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Explicit Granularity and Implicit Scale Correspondence Learning
for Point-Supervised Video Moment Localization

Anonymous Authors

ABSTRACT
Video moment localization (VML) aims to identify the temporal
boundary of the target moment semantically matching the given
query. Existing approaches fall into three paradigms: fully-supervised,
weakly-supervised, and point-supervised. Compared to other two
paradigms, point-supervised VML strikes a balance between lo-
calization accuracy and annotation cost. However, it is still in its
infancy due to the following two challenges: explicit granularity
alignment and implicit scale perception, especially when facing
complex cross-modal correspondences. To this end, we propose a
Semantic Granularity and Scale Correspondence Integration (SG-
SCI) framework aimed at modeling the semantic alignment between
video and text, leveraging limited single-frame annotation infor-
mation for correspondence learning. It explicitly models semantic
relations of different feature granularities and adaptively mines
the implicit semantic scale, thereby enhancing and utilizing modal
feature representations of varying granularities and scales. SG-SCI
employs a granularity correspondence alignment module to align
semantic information by leveraging latent prior knowledge. Then
we develop a scale correspondence learning strategy to identify and
address semantic scale differences. Extensive comparison experi-
ments, ablation studies, and necessary hyperparameter analyses on
benchmark datasets have demonstrated the promising performance
of our model over several state-of-the-art competitors.

CCS CONCEPTS
• Information systems→ Novelty in information retrieval;
Multimedia and multimodal retrieval.

KEYWORDS
Cross-modal Moment Localization; Cross-Modal Retrieval; Corre-
spondence Learning
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Query : A man poses for a picture in front of them

… …

Video

Fully-supervised

Annotation:[98.31,103.34]

Point-supervised

Annotation:[101.16]

Weakly-supervised

Annotation:[-]

98.31 103.34101.16

(a) Video Moment Localization

(b) Explicit Granularity Alignment and Implicit Scale Perception

… …

GT

Fine-grained 
Irrelevant

Query

Coarse-grained 
Mismatch

… …

Query1 Query2

Semantic 
Inclusion

GT2
SF
PM

GT1

The man adds 
pepper to the egg

The man is 
preparing to cookA woman is playing music, and a little boy walks by

Video

Figure 1: (a) Illustrative examples of Video Moment Localiza-
tion (VML). (b) Illustration of explicit granularity alignment
and implicit scale perception among VML. GT: Ground Truth;
PM: Prediction Moment; SF: Supervised Frame. (Left) Fine-
grained word-frame irrelevance in green and coarse-grained
sentence-moment mismatch in blue. (Right) Illustration of
the semantic inclusion relationships between textual and
visual correspondences.

1 INTRODUCTION
Video moment localization (VML), which refers to localizing a
visual moment corresponding to a given textual query, is a funda-
mental task in video understanding. It benefits many important
application scenarios, such as multimedia retrieval [45, 48] and
smart human–computer interaction [37, 43].

Current efforts [14, 44, 50, 53] focus on addressing both fully
and weakly supervised VML paradigms. As shown in Figure 1(a),
the fully-supervised method requires the ground-truth moment
annotations for training, which is laborious and time-consuming to
obtain [29]. The weakly-supervised method is more flexible because
it does not require moment annotations, but results in a significant
drop in performance [10]. To balance accuracy with annotation
cost, the point-supervised paradigm is proposed [21, 25]. Point-
supervised methods require a single frame annotation from the
ground truth, which is more practical and flexible compared to fully
supervised annotation, costing only 1/6 as much [24].

Prior research [2, 4, 18, 35], to enhance video-language compre-
hension, can be classified into two primary approaches: granularity
modeling and scale modeling. Granularity modeling involves delin-
eating relationships among various features (such as frame-word
and moment-sentence) through the explicit boundaries present in
video-language, facilitating the differentiation of data across vary-
ing entity granularities. In contrast, scale modeling derives from
the intricate semantic logics and inherent hierarchical structures
within textual and visual domains. This approach acknowledges

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

implicit semantic scale in video and language interaction that
exists within an alternative modal space.

To be specific, as shown in Figure 1(b), existing point-supervised
labeling inevitably introduces two accompanied challenges: 1) Ex-
plicit Granularity Alignment. According to [10, 12], on the one
hand, single-frame annotations are randomized within intervals,
causing clear mismatches at a fine-grained level (frame-word); on
the other hand, the incomplete information on interval annotations
hinders the direct use of correspondences at a coarse-grained level
(moment-query). Undoubtedly, this challenge poses a significant
obstacle to effective language and visual alignment. 2) Implicit
Scale Perception. Prior studies [9, 16] note that query sentences
for the same video may vary in semantic scale. This issue is espe-
cially noticeable in the point-supervised approach. These methods
struggle to capture temporal relationships within a video because
of using only single-frame annotations, leading to a lack of effective
contextual modeling constraints. As a result, the essential semantic
scale information remains unmodeled, impeding temporal learning
and video comprehension.

