
Supplemental Material for516

“Towards Packing: 2x NLP BERT Acceleration”517

518

Anonymous, Authors519

A Packing SQUaD 1.1520

We tokenized SQUaD [19] for BERT [5] with maximum sequence length 384 and visualized the521

histogram over the sequence length (Figure 5). The distribution looks similar to the Wikipedia dataset522

but is slightly less skewed. However, the maximum sequence length only had an occurrence of 1.2%523

compared to 23.5%. Hence, the theoretical un-padding speedup is 2.232. In Table 2, we can see524

that SPFHP does not concatenate more than 3 samples and obtains 97.54% efficiency in contrast525

to a maximally used depth of 16 with 99.60% efficiency on Wikipedia, because of the less skewed526

distribution. Note that we have less than 900000 samples. Hence, NNLSHP is less efficient because527

the rounding in the residuals has a much larger impact compared to more than 16 million sequences528

in the Wikipedia dataset.529

Figure 5: SQUaD 1.1 BERT pre-training dataset sequence length histogram for maximum sequence
length of 384.

Table 2: Performance results of proposed packing algorithms for SQUaD 1.1 BERT pre-training.

packing packing # strategies # packs # tokens # padding efficiency packing
depth algorithm used tokens (%) factor
1 none 348 88641 34038144 18788665 44.801 1.000
2 SPFHP 348 45335 17408640 2159161 87.597 1.955
3 NNLSHP 398 40808 15670272 420793 97.310 2.172
3/max SPFHP 344 40711 15633024 383545 97.547 2.177

13

B Packing GLUE530

To explore a variety of datasets and emphasize that skewed distributions are common, we explored all531

datasets in the GLUE benchmark [23, 22] that came with training data. We loaded the datasets using532

the HuggingFace dataset loading API [36]. For preprocessing, we followed the implementation in the533

HuggingFace transformers repository [35] 2 and extracted the respective data processing snippets534

to obtain tokenized data with a maximum sequence length of 128. The histogram of the sequence535

length for each of the included datasets is displayed in Figure 6 and the packing results are given in536

Table 3. Each dataset benefits from packing. The lower the mean, the higher the packing factors are537

that can be reached but with a higher packing depth.538

Figure 6: GLUE dataset sequence length histograms for maximum sequence length of 128.

Table 3: Performance results of proposed packing algorithms for the GLUE dataset. Only the baseline
and the SPFHP packing results without limiting the packing depth are displayed.

data packing # strategies # packs # tokens # padding efficiency packing
name depth used tokens (%) factor
cola 1 34 8551 1094528 997669 8.849 1.000
cola 13/max 29 913 116864 20005 82.882 9.366
sst2 1 64 67349 8620672 7723633 10.406 1.000
sst2 15/max 64 7691 984448 87409 91.121 8.757
mrpc 1 77 3668 469504 274214 41.595 1.000
mrpc 4/max 74 1606 205568 10278 95.000 2.284
qqp 1 123 363846 46572288 35448844 23.884 1.000
qqp 5/max 123 97204 12442112 1318668 89.402 3.743
stsb 1 85 5749 735872 575993 21.726 1.000
stsb 6/max 83 1367 174976 15097 91.372 4.206
mnli 1 124 392702 50265856 34636487 31.093 1.000
mnli 8/max 124 123980 15869440 240071 98.487 3.167
rte 1 112 2490 318720 152980 52.002 1.000
rte 4/max 108 1330 170240 4500 97.357 1.872
wnli 1 72 635 81280 57741 28.960 1.000
wnli 6/max 63 192 24576 1037 95.780 3.307

2https://github.com/huggingface/transformers/blob/master/examples/
text-classification/run_glue.py

14

https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py

C Further learning curves539

This section provides further learning curves related to Section 4.2.540

Figure 7: Comparison of learning curves for packed and unpacked processing with reduced batch

size for the packed approach.

Figure 8: Comparison of learning curves for packed and unpacked processing with heuristics applied.

Figure 9: Comparison of learning curves for packed and unpacked processing in the optimized

setup.

15

D Technical background on packing541

D.1 Canonical packing problem542

The bin-packing problem deals with the assignment of items into bins of a fixed capacity such that543

the number of utilized bins is minimized. In the canonical formulation of the packing problem a544

vector s(i) of length n is used to represent the items being packed, where s(i) denotes the length of545

the i-th sequence/item. The allocation of items into bins is tracked through the assignment matrix B,546

where Bij 2 {0, 1} states whether the i-th sequence should be placed into the j-th bin. In the worst547

case scenario, every item is assigned to its own bin, thus B 2 Rn⇥n. Notably, s grows linearly in the548

number of sequences/items being packed and B grows with the square. To mask out unused bins549

yj 2 {0, 1}, denotes whether the j-th bin is being used. The optimization objective is to minimize the550

sum of yj while making sure to assign each si to exactly one bin and not exceeding the maximum551

bin capacity sm for each bin. This problem formulation is well known as bin-packing [13].552

min
y2{0,1}n,B2{0,1}n⇥n

nX

j=1

yj Minimize the number of bins.

s.t.
X

j=1

bij = 1 8i Assign each length/sequence to only one bin.

nX

i=1

s(i)bij  smyj 8j Cumulative length cannot exceed capacity.

(1)

Bin-packing is a strongly NP-complete [13] problem. Producing an exact and optimal solution553

is possible with a variety of existing algorithms, for example with the branch-and-cut-and-price554

algorithm [27]. However, given that we want to apply it for very large n (16M for the Wikipedia555

dataset) an approximate approach is required.556

D.2 Approximate bin-packing problem557

Approximate packing approaches are divided into online and offline algorithms [11]. Online algo-558

rithms process incoming sequences one-by-one in a streaming fashion, whereas offline algorithms559

have a holistic view of all samples to be packed but typically still operate on a per sample basis.560

This results in best case time and memory complexities of at least O(n log(n)) and solutions that561

can sometimes be far from optimal, especially for the online algorithms which do not have access562

to a holistic view of the datasets. The simplest online approach (next-fit) would be to keep a single563

open bin at any given time. An incoming sequence is added to this open bin if it fits, otherwise the564

bin is closed (can never be appended to again) and a new one is opened to accommodate the new565

sequence [11]. In the case of the Wikipedia pre-training dataset almost 25% of the sequences are of566

length 512, which makes this approach very inefficient since bins would frequently be closed because567

the incoming sequence did not fit. More specifically, this approach is not able to efficiently combine568

one long sequence with one shorter sequence, when the number of long sequences is large. The569

algorithms that come closest to the approaches proposed in this paper are the online harmonic-k algo-570

rithm [31], which creates harmonic sized bins for the assignment decision, and the offline Modified571

First Fit Decreasing method [12, 26], which sorts the data, groups it into 4 size categories and defines572

a strategy adjusted to these sizes.573

In our approaches, we make three major simplifications. We make the problem of bin packing less574

dependent on n by operating on the histogram of sequence lengths with bin size 1. Hence, we replace575

s(i) by its histogram b and the bin assignment y,B by a mixture of strategies x, where the set of all576

available packing strategies is modeled as the matrix A (see also Section D.4.2).577

Then, we do not solve the full packing problem but focus on a fixed packing depth (in other words578

the well known 3-partition problem). Last but not least, we solve the limited depth packing problem579

only approximately either with a non-negativity-constrained linear least squares [2] (NNLS) followed580

by rounding to nearest integer solution or by applying Worst-Fit [12, 26] to the histogram, sorted581

from largest to smallest (in contrast to using an unsorted dataset). An exact solution would not be582

appropriate, since the 3-partition problem is strongly NP-complete [28] as well.583

16

D.3 Definitions584

In this section, we standardize the terms used throughout our methods. Firstly, the terms pack and bin585

may be used interchangeably. Secondly, the presented packing schemes impose a limit on how many586

sequences can be packed into any given bin. This limit is referred to as the maximum packing depth.587

