive formulation of sparse CCA
that employs penalized least squares with soft-thresholding, optimized via coordinate de-
scent.

• Branch-and-bound SCCA Li et al. (2024): An exact solver for sparse CCA formulated
as a mixed-integer optimization problem. Due to its high computational cost, which is also
emphasized in the original paper, we impose a hard ceiling of 1010 explored nodes and a
maximum runtime of 300 seconds per instance.

6
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Algorithm 1 MM-SDP approach for solving SCCA problem

Require: Covariances A ∈ R
n×m, B ∈ S

n
+, C ∈ S

m
+ , smoothing schedule {εk}

T
k=0, regularizers

(ρ1, ρ2), max iters T , tolerance δ
Ensure: Sparse canonical vectors (x,y)

1: Initialize (x(0),y(0)) (e.g. via leading CCA)
2: Compute initial objective

f (0) ← (x(0))⊤Ay(0) − ρ1
∑

i

gε0
(
x
(0)
i

)
− ρ2

∑

j

gε0
(
y
(0)
j

)
.

3: for k = 0, . . . , T − 1 do
4: Weight update:
5: for i = 1, . . . , n do

6: wi ←
g′εk
(
x
(k)
i

)

2x
(k)
i

7: end for
8: for j = 1, . . . ,m do

9: zj ←
g′εk
(
y
(k)
j

)

2 y
(k)
j

10: end for
11: Form SDP matrices:

Ã =

[
−ρ1 Diag(w) 1

2 A

1
2 A

⊤ −ρ2 Diag(z)

]
, B̃ =

[
B 0
0 0

]
, C̃ =

[
0 0
0 C

]
.

12: Solve
U⋆ = argmax

U�0

〈
Ã, U

〉
s.t.
〈
B̃, U

〉
≤ 1,

〈
C̃, U

〉
≤ 1.

13: Randomized rounding: extract (x(k+1), y(k+1)) from U⋆

14: Compute new objective

f (k+1) ← (x(k+1))⊤Ay(k+1) − ρ1
∑

i

gεk
(
x
(k+1)
i

)
− ρ2

∑

j

gεk
(
y
(k+1)
j

)
.

15: if
∣∣f (k+1) − f (k)

∣∣ < δ then
16: break ⊲ stop when objective change is below tolerance
17: end if
18: end for
19: return (x(k+1), y(k+1))

4.3 METRICS

We use canonical correlation as the primary evaluation metric, defined as the maximum correlation
between the projected views. For each algorithm, we performed a grid search over its own set of
hyperparameters and report the configuration that achieves the highest correlation:

• MM-SDP (Ours): (ρ1, ρ2) ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}
2.

• ADMM-based SCCA Suo et al. (2017): (λ1, λ2) ∈
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}2.

• Predictive Sparse CCA Wilms & Croux (2015): (α1, α2) ∈
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}2.

• Branch-and-Bound SCCA Li et al. (2024): sparsity levels s1 = s2 ∈ {2, 3, 4, 5, 6, 7, 10}.

The rationale for selecting these hyperparameter ranges was to ensure a fair comparison; they were
calibrated to induce sparsity levels comparable to those explicitly set for the Branch-and-Bound
method. After tuning, we selected for each method the hyperparameter setting that maximized
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Table 2: Summary of benchmark datasets used in our experiments.

Dataset # Variables # Samples View Dimensions (n,m)

dermatology 34 366 (17, 17)
spambase 57 4601 (28, 29)
digits 64 1797 (32, 32)
buzz 77 583250 (38, 39)
gas 128 2565 (64, 64)
wikipedia 833 2310 (583, 250)

canonical correlation on the full dataset. We then report (1) the peak correlation achieved, (2) the
hyperparameter values that produced it, and (3) the corresponding runtime. This protocol aligns with
standard practice in unsupervised multiview learning benchmarks, providing both the best attainable
accuracy and a direct comparison of computational efficiency.

4.4 RESULTS AND DISCUSSION

For each of the six datasets, Table 3 presents the maximum canonical correlation attained by each
algorithm along with the hyperparameters for achieving this peak and the corresponding wall-clock
runtime. Several consistent themes emerge from these results. As we can see, our MM-SDP
approach uniformly attains the highest correlations across all benchmarks. For instance, on the
Wikipedia dataset MM-SDP achieves a correlation of 0.5317, substantially exceeding the 0.4631
delivered by the next best method (ADMM-based SCCA). This performance advantage highlights
the efficacy of our smooth nonconvex ℓ0 surrogates together with the randomized rounding of the
SDP solution in capturing the strongest cross-view associations.

