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Abstract

Deep learning models often suffer from forgetting previously learned information
when trained on new data. This problem is exacerbated in federated learning (FL),
where the data is distributed and can change independently for each user. Many
solutions are proposed to resolve this catastrophic forgetting in a centralized setting.
However, they do not apply directly to FL because of its unique complexities, such
as privacy concerns and resource limitations. To overcome these challenges, this
paper presents a framework for federated class incremental learning that utilizes
a generative model to synthesize samples from past distributions. This data can
be later exploited alongside the training data to mitigate catastrophic forgetting.
To preserve privacy, the generative model is trained on the server using data-free
methods at the end of each task without requesting data from clients. Moreover,
our solution does not demand the users to store old data or models, which gives
them the freedom to join/leave the training at any time. Additionally, we introduce
SuperImageNet, a new regrouping of the ImageNet dataset specifically tailored for
federated continual learning. We demonstrate significant improvements compared
to existing baselines through extensive experiments on multiple datasets.

1 Introduction

Federated learning (FL) [40, 29] is a decentralized machine learning technique that enables privacy-
preserving collaborative learning. In FL, multiple users (clients) train a common (global) model in
coordination with a server without sharing personal data. In recent years, FL has attracted tremendous
attention in both research and industry and has been successfully employed in various fields, such as
autonomous driving [17], next-word prediction [21], health care [13], and many more.

Despite its popularity, deploying FL in practice requires addressing critical challenges, such as
resource limitation and statistical and system heterogeneity [27, 33]. While tackling these challenges
is an essential step towards practical and efficient FL, there are still common assumptions in most FL
frameworks that are too restrictive in realistic scenarios.
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Figure 1: In the real world, users constantly change their interests, observe new data, or lose some of
the old ones. As a result, the training dataset is divided into different tasks. For example, here, at
Task = 1, the clients’ datasets dominantly include pictures of animals, and by the end of the training
(Task = T ), the trend shifts towards landscapes.

In particular, one of the most common assumptions is that clients’ local data distribution is fixed and
does not change over time. However, in real-world applications [49], clients’ data constantly evolve
due to changes in the environment, trends, or new interests. For example, [6] presents the real-world
data of an online shop, suggesting interest in items shifts through seasons. Another example arises in
healthcare, where a model trained on old diseases should be able to generalize to new diseases [58].
In such scenarios (Figure 1), the model must rapidly adapt to the incoming data while preserving
performance on past data distributions to avoid catastrophic forgetting [28, 39].

In the centralized setting, such problems have been explored in continual learning [48, 34] (also called
lifelong learning [3] or incremental learning [9, 7] based on the initial settings and assumptions). In
recent years, various algorithms have been proposed in Continual Learning (CL) to tackle catastrophic
forgetting from different angles and can achieve promising performance in different scenarios.

Despite all the significant progress, most CL methods are not directly applicable to the federated
setting due to inherent differences (Table 1) between the two settings. For instance, experience
replay [47] is a popular approach, where a portion of past data points is saved to maintain some
representation of previous distributions throughout the training. However, deploying experience
replay in FL has resource and privacy limitations. It requires clients to store and keep their data,
which may increase the memory usage of already resource-limited clients. Furthermore, users may
not be able to store data for more than a specific time due to privacy concerns. Finally, depending
solely on the clients to preserve the past is not reliable, as clients leaving means losing their data.

Challenge Limitation
Low memory Clients cannot store many examples

Clients drop out Causes loss of information stored in memory
New clients join New clients only have access to new classes

Privacy Limits data saving and sharing of the clients

Table 1: Challenges that limit the direct use of continual learning methods in federated settings.

To address the aforementioned problems, we propose MFCL, Mimicking Federated Continual
Learning: a privacy-preserving federated continual learning approach without episodic memory. In
particular, MFCL is based on training a generative model in the server and sharing it with clients
to sample synthetic examples of past data instead of storing the actual data on the client side. The
generative model training is data-free in the sense that no form of training data is required from the
clients, and only the global model is used in this step. It is specifically crucial because this step does
not require powerful clients and does not cause any extra data leakage. Finally, this algorithm has
competitive performance; our numerical experiments demonstrate improvement by 10%− 20% in
average accuracy while reducing the training overhead of the clients.

Moreover, benchmarking federated continual learning in practical scenarios requires a large dataset
to split among tasks and clients. However, existing datasets are not sufficiently large, causing most
of the existing works in federated continual learning evaluating on a few clients (5 to 20) [45, 24,
52]. To enable more practical evaluations, we release a new regrouping of the ImageNet dataset,
SuperImageNet. SuperImageNet enables evaluation with many clients and ensures all clients are
assigned sufficient training samples regardless of the total number of tasks and active clients.
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We summarize our contributions below:
• We propose a novel framework to tackle the federated class incremental learning problem

more efficiently for many users. Our framework specifically targets applications where past
data samples on clients are unavailable.

• We point out potential issues with relying on client-side memory for FCL. Furthermore,
we propose using a generative model trained by the server in a data-free manner to help
overcome catastrophic forgetting while preserving privacy.

• We modify the client-side training of traditional FL techniques in order to mitigate catas-
trophic forgetting using a generative model.

• We propose a new regrouping of the ImageNet dataset, SuperImageNet, tailored to federated
continual learning settings that can be scaled to a large number of clients and tasks.

• We demonstrate the efficacy of our method in more realistic scenarios with a larger number
of clients and more challenging datasets such as CIFAR-100 and TinyImageNet.