For simplicity, we require the different sequence lengths in a pack to always add up exactly to the588

bin capacity sm (we can always generate a padding sequence of just the right length to fill-up the589

bin). A packing strategy is a sorted list of sequence lengths, for example [5, 7, 500], such that the590

total sequence length is no more than sm and the number of sequences in the pack does not exceed591

the maximum packing depth. The output of a packing scheme is typically as set of packing strategies592

and the corresponding repeat count for each strategy stating how many times each strategy should593

be repeated in order to cover the entire dataset. The strategy repeat count is also referred to as the594

mixture of strategies. The objective of the packing algorithm is to jointly design a set of packing595

strategies and their repeat counts, such that the amount of padding is (approximately) minimized.596

The presence of padding in the packs can either be implicit or explicit. For instance for sm = 512597

the strategy [2, 508] has an implicit padding of 2 (needed to fill the pack up to the sm). Alternatively,598

the strategy repeat count may over-subscribe a particular sequence length leading to explicit packing.599

For instance constructing a pack of [4, 508] may require a new padding sequence of length 4 be600

constructed, if there are not enough sequences of that length in the dataset. The packing algorithms,601

we present, use both representations.602

D.4 Non-negative least squares histogram-packing603

The first algorithm proposed in this paper is suitable for settings where it is desirable to achieve a604

high packing efficiency with a limited packing depth. The algorithm is deterministic and has three605

major components described in Sections D.4.1, D.4.2 and D.4.3.606

D.4.1 Enumerating packing strategies of fixed packing depth607

Listing all unique ways of packing up to a maximum packing depth can be achieved through dynamic608

programming. We only consider packing at most up to 3 sequences per pack. This is the smallest609

packing depth that can eliminate the need for most padding on the Wikipedia dataset. Increasing the610

depth to 4, increases the size of the packing problem drastically and yields no throughput benefit 3.611

With only two sequences, packing would be not as efficient since the distribution on sequence length612

is not symmetric. We use dynamic programming to enumerate all feasible ways/strategies that up613

to M sequences of length 1� 512 can be packed into a bin of length 512. For example, a packing614

strategy may be [512] or [6, 506] or [95, 184, 233]. To avoid listing the same strategy multiple times,615

we enforce the sequence lengths within a pack to occur in sorted order, for example, [95, 184, 233] is616

equivalent to [184, 95, 233] and should only be listed once. This reduces the search space as well as617

the space of potential solutions by a factor of 6 approximately and thus significantly accelerates the618

optimization process. If you had the same strategy repeated 6 times instead of having just one instance619

of that strategy with weight X , you will have six instances with weight x/6 (for example, or any620

other distribution). This would conflict with integer rounding of the solutions and with convergence621

of optimization algorithms.622

D.4.2 Constructing the packing matrix623

The number of rows in the packing matrix is equal to the number of different sequence length624

categories. For instance, if we are using a granularity of 1 token to distinguish between different625

sequence lengths, then there are “maximum sequence length” rows. Each column of the matrix626

corresponds to a valid packing strategy (given the depth of packing). An example packing matrix627

for fitting up to 3 sequences into sequence length 8 is given in Table 4. Each column of the matrix628

represents a packing strategy. For instance, the first column represents the strategy [1, 1, 6] of629

packing two length-1 sequences and one length-6 sequence together to form a pack of length 8. The630

number of strategies (and columns in the matrix) is discussed in Section D.5. For a packing depth631

of 3 and maximum sequence length, we obtain around s2m+6sm+12
12 strategies. For depth 4, around632

sm(sm+4)(2sm+1)
288 more get added.633

3For data distributions that are more skewed than Wikipedia this might look different.

17

Table 4: Example packing matrix for sequence length 8. Columns represent different kinds of packs.
Rows represent the number of sequences in these packs with a certain length. The last column
represents a pack with only a single sequence of length six.

2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 2 0 1 0 0
0 0 1 0 1 0 0 0 2 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

D.4.3 Solution of the NNLS approximate packing problem634

A solution of the packing problem is the mixture of packing strategies x that minimizes the amount of635

padding in the packed dataset. We solve directly for the mixture (positive real numbers) and recover636

the padding as the negative portion of the residual (see Section D.4.4).637

min
x2Rm

kA · x� bk2

s.t. x � 0
(2)

The solution vector x will represent the mixture of the columns of A, in other words the mixture638

of valid packing strategies such that A · x is as close as possible (in the least squares sense) to the639

histogram of sequence lengths b. We obtain a solution with a non-negative least squares implemen-640

tation [30, 34] Interestingly in the case of sequence length 512 only 634 out of the 22102 available641

packing strategies of depth up to 3 are used (3%).642

D.4.4 Padding as the residuals of the packing problem643

We compute the residuals of the least squares solution (after rounding the mixture to integer) as:644

r = b�A · round(x) (3)

The negative portion of the residuals represents sequences that we are “short”. That is, there is a645

deficit of those sequences and we are over-subscribing to them. The positive portion of the residuals646

represents sequences which have failed to be packed. Typically, there is a deficit of short sequences647

and a surplus of long sequences as demonstrated by the following plot.648

Figure 10: Visualization of the residual of the NNLS packing problem

In total, there are n = 16‘279‘552 sequences in the Wikipedia pre-training dataset. After649

the non-negative least squares packing (and rounding to integer solution) there are 56‘799 un-650

packed sequences left un-packed (about 0.352%). The residual on sequence lengths 1 to 8 are651

18

[�4620,�4553,�4612,�4614,�3723,�3936,�3628,�3970]. These negative residuals imply652

that we need to add this many sequences of their corresponding sequence length to realize the mixture653

of packing strategies. In total the first iteration introduces 7.94106 tokens of padding. In contrast654

large sequence lengths have a positive residual (a surplus of unused sequences). For sequence lengths655

504 to 512 the values are [3628, 3936, 3724, 4613, 4612, 4553, 4619, 0]. Note that sequence length656

512 has a residual of 0 since they do not need packing. Intermediate sequence lengths typically have657

non-zero (but much smaller) residuals.658

The detailed code for the algorithm is provided in Listing 3.659

D.4.5 Residual weighting660

A natural extension of the non-negative least squares problem introduced in Section D.4.3 is to weight661

the residuals on different sequence length differently.662

min
x2Rm

k(wA) · x� (wb)k2

s.t. x � 0
(4)

We should not significantly penalize a deficit in short sequence lengths (smaller than 8 tokens) as663

adding up to 8 tokens of padding is not much overhead. Similarly, a surplus in long sequences is664

not worrisome because the amount of padding needed to achieve a sequence length of 512 is small.665

Reducing the weight of the residual on the first 8 tokens to 0.09 leads to the following residual plot666

shown on the right in Figure 11. In this case the residual is almost entirely shifted to the shorter667

sequences and the positive residual on the longer sequences has virtual disappeared.668

Figure 11: Visualization of the weighted residual of the NNLS packing problem

D.5 Complexity analysis of the proposed packing approaches669

Since approximate packing algorithms have a complexity of at least O(n log(n)) and we would like670

to be able to tackle datasets with 2K million samples, we will discuss the complexity of our packing671

algorithms in this section. The complexity depends on the maximum sequence length sm, the number672

of samples n, and the packing depth d.673

To create the histogram, we have to iterate over the data once (O(n)). Our histograms will be binned674

by size 1, meaning one bin for each sequence length. Hence, a dictionary can be generated (O(sm))675

and used for the sorting (O(1)). The respective histogram vector has dimension sm.676

D.5.1 Analysis of non-negative least-squares histogram-packing677

For a packing depth of one, there is only the strategy [sm]. For a packing depth of two, we add678

the strategies [1, sm � 1], ..., [sm � b sm
2 c] which results in an additional b sm

2 c potential strategies.679

19

Following the dynamic programming approach, the number of possible additional strategies of depth680

three can be calculated with681

potential strategies =
b sm

3 cX

j=1

b sm�j
2 cX

i=j

1 =

b sm
3 cX

j=1

�
sm � j

2

⌫
� (j � 1)

⇡
b sm

3 cX

j=1

sm

2
� 3

2
j ⇡ sm

2

sm

3
� 3

2

sm/3(sm/3 + 1)

2

⇡

s
2
m

12

�

(5)