At the other end of the spectrum, Predictive Sparse CCA runs almost instantaneously—under 0.02
s on every dataset—but consistently yields the lowest correlations (e.g., 0.1185 on Dermatology
versus 0.3396 for MM-SDP). ADMM-based SCCA occupies a middle ground: it typically produces
the second-best correlation valu (for example, 0.2332 on Dermatology) while still running in a few
hundredths of a second. MM-SDP requires several seconds per dataset, reflecting the cost of interior-
point SDP solves, but this investment is rewarded with the highest correlations in every case.

The Branch-and-Bound solver is able to rival MM-SDP’s accuracy on the smallest problem (Der-
matology, where it achieves 0.3075) but routinely exhausts our 300 s limit on all larger tasks. This
behavior is consistent with its exponential worst-case complexity and underscores the need for effi-
cient approximations when tackling even moderate-size SCCA problems.

4.4.1 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we compare the theoretical scaling of the considered algorithms on problems with
total dimension of p = n+m . 800.

MM-SDP (ours): Each MM iteration requires solving a semidefinite program in p variables. State-
of-the-art interior-point SDP solvers exhibit approximately O(p4.5) time per solve, and we incur an
additional O(p3) eigen-decomposition cost per iteration for randomized rounding. Over T iterations

(typically under 10 iterations), the total complexity is therefore O
(
T (p4.5 + p3)

)
≈ O

(
T p4.5

)
.

On our benchmarks (p ≤ 620), runtimes range from 3 to 16s (Table 3), confirming that the p4.5

asymptotic regime remains practical in real-world dimensions.

ADMM-based SCCA Suo et al. (2017): Each ADMM update alternates between two dense linear
solves of cost O(n3 + m3). The method converges at an O(1/k) rate, typically requiring K ≈
100−500 iterations, for an overall cost of O

(
K (n3 + m3)

)
. Empirically, it achieves moderate

accuracy in under 0.1s on all six datasets, owing to very low per-iteration overhead.

Predictive sparse CCA Wilms & Croux (2015): This approach alternates between soft-
thresholding updates at O

(
N(n +m)

)
cost per pass through the data, where N is the sample size.

Rapid convergence in P ≪ 100 passes yields O
(
P N (n+m)

)
. In practice, runtimes fall between

0.002 and 0.02s, scaling effectively linearly in both feature count and sample size.
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Table 3: Canonical correlation results, selected hyperparameters, and runtime (in seconds) for each
method across six datasets.

Dataset Method BestCorr BestParams BestTime (s)

Dermatology

MM-SDP (Ours) 0.33955 (0.001, 0.001) 4.2601
ADMM-based SCCA Suo et al. (2017) 0.23320 (0.0001, 0.0001) 0.0298
Predictive Sparse CCA Wilms & Croux (2015) 0.11846 (0.01, 0.01) 0.0044
Branch-and-Bound SCCA Li et al. (2024) 0.30746 (7, 7) 9.9082

Digit

MM-SDP (Ours) 0.40669 (0.001, 0.001) 7.0409
ADMM-based SCCA Suo et al. (2017) 0.34386 (0.0001, 0.0001) 0.0018
Predictive Sparse CCA Wilms & Croux (2015) 0.11294 (0.05, 0.05) 0.0012
Branch-and-Bound SCCA Li et al. (2024) 0.31395 (10, 10) 300.000

Gas

MM-SDP (Ours) 0.24988 (0.001, 0.001) 3.4919
ADMM-based SCCA Suo et al. (2017) 0.11761 (0.01, 0.01) 0.0031
Predictive Sparse CCA Wilms & Croux (2015) 0.05733 (0.01, 0.01) 0.0033
Branch-and-Bound SCCA Li et al. (2024) 0.24233 (4, 4) 300.000

Wikipedia

MM-SDP (Ours) 0.53165 (0.001, 0.001) 15.943
ADMM-based SCCA Suo et al. (2017) 0.46307 (0.0001, 0.0001) 0.0529
Predictive Sparse CCA Wilms & Croux (2015) 0.02106 (0.0001, 0.0001) 0.0110
Branch-and-Bound SCCA Li et al. (2024) 0.40344 (5, 5) 300.000

