
Appendices314

A Exact Weighted Formal Feature Attribution315

In this appendix, we once again limit our analysis to instances where we can calculate the exact316

WFFA values for the instance of interest by enumerating all AXp’s. Also, the settings used in317

Section 5 are applied here, i.e. we take the absolute values of feature attibution assignned by LIME318

and SHAP, and normalize them within the range of [0, 1]. Just like in the main text of the paper, we319

then compare these approaches with normalized WFFA values in terms of errors, Kendall’s Tau [31]320

and rank-biased overlap (RBO) [66].321

A.1 Tabular Data322

A comparison of WFFA, LIME and SHAP on an instance of the Compas dataset [3] is exemplified323

in Figure 7. We can observe the patterns similar to those depicted in Figure 3. The feature that324

WFFA considers most important is “Asian” while this viewpoint is shared by LIME but disputed by325

SHAP. However, neither LIME nor SHAP fully align with WFFA, although there is evident similarity326

between them. As with FFA, these observations can be generalized to the other instances of Compas,327

as discussed below.328

Table 5 presents a comparison of WFFA against LIME, and SHAP on the 11 selected tabular datasets329

as in Table 1, demonstrating similarities in the findings observed for WFFA and FFA for these330

datasets. The average runtime for generating the exact WFFA in a dataset varies between 0.18 and331

1.89 seconds while the average number of AXp’s per instance to explain and so to compute exact332

WFFA in a dataset ranges from 1.40 to 33.33. Both LIME and SHAP process each image in less333

than one second. LIME exhibits errors ranging from 1.37 to 4.96 across these datasets while SHAP334

shows similar errors spanning from 1.36 to 4.67. Besides errors, LIME and SHAP yield comparable335

outcomes in terms of the two ranking comparison metrics. The values of Kendall’s Tau for LIME336

span from −0.35 to 0.25, whereas the values for SHAP are between −0.38 and 0.31. Regarding337

RBO values, LIME (resp. SHAP) demonstrates values ranging from 0.38 to 0.69 (resp. 0.43 to 0.67).338

Overall and consistent with the FFA findings shown earlier in Table 1, Table 5 indicates that both339

LIME and SHAP fail to achieve close enough agreement with WFFA.340

A.2 10 × 10 Digits341

Table 6 provides a comprehensive comparison of approximate WFFA against feature attribution342

reported by LIME and SHAP with respect to the exact WFFA values, conducted on the downscaled343

MNIST digists and PneumoniaMNIST images, where exhaustive AXp enumeration is feasible. The344

values of feature attribution generated by LIME, SHAP, and approximate WFFA∗ for the three345

selected 10 × 10 images are shown in Figure 11, Figure 12, and Figure 13. Over time, the number346

of features included in the AXp’s increases, and the weighted attribution of each feature changes347

converging to the exact WFFA. The results shown in Figure 8, Figure 9, and Figure 10 align with the348

main finding for FFA approximation shown earlier. Furthermore, the results shown in Table 6 are also349

consistent with FFA observations in Table 2. Both LIME and SHAP can process each image within a350

runtime of less than one second. The average runtime and average number of AXp’s generated for351

10 × 10 MNIST 1 vs 3 (resp. 1 vs 7) are 14264.78s and 15781.87 (resp. 6834.61s and 4028.27),352

while the values in 10 × 10 PneumoniaMNIST are 8656.18s and 8802.87, respectively. Similarly353

to the results in Table 2, Table 6 indicates that our approximation yields small errors. Even after 10354

seconds, it outperforms both LIME and SHAP, and the errors continue to decrease as we compute355

more AXp’s. Once again, the results of the orderings demonstrate that after 10 seconds, the ordering356

of WFFA∗ approaches closer to the exact WFFA compared to both LIME and SHAP and converges357

to the exact WFFA ordering with the growth of the number AXp’s enumerated. As can also be seen,358

LIME exhibits a substantial distance from the exact WFFA ordering.359

A.3 Summary360

The findings of this section again indicate that we can confidently obtain valuable approximations361

of the exact WFFA values without the need to exhaustively enumerate all AXp’s for a given data362
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Hispanic: 0
Native_American: 0
African_American: 1

Misdemeanor: 1
Female: 0

score_factor: 1
Age_Above_FourtyFive: 0
Age_Below_TwentyFive: 1
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Number_of_Priors: 3
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0.00
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(a) WFFA
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0.02
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0.20

0.82
0.82
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1.00

(b) LIME

Hispanic: 0
Native_American: 0
African_American: 1

Misdemeanor: 1
Female: 0

score_factor: 1
Age_Above_FourtyFive: 0
Age_Below_TwentyFive: 1

Other: 0
Number_of_Priors: 3

Asian: 0

0.00
0.00

0.12
0.05

0.10
0.14

0.37
0.89

0.06
1.00

0.03

(c) SHAP

Figure 7: Explanations for an instance of Compas v = {#Priors = 3,Score_factor =
1,Age_Above_FourtyFive = 0,Age_Below_TwentyFive = 1,African_American = 1,Asian =
0,Hispanic = 0,Native_American = 0,Other = 0,Female = 0,Misdemeanor = 1} predicted as
Two_yr_Recidivism = true.