To navigate these challenges, we introduce a novel Semantic
Granularity and ScaleCorrespondence Integration (SG-SCI) frame-
work that integrates a Granularity Correspondence Alignment (GCA)
module and a Scale Correspondence Learning (SCL) strategy. Firstly,
the GCA module is engineered to enhance the interaction of video-
language. By employing a fine-grained alignment approach, it es-
tablishes a more detailed and comprehensive mapping between
video frames and textual descriptions. This module not only facili-
tates a deeper understanding of the video content but also ensures
that even the less prominent frames find relevance in the corre-
sponding textual narrative. Secondly, the SCL strategy addresses
the disparity in temporal scale. It is designed to learn latent seman-
tics adaptively across varying temporal scales, enabling the model
to assimilate and correlate extensive video sequences with succinct
textual queries. This strategy ensures a more robust and contextu-
ally aware matching process, thereby enhancing the accuracy and
adaptability. Consequently, this framework offers a more nuanced
and adaptable solution for point-supervised VML.

To the best of our knowledge, it is the first work on integrating
explicit granularity alignment and implicit scale perception into
point-supervised VML. Our approach effectively mitigates the gran-
ularity and scale-related challenges by the synergy of the innovative
component and strategy. It boosts the precision of aligning video
moments to text queries and enhances the model’s robustness.

In summary, the main contributions are as follows:

• Model Contribution. We introduce an innovative Granular
Correspondence Alignment module. Specifically, it is designed
to improve the explicit correspondence relation across varying
granularities among different modalities.

• StrategyContribution.Under the framework of point-supervised,
we develop a Scale Correspondence Learning strategy, which is
pivotal in capturing the implicit semantic scale in correspondence
learning.

• Experimental Contribution. Extensive experiments on two
benchmarks, i.e., Charades-STA [12] and TACoS [33], validate the
effectiveness and superiority of our model. The codes and settings
are released at https://anonymous.4open.science/r/SG-SCI.

2 RELATEDWORK
2.1 Video-Language Modeling
Current research can be divided into twomain categories depending
on the use of a modeling approach: feature granularity modeling
and semantic scale modeling. In terms of entities, the former is
explicit while the latter is implicit.

Early explicit modeling approaches [1, 12] mainly used global
sentence-level alignment to enhance the semantics of visual fea-
tures, but this approach overlooked fine-grained semantics such
as words. As a result, several studies [4, 35, 49] have investigated
various word-frame interactions using attention mechanisms to
capture the relationships between visual cues and textual queries.
Recent research [38, 47, 52] has recognized the significance of local
phrase patterns or tokens in sentences for video moment retrieval.

Compared to explicit modeling, implicit scale modeling [2, 11,
18, 19, 39] utilizes multi-scale relations to achieve better grounding
results. These relations mainly exist at the video-level and language-
level. However, all grounding methods overlook the possibility of
different semantic scales within the same level (e.g., sentence level).
Accordingly, DualMIL [9] extends multiple instance learning into a
two-level framework.

Although the aforementioned modeling strategies are effective,
most methods do not fully utilize their potential when dealing
with limited supervisory information. Therefore, our focus is on
extracting both implicit and explicit information to accurately locate
boundaries in point-supervised VML.

2.2 Video-Language Correspondence Learning
In the domain of video-language learning, the misalignment be-
tween textual descriptions and corresponding visual content intro-
duces significant challenges, necessitating the adoption of corre-
spondence learning as an innovative approach [15, 17, 20]. This
paradigm shift is epitomized by the introduction of MIL-NCE [31],
which pioneers the strategy of aligning video clips with adjacent
sentences to diminish the effects of misalignment. In contrast,
Tang et al. [40] improves video description quality by integrat-
ing an external image captioning model, emphasizing data-driven
enhancement over immediate error correction.

Our method differs itself from preceding endeavors through
two principal innovations. Firstly, we go beyond the traditional
focus on either model architectures or supervisory strategies by
enhancing improvements through the synergistic interaction be-
tween model and strategy learning. Secondly, we expand the use
of correspondence learning beyond segmented multi-modal data.
This pioneering adaptation allows for precise moment localization
with point-supervised for the first time.

2.3 Video Moment Localization
Different from existing fully and weakly-supervised VML stud-
ies [12, 14, 27, 30, 44, 50, 53], point-supervised VML strikes a deli-
cate balance between annotation efforts and model performance by
leveraging a single frame from the localization moment [10, 21, 25].
Compared to fully-supervised VML, point-supervised significantly
reduces the cost of annotation data and it provides more comprehen-
sive information than weakly supervised learning. By eliminating

https://anonymous.4open.science/r/SG-SCI
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Figure 2: Schematic illustration of the proposed SG-SCI model. We first perform (a) Feature Extraction on both video and
language separately, followed by (b) Multi-modal Interaction, which combines the obtained cross-attention features and
similarity information, feeding them into the (d) Granularity Correspondence Alignment module. After the interaction, the
features are input into the (c) Moment Localization module. During the training phase, we apply a (e) Scale Correspondence
Learning strategy to compare semantics at diverse scales.

the need for precise start and end timestamps for the target moment,
a quick "glance" at the video and the selection of a single frame are
often sufficient, making point-supervised methods applicable to sce-
narios with incomplete annotation information [46]. The concept
of point-supervised was initially introduced by Bearman et al. [3]
in the context of semantic segmentation tasks and Cui et al. [10]
applied the concept of point-supervised to VML and introduced the
ViGA model, which aligns Gaussian distributions generated from
supervised frame positions with cross-modal attention. Subsequent
works have built upon ViGA’s foundation, D3G [25] is proposed
to align features of sentence-moment pairs and dynamically miti-
gate annotation bias using Gaussian distributions, while CFMR [21]
develops a concept-driven multi-modal alignment mechanism to
circumvent the need for cross-modal interaction modules during
the inference process.