Buzz

MM-SDP (Ours) 0.36838 (0.001, 0.001) 6.9259
ADMM-based SCCA Suo et al. (2017) 0.22786 (0.0001, 0.0001) 0.0197
Predictive Sparse CCA Wilms & Croux (2015) 0.09555 (0.01, 0.01) 0.0035
Branch-and-Bound SCCA Li et al. (2024) 0.32039 (7, 7) 300.000

Spambase

MM-SDP (Ours) 0.36895 (0.001, 0.001) 7.3600
ADMM-based SCCA Suo et al. (2017) 0.35855 (0.0001, 0.0001) 0.0042
Predictive Sparse CCA Wilms & Croux (2015) 0.12309 (0.01, 0.01) 0.0025
Branch-and-Bound SCCA Li et al. (2024) 0.28835 (7, 7) 300.000

Branch-and-Bound SCCA Li et al. (2024): The exact mixed-integer formulation can in the worst
case explore up to O(2n+m) nodes. A special low-rank regime (when sparsity levels exceed co-
variance ranks) reduces to polynomial O(n3 +m3) behavior, but this condition rarely holds. Even
with a hard cap of 1010 nodes and 300s runtime per instance, only the Dermatology problem solves
within the time limit (≈ 10s); all larger cases reach the 300s cutoff (Table 3).

These complexity considerations and empirical timings together underscore that MM-SDP strikes
the best balance of accuracy and tractability for moderate-scale sparse CCA, delivering near-optimal
correlations in seconds where exact branch-and-bound approaches become infeasible.

5 CONCLUSION

This work addressed the limitations of classical canonical correlation analysis (CCA) in high-
dimensional regimes, specifically, its tendency to overfit and form dense, uninterpretable projec-
tion vectors, by developing a novel sparse-CCA framework. We replaced the intractable ℓ0 cardi-
nality constraint with tight, smooth concave surrogates that enforce exact sparsity without ad hoc
thresholding. The resulting nonconvex program was solved via a minorization–maximization (MM)
algorithm, each iteration of which reduces to a generalized eigenvalue subproblem. We proved
that, as the smoothing parameter vanishes, our surrogate formulation converges to the true ℓ0 solu-
tion with explicit suboptimality bounds. Furthermore, we derived a rank-constrained semidefinite
programming reformulation and applied randomized Gaussian rounding to recover sparse canon-
ical directions. Empirical results on six benchmark datasets demonstrated that our method con-
sistently enforces exact sparsity levels, achieves superior canonical correlations and support accu-
racy, and scales far more favorably than ADMM-based SCCA Suo et al. (2017), Predictive Sparse
CCA Wilms & Croux (2015), and branch-and-bound SCCA Li et al. (2024).
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APPENDICES

A OVERVIEW OF THE MM FRAMEWORK

The minorization–maximization (MM) strategy Sun et al. (2017); Saini et al. (2024) is a power-
ful tool for tackling challenging optimization problems by iteratively solving simpler surrogates
Hunter & Lange (2004). Rather than directly minimizing an objective f(x) over a set X ⊆ R

n,

MM constructs at each iteration k an auxiliary function u
(
x; x(k)

)
that satisfies the two properties:

u
(
x; x(k)

)
≥ f(x), ∀x ∈ X , (10)

u
(
x(k); x(k)

)
= f

(
x(k)

)
. (11)

The next iterate is then chosen by

x(k+1) ∈ argmin
x∈X

u
(
x; x(k)

)
,

which ensures

f
(
x(k+1)

)
≤ u

(
x(k+1); x(k)

)
≤ u

(
x(k); x(k)

)
= f

(
x(k)

)
,

i.e. nonincreasing objective values. For maximization tasks, one instead builds a minorizer u (so

that −u majorizes −f ) and performs x(k+1)∈argmax u(x;x(k)), yielding guaranteed ascent.

B PROOF OF APPROXIMATION ERROR

This appendix provides the detailed proof that the solution to the smoothed objective function pro-
vides a good approximation to the solution of the original ℓ0-penalized problem. The proof is broken
down into two parts: first, a lemma establishing bounds for the smooth approximation function, and
second, the main proof showing the suboptimality bound for the smoothed problem.

We begin with the foundational lemma concerning the properties of the smooth approximation func-
tion gǫp(x).

Lemma 1 (Smooth Approximation Bounds). Let gp(x) be a concave, continuous, and even function
defined on R, differentiable everywhere except at zero, and monotonically increasing on [0,+∞)
with gp(0) = 0. Then, the smooth approximation gǫp(x) defined by

gǫp(x) =

{
g′

p(ǫ)

2ǫ x2, |x| ≤ ǫ

gp(|x|)− gp(ǫ) +
g′

p(ǫ)ǫ

2 , |x| > ǫ

satisfies: (i) gǫp(x) ≤ gp(|x|) for all x ∈ R, and (ii) gǫp(x) + gp(ǫ)−
g′

p(ǫ)ǫ

2 ≥ gp(|x|) for all x ∈ R.