2 Related Work

Continual Learning. Catastrophic forgetting [39] is a fundamental problem in machine learning:
when we train a model on new examples, its performance degrades when evaluated on past data.
This problem is investigated in continual learning (CL) [59], and the goal is for the model to
learn new information while preserving its knowledge of old data. A large body of research has
attempted to tackle this problem from different angles, such as adding regularization terms [31, 1, 41],
experience replay by storing data in memory [2, 10, 4, 35], training a generative model [56, 53, 32],
or architecture parameter isolation [16, 38, 19, 51].

In CL settings, the training data is presented to the learner as a sequence of datasets - commonly
known as tasks. In each timestamp, only one dataset (task) is available, and the learner’s goal is to
perform well on all the current and previous tasks.

Recent work focuses on three main scenarios, namely task-, domain- and class-incremental learning
(IL) [54]. In Task-IL, tasks are disjoint, and the output spaces are separated by task IDs provided
during training and test time. For Domain-IL, the output space does not change for different tasks,
but the task IDs are no longer provided. Finally, in Class-IL, new tasks introduce new classes to the
output space, and the number of classes increases incrementally. Here, we work on Class-IL, which
is the more challenging and realistic, especially in FL. In most of the FL applications, there is no task
ID available, and it is preferred to learn a single model for all the observed data.

Class Incremental Learning. In standard centralized Class-IL, the model is trained on a sequence
of non-overlapping T tasks {T (1), T (2), ..., T (T )} where the data distribution of task t, Dt, is fixed
but unknown in advance, while all the tasks share the same output space (Y). For task t, Dt consists
of N t pairs of samples and their labels {(xt

i, y
t
i)}N

t

i=1}, where all the newly introduced classes (yti )

belong to Yt (yti ∈ {Yt} and
t−1⋃
j=1

{Yj}
⋂
{Yt} = ∅). Moreover, a shared output space among all

tasks means that at the end of task t, the total number of available classes equals q =
∑t

i=1 |Yi|.
Federated Continual Learning. In real-life scenarios, users’ local data is not static and may evolve.
For instance, users’ interests may change over time due to seasonal variations, resulting in more
examples for a given class. On the other hand, reliability issues or privacy concerns may lead to users
losing part of their old data as well. In Federated Continual Learning (FCL), the main focus is to
adapt the global model to new data while maintaining the knowledge of the past.

Even though FCL is an important problem, it has only gained attention very recently, and [58] is
the first paper on this topic. It focuses on Task-IL, which requires a unique task ID per task during
inference. Furthermore, it adapts separate masks per task to improve personalized performance
without preserving a common global model. This setting is considerably different than ours as we
target Class-IL with a single global model to classify all the classes seen so far. [37] employs server
and client-side knowledge distillation using a surrogate dataset. [15] relaxes the problem as clients
have access to large memory to save the old examples and share their data, which is different from
the standard FL setting. Some works, such as [26, 44, 52], explore the FCL problem in domains other
than image classification. [42] has proposed using variational embedding to send data to the server
securely and then server-side training to rehearse the previous task for Domain-IL.
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This work focuses on Class-IL for supervised image classification without memory replay, similar to
[45, 24]. However, [24] allows overlapping classes between tasks and focuses on few-shot learning,
which is different from the standard Class-IL. The most related work to ours is [45], where authors
propose FedCIL. This work also benefits from generative replay to compensate for the absence of old
data and overcome forgetting. In FedCIL, clients train the discriminator and generator locally. Then,
the server takes a consolidation step after aggregating the updates. In this step, the server generates
synthetic data using all the generative models trained by the clients to consolidate the global model
and improve the performance. The main difference between this work and ours is that in our work,
the generative model is trained by the server in a data-free manner, which can reduce clients’ training
time and computation and does not require their private data (detailed comparison in Appendix H).

Data-Free Knowledge Distillation. Knowledge distillation (KD) [25] is a popular method to transfer
knowledge from a well-trained teacher model to a (usually) smaller student model. Common KD
methods are data-driven, and at least a small portion of training data is required. However, in some
cases, training data may not be available during knowledge distillation due to privacy concerns.

Gradients

PredictionInput Noise Generative 
model

Teacher 
model

(Frozen)(Training)

Synthetic Image

Loss

Gradients
z ∼N(0, 1)

Figure 2: Data-Free Knowledge Distillation. The
generator receives random noise as input labels
and synthesizes images that are labeled correctly
by the trained teacher model.

To tackle this problem, a new line of work [12,
22] proposes data-free knowledge distillation.
In such methods, a generative model is used
as a training data substitute. This generative
model is trained to generate synthetic images
such that the teacher model predicts them as
their assigned label (Figure 2). This method
has recently become popular in CL [57, 50] as
well, mainly due to the fact that it can eliminate
the need for memory in preserving knowledge.
Data-free KD has been previously used in FL
[60] to reduce the effect of data heterogeneity.
However, to the best of our knowledge, this is
the first work that adapted such a technique in
the context of federated continual learning.

3 Federated Class Incremental Learning with MFCL

In federated Class-IL, a shared model is trained on T different tasks. However, the distributed and
private nature of FL makes it distinct from the centralized version. In FL, users may join, drop out, or
change their data independently. Besides, required data or computation power for some centralized
algorithms may not be available in FL due to privacy and resource constraints.