Table 5: LIME and SHAP versus WFFA on tabular data.
Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism
|F| (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.32 2.06 4.96 1.48 3.26 4.40 4.43 1.37 2.37 2.63 4.66
SHAP 4.29 1.87 4.31 1.36 2.63 3.61 4.00 1.43 2.25 2.91 4.67

Kendall’s Tau
LIME 0.11 0.17 0.25 -0.08 -0.08 0.22 0.08 -0.35 -0.17 0.25 0.08
SHAP 0.07 0.23 0.31 -0.07 -0.07 0.22 0.26 -0.38 -0.16 0.15 0.16

RBO
LIME 0.53 0.65 0.48 0.64 0.56 0.56 0.40 0.59 0.65 0.69 0.38
SHAP 0.48 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.64 0.43

Table 6: Comparison on 10 × 10 Images of WFFA versus LIME, SHAP and WFFA approximations.
Dataset LIME SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA600 WFFA1200

|F| = 100 Error
10×10-mnist-1vs3 11.28 9.81 5.52 5.12 4.83 4.50 3.32 2.61
10×10-mnist-1vs7 12.46 8.11 4.07 3.47 2.83 2.38 1.34 0.97

10×10-pneumoniamnist 17.25 17.84 5.33 4.29 3.76 3.36 2.20 1.63

Kendall’s Tau
10×10-mnist-1vs3 -0.14 0.48 0.53 0.60 0.64 0.67 0.75 0.81
10×10-mnist-1vs7 -0.33 0.47 0.58 0.65 0.73 0.79 0.86 0.90

10×10-pneumoniamnist -0.02 0.24 0.67 0.74 0.80 0.81 0.90 0.92

RBO
10×10-mnist-1vs3 0.20 0.50 0.63 0.67 0.70 0.74 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.73 0.77 0.81 0.86 0.90 0.91

10×10-pneumoniamnist 0.21 0.37 0.63 0.70 0.74 0.77 0.82 0.87

instance. It is worth noting that feature attribution determined by LIME and SHAP is quite inaccurate363

and does not provide meaningful insights to a human decision-maker, despite being computationally364

fast.365

B Approximate Weighted Formal Feature Attribution366

As argued in Section 3, the exact WFFA computation can be difficult in practice, due to the complexity367

of the problem. But as Table 6 indicates, our approach can yield decent WFFA approximations even368

with a short duration of collecting AXp’s. Here we assess the fidelity of our approach in contrast to the369

approximate WFFA computed after a duration of 2 hours (7200s). WFFA∗ and the values of feature370

attribution generated by LIME and SHAP for the three considered 28 × 28 images are depicted371

in Figure 14, 15, and 16. As time progresses, the accumulated AXp’s incorporate an increasing372

number of features, and as a result the value of weighted attribution for each feature can change.373

Table 7 details the comparison between LIME, SHAP, and the approximate WFFA. Both LIME and374
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Image LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 8: 10 × 10 MNIST 1 vs. 3. The prediction is 3.

Image LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 9: 10 × 10 MNIST 1 vs. 7. The prediction is 7.

Table 7: Comparison on 28 × 28 Images of WFFA7.2k versus LIME, SHAP and WFFA approximations.
Dataset LIME SHAP WFFA10 WFFA30 WFFA120 WFFA600 WFFA1200 WFFA3600

|F| = 784 Error
28,28-mnist-1,3 49.28 22.33 9.22 7.50 6.69 4.50 3.08 2.75
28,28-mnist-1,7 54.78 24.39 11.53 9.40 7.00 4.60 3.33 2.29

28,28-pneumoniamnist 62.88 31.46 8.17 7.74 5.67 4.85 3.75 3.08

Kendall’s Tau
28,28-mnist-1,3 -0.80 0.42 0.49 0.64 0.70 0.81 0.86 0.88
28,28-mnist-1,7 -0.79 0.34 0.43 0.57 0.72 0.82 0.87 0.92

