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A Theoretical Analysis
A.1 Feasibility-depend Advantage Function

In [13], the feasibility-dependent advantage function relates to A, * (s,a) and AZG’“ (s,a). Since the
LFR of the AV is pre-calculated and independent of the policy 7, we can substitute AZH’“ (s,a) with
Aj (s, a). Thus, the combined advantage function is defined as:

ATk (s,a) = Ar™ (s,a) 4+ Ne(s) - Af(s,a), (10)

where A¢(s) acts as an indicator function. For feasible states, A¢(s) — 0 is finite, and for unfeasible
states, A\¢(s) — +oo. Consequently, the feasibility-dependent advantage function simplifies to:

A (s,a) = A" (s, a) Taes; + An(5,0) - Lgs; v

Aligning with Definition 2 and the viewpoint transformation function g(-), we reinterpret S} using
the optimal feasible state-value function V,*, which is relative to the AV’s state:

AT (s,a) = A" (s,a) - Tys(g(s))<0 + Af, (5,0) - Ty (g(s))>0 (12)

Given that the PPO-based method calculates the advantage solely from the trajectories stored in
the buffer, we propose imposing stricter constraints on AR (s,a). Specifically, if the AV’s next
state falls outside the LFR, the optimization should prioritize minimizing feasibility violations over
maximizing adversarial rewards. Consequently, we formulate the final advantage function in Eq. (6).

A.2 Proof of Lemma 1

According to Eq. (2), Q5 (s, a™) is solely dependent on h(-), which in turn is influenced by
sV, t € N. The action a2 influences only the subsequent state s, in conjunction with the en-
vironment transition function. Therefore, in a deterministic environment, this relationship can be
described as follows:

Q;';(SAV, aAV) = min max {h (sOAV) h (sﬁl)} ,

AV teN
AV _ AV AV _ AV AV AV AV \ AV AV AV
so. = sV, ap = a™, Y, ~ 7V (| spYy)  stf =P (s, arY), (13)

where P (-) denotes the deterministic transition dynamics. However, during the training of our CBV
method, the policy varies significantly, impacting s7Y, through both the AV’s action a}" and the
CBYV’s action a;. Given that other BVs adhere to a consistent rule-based policy, we can reasonably
assume that the environment, excluding the CBV and AV, is deterministic. Thus, we can redefine
the equation as follows:

Qh(s™ 0™, 5,0) = mipmanc (b (s2) 1 (s21)}

AV _ AV AV _ AV _ AV _ AV AV _ AV
sy =80y =a ,so—s,ao—a,stH—P(st , Gy 7St7at)78t+1—g(st+l)

apyy ~ (- StAX1) yappr ~ 7Y (] siq1), (14)
Additionally, based on Definition 1 and Eq. (14), we identify two cases:
Casel: if h (SAV/) > h (sAV), then:

Q1 (s, 0™, 5, a) = min max {h(sgY) . h(stYy)} = min max {h(s)}=Vi (SAV’)
(15)

Case2: if h (SAV/) < h (), then:

Qr(s™,a™, s,a) = minmax {h (s§") , h (sp;) } = max{h (s?), V; (SAVI)} (16)

AV teN
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Building upon Egs. (15) and (16), we conclude in Eq. (17) that Q}, (s®V, a*V, s, a) primarily depends
on the states of the AV. The actions of both the AV and the CBV mainly influence state transitions.

v (SAV’) h(sA') > h (SAV)

2 (A oV s q) = QF SAV,SAV’ _
ol )= @l ) max{h (), Vi (')} R () <h(s2Y)

a7

Thus, through the viewpoint transformation function g(-) and a deterministic AV policy 7V, we
derive the optimal feasible action-value function, taking into account both the state and action of the
CBV:

Qn(s™,a™) =

( AV AV S,CL)

Qp

Q ( AV AV’)

=Q5 (g () (8’))

{ hig(s) = h(g(s)) as)
max{h ))7‘4:‘ (9(s)} hig(s)) <h(g(s))

B Experiment Details

Building on foundational concepts from [3, 4], we apply our FREA method to critical background
vehicles (CBVs) within traffic flows. We first outline the mechanisms for specifying and withdraw-
ing CBVs, as detailed in Appendix B.1. We then discuss the safe RL-based setting implemented in
our FREA method, described in Appendix B.2. Finally, we provide implementation details of the
baseline methods in Appendix B.3.

B.1 Specifying and Withdrawal of CBVs

To appropriately select CBVs and exclude unsuitable BVs, we established criteria to filter out ineli-
gible candidates:

Casel: The BV is located in the opposing lane relative to the AV.

Case2: The distance between the BV and AV exceeds 25 meters.

Case3: The BV is positioned behind the AV with a relative yaw angle greater than 90 degrees,
indicating no interaction.