Despite efforts to enhance retrieval performance, existing work
still falls short in effectively modeling the semantic granularity
relationship between two modalities. Furthermore, due to the con-
straints of the supervised information, it struggles to capture the
overall action changes within a moment.

3 METHODOLOGY
This section commences by defining the problem and outlining the
core pipeline of point-supervised video moment localization. After
this, we will explore the insights behind our innovative Granularity
Correspondence Alignment method, highlighting its main elements.
Finally, we conclude with an exposition of our Scale Correspondence
Learning strategy, showing its significance in our research. Figure 2
presents an overview of our proposed SG-SCI.

3.1 Problem Definition
In this work, we aim to address the challenge of cross-modal video
localization under point-supervised. The dataset comprises a series
of quadruples and is denoted as D, which is expressed as follows,

D = {(V𝑖 ,Q𝑖 , 𝜏
𝑠
𝑖 , 𝜏

𝑒
𝑖 ) | 𝑖 = 1 to 𝑁 }, (1)

where V𝑖 represents an untrimmed video, Q𝑖 denotes the associ-
ated query sentence, and 𝜏𝑠

𝑖
, 𝜏𝑒

𝑖
are the start and end timestamps

respectively. The target video moment aligns with the query Q𝑖 .
Contrasting with a fully-supervised paradigm, our training is

based on a collection of triplet annotations, symbolized as A =

{(V𝑖 ,Q𝑖 , 𝜏
𝑚
𝑖
) | 𝑖 = 1 to 𝑁 }, where 𝜏𝑚

𝑖
signifies a randomly selected

point within the interval defined by 𝜏𝑠
𝑖
and 𝜏𝑒

𝑖
. During the infer-

ence phase, the objective is to precisely localize the relevant video
moment for each query within the dataset D.

3.2 Pipeline of Point-supervised VML
To fulfil the task of Point-supervised VML, we first introduce the
pipeline which can be categorized into three parts: Featurn Extrac-
tion, Multi-modal Interaction, and Moment Localization.

3.2.1 Feature Extraction. Before multi-modal interaction, we ex-
tract the visual and textual features, and then incorporate learnable
positional embedding into the extracted features.

Visual Representation. Given an untrimmed video V , our
approach utilizes a pre-trained CNN, i.e., C3D [41] or I3D [6], to
extract visual features to ensure fair comparison. The extracted
features are then processed through a fully-connected (FC) layer,
obtaining a visual representation denoted as 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑇 },
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where 𝑇 represents the number of frames sampled at intervals in
the video and 𝑣𝑖 denotes the 𝑖-th frame.

To perceive the time of the video, we incorporate learnable Po-
sitional Embedding (PE) into the model and get enhanced visual
representation 𝑉 ∈ R𝑇×𝑑 , where 𝑑 represents the dimension of the
visual representation.

Text Representation. For a given query Q, we employ the pre-
trained Glove model [32] to extract textual features. A bi-directional
gated recurrent unit (Bi-GRU) is employed to obtain the latent se-
quential order of original sentence, and get new textual representa-
tion 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝐿}, where 𝐿 indicating the number of words
in the query. Similar to the visual representation, PE is also added to
the text representation, obtaining the enhanced features 𝑄 ∈ R𝐿×𝑑 .

3.2.2 Multi-modal Interaction. To capture the intra-model seman-
tics, we utilize 𝑉 and 𝑄 through the self-attention layer [42] to
generate the intra-modal representation𝑉 and �̂� . Similarly, we use
the cross-modal multi-head attention to obtain the cross-modal
representation �̃� = 𝐴𝑡𝑡𝑛(�̂�,𝑉 ) and �̃� = 𝐴𝑡𝑡𝑛(𝑉 , �̂�), where 𝐴𝑡𝑡𝑛(·)
is formulated as follows,

𝐴𝑡𝑡𝑛(�̂�,𝑉 ) = softmax( �̂�𝑉
𝑇

√
𝑑

)𝑉 ,

𝐴𝑡𝑡𝑛(𝑉 , �̂�) = softmax(𝑉�̂�
𝑇

√
𝑑

)�̂� .