To address the aforementioned problems, we propose MFCL, which is less reliant on the client-side
memory and computational power. This algorithm includes two essential parts: first, at the end of
each task, the server trains a generative model with data-free knowledge distillation methods to learn
the representation of the seen classes. Second, clients can reduce catastrophic forgetting by generating
synthetic images from the trained generative model obtained from the server side. This way, clients
are not required to use their memory for storing old data. Moreover, this technique can address
the problem of newly connected clients without past data. Furthermore, since the server trains the
generative model training without additional information, this step does not introduce new privacy
issues. Finally, MFCL can help mitigate the data heterogeneity problem, as clients can synthesize
samples from classes they do not own [60] in memory. Next, we explain the two key parts of MFCL:
server-side generative model (Figure 3 Left) and client-side continual learning (Figure 3 Right).

3.1 Server-Side: Generative Model

The motivation for deploying a generative model is to synthesize images that mimic the old tasks and
to avoid storing past data. However, training these generative models on the client’s side, where the
training data exists, is computationally expensive, requires a large amount of training data and can
be potentially privacy concerning. On the other hand, the server has only access to the global model
and aggregated weights and no data. We propose training a generative model on the server, but in a
data-free manner, i.e., utilizing model-inversion image synthesis [57, 50]. In such approaches, the
goal is to synthesize images optimized with respect to the discriminator (global model). Then, the
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Figure 3: Overview of MFCL. Left. The server aggregates the updates every round and trains a
generator using data-free methods at the end of each task. Right. Clients train their models locally
using their local data and synthetic images of past tasks from the generator.

generative model is shared with the clients to generate images during local training. To this aim, we
utilize a generative model with ConvNet architecture, G, that takes noise z ∼ N (0, 1) as input and
produces a synthetic sample x̃, resembling the original training input with the same dimensions. In
order to train this model, we must balance the various training objectives we detail next.

Cross Entropy Loss. First, the synthetic data should be labeled correctly by the current discriminator
model (global model or F). To this end, we employ cross entropy classification loss between its
assigned label z and the prediction of F on synthetic data x̃. Note that noise dimension can be
arbitrary and greater than the current discovered classes of task t; therefore, we only consider the first
q dimension here, where q =

∑t
i=1 |Yi| (which is equal to the total number of classes seen in the

previous tasks). Then, we can define the cross-entropy loss as

LCE = CE(argmax(z[: q]),F(x̃)). (1)

Diversity Loss. Synthetic images can suffer from a lack of class diversity. To solve this problem,
we utilize the information entropy (IE) loss [12]. For a probability vector p = (p1, p2, ..., pq),
information entropy is evaluated asHinfo(p) = − 1

q

∑
i pi log(pi). Based on the definition, inputs

with uniform data distributions have the maximum IE. Hence, to encourage G to produce diverse
samples, we deploy the diversity loss defined as

Ldiv = −Hinfo(
1

bs

bs∑
i=1

F(x̃i)). (2)

This loss measures the IE for samples of a batch (bs: batch size). Maximizing this term encourages
the output distribution of the generator to be more uniform and balanced for all the available classes.

Batch Statistics Loss. Prior works [22, 57, 50] in the centralized setting have recognized that the
distribution of synthetic images generated by model inversion methods can drift from real data.
Therefore, in order to avoid such problems, we add batch statistics loss LBN to our generator training
objective. Specifically, the server has access to the statistics (mean and standard deviation) of the
global model’s BatchNorm layers obtained from training on real data. We want to enforce the same
statistics in all BatchNorm layers on the generated synthetic images as well. To this end, we minimize
the layer-wise distances between the two statistics written as

LBN =
1

L

L∑
i=1

KL(N (µi, σ
2
i ),N (µ̃i, σ̃

2
i )) = log

σ̂

σ
− 1

2
(1− σ2 + (µ− µ̂)2

σ̂2
). (3)

Here, L denotes the total number of BatchNorm layers, µi and σi are the mean and standard deviation
stored in BatchNorm layer i of the global model, µ̃i, σ̃i are measured statistics of BatchNorm layer i
for the synthetic images. Finally, KL stands for the Kullback-Leibler (KL) divergence.

We want to note that this loss does not rely on the BatchNorm layer itself but rather on their stored
statistics (µ̃i, σ̃i ). G aims to generate synthetic images similar to the real ones such that the global
model would not be able to classify them purely based on these statistics. One way to achieve this is
to ensure that synthetic and real images have similar statistics in the intermediate layers, and this is
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the role of LBN . In our experiments, we employed the most common baseline model in CL, which
already contains BatchNorm layers and measures those statistics. However, these layers are not a
necessity and can be substituted by similar ones, such as GroupNorm. In general, if no normalization
layer is used in the model, clients can still compute the running statistics of specific layers and share
them with the server, and later, the server can use them in the training of the G.

Image Prior Loss. In natural images, adjacent pixels usually have values close to each other. Adding
prior loss is a common technique to encourage a similar trend in the synthetic images [22]. In
particular, we can create the smoothed (blurred) version of an image by applying a Gaussian kernel
and minimizing the distance of the original and Smooth(x̃) using the image prior loss

Lpr = ||x̃− Smooth(x̃)||22. (4)

In summary, we can write the training objective of G as Equation 5 where wdiv , wBN and wpr control
weight of each term.

min
G
LCE + wdivLdiv + wBNLBN + wprLpr, (5)

3.2 Client-side: Continual Learning

For client-side training, our solution is inspired by the algorithm proposed in [50]. In particular, the
authors distill the stability-plasticity dilemma into three critical requirements of continual learning
and aim to address them one by one.