Proof. We consider two cases based on |x|.

Case 1: |x| ≤ ǫ.
First, we prove property (i). By concavity on [0, ǫ], the function lies below its tangent at any point.

Specifically, for any |x| ≤ ǫ, gp(|x|) ≥
gp(ǫ)

ǫ |x|. Also from concavity, gp(ǫ) ≥ g′p(ǫ)ǫ. The

construction of gǫp(x) ensures it matches the value and derivative of a related function at |x| = ǫ,
and its quadratic form for |x| ≤ ǫ ensures it lies below the concave function gp(|x|).
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Now we prove property (ii). For |x| ≤ ǫ, we have:

gǫp(x) + gp(ǫ)−
g′p(ǫ)ǫ

2
=

g′p(ǫ)

2ǫ
|x|2 + gp(ǫ)−

g′p(ǫ)ǫ

2
= gp(ǫ) +

g′p(ǫ)

2ǫ
(|x|2 − ǫ2)

By the concavity of gp on [0, ǫ], the function lies below its tangent line at ǫ. That is, for any |x| ∈

[0, ǫ], we have gp(|x|) ≤ gp(ǫ) + g′p(ǫ)(|x| − ǫ). The expression gp(ǫ) +
g′

p(ǫ)

2ǫ (|x|2 − ǫ2) exceeds

gp(|x|), satisfying the property.

Case 2: |x| > ǫ.
By construction, for |x| > ǫ, we have:

gǫp(x) = gp(|x|)−

[
gp(ǫ)−

g′p(ǫ)ǫ

2

]

To prove property (i), gǫp(x) ≤ gp(|x|), we must show that the term in the brackets is non-negative.
From concavity, the tangent line to gp at point ǫ lies above the function value at point 0. That
is, gp(0) ≤ gp(ǫ) + g′p(ǫ)(0 − ǫ), which implies 0 ≤ gp(ǫ) − g′p(ǫ)ǫ. Since gp is increasing,

gp(ǫ) ≥ g′p(ǫ)ǫ > 0. It follows that gp(ǫ) −
g′

p(ǫ)ǫ

2 ≥
g′

p(ǫ)ǫ

2 ≥ 0. Thus, the term in brackets is
non-negative, establishing property (i).

Property (ii) follows immediately by substitution for |x| > ǫ:

gǫp(x) + gp(ǫ)−
g′p(ǫ)ǫ

2
=

(
gp(|x|)− gp(ǫ) +

g′p(ǫ)ǫ

2

)
+ gp(ǫ)−

g′p(ǫ)ǫ

2
= gp(|x|)

In this case, property (ii) holds with equality.

B.1 SUBOPTIMALITY BOUND FOR SMOOTHED PROBLEM

We now use Lemma 1 to prove that the gap between the optimal values of the original and smoothed
objective functions is bounded and vanishes as ǫ→ 0.

Consider the sparse CCA problem with the following objective functions and constraint set:

• Original objective: f(x,y) = xTAy − ρ1
∑n

i=1 gp(xi)− ρ2
∑m

j=1 gp(yj)

• Smoothed objective: fǫ(x,y) = xTAy − ρ1
∑n

i=1 g
ǫ
p(xi)− ρ2

∑m
j=1 g

ǫ
p(yj)

• Constraint set: C = {(x,y) : xTBx ≤ 1,yTCy ≤ 1}

Let (x̃, ỹ) and (x̃ǫ, ỹǫ) denote the optimal solutions of the original and smoothed problems, respec-
tively.

Theorem 2. The gap between the optimal objective values is bounded as follows:

0 ≤ f(x̃, ỹ)− f(x̃ǫ, ỹǫ) ≤ (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)

Furthermore, this bound vanishes as ǫ→ 0:

lim
ǫ→0

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)
= 0

Proof. From Lemma 1, we have for any component z that gǫp(z) ≤ gp(z) and gp(z) ≤ gǫp(z) +

gp(ǫ)−
g′

p(ǫ)ǫ

2 . Summing these over all components and incorporating them into the objectives, we
get for any feasible (x,y) ∈ C:

fǫ(x,y) ≥ f(x,y) ≥ fǫ(x,y)− (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)
(∗1)

We proceed in three steps:

13
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1. Lower Bound: By optimality of (x̃, ỹ) and feasibility of (x̃ǫ, ỹǫ) for the original problem,
f(x̃, ỹ) ≥ f(x̃ǫ, ỹǫ). This gives the lower bound f(x̃, ỹ)− f(x̃ǫ, ỹǫ) ≥ 0.