Note that for sm = 512 the approximation is exact. This means that our strategy matrix A has682

the dimensions sm ⇥
⇣h

s2m
12

i
+ b sm

2 c+ 1
⌘

. So it contains 11‘316‘224 numbers which is still much683

smaller than n. Note that the original data matrix B had n
2 entries, which all needed to be optimized684

together with the n bin assignments y. We now have only
h
s2m
12

i
+ b sm

2 c free variables in the strategy685

vector x. Also note that A can be precomputed when sm is known and is independent of the number686

of samples. Given a problem matrix with dimension i⇥ j, Luo et al. [32] indicate that the asymptotic687

complexity of most solution approaches is O(ij2), whereas they propose an O(ij) solution. Since688

we use the standard SciPy implementation [30], our estimated total complexity for NNLSHP is689

O(n+ s
5
m).690

For sm = 2048, the estimate would be 3500540 potential strategies which is still far less than the691

number of samples.692

For packing depth 4, we calculate [37]:693

b sm
4 cX

k=1

b sm�k
3 cX

j=k

b sm�j�k
2 cX

i=j

1

⇡
b sm

4 cX

k=1

b sm�k
3 cX

j=k

sm � k + 2� 3j

2

⇡
b sm

4 cX

k=1

1

12
(s+ 4� 4k)(s+ 3� 4k)

⇡ 1

288
s(2s2 + 9s+ 4)

=
1

288
s(s+ 4)(2s+ 1)

(6)

So with sm = 512, there would be around 940K strategies. In our implementation, this number of694

strategies would be too high to create the problem matrix. One alternatives to simplify would be to695

not use the exact length of sequences but to only consider even numbers for the sequence length and696

round up. That way arbitrary sequence length could also be handled and the limiting factor would be697

the complexity of the attention layer in BERT which does not scale well with the sequence length.698

D.5.2 Analysis of shortest-pack-first histogram-packing699

The complexity calculation of SPFHP is straightforward. We go over the whole data once for the700

histogram sorting. Next, we iterate over each of the sm bins in the histogram. Lastly, we iterate over701

all strategies that were encountered so far. It can be proven that, at each iteration, the number of702

strategies can be maximally increased by one. In each step, we potentially add a sequence to existing703

strategies but a new strategy is opened up only in the final step, when we either create a new strategy704

or we split one of the existing strategies into two. Hence, the number of strategies is bounded by sm705

and the overall complexity is bounded by O(n+ s
2
m).706

20

E Theorem on LAMB hyperparameter correction heuristic707

With packing, the effective batch size changes and hence hyperparameters of the LAMB optimizer [25]708

need to be adjusted. For a packed dataset with a packing factor p, we update the decay parameters as:709

�1 := �
p
1 , �2 := �

p
2 . For instance if �1 = 0.81 for the un-packed dataset, then for a packed dataset710

with an average of 2 sequences per sample one should use a value of 0.812 ⇡ 0.66 instead. Assuming711

no or only minor changes in gradients and p being a natural number, we can prove that this heuristic712

is the exact solution to make sure that momentum and velocity in LAMB are unaffected by packing.713

This can be proven by mathematical induction. Note that p � 1 by definition.714

Theorem 1. For any p 2 N and assuming that respective gradients on a batch of b random samples715

are (approximately) the same, choosing716

�1 := �
p
1 (7)

�2 := �
p
2 . (8)

as hyperparameters in the LAMB optimizer ensures that the momentum and velocity after p separate717

update steps are the same as with one packed update step with p⇥ b samples.718

Proof.719

• Base Case:720

For p = 1 the left and right side of the equation are the same which matches exactly the721

unpacked case. Hence, the theorem holds for p = 1.722

• Inductive hypothesis: Suppose the theorem holds for all values of p up to some k, k � 1.723

• Inductive proposition: The theorem holds for p = k + 1.724

• Proof of the inductive step: Let l be the loss function, wt the weight vector after t updates,725

and x
t
1, . . . , x

t
b the respective underlying data to calculate the gradient gt. For a single726

update step in LAMB with batch size b samples, we compute the gradient727

gt =
1

b

bX

i=1

@l

@w
(xt

i, w
t). (9)

Since g1 ⇡ g2 ⇡ . . . ⇡ gk+1, We have with the inductive hypothesis and the definitions in728

LAMB:729

mk = �
k
1m0 + (1� �

k
1)g1 (10)

vk = �
k
2 v0 + (1� �

k
2)g

2
1 (11)

Now we can calculate (with g1 ⇡ gk+1)730

mk+1 = �1mk + (1� �1)gk+1 (12)

⇡ �1

�
�
k
1m0 + (1� �

k
1)g1

�
+ (1� �1)g1 (13)

= �
k+1
1 m0 + (1� �

k+1
1)g1 (14)

The calculation for vk is the same. As reference for a packed update with p = k+1 with �1731

and �2, we would get732

g =
1

pb

pX

j=1

bX

i=1

@l

@w
(xj

i , w
1) =

1

p

pX

j=1

1

b

bX

i=1

@l

@w
(xj

i , w
1)

!
⇡ 1

p

pX

j=1

g1 = g1 (15)

since we are calculating gradients over b samples which are assumed to be approximately733

the same. Consequently, the updates for momentum and velocity would be734

mk = �1m0 + (1� �1)g1 (16)

vk = �2v0 + (1� �2)g
2
1 . (17)

Hence, �1 = �
k+1
1 and �2 = �

k+1
2 is required to map to the formula with the consecutive735

updates (for the same amount of data).736

21

• Conclusion: The theorem holds for any p 2 N.737

738

Since we proved that the formulas �1 := �
p
1 , �2 := �

p
2 . hold for all p 2 N, p � 1, it is safe to assume739

that it is an appropriate heuristic for all p 2 R, p � 1.740

22

F Un-padding scaling estimate741

Firstly, we retrieve the per-batch processing time for an un-padding implementation running pre-742

training on the Wikipedia dataset from [17]. These processing times were obtained using 8 GPUs743

each with a per-device batch size of 32. We also retrieve the throughput numbers for the same system744

running with padding from [33] and use that as the baseline to compare the un-padded throughput745

against.746

The throughput on the 8 GPU system is effectively limited by the slowest of the eight batches being747

processed in parallel. The Gumbel distribution is particularly suited to modelling the maximum or748

minimum value of a fixed size collection of i.i.d. samples (in this case batches). We observe that on749

8 GPUs the throughput (i.e. speed-up) distribution indeed closely resembles a Gumbel distribution750

with ↵1 = 1.6 and �8 = 0.13 as shown in Figure 12.751

Figure 12: Left: Speed-up from un-padding on 8 GPUs closely resembles a Gumbel distribution.
Right: statistical estimate of speed-up distribution on a 1 GPU system running un-padding

We can extrapolate the performance on the 8 GPU system to larger clusters by recognizing that752

the processing time for each cluster is effectively determined by the slowest batch being processed.753

Specifically, we could randomly sample (without replacement) two processing times for the 8 GPU754

system, and record the max of the two as the processing time for a system of 16 GPUs. However,755

this simple approach is too sensitive to outliers in the data and would result in an under-estimate756

of the performance of un-padding on large systems. We mitigate the effect of outliers in the data757

by avoiding directly sampling the processing times. Instead, we fit a Gumbel distribution to the758

processing times of a single batch of size 32 running on one GPU. To perform the fit, we observe that759

the cdf on one GPU (P1) is related to the cdf on 8 GPUs (P8) through [29](section 1.3):760

(1� P8(s)) = (1� P1(s))
8 (18)

In other words, if the speed-up on the cluster is larger than s, this implies that the speed-up on761

every GPUs in the cluster was at least s. Assuming P1 is Gumbel and given the 8 GPU Gumbel762

parameters ↵8 and �8, we need to fit two parameters, ↵1 and �1. Consequently for the median763

(s = ↵8 � �8 ln(ln(2)), P8(s) = 0.5), we have:764

0.5 = (1� P1(↵8 � �8 ln(ln(2))))
8
. (19)

And since P8 is Gumbel, we also have an equation for the mode (s = ↵8, P8(s) = e
�1):765

(1� e
�1) = (1� P1(↵8))

8
. (20)

We solve these two non-linear equations simultaneously using the standard SciPy optimization766

package.767

Listing 2: Infer Gumble distribution parameters.
1 import numpy as np768
2 from scipy import stats , optimize769
3 alpha_8 = 1.6038770
4 beta_8 = 0.1288771