Current Task. To have plasticity, the model needs to learn the new features in a way that is least
biased towards the old tasks. Therefore, instead of including all the output space in the loss, the CE
loss can be computed for the new classes only by splitting the linear heads and excluding the old
ones, which we can write as

Lt
CE =

{
CE(Ft(x), y), if y ∈ Yt

0, O.W.
(6)

Previous Tasks. To overcome forgetting, after the first task, we train the model using synthetic and
real data simultaneously. However, the distribution of the synthetic data might differ from the real
one, and it becomes important to prevent the model from distinguishing old and new data only based
on the distribution difference. To address this problem, we only use the extracted features of the
data. To this aim, clients freeze the feature extraction part and only update the classification head
(represented by F∗

t ) for both real (x) and synthetic (x̃) images. This fine-tuning loss is formulated as

Lt
FT = CE(F∗

t ([x, x̃]), y). (7)

Finally, to minimize feature drift and forgetting of the previous tasks, the common method is
knowledge distillation over the prediction layer. However, [50] proposed importance-weighted
feature distillation: instead of using the knowledge in the decision layer, they use the output of the
feature extraction part of the model (penultimate layer). This way, only the more significant features
of the old model are transferred, enabling the model to learn the new features from the new tasks.
This loss can be written as

Lt
KD = ||W(F1:L−1

t ([x, x̃]))−W(F1:L−1
t−1 ([x, x̃]))||22, (8)

whereW is the frozen linear head of the model trained on the last task (W = FL
t−1).

In summary, the final objective on the client side as

min
Ft

Lt
CE + wFTLt

FT + wKDLt
KD, (9)

where wFT and wKD are hyper-parameters determining the importance of each loss term.

3.3 Summary of MFCL Algorithm

In summary, during the first task, clients train the model using only the LCE part of (9) and send
their updates to the server where the global model gets updated (FedAvg) for R rounds. At the end of
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training task t = 1, the server trains the generative model by optimizing (5), using the latest global
model. Finally, the server freezes and saves G and the global model (Ft−1). This procedure repeats
for all future tasks, with the only difference being that for t > 1, the server needs to send the current
global model (Ft), precious task’s final model (Ft−1) and G to clients. Since Ft−1 and G are fixed
during training Ft, the server can send them to each client once per task to reduce the communication
cost. To further decrease this overhead, we can employ communication-efficient methods in federated
learning, such as [5], that can highly compress the model with minor performance degradation,
which we leave for future work. Algorithm 1 in the Appendix A shows different steps of MFCL.

4 SuperImageNet

In centralized Class-IL, the tasks are disjoint, and each task reveals a new set of classes; therefore,
the total number of classes strongly limits the number of tasks. Moreover, we must ensure that each
task has sufficient training data for learning. Thus, the number of examples per class is essential in
creating CL datasets. However, the dataset needs to be split along the task dimension and clients
in a Federated Class-IL setup. For instance, CIFAR-100, a popular dataset for benchmarking FL
algorithms, consists of 100 classes, each with 500 examples, which must be partitioned into T tasks,
and each task’s data is split among N clients. In other words, for a single task, a client has access to
only 1

T×N of that dataset; in a common scenario where N = 100 and T = 10, we can assign only 50
samples to each client (about 5 example per class in i.i.d data distribution), which is hardly enough.

To resolve this problem, prior works have used a small number of clients [45, 24, 52], combined mul-
tiple datasets [58], employed a surrogate dataset [37] or allowed data sharing among the clients [15].
However, these solutions may not be possible, applicable, or may violate the FL’s assumptions. This
demonstrates the importance of introducing new benchmark datasets for federated continual settings.

Wolf

Timber wolf Red wolf Brown BearTiger shark

Shark

Sandal Loafer

Footwear Bear

Polar BearGreat White 
shark

Figure 4: Building SuperImageNet by regrouping ImageNet dataset. Labels in Blue are the original
labels, and in Red are the labels in SuperImageNet.

We introduce SuperImageNet, a dataset created by superclassing the ImageNet [14] dataset, thus

Dataset # examples/class # classes
SuperImageNet-S 2500 100
SuperImageNet-M 5000 75
SuperImageNet-L 7500 50

Table 2: Versions of SuperImageNet

greatly increasing the number of available samples
for each class. There are 3 versions of the dataset,
each offering a different trade-off between the num-
ber of classes (for Class-IL) and the number of ex-
amples per class (for FL) as shown in Table 4. For
example, SuperImageNet-M has 10x more samples
per class compared to CIFAR-100, which allows for
an order of magnitude increase in the number of fed-
erated clients in while maintaining the same amount of training data per client. As shown in Figure 4,
we have merged classes of similar concepts to increase the sample size per class.

5 Experiments

Setting. We demonstrate the efficacy of our method on three challenging datasets: CIFAR-100 [30],
TinyImageNet [43] and SuperImageNet-L 1. For all datasets, we use the baseline ResNet18 [23] as
the global model and ConvNet architecture for G, which we explain in detail in the Appendix C.

1The image size of the CIFAR-100, TinyImageNet, and SuperImageNet datasets is 32× 32, 64× 64 and
224× 224, respectively
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Dataset #Client #Client #classes
per round per task

CIFAR-100 50 5 10
TinyImageNet 100 10 20

SuperImageNet-L 300 30 5

Table 3: Training parameters of each dataset.

Table 3 summarizes the setting for each dataset.
For each dataset, there are 10 non-overlapping
tasks (T = 10), and we use Latent Dirichlet Al-
location (LDA) [46] with α = 1 to distribute the
data of each task among the clients. Clients train
the local model using an SGD optimizer, and
all the results were reported after averaging over
3 different random initializations (seeds). We
refer to Appendix F for other hyperparameters.