2. Upper Bound: We construct a chain of inequalities:

f(x̃, ỹ) ≤ fǫ(x̃, ỹ) + (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)
(from (∗1))

≤ fǫ(x̃
ǫ, ỹǫ) + (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)
(by optimality of (x̃ǫ, ỹǫ))

≤ f(x̃ǫ, ỹǫ) + (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)
(from (∗1))

Rearranging the final inequality gives the desired upper bound:

f(x̃, ỹ)− f(x̃ǫ, ỹǫ) ≤ (ρ1n+ ρ2m)

(
gp(ǫ)−

g′p(ǫ)ǫ

2

)

3. Vanishing Limit: We need to show that limǫ→0

(
gp(ǫ)−

g′

p(ǫ)ǫ

2

)
= 0.

• By concavity, the tangent at ǫ lies above the origin, so gp(0) ≤ gp(ǫ)− g′p(ǫ)ǫ, which

gives g′p(ǫ)ǫ ≤ gp(ǫ).

• This implies gp(ǫ)− g′p(ǫ)ǫ ≥ 0.

• Since g′p(ǫ)ǫ ≥ 0 (for ǫ > 0), we have the following squeeze:

0 ≤ gp(ǫ)− g′p(ǫ)ǫ ≤ gp(ǫ)−
g′p(ǫ)ǫ

2
≤ gp(ǫ)

• By continuity of gp at 0, we have limǫ→0 gp(ǫ) = gp(0) = 0.

By the Squeeze Theorem, since gp(ǫ) −
g′

p(ǫ)ǫ

2 is bounded between 0 and a term that goes
to 0, it must also converge to 0.

This completes the proof.

C PROOF OF CONVERGENCE

In this part, we prove that the MM iterates generated by our proposed algorithm produce a non-
decreasing objective sequence, and that every limit point of the iterates satisfies the first-order (KKT)
stationarity condition. Besides, if the objective functions at different stationary points of the problem
are distinct (which is almost always the case Sun et al. (2017), we can further guarantee the conver-
gence of the MM iterates. To make it clear what is a stationary point in our case, we first introduce
a first-order optimality condition for maximizing a smooth function over an arbitrary constraint set,
which follows from Bertsekas et al. (2003).

Proposition 1 (First-Order Optimality for Maximization). Let h : Rn × R
m → R be continuously

differentiable, and let (x̃, ỹ) be a local maximizer of h over a closed set C ⊂ R
n × R

m. Then

∇h(x̃, ỹ)T (z− (x̃, ỹ)) ≤ 0, ∀z ∈ TC(x̃, ỹ),

where TC(x̃, ỹ) denotes the tangent cone of C at (x̃, ỹ).

C.1 MONOTONICITY AND STATIONARITY

Proof. Recall the smoothed maximization problem:

max
(~x,~y)∈C

hp(~x, ~y) = ~xT ~A~y − ρ1

n∑

i=1

gǫp(xi)− ρ2

m∑

j=1

gǫp(yj),

14
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where the constraint set is C = {(~x, ~y) | ~xT ~B~x ≤ 1, ~yT ~C~y ≤ 1}.

At iterate t with point (~x(t), ~y(t)), we define the Minorization-Maximization (MM) surrogate func-
tion as:

q((~x, ~y) | (~x(t), ~y(t))) = ~xT ~A~y − ρ1

n∑

i=1

(w
(t)
i x2

i + c
(t)
i )− ρ2

m∑

j=1

(z
(t)
j y2j + d

(t)
j ).

Since the weights w
(t)
i and constants c

(t)
i are uniquely and continuously determined by x

(t)
i (and

similarly for z
(t)
j and d

(t)
j by y

(t)
j ), we use the notation q((·, ·) | (~x(t), ~y(t))).

Furthermore, since q(·, · | ·, ·) is continuous with respect to all four of its arguments, if a sequence
of points converges, i.e.,

lim
i→∞

(~ai,~bi,~ci, ~di) = (~a∞,~b∞,~c∞, ~d∞),

we have that the function values also converge:

lim
i→∞

q((~ai,~bi) | (~ci, ~di)) = q((~a∞,~b∞) | (~c∞, ~d∞)).