(2)

Subsequently, to serve the subsequent modules, we take out
the last layer of cross-modal attention scores as the cross-modal
attention scores 𝐴𝑞→𝑣 and 𝐴𝑣→𝑞 , which will be further illustrated
in 3.3. We input the features and attention scores into our proposed
granularity correspondence alignment module to obtain the multi-
granularity representation �̃�𝑓 and �̃�𝑤 :

�̃�𝑓 = GCA(�̃� , �̃�, 𝐴𝑞→𝑣),
�̃�𝑤 = GCA(�̃�, �̃� , 𝐴𝑣→𝑞),

(3)

where GCA(·) is the granularity correspondence alignment mod-
ule. So far, we have obtained the multi-granularity representa-
tion �̃�𝑓 and �̃�𝑤 via multi-modal interaction. The representation is
compound of multi-level granularities information, assisting cross-
modal semantic alignment. In order to integrate the semantic in-
formation of the whole sentence, we use the max-pooling function
F(·) to obtain the sentence representation �̃�𝑠 as follows,

�̃�𝑠 = F(�̃�𝑤) . (4)

3.2.3 Moment Localization. Moment localization aims to locate
the start and end timestamps based on the obtained representation.
In the training stage, unlike fully-supervised scenario, a random
point within the target video moment is accessed while it is absent
during inference. Because of the divergence between the two stages,
we will elaborate on both of them subsequently.

Training Stage. In the training process, we use sliding windows
to slice �̃�𝑓 , and generate candidate moments. Gaussian distribution
is utilized to measure the moments’ temporal features and cosine
similarity of semantic features. The temporal information is defined

as follows,

𝐺𝑖 =
1

√
2𝜋𝜎

exp
©­­«−

(
(𝑖 − 𝜏𝑚) · 2

𝐿𝑣−1

)2

2𝜎2
ª®®¬ , (5)

where 𝑖 is the 𝑖-th frame, 𝜏𝑚 is the index of the supervised frame, 𝜎
is a hyperparameter, and 𝐿𝑣 is the length of the video. The semantic
information 𝑆𝑖 is the cosine similarity between �̃�𝑓 (𝑖) and �̃�𝑠 .

These temporal and semantic analyses are integrated and applied
in our scale correspondence learning strategy, detailed in Sec. 3.4.

Inference Stage. The inference involves two primary steps,
consisting of identifying the key point that best matches query and
expand from this point to get the predicted video moment most
similar to the query.

3.3 Granularity Correspondence Alignment
In this section, we introduce a novel granularity correspondence
alignment module within the framework of point-supervised VML,
which is designed to adaptively regulate the granularity relation-
ship between different modalities. By exploring semantic relation-
ships across modalities, the module enriches the original modal
representation and supplements existing semantic alignment with
information across various granularities, ensuring symmetry in
intermodal interactions.

Unlike existing methods that unconsciously interact the small-
est granularity units (frames and words) in representations across
modalities, our main insights derive from exploiting the attention-
perceived matrix and utilizing it to capture potential cross-modal
semantic granularity information. Specifically, we use the matrix
consisting of cross-modal attention scores as a granularity percep-
tion matrix as follows,

𝐴𝑞→𝑣 =


𝑠11 𝑠12 · · · 𝑠1𝐿
· · · · · · · · · · · ·
𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝐿
· · · · · · · · · · · ·
𝑠𝑇 1 𝑠𝑇 2 · · · 𝑠𝑇𝐿


, (6)

where 𝐴𝑞→𝑣 ∈ R𝑇×𝐿 is the cross-modal attention score matrix, 𝑇
and 𝐿 are the number of frames and words, respectively, and 𝑠𝑖 𝑗 is
the attention score between the 𝑖-th frame and the 𝑗-th word. The
differences of scores in each column represent how much attention
the word pays to the video frame. Therefore, we consider using
max function to aggregate the information in each row to obtain
the potential prior distribution �̃�𝑝 ∈ R𝑇 of the complete query with
respect to the video frames, formulated as,

�̃�𝑝 = max(𝐴𝑞→𝑣) = [max(𝑠1·),max(𝑠2·), . . . ,max(𝑠𝑇 ·)]𝑇 . (7)

Next, we calculate the cosine similarity between the query and
the original video frames to obtain the prior distribution of the
complete query with respect to the video frames,

�̃�𝑔 = 𝑐𝑜𝑠 (�̃� , �̃�𝑠 ), (8)

where 𝑐𝑜𝑠 (·) is the cosine similarity function. Subsequently, we use
the finest granularity information from attentional perception and
pooled global granularity information, which are averaged and used
as adaptive visual granularity perceptual features �̃�𝑐 = 1

2 (�̃�𝑔 + �̃�𝑝 ),
In this way, we can obtain the visual granularity perception vector
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�̃�𝑐 , which can be used to enhance the original visual representation.
On this basis, we use the obtained features to remodel the cross-
modal fusion with text feature,

�̃�𝑎 = �̃�𝑐 ⊙ �̃�𝑓 . (9)

After reaggregation, we integrate self-attention-based fine-grained
features with multi-scale visual perception features. This enhances
fine-grained entity alignment and focuses on overall perception,
thereby improving representation. We then apply these features for
cross-modal semantic interactions, using prior semantic knowledge
to refine visual-word correlations.