23

5 def g(x):772
6 alpha_1 , beta_1 = x773
7 dist = stats.gumbel_r(loc=alpha_1 , scale=beta_1)774
8 # Equations for median and mode775
9 median = alpha_8 - beta_8*np.log(np.log (2))776

10 equation1 = 0.5 - dist.sf(median)**n_gpu777
11 mode = alpha_8778
12 equation2 = (1-np.exp(-1)) - dist.sf(mode)**n_gpu779
13 return (equation1 **2 + equation2 **2)780
14781
15 res = optimize.minimize(g, [alpha_8 , beta_8], method="Nelder -Mead")782
16 alpha_1 , beta_1 = res.x783

The resulting estimated speed-up Gumbel distribution for a single device has ↵ = 1.94, � = 0.108784

and is shown in Figure 12 [right]. To simulate the performance of a cluster of size n with a batch785

size of 32 per device, we take the minimum over n samples from this distribution. Repeating this786

process to generate many samples allows us to estimate the expected speed-up for any given cluster787

size. Unfortunately, we cannot make any statistical inference about the processing times of individual788

sequences since the data is only provided at the granularity of 32 sequences per batch, and it is not789

clear how much of the computation is done in parallel and how much in serial.790

24

G Fine-tuned longest-pack-first histogram-packing791

In the main paper, we focused on SPFHP due its simplicity. In this section, we analyse the effect of792

applying the “Best-Fit” algorithm [11]. Here, the longest pack that still fits the sequence is chosen793

instead of the shortest one. In contrast to SPFHP, we additionally consider splitting the histogram794

count, if it can fit multiple times. A simple example is sequence length 256, where we divide the795

respective histogram count by 2 to create the optimal pack with strategy [256, 256] instead of the796

strategy [256]. This latter strategy would be complemented by other sequences but would probably797

not result in an optimal packing. The implementation of this approach is much more complex than798

the SPFHP implementation. The code is provided in Listing 8 and the results in Table 5.799

pack. # strat. # packs # tokens # padding efficiency pack.
depth used tokens (%) factor
1 508 16279552 8335130624 4170334451 49.967 1.000
2 634 10099081 5170729472 1005933299 80.546 1.612
3 648 9090154 4654158848 489362675 89.485 1.791
4 671 8657119 4432444928 267648755 93.962 1.880
8 670 8207569 4202275328 37479155 99.108 1.983
16 670 8140006 4167683072 2886899 99.931 2.000
29/max 670 8138483 4166903296 2107123 99.949 2.000

Table 5: Performance results of longest-pack-first histogram-packing for Wikipedia BERT pre-training
with maximum sequence length 512.

We can see that longest-pack-first histogram-packing (LPFHP) uses a much higher packing depth800

when no limit is set (29 instead of 16). Splitting the histogram counts results in slightly higher801

numbers of used strategies compared to SPFHP where the number of used strategies is limited by the802

maximum sequence length. The best efficiency of LPFHP is 99.949% with packing factor of 2 which803

is slightly higher than the 99.75% (1.996 packing factor) for NNLSHP and 99.6% for SPFHP (1.993804

packing factor). All algorithms are very close to the upper limit.805

Note that for NNLSHP, we only fill up the unpacked samples with padding. Applying best-fit on806

the remains, similar results can be expected. Although the benefits of the improved algorithm are807

negligible, we share the concept and code below in case packing is applied to other data with a808

different distribution that would benefit more from it, or for applications where only perfectly packed809

sequences without padding are of interest.810

25

G.1 Extended NNLS with padding token weighting811

In Section D.4.4, we defined the residual as812

r = b�A · round(x) (21)

and discovered that a positive residual corresponds to sequences that we did not pack at all and813

should be avoided. Negative residuals correspond to padding and should be minimized. Due to814

this discrepancy, we decided to set small weights for very short sequences (that don’t occur in the815

data). However, it was not possible to directly optimize the amount of padding. A negative residual816

component for length i, ri, results in |ri| · i padding tokens, however a positive residual actually817

results into (512� ri) · i padding tokens. This cannot be addressed by our weighting approach in818

min
x2Rm

k(wA) · x� (wb)k2

s.t. x � 0
(22)

Working within the NNLS approach, we can strictly enforce a non-positive residual r (before rounding819

to integer). To that end, we define a new auxiliary variable r ⇡ �(b�Ax) which is the negative of820

the residual, r. This will allow us to reformulate the objective r  0 to the non-negative constraint:821

r � 0.822

min
x2Rm

k(wA) · x� (wb)k2 + kw ·A · x� w · b� w · rk2

s.t. x � 0

r � 0

(23)

This will enforce r = Ax� b � 0 due to the large weight, w := 106, and no upper limits on r. Now,823

we can set wi := i to optimize for the padding tokens. Due to the use of the squared error, we would824

however optimize the squared sum of padding tokens instead of the preferred sum of padding tokens.825

To accomplish the latter, we would have to replace the L2-norm problem by an L1-norm problem826

which would be too complex to solve. Note that due to rounding, the unwanted positive residuals r827

(r < 0) might still occur. This could be avoided by rounding up x instead of normal rounding of x.828

To put the new formulation into a solver, we replace829

b by
✓
b

b

◆
, x by

✓
x

r

◆
, w by

✓
w

w

◆
, and A by

✓
A 0m
A �Dm

◆
, (24)

where 0m is an m⇥m matrix with m being the maximum sequence length, 512, and Dm is a unit830

matrix of the same dimensions as 0m. Since, we are already close to optimum especially on the831

Wikipedia dataset, the results are only a little bit better. The processing time however increases from832

30 to 415 seconds without considering the increased time for constructing the processing matrix.833

Since the slightly improved algorithm might be nevertheless relevant for other applications, we share834

it in Listing 9.835

26

H Packing source code836

File links are currently non-functional for anonymous review but will be replaced in final version.837

Listing 3: Non-negative least squares histogram-packing
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """Non -Negative least squares histogram -packing algorithm."""
3 import time
4 import numpy as np
5 from scipy import optimize , stats
6 from functools import lru_cache
7
8 def get_packing_matrix(strategy_set , max_sequence_length):
9 num_strategies = len(strategy_set)

10 A = np.zeros ((max_sequence_length , num_strategies), dtype=np.int32)
11 for i, strategy in enumerate(strategy_set):
12 for seq_len in strategy:
13 A[seq_len - 1, i] += 1
14 return A
15
16 @lru_cache(maxsize=None)
17 def get_packing_strategies(start_length , minimum_increment , target_length , depth):
18 gap = target_length - start_length
19 strategies = []
20 # Complete the packing with exactly 1 number
21 if depth == 1:
22 if gap >= minimum_increment:
23 strategies.append ([gap])
24 # Complete the sample in "depth" steps , recursively
25 else:
26 for new in range(minimum_increment , gap + 1):
27 new_gap = target_length - start_length - new
28 if new_gap == 0:
29 strategies.append ([new])
30 else:
31 options = get_packing_strategies(start_length + new , new , target_length , depth - 1)
32 for option in options:
33 if len(option) > 0:
34 strategies.append ([new] + option)
35 return strategies
36
37 def pack_using_nnlshp(histogram , max_sequence_length , max_sequences_per_pack):
38 # List all unique ways of packing to the desired maximum sequence length
39 strategy_set = get_packing_strategies (0, 1, max_sequence_length , max_sequences_per_pack)
40 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
41 # Get the packing matrix corresponding to this list of packing strategies
42 A = get_packing_matrix(strategy_set , max_sequence_length)
43 # Weights that penalize the residual on short sequences less.
44 penalization_cutoff = 8
45 w0 = np.ones([max_sequence_length])
46 w0[: penalization_cutoff] = 0.09
47 # Solve the packing problem
48 print(f"Sequences to pack: ", histogram.sum())
49 start = time.time()
50 strategy_repeat_count , rnorm = optimize.nnls(np.expand_dims(w0 , -1) * A, w0 * histogram)
51 print(f"Solving non -negative least squares took {time.time() - start :3.2f} seconds.")
52 # Round the floating point solution to nearest integer
53 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
54 # Compute the residuals , shape: [max_sequence_length]
55 residual = histogram - A @ strategy_repeat_count
56 # Handle the left -over sequences i.e. positive part of residual
57 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
58 for l in unpacked_seqlen:
59 strategy = sorted ([l, max_sequence_length - l]) # the depth 1 strategy
60 strategy_index = strategy_set.index(strategy)
61 strategy_repeat_count[strategy_index] += residual[l-1]
62 # Re-compute the residual with the updated strategy_repeat_count
63 # This should now be strictly < 0
64 residual = histogram - A @ strategy_repeat_count
65 # Add padding based on deficit (negative residual portion of residual)
66 padding = np.where(residual < 0, -residual , 0)
67 # Calculate some basic statistics
68 sequence_lengths = np.arange(1, max_sequence_length + 1)
69 old_number_of_samples = histogram.sum()
70 new_number_of_samples = int(strategy_repeat_count.sum())
71 speedup_upper_bound = 1.0/(1 - (histogram *(1 - sequence_lengths / max_sequence_length)).sum()/