Metric. We use three metrics –Average Accuracy, Average Forgetting, and Wallclock time.

Average Accuracy (Ã): Let us define Accuracy (At) as the accuracy of the model at the end of task t,
over all the classes observed so far. Then, Ã is average of all At for all the T available tasks.

Average Forgetting (f̃ ): Forgetting (f t) of task t is defined as the difference between the highest
accuracy of the model on task t and its performance at the end of the training. Therefore, we can
evaluate the average forgetting by averaging all the f t for task 1 to T − 1 at the end of task T .

Wallclock time. This is the time the server or clients take to perform one FL round in seconds. The
time is measured rounds on our local GPU NVIDIA-A100 and averaged between different clients.

Baseline. We compare our method with FedAvg [40], FedProx [33], FedProx+, FedCIL [45],
FedLwF-2T [52] and Oracle. FedAvg and FedProx are the two most common aggregation methods;
specifically, FedProx is designed for non-i.i.d data distributions and tries to minimize the distance of
the client’s update from the global model. Inspired by FedProx, we also explore adding a loss term to
minimize the change of the current global model from one from the previous task, which we name
FedProx+. FedCIL is a GAN-based method where clients train the discriminator and generator
locally to generate synthetic samples from the old tasks. FedLwF-2T is another method designed for
federated continual learning. In this method, clients have two additional knowledge distillation loss
terms: their local model trained on the previous task and the current global model. Finally, Oracle is
an upper bound on the performance: during the training of the ith task, clients have access to all of
their training data from t = 1 to t = i.

5.1 Results

Figure 5 shows the accuracy of the model on all the observed classes so far. In all three datasets,
MFCL consistently outperforms the baselines by a large margin (up to 25% absolute improvement
in test accuracy). In the CIFAR-100 dataset, the only baseline that can also correctly classify some
examples from past data is FedCIL. Both MFCL and FedCIL benefit from a generative model
(roughly the same size) to remember the past. Here, a similar generative model to the one in the [45]
for the CIFAR-10 dataset is used. Since, in FedCIL, the clients train the generative and global models
simultaneously, they require more training iteration. We repeat the same process and adapt similar
architectures for the other two datasets. 2 But, given that GANs are not straightforward to fine-tune,
this method does not perform well or converge. We explain more in the Appendix H.

We have further compared the performance and overhead of the methods in Table 4. The first two
metrics, Average Accuracy and Average Forgetting reveal how much the model is learning new
tasks while preserving its performance on the old task. As expected, FedAvg and FedProx have the
highest forgetting values because they are not designed for such a scenario. Also, high forgetting for
FedLwF-2T indicates that including teachers in the absence of old data cannot be effective. Notably,
FedProx+ has a lower forgetting value, mainly due to the fact that it also has lower performance
for each task. Finally, FedCIL and MFCL have experienced the least forgetting with knowledge
transferred from the old task to the new ones. Particularly, MFCL has the smallest forgetting, which
means it is the most successful in preserving the learned knowledge.

We also compare the methods based on their computational costs. It is notable that some methods
change after learning the first task; therefore, we distinguish between the cost of the first task and the
other ones. As depicted, for T > 1, MFCL slightly increases the training time caused by employing
the generative model. But, as a trade-off, it can significantly improve performance and forgetting.

2This result might improve by allocating relatively more resources to the clients.
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Figure 5: Test Accuracy vs. # observed tasks for (a) CIFAR-100, (b) TinyImageNet, (C)
SuperImageNet-L datasets. After each task, the model is evaluated on all the seen tasks so far.

The server cost in MFCL is similar to FedAvg except at the end of each task, where it needs to train
the generative model. This extra computation cost should not be a bottleneck because it occurs once
per task, and servers usually have access to better computing power compared to clients.

Table 4: Performance of the different baselines in terms of Average Accuracy. Average Forgetting
and Wallclock time for CIFAR-100 dataset.

Average Accuracy Average forgetting Training time (s) Training time (s) Server Runtime (s)
Ã (%) f̃ (%) (T = 1) (T > 1)

FedAvg 22.27± 0.22 78.77± 0.83 ≈ 1.2 ≈ 1.2 ≈ 1.8
FedProx 22.00± 0.31 78.17± 0.33 ≈ 1.98 ≈ 1.98 ≈ 1.8
FedCIL 26.8± 0.44 38.19± 0.31 ≈ 17.8 ≈ 24.5 ≈ 2.5 for T = 1, ≈ 4.55 for T > 1

FedLwF-2T 22.17± 0.13 75.08± 0.72 ≈ 1.2 ≈ 3.4 ≈ 1.8
MFCL (Ours) 44.98± 0.12 28.3± 0.78 ≈ 1.2 ≈ 3.7 ≈ 330 (once per task), ≈ 1.8 O.W.

