
A Theoretical Analysis352

A.1 Feasibility-depend Advantage Function353

In [13], the feasibility-dependent advantage function relates to A
⇡✓k
r (s, a) and A

⇡✓k
h (s, a). Since the354

LFR of the AV is pre-calculated and independent of the policy ⇡, we can substitute A
⇡✓k
h (s, a) with355

A
⇤
h(s, a). Thus, the combined advantage function is defined as:356

A
⇡✓k (s, a) = A

⇡✓k
r (s, a) + �⇠(s) ·A⇤

h(s, a), (10)

where �⇠(s) acts as an indicator function. For feasible states, �⇠(s) ! 0 is finite, and for unfeasible357

states, �⇠(s) ! +1. Consequently, the feasibility-dependent advantage function simplifies to:358

A
⇡✓k (s, a) = A

⇡✓k
r (s, a) · Is2S⇤

f
+A

⇤
h(s, a) · Is/2S⇤

f
(11)

Aligning with Definition 2 and the viewpoint transformation function g(·), we reinterpret S⇤
f using359

the optimal feasible state-value function V
⇤
h , which is relative to the AV’s state:360

A
⇡✓k (s, a) = A

⇡✓k
r (s, a) · IV ⇤

h (g(s))0 +A
⇤
h (s, a) · IV ⇤

h (g(s))>0 (12)

Given that the PPO-based method calculates the advantage solely from the trajectories stored in361

the buffer, we propose imposing stricter constraints on A
⇡✓k
r (s, a). Specifically, if the AV’s next362

state falls outside the LFR, the optimization should prioritize minimizing feasibility violations over363

maximizing adversarial rewards. Consequently, we formulate the final advantage function in Eq. (6).364

A.2 Proof of Lemma 1365

According to Eq. (2), Q⇤
h(s

AV
, a

AV) is solely dependent on h(·), which in turn is influenced by366

s
AV
t , t 2 N. The action a

AV
t influences only the subsequent state s

AV
t+1 in conjunction with the en-367

vironment transition function. Therefore, in a deterministic environment, this relationship can be368

described as follows:369

Q
⇤
h(s

AV
, a

AV) := min
⇡AV

max
t2N

�
h
�
s

AV
0

�
, h

�
s

AV
t+1

� 
,

s
AV
0 = s

AV
, a

AV
0 = a

AV
, a

AV
t+1 ⇠ ⇡

AV �· | sAV
t+1

�
, s

AV
t+1 = P

�
s

AV
t , a

AV
t

�
, (13)

where P (·) denotes the deterministic transition dynamics. However, during the training of our CBV370

method, the policy varies significantly, impacting s
AV
t+1 through both the AV’s action a

AV
t and the371

CBV’s action at. Given that other BVs adhere to a consistent rule-based policy, we can reasonably372

assume that the environment, excluding the CBV and AV, is deterministic. Thus, we can redefine373

the equation as follows:374

Q
⇤
h(s

AV
, a

AV
, s, a) := min

⇡AV
max
t2N

�
h
�
s

AV
0

�
, h

�
s

AV
t+1

� 
,

s
AV
0 = s

AV
, a

AV
0 = a

AV
, s0 = s, a0 = a, s

AV
t+1 = P

�
s

AV
t , a

AV
t , st, at

�
, st+1 = g

�
s

AV
t+1

�

a
AV
t+1 ⇠ ⇡

AV �· | sAV
t+1

�
, at+1 ⇠ ⇡

CBV (· | st+1), (14)

Additionally, based on Definition 1 and Eq. (14), we identify two cases:375

Case1: if h
⇣
s

AV0
⌘
� h

�
s

AV
�
, then:376

Q
⇤
h(s

AV
, a

AV
, s, a) = min

⇡AV
max
t2N

�
h
�
s

AV
0

�
, h

�
s

AV
t+1

� 
= min

⇡AV
max
t2N

�
h
�
s

AV
t+1

� 
= V

⇤
h

⇣
s

AV0⌘

(15)

Case2: if h
⇣
s

AV0
⌘
< h

�
s

AV
�
, then:377

Q
⇤
h(s

AV
, a

AV
, s, a) = min

⇡AV
max
t2N

�
h
�
s

AV
0

�
, h

�
s

AV
t+1

� 
= max{h

�
s

AV�
, V

⇤
h

⇣
s

AV0⌘} (16)
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Building upon Eqs. (15) and (16), we conclude in Eq. (17) that Q⇤
h(s