Finally, we use the weighted mean approach in order to control
the original modal feature information, thus preventing noise inter-
ference due to excessive introduction of cross-modal information
as follows,

�̃�𝑓 = 𝛼�̃� + (1 − 𝛼)�̃�𝑎, (10)
where 𝛼 is the mean weighted factor. We use the same strategy
applied to anothermodality. Therefore, we can obtain the final cross-
modal representation �̃�𝑓 and �̃�𝑤 via the multi-modal interaction.

3.4 Scale Correspondence Learning
To improve the model’s understanding ability under different scales
of moments, we utilize potential frame-moment correspondence
semantic information, as the single-frame supervised information
alone is not sufficient for effective moment semantics. To be specific,
the target of optimization consists of three parts, the first part
models the semantic and temporal information of the fused features
from a global perspective. The second part uses point annotation
to compare the differences between potential positive and negative
samples in different intervals to effectively capture the information
about the change of actions within the intervals. The third part
aims to exploit the single point information in the global moment
that is most similar to the query, which in turn enriches the priori
knowledge and enhances the guidance of cross-modal semantics.

3.4.1 Global Alignment Loss. We take the cross-entropy loss to
force the representation information we get to be close to the in-
formation provided by the supervised frames in terms of temporal
distance and semantic distance,

𝐿𝑔 = −
𝑇∑︁
𝑖=1

𝐺𝑖 log 𝑆𝑖 , (11)

where 𝐺𝑖 is the Gaussian distribution weight of the 𝑖-th frame, and
𝑆𝑖 is the semantic similarity score of the 𝑖-th frame.

3.4.2 Frame-moment Correspondence Loss. Due to lacking of bound-
ary annotations, a single point’s information inadequately repre-
sents the interval matching the query. This makes us to consider
using video moments that encompass point annotation as potential
positives. We construct binary labels to facilitate interval percep-
tion: moments containing the point annotation are labeled 1, while
others are labeled 0, as follows,

y𝑖 =

{
1, 𝜏𝑚 ∈ M𝑖 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(12)

where M𝑖 is the 𝑖-th moment by sliding window. Due to the latent
differences in temporal information of these moments, we introduce

Gaussian distribution weights to further construct the soft labels
ỹ𝑖 , which can be formulated as:

ỹ𝑖 = y𝑖W(M𝑖 ), (13)

where W(·) = 𝐺 (𝑠) ∗𝐺 (𝑒), 𝐺 (𝑠) and 𝐺 (𝑒) are the Gaussian distri-
bution weights at the beginning and end of M𝑖 , respectively. Since
it is inevitable that there will be multiple positive sample moments
belonging to a query, it is inappropriate to view similarity score
learning as a 1-in-N classification problem with cross-entropy loss.
To this end, we utilize the Kullback-Leibler divergence to construct
frame-moment correspondence loss 𝐿𝑓→𝑚

𝑐 , as follows,

𝐿
𝑓→𝑚
𝑐 =

𝑁∑︁
𝑖=1

ỹ𝑖 log
ỹ𝑖
S𝑖
, (14)

where S𝑖 is the cosine similarity calculated by moment M𝑖 and
query feature �̃�𝑠 .

3.4.3 Moment-frame Correspondence Loss. In the beginning of lo-
cation process, we focus on identifying a point that align most
closely with the query, enabling our model to discern and empha-
size subtle points’ differences. We separate essential information
from positive sample moments, concentrating on feature variances.
Specifically, we extract detailed point data reflecting semantic labels
across moments, leveraging this to enrich point annotation with
inherent disparities.

This process can be represented as follows,

K𝑖 = �̃�𝑓 (𝜃 ), 𝜃 = arg max
𝑗∈[𝑠,𝑒 ]

𝑆 𝑗 , (15)

where 𝑠 and 𝑒 are the start and end index of the momentM𝑖 .
For label construction, we use both hard sample labels and soft

labels with Gaussian weights, just as the Eqn. (12) and (13). We
then employ KL divergence to analyze differences between positive
and negative samples, using these insights to refine our alignment
process, as follows,

𝐿
𝑚→𝑓
𝑐 =

𝑁∑︁
𝑖=1

ỹ𝑖 log
ỹ𝑖
K𝑖

. (16)

By combining the global loss 𝐿𝑔 and correspondence loss 𝐿𝑐 , we
obtain the final loss for model optimization, as follows,

𝐿 = 𝐿𝑔 + 𝛽𝐿
𝑓→𝑚
𝑐 + 𝛾𝐿𝑚→𝑓

𝑐 , (17)

where 𝛽 and 𝛾 are used to balance the focus between moments and
frames, avoiding the model over underscore the sample information.

4 EXPERIMENTS
This section will begin by presenting the experimental settings.
Subsequently, we will conduct comparative experiments, compre-
hensive ablation studies, and evaluate the effectiveness of SG-SCI
to answer the following three research questions (RQs):
• RQ1: Is our proposed SG-SCI able to outperform several state-
of-the-art competitors on VML?

• RQ2: Is each component of our SG-SCI helpful for boosting the
localization performance?

• RQ3: How do hyperparameters affect model capability?
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4.1 Datasets
The experiments that follow are conducted on two benchmark
datasets: Charades-STA [12] and TACoS [33].