Oracle 67.12± 0.4 −− ≈ 1.2 ≈ 1.2× T ≈ 1.8

5.2 Ablation Studies

Here, we demonstrate the importance of each component in our proposed algorithm, both on the
server and client side, by ablating their effects one by one. Table 5 shows our results, where each row
removes a single loss component, and each column represents the corresponding test accuracy (At),
average accuracy (Ã), average forgetting (f̃ ) and their difference from our proposed method. The first
three rows are the losses for training the generative model. Our experiments show that Batch Statistics
Loss (LBN ) and Diversity loss (Ldiv) play an essential role in the final performance. The next three
rows reflect the importance of client-side training. In particular, the fourth row (Ours-w/o Lt

CE)
represents the case where clients use all the linear heads of the model for cross-entropy instead of
splitting the heads and using the part related to the current task only. The following two rows show the
impact of removing Lt

FT and Lt
KD from the client loss. In all three cases, the loss considerably drops,

demonstrating the importance of all components. Finally, FedAvg + Gen shows the performance of
the case where the server trains the generative model, and clients use its synthetic data the same way
as the real ones without further modifications. In the Appendix G, we perform additional ablations
on hyperparameters, such as weights of each loss term, generator model size, and noise dimension.

Table 5: Ablation study for MFCL on CIFAR-100

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Ã ∆ F̃ ∆

Ours-w/o LBN 70.00 47.02 43.93 38.98 35.98 34.14 32.60 30.17 27.93 24.36 38.51 −6.47 45.95 +17.65
Ours-w/o Lpr 70.47 52.33 49.90 44.87 42.09 39.56 38.18 35.21 33.74 32.40 43.87 −1.11 29.47 +1.17
Ours-w/o Ldiv 69.87 53.48 47.60 39.60 35.43 32.95 30.81 27.15 25.14 22.34 38.44 −6.54 44.80 +16.5
Ours-w/o Lt

CE 70.10 40.10 33.40 26.70 21.33 19.24 17.96 14.00 13.69 11.28 26.78 −18.20 72.24 +43.94
Ours-w/o Lt

FT 70.37 46.17 42.16 37.57 33.91 32.29 30.94 28.25 27.00 24.64 37.33 −7.65 42.85 +14.55
Ours-w/o Lt

KD 70.10 45.92 38.60 31.01 26.45 24.07 21.32 18.02 16.85 16.29 30.86 −14.12 53.64 +25.34
FedAvg + Gen 70.57 40.07 30.91 23.75 20.38 17.56 16.02 12.90 13.18 11.57 25.69 −19.29 60.46 +32.16

Ours 71.50 55.00 50.73 45.73 42.38 40.62 38.97 36.18 35.47 33.25 44.98 − 28.3 −

9



6 Discussion

Privacy of MFCL. Federated Learning, specifically FedAvg, is vulnerable to different attacks, such
as data poisoning, model poisoning, backdoor attacks, and gradient inversion attacks [27, 36, 18, 20,
11, 33]. We believe, MFCL generally does not introduce any additional privacy issues and still it is
prone to the same set of attacks as FedAvg. MFCL trains the generative model based on the weights
of the global model, which is already available to all clients in the case of FedAvg. On the contrary, in
some prior work in federated continual learning, the clients need to share a locally trained generative
model or perturbed private data, potentially causing more privacy problems.

Furthermore, for FedAvg, various solutions and defenses, such as differential privacy or secure
aggregation [55, 8], are proposed to mitigate the effect of such privacy attacks. One can employ
these solutions in the case of MFCL as well. Notably, in MFCL, the server does not require access
to the individual client’s updates and uses the aggregated model for training. Therefore, training a
generative model is still viable after incorporating these mechanisms.

In MFCL, the server trains the generator using only client updates. Figure 6 presents random samples
of real and synthetic images from the CIFAR-100 dataset. Images of the same column correspond
to real and synthetic samples from the same class. Synthetic samples do not resemble any specific
training examples of the clients and thus preserve privacy. However, they consist of some common
knowledge about the class and effectively represent the whole class. Therefore, they can significantly
reduce catastrophic forgetting.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Figure 6: Real vs synthetic data generated by the generative model for CIFAR-100 dataset.

Limitations. In our method, clients need the generative model, the final global model of the last
task, and the current global model, which adds overheads such as communication between the server
and clients and storage. However, there are fundamental differences between storing the generative
model and actual data. First, the memory cost is independent of the task size: as the number of tasks
increases, clients either have to delete some of the existing examples of the memory to be able to
add new ones or need to increase the memory size. In contrast, the generative model size is constant.
Finally, clients can delete the generative model while not participating in the FL process and retrieve
it later if they join. On the other hand, deleting data samples from memory results in a permanent
loss of information. We have delved into this in Appendix D.

7 Conclusion

This work presents a federated Class-IL framework while addressing resource limitations and privacy
challenges. We exploit generative models trained by the server in a data-free fashion, obviating the
need for expensive on-device memory on clients. Our experiments demonstrate that our method can
effectively alleviate catastrophic forgetting and outperform the existing state-of-the-art solutions.
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A MFCL Algorithm

Algorithm 1 summarizes our method. Here, for every task, clients train the local model using the shared
generative model. At the end of each task, the server updates the generative model using data-free methods.

Algorithm 1 MFCL
1: N : #Clients, [CN ]: Client Set, K: #Clients per Round, ui: client i Update, E: Local Epoch
2: R: FL Rounds per Task, T : #Tasks, t: current task , |Y|t: Task t Size, q: #Discovered Classes
3: Ft: Global Model for task t, Gt: Generative Model, EG : Generator Training Epoch
4: q ← 0
5: G,F1 ← initialize()
6: for t = 1 to T do
7: q ← q + |Yt|
8: Ft ← updateArchitecture(Ft, q) # Add new observed classes in the classification layer.
9: for r = 1 to R do

10: CK ← RandomSelect([CN ],K)
11: for c ∈ CK in parallel do
12: uc ← localUpdate(Ft,G,Ft−1, E) # For t = 1 we do not need F0 and G.
13: end for
14: Ft ← globalAggregation(Ft, [uc])
15: end for
16: Ft ← freezeModel(Ft) # Fix Global model.
17: G ← trainDFGenerator(Ft, EG , q) # Train the generative model.
18: G ← freezeModel(G) # Fix generator weights.
19: end for

B Code for Reproduction

The codebase for this work and regrouping the ImageNet dataset is available at https://github.com/
SaraBabakN/MFCL-NeurIPS23.