Case4: The BV has previously served as a CBV and has reached its goal in the scenario.

Based on the predefined criteria, our system assesses the scenario at each simulation step in Carla.
If the number of active CBVs drops below a predefined threshold, the nearest candidate to the AV is
automatically selected as a new CBV. To prevent disruptions in normal traffic flow during training,
we implemented a withdrawal mechanism for CBVs that specifies conditions for their removal,
whether they complete their tasks or not.

Casel: The CBV achieves its objective (it is then terminated and reverts to a standard BV).

Case2: The BV is positioned behind the AV with a relative yaw angle greater than 90 degrees (it is
truncated and reverts to a standard BV).

Case3: The CBV obstructs traffic flow or exceeds the maximum allowed duration (it is truncated
and reverts to a standard BV).

Case4: The CBV collides with any BV or the AV (it is terminated and removed from the simulation).

This selection and withdrawal mechanism effectively manages the CBV training process. However,
considering the potential limitations of these rules, developing more intelligent strategies remains a
future research direction.
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B.2 Safe RL-based Setting

In this framework, each CBV acts as an RL agent tasked with attacking the AV while maintaining
the AV’s feasibility. Previous works [5, 12] primarily focused on minimizing the distance between
CBYV and AV, often leading to unavoidable collisions, as discussed in Section 2. To mitigate this, we
replace the collision reward with the goal-based adversarial reward, which encourages the CBV to
reach a potential collision point with the AV. The configuration details are as follows:

State. The state of each CBV is represented by an array of dimensions (V + 2) x F, where V'
represents the number of nearby vehicles and F' the features of these vehicles, the AV, and the goal
point. Recorded features include relative x and y positions, object extent along the X and Y axes,
relative yaw angle, and absolute speed. For the goal point, speed is replaced by relative distance.
The features of the AV and the goal point are positioned in the first and second rows of the array,
respectively.

Action. Following the guidelines in [25], we define a continuous action space with specific con-
straints to prevent unreasonable actions. The acceleration range is set between —3 and 3, and the
steering angle is limited to a maximum absolute value of 0.3.

Reward. As previously discussed, we have replaced the collision reward with a goal-based reward.
This adjustment encourages the CBV to navigate toward a potential collision point while avoiding
collisions with other BVs. In practice, we set the local target for the AV as the potential collision
point, which forms the overall reward function:

Ry = d(CBV,_,,Goal;_1) — d (CBV,, Goal,) + 15 % rfollision 15 5 ¢Jinish = (19)

where d (CBV, Goal;) denotes the Euclidean distance between the CBV and its goal point at time
t, the collision reward rf"”m‘m is set to —1 if the CBV collides with any BVs at time ¢, and the

goal-reaching reward r/ "**" is set to 1 if the CBV is within 2 meters radius of the goal at time ¢.

B.3 Implementation Details of Baselines.
B.3.1 Algorithms.

To evaluate the performance of FREA, we propose three CBV methods as baselines for a compre-
hensive quantitative comparison:

Standard. This method utilizes a rule-based autopilot policy implemented in the Carla Simulator
[24] to generate realistic urban traffic flows.

PPO. This method employs an adversarial CBV policy based on PPO that aims to reach a potential
collision point with the AV, utilizing the adversarial reward outlined in Eq. (19).

FPPO-RS. This method integrates a feasibility penalty term into the PPO-based adversarial policy,
which penalizes violations of the AV’s feasibility constraints in the adversarial reward function. The
modified adversarial reward function used during training is specified as follows:

_ Chp (Vlj (g(st)) y 07 fmam) * Pmax

fmam

R{ea — Rt

; (20)

where f,,.. represents the upper bound for feasible value clipping, and p,, .. is the upper bound for
penalty rewards.

B.3.2 Hyperparameters.

Table 3 shows the hyperparameters of baseline methods.

Training Curves about CBV methods. To ensure robustness in our training process, we aggregated
results from three different random seeds, as shown in Figure 6. This illustration confirms that all
three CBV methods converge well in various scenarios. Furthermore, the PPO method achieves the
highest adversarial reward, reflecting its focus on adversarial objectives. Conversely, FPPO-RS and
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Table 3: Detailed hyperparameters of FREA and baselines.

Parameter Value

PPO, FPPO-RS, FREA shared.

Optimizer Adam (e = le — b)
Approximation function Multi-layer Perceptron
Number of hidden layers 2

Number of hidden units per layer 256

Nonlinearity of hidden layer RELU

Nonlinearity of output layer linear

Critic learning rate Linear annealing 3e —4 — 0
Reward discount factor () 0.98

GAE parameters (\) 0.98

entropy parameters 0.01

Batch size 256

horizon length 2048

update repeat times: 4

Max episode length (V) 2000

Actor learning rate Linear annealing 3¢ —4 — 0
Clip ratio 0.2

FPPO-RS

feasible value clip upper bound f,4. 8

penalty reward upper bound p;,qx 1

FREA need to balance adversariality and AV’s feasibility, resulting in a lower adversarial reward.
Given our focus on creating reasonable adversarial scenarios, achieving appropriate adversariality is
more important than merely pursuing high adversarial rewards.