Charades-STA [12]: It is constructed on the Charades dataset [36]
and contains 16,128 "moment-query" pairs with an average video
duration of 30 seconds. Following the standard split strategy [12],
we divided the dataset into 12,408 and 3,720 "moment-query" pairs
for training and testing, respectively.

TACoS [33]: It is built uponMPII Cooking Compositive dataset [34]
and only covers cooking activities that contain pairs of queries with
very similar visual information. It consists of 127 untrimmed videos
with the average duration of 320 seconds and 18,818 queries.

In particular, we use point-supervised information instead of
boundary supervision information in the original dataset setting,
just like existing effort [10], where the point-supervised information
comes from a random point in the boundary.

4.2 Experimental Settings
4.2.1 Evaluation Metrics. Following the existing work [10, 21, 25],
we choose 𝑅𝑛@𝑚 and mean averaged IoU (mIoU) as protocols to
evaluate the performance of moment localization. To be specific,
𝑅𝑛@𝑚 refers to the percentage of predictions for which the tempo-
ral Intersection over Union (IoU) surpasses the thresholds𝑚 within
the top-𝑛 of the sorted results, and mean averaged IoU (mIoU) rep-
resents the average IoU across all test samples. Since our method
localizes the target moment with the highest coordinate probability,
we set 𝑛 = 1 and𝑚 ∈ {0.3, 0.5, 0.7}. The higher 𝑅𝑛@𝑚 and mIoU
are better.

4.2.2 Implementation Details. In our work, we employ the pre-
trained I3D [6] and C3D [41] network to extract visual features
from Charades-STA [12] and TACoS [33] respectively. Consistent
with prior research [10], we keep the word embedding module
fixed and utilize the 840B GloVe [32] to construct a comprehensive
vocabulary. The model dimension 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 512, and we
employ AdamW [28] with a learning rate of 1𝑒−4, which decays by
half when reaching a plateau during training. By default, we set
𝛼 = 0.3, 𝛽 = 𝛾 = 0.1, and 𝜎 = 0.04 in both datasets. The batch sizes
for the Charades-STA and TACoS are empirically set to 512 and 64,
respectively. All experiments are conducted on a NVIDIA GeForce
RTX 4090 with 24GB memory.

4.3 Performance Comparison (RQ1)
In this subsection, we compare the proposed method with different
kinds of state-of-the-art methods, including fully-supervised meth-
ods (2D-TAN [51], SS [11], FVMR [13],ADPN [7],MS-DETR [22]),
weakly-supervisedmethods (SCN [26],CNM [54],CWG [8],CPL [55],
IRON [5], PPS [23]) and point-supervised methods (ViGA [10],
PSVTG [46], CFMR [21], D3G [25]). To ensure the validity of the
comparison, the majority of the selected methods are drawn from
the last three years. The comparisons on Charades-STA and TACoS
are encapsulated in Table 1 and Table 2 respectively. Based on the
data presented, the following observations can be derived:

• Ourmethodminesmore correspondence information com-
pared with existing point-supervised methods.While tra-
ditional point-supervised methods focus on the interaction of

Table 1: Performance comparison on Charades-STA with
different supervision methods. Bold means the best result in
point-supervised method and underline means the second
best.

Type Method R1@0.3 R1@0.5 R1@0.7 mIoU

Fully-supervised

2D-TAN [AAAI20] [51] - 50.62 28.71 -
SS [ICCV21] [11] - 56.97 32.74 -

FVMR [ICCV21] [13] - 55.01 33.74 -
ADPN [ACMMM23] [7] 70.35 55.32 37.47 51.15

Weakly-supervised

CWG [AAAI22] [8] 43.41 31.02 16.53 -
CPL [CVPR22] [55] 66.40 49.24 22.39 -
IRON [CVPR23] [5] 70.28 51.33 24.31 -
PPS [AAAI24] [23] 69.06 51.49 26.16 -

Point-supervised

ViGA [SIGIR22] [10] 71.21 45.05 20.27 44.57
PSVTG [TMM22] [46] 60.40 39.22 20.17 39.77
CFMR [ACMMM23] [21] - 48.14 22.58 -
D3G [CVPR23] [25] - 43.82 20.46 -
SG-SCI (Ours) 70.30 52.07 27.23 46.77

Table 2: Performance comparison on TACoS with different
supervision methods. Bold means the best result in point-
supervised method and underline means the second best.

Type Method R1@0.3 R1@0.5 R1@0.7 mIoU

Fully-supervised

2D-TAN [AAAI20] [51] 37.29 25.32 - -
SS [ICCV21] [11] 41.33 29.56 - -

FVMR [ICCV21] [13] 41.48 29.12 - -
MS-DETR [ACL23] [22] 47.66 37.36 25.81 35.09

Weakly-supervised
SCN [AAAI20] [26] 11.72 4.75 - -
CNM [AAAI22] [54] 7.20 2.20 - -
CPL [CVPR22] [55] 11.42 4.12 - -

Point-supervised

ViGA [SIGIR22] [10] 19.62 8.85 3.22 15.47
PSVTG [TMM22] [46] 23.64 10.00 3.35 17.39
CFMR [ACMMM23] [21] 25.44 12.82 - -
D3G [CVPR23] [25] 27.27 12.67 4.70 -
SG-SCI (Ours) 37.47 20.59 8.27 23.83

sentence-moments [25], our method involves multi-granularity
interactions among complex video, concise textual descriptions,
and point annotation. Therefore, the model can consider the in-
teraction between sentences and point annotation at multiple
granularities during the training process, resulting in better cross-
modal information interaction. As illustrated in Table 1, in the
Charades-STA dataset, SG-SCI achieves 4.65% and 6.77% higher
than CFMR [21] and D3G [25] in 𝑅1@0.7, respectively.