28,28-pneumoniamnist -0.66 0.24 0.37 0.57 0.69 0.76 0.81 0.88

RBO
28,28-mnist-1,3 0.03 0.40 0.45 0.54 0.63 0.78 0.84 0.89
28,28-mnist-1,7 0.03 0.34 0.41 0.47 0.60 0.74 0.81 0.91

28,28-pneumoniamnist 0.03 0.23 0.30 0.35 0.43 0.59 0.65 0.81

Table 8: Just-in-time Defect Prediction comparison of WFFA versus LIME and SHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error kendalltau rbo Error kendalltau rbo
LIME 4.79 0.08 0.56 5.60 -0.07 0.45
SHAP 5.01 0.02 0.54 5.17 -0.11 0.44

SHAP require less than one second to process each image. The average results presented in Table 7375

are consistent with those illustrated in Table 6 and the FFA results depicted in Table 2 and Table 3.376

Table 7 demonstrates that after only 10 seconds, our WFFA approximation outperforms both LIME377

and SHAP in terms of errors, Kendall’s Tau, and RBO values. Additionally, after 10 seconds our378

approach produces weighted feature attributions, which is closer to WFFA7200 compared to both379

LIME and SHAP. This suggests that our approach effectively identifies the features that are genuinely380

relevant for the prediction, which is in stark contrast to LIME and SHAP.381

C Application in Just-in-Time Defect Prediction382

Modern software companies often engage in the rapid and frequent release of software products383

in short cycles. Because of the exponential growth of highly complex source code, such rapid-384

release software development presents significant challenges for under-resourced Software Quality385

Assurance (SQA) teams. Developers are unable to thoroughly ensure the highest quality of all newly386

developed code commits or pull requests within the limited time and resources available, due to the387

time-consuming and costly nature of various SQA activities, e.g. code review. To address this issue,388

a recent approach called Just-in-Time (JIT) defect prediction [30, 32, 38, 51] has been proposed.389

This approach aims to predict whether a commit will introduce software defects in the future such390
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Image LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 10: 10 × 10 PneumoniaMNIST. The prediction is pneumonia.

Input LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 11: 10 × 10 MNIST 1 vs. 3. The prediction is 3.

that development teams can prioritize their limited SQA resources on the riskiest commits or pull391

requests.392

However, the JIT defect prediction approach has frequently been criticized for being opaque and393

lacking explainability for practitioners. Model-agnostic explainability methods, e.g. LIME and SHAP,394

cannot guarantee accurate feature attribution, as discussed earlier in this appendix and Section 5).395

Experimental evidence presented in Section 5 demonstrates the usefulness of exact FFA in the396

context of JIT defect prediction. Given that our earlier observations above suggest that exact (resp.397

approximate) WFFA is consistent with exact (resp. approximate) FFA, we apply the computation of398

WFFA in the setting of JIT defection prediction and demonstrate that it can be also a viable approach399

to addressing practical explainability challenges.400

In particular, where we use logistic regression models built on two widely-used large-scale open-401

source datasets, namely Openstack and Qt, which are commonly used in JIT defect prediction402

studies [52]. The property of monotonicity in logistic regression allows us to enumerate explanations403

efficiently, following the approach of [44]. By leveraging this method, we can extract the exact WFFA404

for each instance within one second. The comparison of WFFA, LIME, and SHAP in terms of the405

three selected metrics is provided in Table 8. These results are consistent with the FFA assessment406

presented in Table 4. Similar to the findings in Table 5, Table 6, and Table 7, both LIME and SHAP407

misalign with weighted formal feature attribution, although there are some similarities between them.408
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Input LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 12: 10 × 10 MNIST 1 vs. 7. The prediction is 7.

Input LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1.2k FFA

Figure 13: 10 × 10 PneumoniaMNIST. The prediction is pneumonia.

LIME SHAP WFFA10 WFFA30 WFFA120 WFFA600 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 14: 28 × 28 MNIST 1 vs. 3. The prediction is digit 3.

LIME SHAP WFFA10 WFFA30 WFFA120 WFFA600 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 15: 28 × 28 MNIST 1 vs. 7. The prediction is digit 7.

LIME SHAP WFFA10 WFFA30 WFFA120 WFFA600 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 16: 28 × 28 PneumoniaMNIST. The prediction is normal.