AV
, a

AV
, s, a) primarily depends378

on the states of the AV. The actions of both the AV and the CBV mainly influence state transitions.379

Q
⇤
h(s

AV
, a

AV
, s, a) = Q

⇤
h(s

AV
, s

AV0
) =

8
<

:
V

⇤
h

⇣
s

AV0
⌘

h

⇣
s

AV0
⌘
� h

�
s

AV
�

max{h
�
s

AV
�
, V

⇤
h

⇣
s

AV0
⌘
} h

⇣
s

AV0
⌘
< h

�
s

AV
� (17)

Thus, through the viewpoint transformation function g(·) and a deterministic AV policy ⇡
AV, we380

derive the optimal feasible action-value function, taking into account both the state and action of the381

CBV:382

Q
⇤
h(s

AV
, a

AV) = Q
⇤
h

�
s

AV
, a

AV
, s, a

�

= Q
⇤
h(s

AV
, s

AV0
)

= Q
⇤
h (g (s) , g (s

0))

=

⇢
V

⇤
h (g (s0)) h (g (s0)) � h (g (s))

max{h (g (s)) , V ⇤
h (g (s0))} h (g (s0)) < h (g (s))

(18)

B Experiment Details383

Building on foundational concepts from [3, 4], we apply our FREA method to critical background384

vehicles (CBVs) within traffic flows. We first outline the mechanisms for specifying and withdraw-385

ing CBVs, as detailed in Appendix B.1. We then discuss the safe RL-based setting implemented in386

our FREA method, described in Appendix B.2. Finally, we provide implementation details of the387

baseline methods in Appendix B.3.388

B.1 Specifying and Withdrawal of CBVs389

To appropriately select CBVs and exclude unsuitable BVs, we established criteria to filter out ineli-390

gible candidates:391

Case1: The BV is located in the opposing lane relative to the AV.392

Case2: The distance between the BV and AV exceeds 25 meters.393

Case3: The BV is positioned behind the AV with a relative yaw angle greater than 90 degrees,394

indicating no interaction.395

Case4: The BV has previously served as a CBV and has reached its goal in the scenario.396

Based on the predefined criteria, our system assesses the scenario at each simulation step in Carla.397

If the number of active CBVs drops below a predefined threshold, the nearest candidate to the AV is398

automatically selected as a new CBV. To prevent disruptions in normal traffic flow during training,399

we implemented a withdrawal mechanism for CBVs that specifies conditions for their removal,400

whether they complete their tasks or not.401

Case1: The CBV achieves its objective (it is then terminated and reverts to a standard BV).402

Case2: The BV is positioned behind the AV with a relative yaw angle greater than 90 degrees (it is403

truncated and reverts to a standard BV).404

Case3: The CBV obstructs traffic flow or exceeds the maximum allowed duration (it is truncated405

and reverts to a standard BV).406

Case4: The CBV collides with any BV or the AV (it is terminated and removed from the simulation).407

This selection and withdrawal mechanism effectively manages the CBV training process. However,408

considering the potential limitations of these rules, developing more intelligent strategies remains a409

future research direction.410
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B.2 Safe RL-based Setting411

In this framework, each CBV acts as an RL agent tasked with attacking the AV while maintaining412

the AV’s feasibility. Previous works [5, 12] primarily focused on minimizing the distance between413

CBV and AV, often leading to unavoidable collisions, as discussed in Section 2. To mitigate this, we414

replace the collision reward with the goal-based adversarial reward, which encourages the CBV to415

reach a potential collision point with the AV. The configuration details are as follows:416

State. The state of each CBV is represented by an array of dimensions (V + 2) ⇥ F , where V417

represents the number of nearby vehicles and F the features of these vehicles, the AV, and the goal418

point. Recorded features include relative x and y positions, object extent along the X and Y axes,419

relative yaw angle, and absolute speed. For the goal point, speed is replaced by relative distance.420

The features of the AV and the goal point are positioned in the first and second rows of the array,421

respectively.422

Action. Following the guidelines in [25], we define a continuous action space with specific con-423

straints to prevent unreasonable actions. The acceleration range is set between �3 and 3, and the424

steering angle is limited to a maximum absolute value of 0.3.425

Reward. As previously discussed, we have replaced the collision reward with a goal-based reward.426