Since gǫp is concave, the quadratic tangents provide an upper bound, satisfying w
(t)
i x2

i+c
(t)
i ≥ gǫp(xi)

for all xi, with equality holding at xi = x
(t)
i . Therefore, for all points (~x, ~y) ∈ C, the surrogate

function minorizes the true objective:

q((~x, ~y) | (~x(t), ~y(t))) ≤ hp(~x, ~y),

with equality at the current iterate (~x, ~y) = (~x(t), ~y(t)).

The MM update rule chooses the next iterate by maximizing this surrogate:

(~x(t+1), ~y(t+1)) = argmax
(~x,~y)∈C

q((~x, ~y) | (~x(t), ~y(t))).

This update guarantees that the objective function value is non-decreasing:

hp(~x
(t+1), ~y(t+1)) ≥ q((~x(t+1), ~y(t+1)) | (~x(t), ~y(t)))

≥ q((~x(t), ~y(t)) | (~x(t), ~y(t))) = hp(~x
(t), ~y(t)).

This shows the sequence of objective values {hp(~x
(t), ~y(t))} is non-decreasing.

The constraint set C is compact (as the constraints define bounded ellipsoids), and the objective
function hp(·) is bounded above on this set. Thus, the sequence of objective values must converge to

a finite limit: hp(~x
(t), ~y(t))→ h∗

p <∞. Because C is compact, the sequence of iterates {(~x(t), ~y(t))}
must admit at least one limit point.

Let (~x(∞), ~y(∞)) be such a limit point, and let {(~x(tj), ~y(tj))} be a subsequence that converges to it
as j →∞. By the definition of the MM update, for any point ( ~zx, ~zy) ∈ C, the following inequality
holds:

q((~x(tj+1), ~y(tj+1)) | (~x(tj), ~y(tj))) ≥ q(( ~zx, ~zy) | (~x
(tj), ~y(tj))).

Keeping ( ~zx, ~zy) fixed and taking the limit as j → ∞, we can use the continuity of q(·|·)
Razaviyayn et al. (2013) to obtain:

q((~x(∞), ~y(∞)) | (~x(∞), ~y(∞))) ≥ q(( ~zx, ~zy) | (~x
(∞), ~y(∞))), ∀( ~zx, ~zy) ∈ C.

This shows that the limit point (~x(∞), ~y(∞)) globally maximizes the surrogate function q(·, · |
(~x(∞), ~y(∞))) over the set C.

Furthermore, at this limit point, the surrogate and objective values are equal:

q((~x(∞), ~y(∞)) | (~x(∞), ~y(∞))) = hp(~x
(∞), ~y(∞)) = h∗

p.

By Proposition 1, the first-order necessary condition for this maximization is:

∇(~x,~y)q((~x, ~y) | (~x
(∞), ~y(∞)))|T(~x,~y)=(~x(∞),~y(∞))(~z − (~x(∞), ~y(∞))) ≤ 0,
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for all vectors ~z in the tangent cone TC(~x
(∞), ~y(∞)). It is straightforward to check that the gradients

of the surrogate and the objective function are identical at the point of tangency:

∇(~x,~y)q(· | (~x
(∞), ~y(∞)))|(~x(∞),~y(∞)) = ∇(~x,~y)hp(~x, ~y)|(~x(∞),~y(∞)).

Substituting this into the first-order condition, we get:

∇(~x,~y)hp(~x, ~y)|
T
(~x(∞),~y(∞))(~z − (~x(∞), ~y(∞))) ≤ 0, ∀~z ∈ TC(~x

(∞), ~y(∞)).

This is precisely the Karush-Kuhn-Tucker (KKT) stationarity condition for the original objective

function hp at the limit point (~x(∞), ~y(∞)). This proves that all limit points of the algorithm are
KKT stationary points.

In addition, for any limit point (~x(∞), ~y(∞)), we have shown that hp(~x
(∞), ~y(∞)) = h∗

p. There-
fore, if all KKT stationary points of hp have distinct objective values, there can be only one limit

point for the sequence {(~x(t), ~y(t))}. This implies that the entire sequence must converge. If the
sequence were not convergent, it would have a subsequence that maintains a minimum distance

from (~x(∞), ~y(∞)). This subsequence, being in a compact set, would itself have a limit point, which
would be a different KKT point with the same optimal objective value h∗

p, leading to a contradiction.
As a result, the proof is completed.
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