old_number_of_samples)
72 num_padding_tokens_packed = (sequence_lengths * padding).sum()
73 efficiency = 1 - num_padding_tokens_packed /(new_number_of_samples*max_sequence_length)
74 print(f"Packing efficiency (fraction of real tokens): {efficiency :3.4f}\n",
75 f"Speed -up theoretical limit: {speedup_upper_bound :3.4f}\n",
76 f"Achieved speed -up over un-packed dataset: {old_number_of_samples/new_number_of_samples :3.5f

}")
77 return strategy_set , strategy_repeat_count

838

27

https://github.com/graphcore/demos/tree/master/papers/packing/nnlshp.py

Listing 4: Shortest-pack-first histogram-packing
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """ Shortest -pack -first histogram -packing."""
3 from collections import defaultdict
4 import numpy as np
5
6 def add_pack(pack , count , tmp , final , limit , offset):
7 """ Filter out packs that reached maximum length or number of sequences."""
8 if len(pack) == limit or offset == 0:
9 final[offset]. append ((count , pack))

10 else:
11 tmp[offset]. append ((count , pack))
12
13 def pack_using_spfhp(histogram , max_sequence_length , max_sequences_per_pack):
14 """ Shortest -pack -first histogram -packing algorithm."""
15 reversed_histogram = np.flip(histogram)
16 # Initialize main strategy data dictionary.
17 # The key indicates how many tokens are left for full length.
18 # The value is a list of tuples , consisting of counts and respective packs.
19 # A pack is a (sorted) list of sequence length values that get concatenated.
20 tmp_strategies_per_length = defaultdict(list)
21 strategies_per_length = defaultdict(list)
22 # Index i indicates here , how much space is left , due to reversed histogram
23 for i in range(max_sequence_length):
24 n_sequences_to_bin = reversed_histogram[i]
25 length_to_bin = max_sequence_length - i
26 offset = i + 1 # largest possible offset
27 while n_sequences_to_bin > 0:
28 if (length_to_bin + offset) in tmp_strategies_per_length:
29 # extract shortest pack that will get modified
30 n_sequences_to_pack , pack = tmp_strategies_per_length[
31 length_to_bin + offset].pop()
32 new_pack = pack + [length_to_bin]
33 count = min(n_sequences_to_pack , n_sequences_to_bin)
34 if n_sequences_to_pack > n_sequences_to_bin:
35 # old pack gets reduced
36 n_sequences_to_pack -= n_sequences_to_bin
37 tmp_strategies_per_length[length_to_bin + offset]. append(
38 (n_sequences_to_pack , pack))
39 n_sequences_to_bin = 0
40 else:
41 n_sequences_to_bin -= n_sequences_to_pack
42 add_pack(new_pack , count ,
43 tmp_strategies_per_length , strategies_per_length ,
44 max_sequences_per_pack , offset)
45 # clean up to speed up main key search
46 if not tmp_strategies_per_length[length_to_bin + offset]:
47 tmp_strategies_per_length.pop(length_to_bin + offset)
48 else:
49 offset -= 1
50 # Does not fit anywhere. Create new pack.
51 if offset < 0:
52 add_pack ([length_to_bin], n_sequences_to_bin ,
53 tmp_strategies_per_length , strategies_per_length ,
54 max_sequences_per_pack , i)
55 n_sequences_to_bin = 0
56 # merge all strategies
57 for key in tmp_strategies_per_length:
58 strategies_per_length[key]. extend(tmp_strategies_per_length[key])
59 # flatten strategies dictionary
60 strategy_set = []
61 strategy_repeat_count = []
62 for key in strategies_per_length:
63 for count , pack in strategies_per_length[key]:
64 pack.reverse ()
65 strategy_set.append(pack)
66 strategy_repeat_count.append(count)
67 return strategy_set , np.array(strategy_repeat_count)

839

28

https://github.com/graphcore/demos/tree/master/papers/packing/spfhp.py

Listing 5: Evaluation function of shortest-pack-first histogram-packing
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """ Max depth analysis of shortest -pack -first histogram -packing."""
3 from collections import defaultdict
4 import tabulate
5 import time
6 import numpy as np
7
8 def evaluate_spfhp(histogram , max_sequence_length):
9 """ Evaluate shortest -pack -first histogram -packing algorithm."""

10 stats_data = [["pack. depth", "# strat. used", "# packs", "# tokens",
11 "# padding tok.", "efficiency (%)", "pack.factor", "time"]]
12 for max_sequences_per_pack in [1, 2, 3, 4, 8, 16, "max"]:
13 start = time.time()
14 strategy_set , strategy_repeat_count = pack_using_spfhp(
15 histogram , max_sequence_length , max_sequences_per_pack)
16 duration = time.time() - start
17
18 # Performance Evaluation of packing approach
19 n_strategies = int(len(strategy_set))
20 packs = int(sum(strategy_repeat_count))
21 sequences = sum([count*len(pack) for count , pack in
22 zip(strategy_repeat_count , strategy_set)])
23 total_tokens = int(max_sequence_length * packs)
24 empty_tokens = int(sum([
25 count *(max_sequence_length -sum(pack)) for count , pack in
26 zip(strategy_repeat_count , strategy_set)]))
27 token_efficiency = 100 - empty_tokens / total_tokens * 100
28 if max_sequences_per_pack == "max":
29 m_length = max([len(pack) for pack in strategy_set])
30 max_sequences_per_pack = "max ({})".format(m_length)
31 stats_data.append ([
32 max_sequences_per_pack , n_strategies , packs , total_tokens ,
33 empty_tokens , token_efficiency , sequences / packs , duration])
34 print(tabulate.tabulate(stats_data , headers="firstrow", floatfmt=".3f"))

840

29

https://github.com/graphcore/demos/tree/master/papers/packing/spfhp_eval.py

Listing 6: Wikipedia and SQUaD 1.1 histograms
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """ Wikipedia and SQUaD 1.1 histograms."""
3 import numpy as np
4 wikipedia_histogram = np.array ([
5 0, 0, 0, 0, 1821, 1226, 1969, 1315, 1794, 1953, 3082, 3446, 4166, 5062,
6 9554, 16475, 19173, 17589, 17957, 19060 , 21555 , 23524, 26954, 30661, 33470, 36614 , 40134 , 43256,
7 46094, 49350, 52153 , 55428 , 58109 , 60624, 63263, 64527, 65421 , 66983 , 68123, 68830, 70230, 70486,
8 72467, 72954, 73955 , 74311 , 74836 , 74489, 74990, 75377, 74954 , 75096 , 74784, 74698, 74337, 74638,
9 74370, 73537, 73597 , 73153 , 72358 , 71580, 71082, 70085, 69733 , 69445 , 67818, 67177, 66641, 65709,