• SG-SCI reduces the performance disparity between fully-
supervised methods and point-supervised methods. Lack-
ing of annotated timestamps, the positioning accuracy of point-
supervised methods is lower compared to existing supervised
learning methods. By learning features across different scales, SG-
SCI exploits the information contained in the supervised frames,
to some extent compensating for the performance gap caused by
different supervised information. In the Charades-STA dataset,
our method even outperforms 2D-TAN [51], fully-supervised
method, by 1.45% in terms of 𝑅1@0.5.

• Trivial annotation cost contributes to localization. The ex-
istence of frame annotation provides the model with a clear
direction during iterative convergence, and our proposed corre-
spondence module enables the model to continuously converge
during gradient backpropagation based on the multi-granularity
information from query and frame annotation. As evidenced in
Table 1 and Table 2, our approach consistently outperforms the
cutting-edge weakly-supervised models.
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(a) Component Ablation. (b) GCA Ablation. (c) Mean Weighted Factor.

Figure 3: Impact of (a) GCA and SCL, (b) multiple granularities in GCA, and (c) the mean weighted factor 𝛼 in GCA. Evaluation
performed on Charades-STA.

Table 3: Comparison of different loss ablation for our frame-
work."means retaining it and%means removing it.

Global F-M M-F R1@0.3 R1@0.5 R1@0.7 mIoU

" % % 66.83 37.74 14.14 40.81
% " % 50.56 27.96 10.27 31.04
% % " 41.13 23.87 9.46 26.33
% " " 47.50 25.59 9.70 29.13
" % " 70.00 44.70 19.81 44.04
" " % 69.89 42.07 17.50 43.28
" " " 70.30 52.07 27.23 46.77

• SG-SCI can handle more challenging task. In contrast to
Charades-STA, TACoS contains longer videos with shorter re-
trieved moments, and each frame within the video exhibits a high
degree of semantic approximation, demanding a heightened abil-
ity from the model to perceive boundaries and differentiate simi-
lar moments. Consequently, existing weakly-supervised methods
may struggle to address this scenario, resulting in a significant
absence of the 𝑅1@0.7 metric in Table 2. However, compared to
existing point-supervised methods, like ViGA [10] and D3G [25],
our approach exhibits great performance in 𝑅1@0.7.

4.4 In-depth Analysis (RQ2 & RQ3)
To demonstrate each component of SG-SCI, we conducted extensive
ablation experiments on Charades-STA.

4.4.1 Ablation Study.

• Impact of GCA and SCL. To discuss whether the proposed
GCA and SCL can achieve better performance, we simplify the
pipeline of SG-SCI and set it as the baseline. Specifically, after
multi-modal interaction, we train the model by calculating the
KL divergence of the similarity distribution between the query
and each frame with a Gaussian distribution. To demonstrate the
effectiveness of SCL, we conduct experiments by setting the soft
labels to 1. From the Figure 3(a), it can be seen that both GCA and
SCL effectively enhance the localization ability of the baseline,
especially in 𝑅1@0.7.

• Effect of multiple granularities in GCA. As described in
Sec 3.3, GCA not only helps to understand the video contents
more deeply but also ensures that less significant frames have

relevance in the corresponding textual narrative. We validate
the effectiveness of multi-granularity information interaction
on cross-modal representation, with specific results shown in
Figure 3(b). It can be seen that the multi-granularity interaction
proposed in GCA has effectively improved the localization effect
by enhancing single-modal representation. At the same time,
increasing the multi-granularity interaction of queries can en-
hance the model’s ability to perceive fine-grained boundaries,
i.e., improve the 𝑅1@0.7 by 6.10%.

• Effectiveness of different loss. The final loss contains three
parts: global loss, frame-moment correspondence loss andmoment-
frame correspondence loss. To evaluate the effectiveness of them,
we remove some of them for comparison and the results are
shown in Table 3, and we find that scale correspondence learning
can inspire the potential of the model for boundary perception.
In the presence of global loss, the frame-moment correspondence
loss and moment-frame correspondence loss alone can enhance
performance. The combination of the two can produce compre-
hensive performance improvement, and the 𝑅1@0.7 even gets
more than 10% improvement than only using global loss, showing
that scale correspondence learning can enhance the ability to
capture key information and boundary perception.