C Details of the Generative Model

Architectures. In Table 6, we show the generative model architectures used for CIFAR-100, TinyImageNet, and
SuperImageNet datasets. In all experiments, the global model has ResNet18 architecture. For the CIFAR-100
and TinyImageNet datasets, we change the first CONV layer kernel size to 3× 3 from 7× 7. In this table, CONV
layers are reported as CONVK ×K(Cin, Cout), where K, Cin and Cout are the size of the kernel, input channel
and output channel of the layer, respectively.

Weight Initialization. The generative model is randomly initialized for the first task and trained from scratch.
For all the future tasks (t > 1), the server uses the previous generative model (t - 1) as the initialization.

Synthetic Samples Generation. To generate the synthetic data, clients sample i.i.d noise, which later would
determine the classes via the argmax function applied to the first q elements (considering q is the total number
of seen classes). Given the noise is sampled i.i.d, the probability of generating samples from class i equals
1
q

. Although this might not lead to the same number of synthetic samples from each class in every batch, the
generated class distribution is uniform over all classes. Thus, in expectation, we have class balance in generated
samples.

Catastrophic Forgetting in the Generative Model. The effectiveness of the G is closely linked to the
performance of the global model. If the global model forgets old classes after completing a task, the quality of
corresponding synthetic data will decline. Hence, it is crucial to select a reliable generative model and a robust
global model. A good generative model can assist the global model in preventing forgetting when learning new
tasks. This model can then serve as a teacher for the next round of the G model.

Global Aggregation Method. In this work, we have employed FedAvg to aggregate the client updates. Since
the generator is always trained after the aggregation, its training is not impacted by changing the aggregation
method. However, the generative model uses the aggregated model as its discriminator, and it is directly affected
by the quality of the final global model. Therefore, any aggregation mechanism that improves the global model’s
performance would also help the generative model and vice versa.
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Table 6: Generative model Architecture

CIFAR-100 TinyImageNet SuperImageNet
FC(200, 128× 8× 8) FC(400, 128× 8× 8) FC(200, 64× 7× 7)
reshape(−, 128, 8, 8) reshape(−, 128, 8, 8) reshape(−, 64, 7, 7)

BatchNorm(128) BatchNorm(128) BatchNorm(64)
Interpolate(2) Interpolate(2) Interpolate(2)

CONV3× 3(128, 128) CONV3× 3(128, 128) CONV3× 3(64, 64)
BatchNorm(128) BatchNorm(128) BatchNorm(64)

LeakyReLU LeakyReLU LeakyReLU
Interpolate(2) Interpolate(2) Interpolate(2)

CONV3× 3(128, 64) CONV3× 3(128, 128) CONV3× 3(64, 64)
BatchNorm(64) BatchNorm(128) BatchNorm(64)
LeakyReLU LeakyReLU LeakyReLU

CONV3× 3(64, 3) Interpolate(2) Interpolate(2)
Tanh CONV3× 3(128, 64) CONV3× 3(64, 64)

BatchNorm(3) BatchNorm(3) BatchNorm(64)
LeakyReLU LeakyReLU

CONV3× 3(64, 3) Interpolate(2)
Tanh CONV3× 3(64, 64)

BatchNorm(3) BatchNorm(64)
LeakyReLU

Interpolate(2)
CONV3× 3(64, 64)
BatchNorm(64)
LeakyReLU

CONV3× 3(64, 3)
Tanh

BatchNorm(3)

D Overheads of generative model

Client-side. Using G on the client side would increase the computational costs compared to vanilla FedAvg.
However, existing methods in CL often need to impose additional costs such as memory, computing, or both to
mitigate catastrophic forgetting. Nevertheless, there are ways to reduce costs for MFCL. For example, clients
can perform inference once, generate and store synthetic images only for training, and then delete them all.
They can further reduce costs by requesting that the server generate synthetic images and send them the data
instead of G. Here, we raise two crucial points about the synthesized data. Firstly, there is an intrinsic distinction
between storing synthetic (or G) and actual data; the former is solely required during training, and clients can
delete them right after the training. Conversely, the data in episodic memory should always be saved on the
client’s side because once deleted, it becomes unavailable. Secondly, synthetic data is shared knowledge that can
assist anyone with unbalanced data or no memory in enhancing their model’s performance. In contrast, episodic
memory can only be used by one client.

Server-side. The server needs to train the G once per task. It is commonly assumed that the server has access to
more powerful computing power and can compute more information in a faster time compared to clients. This
training step does not have overhead on the client side and might slow down the whole process. However, tasks
do not change rapidly in real life, giving the server ample time to train the generative model before any trends or
client data shifts occur.

Communication Cost. Transmitting the generative model can be a potential overhead for MFCL, as it is a cost
that clients must bear once per task to prevent or reduce catastrophic forgetting. However, several possible
methods, such as compression, can significantly reduce this cost while maintaining excellent performance. This
could be an interesting direction for future research.