10 64698, 63841, 63218 , 62799 , 61458 , 60848, 60148, 59858, 58809 , 58023 , 56920, 55999, 55245, 55051,
11 53979, 53689, 52819 , 52162 , 51752 , 51172, 50469, 49907, 49201 , 49060 , 47948, 47724, 46990, 46544,
12 46011, 45269, 44792 , 44332 , 43878 , 43984, 42968, 42365, 42391 , 42219 , 41668, 41072, 40616, 40587,
13 39999, 40169, 39340 , 38906 , 38438 , 38142, 37757, 37818, 37535 , 37217 , 36757, 36589, 36151, 35953,
14 35531, 35496, 35089 , 35053 , 34567 , 34789, 34009, 33952, 33753 , 33656 , 33227, 32954, 32686, 32880,
15 32709, 31886, 32126 , 31657 , 31466 , 31142, 31106, 30650, 30316 , 30494 , 30328, 30157, 29611, 29754,
16 29445, 28921, 29271 , 29078 , 28934 , 28764, 28445, 28319, 28141 , 28282 , 27779, 27522, 27333, 27470,
17 27289, 27102, 27018 , 27066 , 26925 , 26384, 26188, 26385, 26392 , 26082 , 26062, 25660, 25682, 25547,
18 25425, 25072, 25079 , 25346 , 24659 , 24702, 24862, 24479, 24288 , 24127 , 24268, 24097, 23798, 23878,
19 23893, 23817, 23398 , 23382 , 23280 , 22993, 23018, 23242, 22987 , 22894 , 22470, 22612, 22452, 21996,
20 21843, 22094, 21916 , 21756 , 21955 , 21444, 21436, 21484, 21528 , 21597 , 21301, 21197, 21281, 21066,
21 20933, 21023, 20888 , 20575 , 20574 , 20511, 20419, 20312, 20174 , 20023 , 20087, 19955, 19946, 19846,
22 19562, 19710, 19556 , 19477 , 19487 , 19387, 19225, 19069, 19360 , 18655 , 19034, 18763, 18800, 19012,
23 18893, 18714, 18645 , 18577 , 18317 , 18458, 18374, 18152, 17822 , 18102 , 17735, 17940, 17805, 17711,
24 17690, 17703, 17669 , 17410 , 17583 , 17331, 17313, 16892, 16967 , 16870 , 16926, 17233, 16845, 16861,
25 16576, 16685, 16455 , 16687 , 16747 , 16524, 16473, 16349, 16273 , 16255 , 16228, 16219, 16021, 16111,
26 15867, 15751, 16081 , 15703 , 15751 , 15854, 15665, 15469, 15431 , 15428 , 15464, 15517, 15335, 15461,
27 15237, 15292, 15305 , 15351 , 15078 , 14810, 15119, 14780, 14664 , 14869 , 14722, 14890, 14672, 14439,
28 14685, 14706, 14840 , 14373 , 14286 , 14596, 14615, 14168, 14299 , 13987 , 14167, 14107, 14096, 14202,
29 13985, 14118, 14094 , 14127 , 13896 , 13864, 13597, 13572, 13717 , 13669 , 13782, 13617, 13284, 13333,
30 13425, 13457, 13256 , 13404 , 13318 , 13425, 13317, 13179, 13193 , 13257 , 13160, 12813, 13149, 13010,
31 12867, 12958, 12818 , 12801 , 12749 , 12810, 12575, 12673, 12514 , 12735 , 12523, 12677, 12298, 12469,
32 12341, 12445, 12477 , 12326 , 12110 , 12087, 12305, 12156, 12032 , 12190 , 12150, 11980, 12022, 11825,
33 11969, 11831, 11997 , 11924 , 11739 , 11685, 11702, 11783, 11783 , 11659 , 11647, 11610, 11526, 11577,
34 11538, 11536, 11497 , 11480 , 11374 , 11234, 11433, 11466, 11475 , 11147 , 11376, 11217, 11002, 11245,
35 11124, 11000, 11129 , 10923 , 10966 , 11071, 11029, 11036, 10972 , 11012 , 10800, 10936, 10904, 10750,
36 10669, 10766, 10780 , 10675 , 10905 , 10511, 10598, 10583, 10658 , 10471 , 10667, 10601, 10430, 10440,
37 10510, 10148, 10468 , 10346 , 10257 , 10286, 10235, 10351, 10182 , 10182 , 10095, 10192, 9866, 10070 ,
38 10148, 9956, 10132 , 10043, 9741, 10003 , 10056 , 9920, 10021, 9838, 9854, 9740, 9782, 9799,
39 9798, 9788, 9840, 9747, 9797, 9893, 9593, 9535, 9658, 9554, 9593, 9530, 9523, 9488,
40 9548, 9418, 9418, 9508, 9638, 9521, 9277, 9289, 9255, 9322, 9281, 9351, 9259, 9255,
41 9225, 9098, 9268, 9227, 9224, 9106, 9239, 3815044] , dtype=np.int64)
42
43 wikipedia_max_sequence_length = 512
44
45 squad_1 .1 _histogram = np.array([
46 0,
47 0, 0, 3, 2, 0, 9, 10, 16, 22, 24, 36, 35, 46, 42, 48, 57, 86, 83, 86, 87, 86, 97, 90, 99, 85, 94,
48 105, 114, 110, 93, 116, 118, 114, 116, 117, 127, 115, 155, 137, 145, 157, 151, 153, 149, 163, 157,
49 134, 150, 144, 132, 166, 162, 177, 160, 149, 151, 138, 156, 148, 176, 163, 182, 188, 182, 177, 199,
50 182, 203, 201, 264, 250, 244, 289, 346, 327, 298, 377, 386, 444, 431, 503, 553, 532, 570, 611, 677,
51 648, 673, 712, 722, 745, 692, 697, 747, 754, 741, 777, 781, 825, 813, 836, 777, 776, 756, 789, 790,
52 765, 753, 729, 748, 772, 766, 760, 741, 725, 729, 759, 732, 730, 730, 741, 705, 708, 725, 656, 688,
53 688, 677, 662, 628, 635, 618, 586, 527, 562, 619, 562, 578, 538, 558, 582, 541, 575, 526, 556, 498,
54 529, 486, 528, 541, 482, 521, 483, 466, 514, 459, 447, 436, 383, 401, 408, 381, 369, 364, 381, 420,
55 391, 388, 358, 365, 357, 358, 355, 297, 290, 267, 308, 329, 304, 332, 289, 282, 304, 242, 263, 288,
56 238, 257, 271, 288, 277, 264, 253, 239, 217, 260, 214, 247, 237, 212, 205, 193, 200, 208, 195, 193,
57 201, 187, 170, 176, 195, 156, 201, 179, 159, 183, 169, 178, 163, 153, 171, 144, 138, 181, 165, 171,
58 161, 159, 166, 142, 138, 151, 155, 134, 141, 132, 123, 119, 109, 125, 123, 131, 135, 115, 108, 102,
59 117, 105, 99, 84, 100, 85, 85, 85, 95, 122, 105, 114, 113, 100, 80, 96, 86, 79, 80, 87, 92, 73, 73,
60 64, 76, 72, 77, 67, 60, 71, 77, 79, 72, 55, 67, 42, 59, 65, 72, 49, 43, 62, 48, 50, 54, 45, 42, 53,
61 56, 45, 43, 32, 30, 36, 42, 37, 45, 28, 41, 31, 44, 35, 36, 47, 47, 48, 65, 32, 23, 35, 38, 20, 23,
62 22, 21, 27, 20, 26, 18, 18, 22, 17, 17, 14, 26, 15, 20, 22, 19, 24, 17, 15, 20, 20, 22, 22, 17, 20,
63 16, 21, 16, 23, 12, 14, 1054] , dtype=np.int64)
64
65 squad_1 .1 _max_sequence_length = 384

841

30

https://github.com/graphcore/demos/tree/master/papers/packing/histograms.py

Listing 7: Histogram creation for GLUE training datasets
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
3 #
4 # Licensed under the Apache License , Version 2.0 (the "License ");
5 # you may not use this file except in compliance with the License.
6 # You may obtain a copy of the License at
7 #
8 # http ://www.apache.org/licenses/LICENSE -2.0
9 #