4.4.2 Parameter sensitivity.

• The mean weighted factor 𝛼 in GCA. An important hyperpa-
rameter in GCA is 𝛼 , which is used when combining the different
granularities. It represents how much information is interacted
and 𝛼 = 1 represents merely using global feature information
while 𝛼 = 0 denotes only utilizing the fine granularity infor-
mation. The specific results are shown in Figure 3(c). It can be
observed that each metric shows a trend of first rising and then
falling. Moreover, different difficulty of tasks represent diverse 𝛼 :
for coarse-grained localization task (𝑚 = 0.3), 𝛼 = 0.5 is suitable
while for fine-grained localization task, i.e.,𝑚 = 0.5 and𝑚 = 0.7,
𝛼 = 0.3 is better.

• The importance of frame-moment correspondence loss
and moment-frame correspondence loss. In the Eqn. (17),
𝛽 and 𝛾 represent the importance of frame-moment correspon-
dence loss and moment-frame correspondence loss in the final
loss. We test different combinations of 𝛽 and 𝛾 in the range
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Figure 4: The results of R1@0.7 from different frame-
moment correspondence loss and moment-frame correspon-
dence loss. Evaluation performed on the Charades-STA
dataset.

Query: She picks up the rinds and throws them away.

Ground Truth 90.2 s 95.2 s

VIGA

Ours

86.4 s 98.1 s

96.4 s88.7 s

Figure 5: Visualization of localization results on TACoS. The
yellow bar represents the ground truth temporal boundaries
of the language query, the blue bar depicts the predicted
boundaries of ViGA, and the green bar signifies the predicted
boundaries of SG-SCI.

{0.05, 0.1, 0.2, 0.5, 1}, and display the numerical relationship be-
tween 𝑅1@0.7, as shown in Figure 4. Similar to the 𝛼 in GCA,
𝛽 and 𝛾 also show an overall trend of first increasing and then
decreasing, and the highest value is obtained at 𝛽 = 𝛾 = 0.1. The
experimental results indicate that frame-moment correspondence
loss and moment-frame correspondence loss have a significant
impact on fine-grained boundary perception.

• Sliding Window Size. Sliding window is designed to capture
multi-granularity features via multi-scale sliding windows. In
fact, monotonically increasing or decreasing the size of the slid-
ing window would lead to degradation of the representation
discrimination, thus affecting overall performance. For instance,
in extreme cases, the sliding windowmay encompass information
from either the entire video or just a frame. In such scenarios the
model struggles to learn and comprehend these moments holisti-
cally, leading to a decline in overall localization performance. We
conducted ablation experiments on the Charades-STA dataset,
with a default step size of 4. The specific experimental results are
shown in Table 4. The results indicate that the best performance
is achieved when the sliding window size is 8, indicating that
the model needs a moderate sliding window size for sufficient
learning during Scale Correspondence Learning.

Table 4: Performance comparison on Charades-STA with
different sliding window sizes, and ∗ means the stride is the
half of sliding window size.

Size R1@0.3 R1@0.5 R1@0.7 mIoU
4 70.89 49.46 23.66 46.02
8 70.30 52.07 27.23 46.77
16 70.78 47.18 21.99 45.23
24 70.43 46.02 21.48 44.96
32 69.84 45.3 19.46 44.22
4∗ 70.86 49.46 23.31 45.91
16∗ 70.83 47.15 22.07 45.22
24∗ 70.46 45.86 21.64 44.70
32∗ 69.09 44.44 20.16 44.03

Table 5: Speed comparison on Charades-STA and TACoS be-
tween ViGA [10] and SG-SCI, time is averaged.

Charades-STA TACoSMethod Train Inference Train Inference
ViGA [10] 1.0x 1.0x 1.0x 1.0x
SG-SCI 1.1x 1.2x 1.0x 1.2x

4.4.3 Inference speed. As Table 5 illustrated, during the training
and inference phases, our runtime is almost identical to ViGA’s [10].
This is because our proposed GCA and SCL do not introduce sig-
nificant computational complexity. As a result, we consider our
methods to be competitive in terms of efficiency.

4.4.4 Quantitative Results. Tomore thoroughly examine the contri-
butions of our proposed SG-SCI framework, we present an example
illustrating the results of moment retrieval on the TACoS datasets.
As is shown from the Figure 5, SG-SCI demonstrates superior effec-
tiveness in terms of boundary perception. This can be attributed
to the training process, where our model effectively enhances the
model’s perceptual ability across different scales.

5 CONCLUSION AND FUTUREWORK
In this paper, we designed a new framework to understand the cor-
respondence connections between video and text. This framework
used a limited amount of data from single frame to learn. Initially,
we looked at the problems existingmethods had in linking themean-
ing of video and text that varied in detail. To address these issues,
our method included two main strategies: (1) creating a model that
used underlying knowledge to connect features of different modal-
ities, and (2) developing a learning strategy that focused on the
differences in information between similar samples. These strate-
gies helped our method to clearly define and find the differences
in meaning across various details and modalities. This made our
method better at representing features of explicit granularity and
implicit scales. Experiments conducted on two benchmark datasets
demonstrated the effectiveness of our proposed framework.

In the future, in order to further improve the performance of
VML, we plan to introduce a more advanced visual-language trans-
former backbone. In addition, inspired by the fully-supervised par-
adigm, we plan to study the impact of different inference methods
on localization performance.
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