14



References409

[1] ACM. Fathers of the deep learning revolution receive ACM A.M. Turing award. http:410

//tiny.cc/9plzpz, 2018.411

[2] L. Amgoud and J. Ben-Naim. Axiomatic foundations of explainability. In L. D. Raedt, editor,412

IJCAI, pages 636–642, 2022.413

[3] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. http://tiny.cc/dd7mjz,414

2016.415

[4] M. Arenas, D. Baez, P. Barceló, J. Pérez, and B. Subercaseaux. Foundations of symbolic416

languages for model interpretability. In NeurIPS, 2021.417

[5] M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. The tractability of SHAP-score-based418

explanations for classification over deterministic and decomposable Boolean circuits. In AAAI,419

pages 6670–6678. AAAI Press, 2021.420

[6] M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. On the complexity of SHAP-score-based421

explanations: Tractability via knowledge compilation and non-approximability results. CoRR,422

abs/2104.08015, 2021.423

[7] M. Arenas, P. Barceló, M. A. R. Orth, and B. Subercaseaux. On computing probabilistic424

explanations for decision trees. In NeurIPS, 2022.425

[8] G. Audemard, F. Koriche, and P. Marquis. On tractable XAI queries based on compiled426

representations. In KR, pages 838–849, 2020.427

[9] G. Blanc, J. Lange, and L. Tan. Provably efficient, succinct, and precise explanations. In428

NeurIPS, 2021.429

[10] R. Boumazouza, F. C. Alili, B. Mazure, and K. Tabia. ASTERYX: A model-Agnostic SaT-basEd430

appRoach for sYmbolic and score-based eXplanations. In CIKM, pages 120–129, 2021.431

[11] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.432

[12] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In KDD, pages 785–794,433

2016.434

[13] A. Darwiche and A. Hirth. On the reasons behind decisions. In ECAI, pages 712–720, 2020.435

[14] A. Darwiche and P. Marquis. On quantifying literals in Boolean logic and its applications to436

explainable AI. J. Artif. Intell. Res., 72:285–328, 2021.437

[15] L. Deng. The MNIST database of handwritten digit images for machine learning research.438

IEEE Signal Processing Magazine, 29(6):141–142, 2012.439

[16] D. Dua and C. Graff. UCI machine learning repository, 2017. http://archive.ics.uci.440

edu/ml.441

[17] FairML. Auditing black-box predictive models. http://tiny.cc/6e7mjz, 2016.442

[18] J. Ferreira, M. de Sousa Ribeiro, R. Gonçalves, and J. Leite. Looking inside the black-box:443

Logic-based explanations for neural networks. In KR, page 432–442, 2022.444

[19] S. Friedler, C. Scheidegger, and S. Venkatasubramanian. On algorithmic fairness, discrimination445

and disparate impact. http://fairness.haverford.edu/, 2015.446

[20] N. Gorji and S. Rubin. Sufficient reasons for classifier decisions in the presence of domain447

constraints. In AAAI, pages 5660–5667, 2022.448

[21] X. Huang and J. Marques-Silva. The inadequacy of Shapley values for explainability. CoRR,449

abs/2302.08160, 2023.450

[22] X. Huang, M. C. Cooper, A. Morgado, J. Planes, and J. Marques-Silva. Feature necessity &451

relevancy in ML classifier explanations. In TACAS (1), pages 167–186, 2023.452

15

http://tiny.cc/9plzpz
http://tiny.cc/9plzpz
http://tiny.cc/9plzpz
http://tiny.cc/dd7mjz
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://tiny.cc/6e7mjz
http://fairness.haverford.edu/


[23] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Inf. Pro-453

cess. Lett., 5(1):15–17, 1976. URL https://doi.org/10.1016/0020-0190(76)90095-8.454

[24] A. Ignatiev. Towards trustable explainable AI. In IJCAI, pages 5154–5158, 2020.455

[25] A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-based explanations for machine456

learning models. In AAAI, pages 1511–1519, 2019.457

[26] A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. From contrastive to abductive458

explanations and back again. In AI*IA, pages 335–355, 2020.459

[27] A. Ignatiev, Y. Izza, P. J. Stuckey, and J. Marques-Silva. Using MaxSAT for efficient explanations460

of tree ensembles. In AAAI, pages 3776–3785, 2022.461

[28] Y. Izza, A. Ignatiev, and J. Marques-Silva. On tackling explanation redundancy in decision trees.462

J. Artif. Intell. Res., 75:261–321, 2022. URL https://doi.org/10.1613/jair.1.13575.463

[29] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science,464

349(6245):255–260, 2015.465

[30] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi. A Large-466

Scale Empirical Study of Just-In-Time Quality Assurance. IEEE Transactions on Software467

Engineering (TSE), 39(6):757–773, 2013.468

[31] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.469

[32] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting Faults from Cached470