10 # Unless required by applicable law or agreed to in writing , software
11 # distributed under the License is distributed on an "AS IS" BASIS ,
12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied.
13 # See the License for the specific language governing permissions and
14 # limitations under the License.
15 """ GLUE data loading and histogram creation.
16
17 Some code snippets were taken from
18 https :// github.com/huggingface/transformers/blob/master/examples/text -classification/run_glue.py
19 Most is original code.
20 """
21 from transformers import AutoTokenizer
22 import datasets
23 import numpy as np
24
25 # constants
26 max_sequence_length = 128
27 task_to_keys = {
28 "cola": ("sentence", None),
29 "mnli": ("premise", "hypothesis"),
30 "mrpc": ("sentence1", "sentence2"),
31 "qnli": ("question", "sentence"),
32 "qqp": ("question1", "question2"),
33 "rte": ("sentence1", "sentence2"),
34 "sst2": ("sentence", None),
35 "stsb": ("sentence1", "sentence2"),
36 "wnli": ("sentence1", "sentence2"),
37 }
38 glue_keys = [’cola’, ’sst2’, ’mrpc’, ’qqp’, ’stsb’, ’mnli’, ’rte’, ’wnli’]
39 # unused datasets due to missing training data
40 unglue_keys = [’mnli_matched ’, ’mnli_mismatched ’, ’qnli’, ’ax’]
41
42 # load data
43 dataset_loads = {}
44 for key in glue_keys:
45 dataset_loads[key] = datasets.load_dataset("glue", key , split=’train’)
46
47 # tokenize data
48 tokenizer = AutoTokenizer.from_pretrained(’bert -base -uncased ’)
49 tokenized_data = {}
50 for key in dataset_loads:
51 sentence1_key , sentence2_key = task_to_keys[key]
52
53 def preprocess_function(examples):
54 """ Tokenize the texts """
55 args = (
56 (examples[sentence1_key],) if sentence2_key is None
57 else (examples[sentence1_key], examples[sentence2_key])
58)
59 result = tokenizer (*args , padding=False , max_length=max_sequence_length , truncation=True)
60 return result
61
62 tokenized_data[key] = dataset_loads[key].map(preprocess_function , batched=True)
63
64 # extract length information (for histogram plots)
65 histogram_length = {}
66 for key in tokenized_data:
67 histogram_length[key] = []
68 for number , key in enumerate(tokenized_data.keys()):
69 for raw_record in tokenized_data[key]["input_ids"]:
70 histogram_length[key]. append(len([x for x in raw_record if x!=0]))
71
72 # create histogram for packing
73 glue_histogram = {}
74 for data_key in histogram_length:
75 glue_histogram[data_key] = np.array ([0] * max_sequence_length , dtype=np.int64)
76 for entry in histogram_length[data_key]:
77 glue_histogram[data_key][entry -1] += 1

842

31

https://github.com/graphcore/demos/tree/master/papers/packing/glue.py

Listing 8: Longest-pack-first histogram-packing
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """ Longest -pack -first histogram -packing."""
3 from collections import defaultdict
4 import numpy as np
5
6 def add_pack(pack , count , tmp , final , limit , offset , max_sequence_length =512):
7 """ Filter out packs that reached maximum length or number of components."""
8 # sanity checks
9 assert(max_sequence_length -sum(pack) == offset), "Incorrect offset."

10 assert(offset >= 0), "Too small offset."
11 assert(offset < max_sequence_length), "Too large offset."
12 if len(pack) == limit or offset == 0:
13 final[offset]. append ((count , pack))
14 else:
15 tmp[offset]. append ((count , pack))
16
17 def pack_using_lpfhp(histogram , max_sequence_length , max_sequences_per_pack , distribute=True):
18 """ Longest -pack -first histogram -packing algorithm."""
19 reversed_histogram = np.flip(histogram)
20 # Initialize main strategy data dictionary.
21 # The key indicates how many tokens are left for full length.
22 # The value is a list of tuples , consisting of counts and respective packs.
23 # A pack is a (sorted) list of sequence length values that get concatenated.
24 tmp_strategies_per_length = defaultdict(list)
25 strategies_per_length = defaultdict(list)
26 if max_sequences_per_pack is "max":
27 max_sequences_per_pack = max_sequence_length
28 # Index i indicates here , how much space is left , due to reversed histogram
29 for i in range(max_sequence_length):
30 if (length_to_bin + offset) in tmp_strategies_per_length:
31 # extract worst pack that will get modified
32 n_sequences_to_pack , pack = tmp_strategies_per_length[
33 length_to_bin + offset].pop()
34 # calculate how often the current sequence maximally fits in
35 repeat = min(1 + offset // length_to_bin , max_sequences_per_pack -len(pack))
36 # correct dependent on count
37 while n_sequences_to_bin // repeat == 0:
38 repeat -= 1
39 if not distribute:
40 repeat = 1
41 new_pack = pack + [length_to_bin]* repeat
42 count = min(n_sequences_to_pack , n_sequences_to_bin // repeat)
43 if n_sequences_to_pack > count:
44 # old pack gets reduced
45 n_sequences_to_pack -= count
46 tmp_strategies_per_length[length_to_bin + offset]. append(
47 (n_sequences_to_pack , pack))
48 n_sequences_to_bin -= count * repeat
49 else:
50 n_sequences_to_bin -= n_sequences_to_pack * repeat
51 add_pack(new_pack , count ,
52 tmp_strategies_per_length , strategies_per_length ,
53 max_sequences_per_pack , offset -(repeat -1)*length_to_bin ,
54 max_sequence_length)
55 # clean up to speed up main key search
56 if not tmp_strategies_per_length[length_to_bin + offset]:
57 tmp_strategies_per_length.pop(length_to_bin + offset)
58 # reset offset in case best fit changed
59 offset = 0
60 else:
61 offset += 1
62 # Does not fit anywhere. Create new pack.
63 if offset >= max_sequence_length - length_to_bin + 1:
64 # similar repetition but no dependence on pack.
65 repeat = min(max_sequence_length // length_to_bin , max_sequences_per_pack)
66 while n_sequences_to_bin // repeat == 0:
67 repeat -= 1
68 if not distribute:
69 repeat = 1
70 add_pack ([length_to_bin]*repeat , n_sequences_to_bin //repeat ,
71 tmp_strategies_per_length , strategies_per_length ,
72 max_sequences_per_pack , max_sequence_length -length_to_bin*repeat ,
73 max_sequence_length)
74 n_sequences_to_bin -= n_sequences_to_bin // repeat * repeat
75 # merge all strategies
76 for key in tmp_strategies_per_length:
77 strategies_per_length[key]. extend(tmp_strategies_per_length[key])
78 # flatten strategies dictionary
79 strategy_set = []
80 strategy_repeat_count = []
81 for key in strategies_per_length:
82 for count , pack in strategies_per_length[key]:
83 pack.reverse ()
84 strategy_set.append(pack)
85 strategy_repeat_count.append(count)
86 return strategy_set , np.array(strategy_repeat_count)

843

32

https://github.com/graphcore/demos/tree/master/papers/packing/lpfhp.py

Listing 9: Extended non-negative least squares histogram-packing
1 # Copyright (c) 2021 Graphcore Ltd. All rights reserved.
2 """ Extended Non -Negative least squares histogram -packing algorithm."""
3 import time
4 import numpy as np
5 from scipy import optimize , stats
6 from functools import lru_cache
7
8 def get_packing_matrix(strategy_set , max_sequence_length):
9 num_strategies = len(strategy_set)