This adjustment encourages the CBV to navigate toward a potential collision point while avoiding427

collisions with other BVs. In practice, we set the local target for the AV as the potential collision428

point, which forms the overall reward function:429

Rt = d (CBVt�1,Goalt�1)� d (CBVt,Goalt) + 15 ⇤ rcollisiont + 15 ⇤ rfinisht , (19)

where d (CBVt,Goalt) denotes the Euclidean distance between the CBV and its goal point at time430

t, the collision reward r
collision
t is set to �1 if the CBV collides with any BVs at time t, and the431

goal-reaching reward r
finish
t is set to 1 if the CBV is within 2 meters radius of the goal at time t.432

B.3 Implementation Details of Baselines.433

B.3.1 Algorithms.434

To evaluate the performance of FREA, we propose three CBV methods as baselines for a compre-435

hensive quantitative comparison:436

Standard. This method utilizes a rule-based autopilot policy implemented in the Carla Simulator437

[24] to generate realistic urban traffic flows.438

PPO. This method employs an adversarial CBV policy based on PPO that aims to reach a potential439

collision point with the AV, utilizing the adversarial reward outlined in Eq. (19).440

FPPO-RS. This method integrates a feasibility penalty term into the PPO-based adversarial policy,441

which penalizes violations of the AV’s feasibility constraints in the adversarial reward function. The442

modified adversarial reward function used during training is specified as follows:443

R
fea
t = Rt �

clip (V ⇤
h (g(st)) , 0, fmax) · pmax

fmax
, (20)

where fmax represents the upper bound for feasible value clipping, and pmax is the upper bound for444

penalty rewards.445

B.3.2 Hyperparameters.446

Table 3 shows the hyperparameters of baseline methods.447

Training Curves about CBV methods. To ensure robustness in our training process, we aggregated448

results from three different random seeds, as shown in Figure 6. This illustration confirms that all449

three CBV methods converge well in various scenarios. Furthermore, the PPO method achieves the450

highest adversarial reward, reflecting its focus on adversarial objectives. Conversely, FPPO-RS and451
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Table 3: Detailed hyperparameters of FREA and baselines.
Parameter Value
PPO, FPPO-RS, FREA shared.
Optimizer Adam (✏ = 1e� 5)
Approximation function Multi-layer Perceptron
Number of hidden layers 2
Number of hidden units per layer 256
Nonlinearity of hidden layer RELU
Nonlinearity of output layer linear
Critic learning rate Linear annealing 3e� 4 ! 0
Reward discount factor (�) 0.98
GAE parameters (�) 0.98
entropy parameters 0.01
Batch size 256
horizon length 2048
update repeat times: 4
Max episode length (N ) 2000
Actor learning rate Linear annealing 3e� 4 ! 0
Clip ratio 0.2

FPPO-RS
feasible value clip upper bound fmax 8
penalty reward upper bound pmax 1

FREA need to balance adversariality and AV’s feasibility, resulting in a lower adversarial reward.452

Given our focus on creating reasonable adversarial scenarios, achieving appropriate adversariality is453

more important than merely pursuing high adversarial rewards.454

Figure 6: Episode return of different CBV methods.

C Largest Feasible Region: Training and Application455

C.1 Training Details about LFR456

Offline Datasets. As highlighted in [15], extensive coverage of the state space in datasets is crucial457

for determining the LFR of AVs using offline RL. Following this guideline, we employed the Expert458

[26] and Behavior [24] agents as surrogate AVs, collecting 100k instances of interaction data under459

standard traffic conditions for each. Additionally, to introduce randomness, we employed the PPO460

method as CBV with the Expert as AV, gathering another 100k instances of interaction data. This re-461

sulted in a comprehensive dataset of 300k interaction data for LFR training. As depicted in Figure 7,462

the offline dataset extensively covers most of the potential state space, satisfying the requirements463

for training an optimal feasible value function.464
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Figure 7: The offline data distribution.

Constrain Function Setting. As outlined in Eq. (9), the hyperparameters M and dth, along with the465

minimum distance between vehicles’ bounding boxes, are crucial for defining h
�
s

AV
�
. Specifically,466

we employed the method described in [31] to calculate the minimum distance, which is always non-467

negative. To ensure a balance between positive and negative samples, we experimented with various468

settings for M and dth.469

(a) Qh loss (b) Vh mean value
Figure 8: Learning curves in LFR training

In our experiment, we set dth at 0.1 meters and 0.5 meters in separate trials to find the optimal470

parameter combination. Drawing on the findings from [15], we determined that optimal performance471

is achieved when the mean of the feasible value function is close to zero. Through empirical testing,472

we established dth = 0.1m,M = 18 and dth = 0.5m,M = 12 as the optimal settings. Given that473

these parameters are used to train across multiple towns, it is crucial to balance their optimality for474

various environments. Figure 8 illustrates the learning curves for these settings, confirming that the475

chosen parameters effectively maintain the mean values of the feasible value function in different476

towns close to zero.477

Figure 9: LFR visualization with 0.5m dth under various traffic scenarios. Red: AV. Blue: BV
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The visualization results for dth = 0.1m,M = 18 are presented in Figure 2, while those for478

dth = 0.5m,M = 12 are shown in Figure 9. The former parameter set proved to be more effective479

in identical scenarios, leading us to select dth = 0.1m,M = 18 for subsequent CBV training.480