E More on the Privacy of MFCL

MFCL with Differential Privacy. We want to highlight that the generator can only be as good as the
discriminator in data-free generative model training. If the global model can learn the decision boundaries
and individual classes with a DP guarantee, the generator can learn this knowledge and present it through the
synthetic example. Otherwise, if the global model fails to learn the current tasks, there is not much knowledge
to preserve for the future. With the DP guarantee, the main challenge is training a reasonable global model;
improving this performance can also help the generative model.
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MFCL with Secure Aggregation. If the clients do not trust the server with their updates, a potential solution is
Secure Aggregation. In a nutshell, secure aggregation is a defense mechanism that ensures update privacy, espe-
cially when the server is potentially malicious. More importantly, since MFCL also does not require individual
updates, it is compatible with secure aggregation and can be employed to align with Secure Aggregation.

Privacy Concerns Associated with Data Storage. Currently, some different regulations and rules limit the
storage time of users’ data. Usually, the service providers do not own the data forever and are obligated to erase
it after a specific duration. Sometimes, the data is available only in the form of a stream, and it never gets stored.
But most of the time, data is available for a short period of enough to perform a few rounds of training. In this
way, if multiple service providers participate in federated learning, their data would dynamically change as they
delete old data and acquire new ones.

MFCL and Batch Statistics. MFCL benefits from Batch Statistics Loss (LBN ) in training the generative model.
However, some defense mechanisms suggest not sharing local Batch Statistics with the server. While training the
generative model without the LBN is still possible, it can reduce the accuracy. Addressing this is an interesting
future direction.

F Hyperparameters

Table 7 presents some of the more important parameters and settings for each experiment.

Table 7: Parameter Settings in different datasets

Dataset CIFAR-100 TinyImageNet SuperImageNet-L
Data Size 32× 32 64× 64 224× 224
# Tasks 10 10 10

# Classes per task 10 20 5
# Samples per class 500 500 7500

LR All task start with 0.1 and exponentially decay to 0.01
Batch Size 32 32 32

Synthetic Batch Size 32 32 32
FL round per task 100 100 100

Local epoch 10 10 1

G Hyperparameter tuning for MFCL

Hyperparameters can play an essential role in the final performance of algorithms. In our experiments, we have
adapted the commonly used parameters, and here, we show how sensitive the final performance is regarding each
hyperparameter. This is particularly important because hyperparameter tuning is very expensive in federated
learning and can be unfeasible in continual learning. To this aim, we change one parameter at a time while fixing
the rest. In Table 8, we report the final Ã of each hyperparameter on CIFAR-100 datasets with 10 tasks.

wdiv: Weight of diversity loss (Ldiv).

wBN : Weight of Batch Statistics loss (LBN ).

wpr: Weight of Image Prior loss (LFT ).

Z_dim: Input noise dimension for training the G model.

gen_epoch: Number of iteration to train the G model.

This is the setting that we used wdiv = 1, wBN = 75, wpr = 0.001, Z_dim = 200, gen_epoch = 5000 and
the average accuracy equals 45.1%. (There may be a minor difference between this value and the result in the
main manuscript. This discrepancy arises because we only ran the ablation for a single seed, whereas the results
reported in the primary manuscript are the average of three different seeds.)

Table 8: Effect of different hyperparameters on the final Ã (in %) for CIFAR-100 dataset.

wdiv Ã wBN Ã wpr Ã Z_dim Ã gen_epoch Ã
0.1 44.35 0.1 40.12 0.0001 43.10 110 42.39 100 40.77
0.5 44.37 1 43.90 0.001 45.1 200 45.1 5000 45.1
1 45.1 10 44.77 0.01 43.56 1000 45.01 10000 43.35
2 44.08 75 45.1 0.1 44.73
5 44.57 100 45.02 1 44.37
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This table shows how robust the final performance is with respect to each parameter, which is preferred both in
federated and continual learning problems.

H Comparison between MFCL and FedCIL

Here, we would like to highlight some distinctions between our algorithm and FedCIL, both of which aim to
alleviate catastrophic forgetting using generative models.

• In FedCIL, clients train the local generative model every round, which adds great computational
overhead. On the other hand, in our approach, the generative model is trained on the server and only
once per task.

• Training models in GANs usually require a large amount of data that is not commonly available,
especially on edge devices. Our data-free generative models address this issue.

• Training the generative model directly from the training dataset may pose a risk of exposing sensitive
training data, which contradicts the goal of FL. On the other hand, MFCL uses only the information
from the global model.

• FedCIL is limited to simpler datasets and FL settings, such as MNIST and CIFAR10, with fewer
clients and less complex architectures. In contrast, our approach can handle more complex datasets,
such as CIFAR100, TinyImageNet, and SuperImagenet, with a much larger number of clients.

• Training GAN models usually require more careful hyperparameter tuning. To train FedCIL
for TinyImageNet and SuperImageNet, we tried SGD and Adam optimizers with learning rates
∈ {0.1, 0.05, 0.01} and local epoch ∈ {1, 2}. Furthermore, we adopt a generative model architecture
with a similar input dimension and a total number of parameters in MFCL. However, the model did
not converge to a good performance. While a more extensive hyperparameter search might improve
the results, it can indicate the difficulty of the hyperparameter tuning of this algorithm. It is worth
mentioning that in order to train the CIFAR-10 dataset, we used a local epoch 8× larger than the other
baselines; otherwise, the performance on this dataset would also degrade.

In conclusion, FedCIL can be a good fit for a cross-silo federated learning setting with only a few clients, each
possessing a large amount of data and computing resources. Meanwhile, while still applicable in the above
setting, our method is also suitable for edge devices with limited data and power.
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