10 A = np.zeros ((max_sequence_length , num_strategies), dtype=np.int32)
11 for i, strategy in enumerate(strategy_set):
12 for seq_len in strategy:
13 A[seq_len - 1, i] += 1
14 return A
15
16 @lru_cache(maxsize=None)
17 def get_packing_strategies(start_length , minimum_increment , target_length , depth):
18 gap = target_length - start_length
19 strategies = []
20 # Complete the packing with exactly 1 number
21 if depth == 1:
22 if gap >= minimum_increment:
23 strategies.append ([gap])
24 # Complete the sample in "depth" steps , recursively
25 else:
26 for new in range(minimum_increment , gap + 1):
27 new_gap = target_length - start_length - new
28 if new_gap == 0:
29 strategies.append ([new])
30 else:
31 options = get_packing_strategies(start_length + new , new , target_length , depth - 1)
32 for option in options:
33 if len(option) > 0:
34 strategies.append ([new] + option)
35 return strategies
36
37 def pack_using_ennlshp(histogram , max_sequence_length , max_sequences_per_pack):
38 # List all unique ways of packing to the desired maximum sequence length
39 strategy_set = get_packing_strategies (0, 1, max_sequence_length , max_sequences_per_pack)
40 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
41 # Get the packing matrix corresponding to this list of packing strategies
42 A = get_packing_matrix(strategy_set , max_sequence_length)
43 # Weights that penalize the residual by the number of resulting padding tokens.
44 w0 = np.array([x+1 for x in range(max_sequence_length)])
45 # construct the packing matrix
46 A_bar = np.zeros ((2* max_sequence_length , len(strategy_set) + max_sequence_length), ’d’)
47 # Base weighted matrix
48 A_bar [: max_sequence_length , :len(strategy_set)] = np.expand_dims(w0, -1) * A
49 # Higher weight to avoid positive residual
50 A_bar[max_sequence_length:, :len(strategy_set)] = np.expand_dims(
51 10**6* np.ones([max_sequence_length]), -1) * A
52 # negative diagonal unity matrix for mapping to residual
53 A_bar[max_sequence_length:, len(strategy_set):] = np.expand_dims(
54 10**6* np.ones([max_sequence_length]), -1)*np.ones((max_sequence_length ,max_sequence_length))
55 b_bar = np.zeros (2* max_sequence_length)
56 # Apply weighting to histogram vector
57 b_bar [: max_sequence_length] = w0 * histogram
58 b_bar[max_sequence_length :] = 10**6* np.ones([max_sequence_length]) * histogram
59 # Solve the packing problem
60 print(f"Sequences to pack: ", histogram.sum())
61 start = time.time()
62 strategy_residual , rnorm = optimize.nnls(A_bar , b_bar)
63 strategy_repeat_count = strategy_residual [:len(strategy_set)]
64 print(f"Solving non -negative least squares took {time.time() - start :3.2f} seconds.")
65 # Round the floating point solution to nearest integer
66 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
67 # Compute the residuals , shape: [max_sequence_length]
68 residual = histogram - A @ strategy_repeat_count
69 # Handle the left -over sequences i.e. positive part of residual
70 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
71 for l in unpacked_seqlen:
72 strategy = sorted ([l, max_sequence_length - l]) # the depth 1 strategy
73 strategy_index = strategy_set.index(strategy)
74 strategy_repeat_count[strategy_index] += residual[l-1]
75 # Re-compute the residual with the updated strategy_repeat_count
76 # This should now be strictly < 0
77 residual = histogram - A @ strategy_repeat_count
78 # Add padding based on deficit (negative residual portion of residual)
79 padding = np.where(residual < 0, -residual , 0)
80 # Calculate some basic statistics
81 sequence_lengths = np.arange(1, max_sequence_length + 1)
82 old_number_of_samples = histogram.sum()
83 new_number_of_samples = int(strategy_repeat_count.sum())
84 speedup_upper_bound = 1.0/(1 - (histogram *(1 - sequence_lengths / max_sequence_length)).sum()/

old_number_of_samples)
85 num_padding_tokens_packed = (sequence_lengths * padding).sum()
86 efficiency = 1 - num_padding_tokens_packed /(new_number_of_samples*max_sequence_length)
87 print(f"Packing efficiency (fraction of real tokens): {efficiency :3.4f}\n",
88 f"Speed -up theoretical limit: {speedup_upper_bound :3.4f}\n",
89 f"Achieved speed -up over un-packed dataset: {old_number_of_samples/new_number_of_samples :3.5f

}")
90 return strategy_set , strategy_repeat_count

844

33

https://github.com/graphcore/demos/tree/master/papers/packing/ennlshp.py

Appendix References845

[27] BELOV, G., AND SCHEITHAUER, G. A branch-and-cut-and-price algorithm for one-846

dimensional stock cutting and two-dimensional two-stage cutting. European Journal of Opera-847

tional Research 171, 1 (may 2006), 85–106.848

[28] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A Guide to the Theory of849

NP-Completeness. W. H. Freeman & Co., USA, 1990.850

[29] KOTZ, S., AND NADARAJAH, S. Extreme Value Distributions. World Scientific Publishing851

Company, 2000.852

[30] LAWSON, C. L., AND HANSON, R. J. Solving Least Squares Problems. Society for Industrial853

and Applied Mathematics, jan 1995.854

[31] LEE, C. C., AND LEE, D. T. A Simple On-Line Bin-Packing Algorithm. Journal of the ACM855

(JACM) 32, 3 (jul 1985), 562–572.856

[32] LUO, Y., AND DURAISWAMI, R. Efficient parallel non-negative least squares on multi-core857

architectures. SIAM Journal on Scientific Computing 33 (2011), 2848 – 2863.858

[33] NVIDIA. Performance catalogue for BERT on Pytorch. https://ngc.nvidia.com/859

catalog/resources/nvidia:bert_for_pytorch/performance, 2021.860

[34] VIRTANEN, P., GOMMERS, R., OLIPHANT, T. E., HABERLAND, M., REDDY, T., COURNA-861

PEAU, D., BUROVSKI, E., PETERSON, P., WECKESSER, W., BRIGHT, J., VAN DER WALT,862

S. J., BRETT, M., WILSON, J., MILLMAN, K. J., MAYOROV, N., NELSON, A. R. J., JONES,863

E., KERN, R., LARSON, E., CAREY, C. J., POLAT, İ., FENG, Y., MOORE, E. W., VANDER-864

PLAS, J., LAXALDE, D., PERKTOLD, J., CIMRMAN, R., HENRIKSEN, I., QUINTERO, E. A.,865

HARRIS, C. R., ARCHIBALD, A. M., RIBEIRO, A. H., PEDREGOSA, F., VAN MULBREGT,866

P., AND SCIPY 1.0 CONTRIBUTORS. SciPy 1.0: Fundamental Algorithms for Scientific867

Computing in Python. Nature Methods 17 (2020), 261–272.868

[35] WOLF, T., DEBUT, L., SANH, V., CHAUMOND, J., DELANGUE, C., MOI, A., CISTAC, P.,869

RAULT, T., LOUF, R., FUNTOWICZ, M., DAVISON, J., SHLEIFER, S., VON PLATEN, P., MA,870

C., JERNITE, Y., PLU, J., XU, C., SCAO, T. L., GUGGER, S., DRAME, M., LHOEST, Q.,871

AND RUSH, A. M. Transformers: State-of-the-art natural language processing. In Proceedings872

of the 2020 Conference on Empirical Methods in Natural Language Processing: System873

Demonstrations (Online, Oct. 2020), Association for Computational Linguistics, pp. 38–45.874

[36] WOLF, T., LHOEST, Q., VON PLATEN, P., JERNITE, Y., DRAME, M., PLU, J., CHAU-875

MOND, J., DELANGUE, C., MA, C., THAKUR, A., PATIL, S., DAVISON, J., SCAO, T. L.,876

SANH, V., XU, C., PATRY, N., MCMILLAN-MAJOR, A., BRANDEIS, S., GUGGER, S.,877

LAGUNAS, F., DEBUT, L., FUNTOWICZ, M., MOI, A., RUSH, S., SCHMIDD, P., CIS-878

TAC, P., MUŠTAR, V., BOUDIER, J., AND TORDJMANN, A. Datasets. GitHub. Note:879

https://github.com/huggingface/datasets 1 (2020).880

[37] WOLFRAM RESEARCH INC. Mathematica, Version 12.2. Champaign, IL, 2020.881

34

https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance

	Introduction
	Wikipedia BERT pre-training dataset
	Methods
	Packing algorithms
	Shortest-pack-first histogram-packing (SPFHP)
	Non-negative least squares histogram-packing (NNLSHP)

	Attention masking for packed sequences
	Calculating per-sequence loss and accuracy
	Hyperparameter adjustment

	Experiments
	Bin-packing algorithm comparison
	Learning curves and hyperparameter adjustment
	Scaling analysis: Impact of the number of accelerators

	Conclusion
	Packing SQUaD 1.1
	Packing GLUE
	Further learning curves
	Technical background on packing
	Canonical packing problem
	Approximate bin-packing problem
	Definitions
	Non-negative least squares histogram-packing
	Enumerating packing strategies of fixed packing depth
	Constructing the packing matrix
	Solution of the NNLS approximate packing problem
	Padding as the residuals of the packing problem
	Residual weighting

	Complexity analysis of the proposed packing approaches
	Analysis of non-negative least-squares histogram-packing
	Analysis of shortest-pack-first histogram-packing

	Theorem on LAMB hyperparameter correction heuristic
	Un-padding scaling estimate
	Fine-tuned longest-pack-first histogram-packing
	Extended NNLS with padding token weighting

	Packing source code