Detailed hyperparameter settings for the feasible value function can be found in Table 4.481

Table 4: Detailed hyperparameters of feasible value function training.
Parameter Value
Optimizer Adam (✏ = 1e� 5)
Approximation function Multi-layer Perceptron
Number of hidden layers 2
Number of hidden units per layer 64
Nonlinearity of hidden layer RELU
Nonlinearity of output layer linear
learning rate Linear annealing 3e� 4 ! 0
Batch size 1024
Training steps 2e6
Discount factor � 0.98
Expectile ⌧ 0.9
Soft update 5e-3
dth 0.1
M 18

C.2 Application Details of LFR482

During the feasibility-guided adversarial policy training for CBV, we encountered a significant chal-483

lenge: the optimal feasible value function produces a single scalar value at each timestep. In scenar-484

ios with multiple CBVs, it is difficult to identify which CBV renders the AV’s operation unfeasible.485

To address this issue, we introduced a “pseudo” state for each CBV at every timestep. This “pseudo”486

state captures information relevant to both the AV and CBV from the perspective of the AV. Cru-487

cially, this “pseudo” state is utilized solely to assess the threat posed by each CBV to the AV at488

each timestep. By employing this method, we eliminate the need for the viewpoint transformation489

function g(·), previously described in Eqs. (6) and (8). Instead, the “pseudo” state is directly derived490

from the information available at each timestep, simplifying the process and enhancing the accuracy491

of LFR.492

D Detail Explanation about Feasibility Metric493

In Section 4.3, we introduce four key metrics to evaluate the feasibility of AV along collision tra-494

jectories induced by various CBV methods. Among these, the Infeasible Ratio (IR) and Infeasible495

Distance (ID) are novel metrics proposed in this paper. Their definitions and implications are de-496

tailed as follow:497

IR: Infeasible Ratio. This metric quantifies the proportion of infeasible states for the AV along498

the collision trajectory induced by a specific CBV method. As the CBV approaches the AV, the499

likelihood of infeasibility naturally increases. The IR assesses the severity of collision risk by ex-500

amining the percentage of these infeasible states, serving as a measure of the overall aggressiveness501

of the CBV collision trajectory. Since these trajectories inevitably lead to collisions, they must in-502

clude segments where infeasible states occur. Therefore, evaluating the relative performance of IR503

is crucial.504

ID: Infeasible Distance. This metric records the distance between the CBV and the AV when the AV505

first enters the infeasible region along the collision trajectory. Since CBVs may initiate their attacks506

from various starting points, the initial locations of collision trajectories can vary significantly. This507

variability means the IR metric alone may not fully capture the inevitability of a collision. The508

Infeasible Distance (ID) is therefore introduced to record the distance between the AV and CBV at509
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the first instance when the AV’s feasibility value exceeds zero. Intuitively, a larger ID indicates a510

more adversarial CBV approach, while a shorter ID suggests that the CBV allows the AV to remain511

feasible for longer, indicating a potentially avoidable collision.512

E Evaluation Metric of the AV513

To fairly evaluate the performance of AV methods across different adversarial scenarios, we adopt514

the evaluation metrics from SafeBench [25], focusing on two main categories: Safety level and Func-515

tionality level. It is important to note that while the Etiquette level is discussed in the SafeBench516

paper, it has not been implemented in the actual code. This exclusion is likely due to the prioritiza-517

tion of safety and functionality in safety-critical scenarios, where etiquette is less essential. To avoid518

confusion, our evaluations strictly follow the implementation details specified in the SafeBench519

code, rather than the descriptions in the paper.520

Within the Safety level and Functionality level, we define several specific metrics that contribute to521

an overall score, which is defined as a weighted sum of all evaluation metrics.522