History. In ICSE, pages 489–498, 2007.471

[33] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In KDD,472

pages 202–207, 1996.473

[34] H. Lakkaraju and O. Bastani. "How do I fool you?": Manipulating user trust via misleading474

black box explanations. In AIES, pages 79–85, 2020.475

[35] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.476

[36] M. H. Liffiton and A. Malik. Enumerating infeasibility: Finding multiple MUSes quickly. In477

CPAIOR, pages 160–175, 2013.478

[37] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration.479

Constraints An Int. J., 21(2):223–250, 2016.480

[38] D. Lin, C. Tantithamthavorn, and A. E. Hassan. The impact of data merging on the interpretation481

of cross-project just-in-time defect models. IEEE Transactions on Software Engineering, 2021.482

[39] Z. C. Lipton. The mythos of model interpretability. Commun. ACM, 61(10):36–43, 2018.483

[40] S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. In NeurIPS,484

pages 4765–4774, 2017.485

[41] E. L. Malfa, R. Michelmore, A. M. Zbrzezny, N. Paoletti, and M. Kwiatkowska. On guaranteed486

optimal robust explanations for NLP models. In IJCAI, pages 2658–2665, 2021.487

[42] J. Marques-Silva and A. Ignatiev. Delivering trustworthy AI through formal XAI. In AAAI,488

pages 12342–12350. AAAI Press, 2022.489

[43] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and N. Narodytska. Explaining490

naive Bayes and other linear classifiers with polynomial time and delay. In NeurIPS, 2020.491

[44] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and N. Narodytska. Explanations492

for monotonic classifiers. In ICML, pages 7469–7479, 2021.493

[45] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target? A longitudinal case494

study of Just-in-Time defect prediction. IEEE Transactions on Software Engineering (TSE),495

pages 412–428, 2017.496

16

https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1613/jair.1.13575


[46] T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell.,497

267:1–38, 2019.498

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,499

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-500

forcement learning. Nature, 518(7540):529, 2015.501

[48] C. Molnar. Interpretable Machine Learning. Leanpub, 2020. http://tiny.cc/6c76tz.502

[49] R. S. Olson, W. G. L. Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a503

large benchmark suite for machine learning evaluation and comparison. BioData Min., 10(1):504

36:1–36:13, 2017.505

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,506

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani,507

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style,508

high-performance deep learning library. In NeurIPS, pages 8024–8035, 2019.509

[51] C. Pornprasit and C. Tantithamthavorn. JITLine: A Simpler, Better, Faster, Finer-grained510

Just-In-Time Defect Prediction. In MSR, pages 369–379, 2021.511

[52] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thongtanunam. PyExplainer:512

Explaining the predictions of Just-In-Time defect models. In ASE, pages 407–418, 2021.513

[53] A. Previti and J. Marques-Silva. Partial MUS enumeration. In AAAI. AAAI Press, 2013.514

[54] R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.515

[55] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the predictions516

of any classifier. In KDD, pages 1135–1144, 2016.517

[56] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations.518

In AAAI, pages 1527–1535, 2018.519

[57] R. L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987.520

[58] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use521

interpretable models instead. Nat. Mach. Intell., 1(5):206–215, 2019.522

[59] P. Schmidt and A. D. Witte. Predicting recidivism in North Carolina, 1978 and 1980. Inter-523

University Consortium for Political and Social Research, 1988.524

[60] L. S. Shapley. A value of n-person games. Contributions to the Theory of Games, 2(28):525

307–317, 1953.526

[61] A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining Bayesian network527

classifiers. In IJCAI, pages 5103–5111, 2018.528

[62] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and SHAP: adversarial529

attacks on post hoc explanation methods. In AIES, pages 180–186, 2020.530

[63] D. Slack, A. Hilgard, S. Singh, and H. Lakkaraju. Reliable post hoc explanations: Modeling531

uncertainty in explainability. In NeurIPS, pages 9391–9404, 2021.532

[64] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus.533

Intriguing properties of neural networks. In ICLR (Poster), 2014.534

[65] S. Wäldchen, J. MacDonald, S. Hauch, and G. Kutyniok. The computational complexity of535

understanding binary classifier decisions. J. Artif. Intell. Res., 70:351–387, 2021.536

[66] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite rankings. ACM537

Transactions on Information Systems (TOIS), 28(4):1–38, 2010.538

[67] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni. MedMNIST v2-a539

large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific540

Data, 10(1):41, 2023.541

17

http://tiny.cc/6c76tz

	Exact Weighted Formal Feature Attribution
	Tabular Data
	10  10 Digits
	Summary

	Approximate Weighted Formal Feature Attribution
	Application in Just-in-Time Defect Prediction