Safety Level. This level evaluates the safety performance of AV methods using two primary metrics:523

collision rate (CR) and average distance driven out of road (OR). We define ⌧ as the scenario524

trajectory collected through interaction. The number of collisions in a scenario is represented by525

c(⌧), and the distance driven out of the road is denoted as d(⌧). Therefore, the metrics are calculated526

as follows: CR = E⌧ [c(⌧)], and OR = E⌧ [d(⌧)].527

Functionality Level. This level measures the functional capabilities of AV agents in completing528

designated routes within testing scenarios. It employs three metrics: route-following stability (RF ),529

average percentage of uncompleted route (UC), and average time spent to complete the route (TS).530

RF quantifies the average distance between the AV and the reference route during testing, expressed531

as RF = 1 � E⌧ [min
n

x(⌧)
xmax

, 1
o
], where xmax represents the maximum allowable deviation. UC532

reflects the complement of the average completion percentage of the route, calculated as UC =533

1 � E⌧ [p(⌧)], where p(⌧) is the percentage of route completion of each testing scenario. TS is534

defined as the average time required to complete a route, computed only for fully completed routes:535

TS = E⌧ [t(⌧)|p(⌧) = 100%], where t(⌧) denotes the time cost of each testing scenario.536

Overall Score. The overall quality of AV methods is quantified by an overall score (OS), which537

aggregates the five metrics using a weighted sum formula: OS =
P5

i=1 w
i ⇥ g(mi), where each538

m
i is a specific metric, wi is its weight, and g(mi) adjusts the metric based on its desirability:539

g(mi) =

(
mi

mi
max

, m
iis the higher the better

1� mi

mi
max

, m
iis the lower the better

, (21)

where m
i
max is a constant representing the maximum allowed value for each metric m

i. Further540

details about wi and m
i
max are provided in Table 5.

Table 5: Detailed parameters of evaluation metrics.
Metric Weight wi Maximum allowed value m

i
max

CR 0.4 1
OR 0.1 10 (m)
RF 0.1 5 (m)
UC 0.3 1
TS 0.1 30 (s)

541

F Scenario Analysis542

F.1 Successful Scenarios543

To demonstrate that the FREA method can generate AV-feasible adversarial events across various544

traffic scenarios, we present additional visualizations from different towns and intersections, as545
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shown in Figure 10. Specifically, Figure 10(a) illustrates scenarios where the AV is preparing to546

make a right turn, while the CBV exhibits adversarial behavior by overtaking and executing an early547

right turn. Figure 10(b) displays situations where the CBV makes a U-turn from its lane, leading548

to a potential collision with the AV and creating adversarial scenarios. Figure 10(c) highlight the549

adversarial behavior of the CBV within an intersection, where CBV pre-empts the AV while passing550

through. These scenarios highlight the FREA method’s adaptability to different traffic infrastructures551

and its effectiveness in generating safety-critical scenarios with reasonable adversariality.552

(a) Right-turn attack

(b) Turn-over attack

(c) Intersection attack

Figure 10: Successful scenarios. Red: AV (Expert). Blue: BV. Purple: CBV (FREA).

F.2 Failure Scenarios553

While the FREA method makes progress in generating adversarial yet reasonable safety-critical554

scenarios, particularly on the reasonableness of adversarial attacks, it also has several limitations, as555

illustrated by the failure cases depicted in Figure 11.556

As illustrated in Figure 11(a), after completing its attack, the CBV is released as a normal vehicle557

on a narrow road. However, its turning radius exceeds the width of the road, forcing it onto the558

pavement and resulting in an unreasonable scenario. In Figure 11(b), after an unsuccessful initial559

attack due to the AV’s obstacle avoidance maneuvers, the CBV attempts a second attack through a560

reverse maneuver. Although technically feasible, this approach deviates from typical driving objec-561

tives, compromising the scenario’s reasonableness. Figure 11(c) shows a scenario where the CBV562

crosses a solid yellow line to initiate an attack. Since the state information in FREA lacks map de-563

tails, violations of traffic rules are foreseeable. Future studies will focus on enhancing adherence564

to traffic regulations. Finally, Figure 11(d) depicts a traffic jam scenario at intersections caused by565

unreasonable attacks.566
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(a) Turning around on the pavement

(b) Reverse attack

(c) Traffic rules violation

(d) Traffic congestion

Figure 11: Failure scenarios: Red: AV (Expert). Blue: BV. Purple: CBV (FREA).

In conclusion, this paper acknowledges specific limitations in generating adversarial yet reasonable567

safety-critical scenarios. These limitations primarily include the lack of traffic regulation compliance568

and the challenge of aligning CBV behaviors during attacks with their driving objectives. Address-569

ing these issues is crucial for developing more reasonable adversarial scenarios.570
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