Scenario9_Town02
50
40
30

20

Episode Return

0 250 500 750
Train step

—— AV:Expert CBV:FREA

10 /W

1000 1250 1500 1750 2000

Episode Return

AV:Expert CBV:FPPO-RS

Scenario9_Town05

60
40

20

-20

-40

0 250 500 750 1000 1250 1500 1750 2000
Train step

—— AV:Expert CBV:PPO

Figure 6: Episode return of different CBV methods.

C Largest Feasible Region: Training and Application

C.1 Training Details about LFR

Offline Datasets. As highlighted in [15], extensive coverage of the state space in datasets is crucial
for determining the LFR of AVs using offline RL. Following this guideline, we employed the Expert
[26] and Behavior [24] agents as surrogate AVs, collecting 100k instances of interaction data under
standard traffic conditions for each. Additionally, to introduce randomness, we employed the PPO
method as CBV with the Expert as AV, gathering another 100k instances of interaction data. This re-
sulted in a comprehensive dataset of 300k interaction data for LFR training. As depicted in Figure 7,
the offline dataset extensively covers most of the potential state space, satisfying the requirements

for training an optimal feasible value function.

14



465
466
467

469

470
471
472
473
474
475
476
477

High

20 AV Collision Rate: 28.55%

Relative Y Coordinate of BV (m)
Frequency

-20

20 =10 0 10 20 0 5 10 15 20
Relative X Coordinate of BVs (m) Closest Distance between AV and BV (m)

High High

02

Absolute Speed of BV (m/s)
AV Steering Angle (rad)
g
"

Low | Low
-2 -1 0 1 2 3 00 01 02 03 04 05 06 07
Relative Yaw of BV (rad) AV Throttle

Figure 7: The offline data distribution.

Constrain Function Setting. As outlined in Eq. (9), the hyperparameters M and d;j,, along with the
minimum distance between vehicles’ bounding boxes, are crucial for defining h (sAV). Specifically,
we employed the method described in [31] to calculate the minimum distance, which is always non-
negative. To ensure a balance between positive and negative samples, we experimented with various
settings for M and d;,.

03

0.2

Vi mean

0.1

0.0

—0.1

0.00 025 050 075 1.00 1.25 1.50 175 2.00 0.00  0.25 0.50  0.75 1.00 1.25 1.50 175 2.00
Step x10° Step x10°

(a) Qp, loss (b) V3, mean value
Figure 8: Learning curves in LFR training

In our experiment, we set dy, at 0.1 meters and 0.5 meters in separate trials to find the optimal
parameter combination. Drawing on the findings from [15], we determined that optimal performance
is achieved when the mean of the feasible value function is close to zero. Through empirical testing,
we established d;;, = 0.1m, M = 18 and dy;, = 0.5m, M = 12 as the optimal settings. Given that
these parameters are used to train across multiple towns, it is crucial to balance their optimality for
various environments. Figure 8 illustrates the learning curves for these settings, confirming that the
chosen parameters effectively maintain the mean values of the feasible value function in different
towns close to zero.

(a) Vay =2 (m/s)

(©) Vav =4 (m/s) (d) Vay =4 (m/s)
Figure 9: LFR visualization with 0.5m d;;, under various traffic scenarios. Red: AV. Blue: BV
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The visualization results for dy;, = 0.1m,M = 18 are presented in Figure 2, while those for
dip, = 0.5m, M = 12 are shown in Figure 9. The former parameter set proved to be more effective
in identical scenarios, leading us to select dy;, = 0.1m, M = 18 for subsequent CBV training.

Detailed hyperparameter settings for the feasible value function can be found in Table 4.

Table 4: Detailed hyperparameters of feasible value function training.

Parameter Value

Optimizer Adam (e = 1le — b)
Approximation function Multi-layer Perceptron
Number of hidden layers 2

Number of hidden units per layer 64

Nonlinearity of hidden layer RELU

Nonlinearity of output layer linear

learning rate Linear annealing 3e —4 — 0
Batch size 1024

Training steps 2e6

Discount factor ~y 0.98

Expectile T 0.9

Soft update S5e-3

dth 0.1

M 18

C.2 Application Details of LFR

During the feasibility-guided adversarial policy training for CBV, we encountered a significant chal-
lenge: the optimal feasible value function produces a single scalar value at each timestep. In scenar-
ios with multiple CBVs, it is difficult to identify which CBV renders the AV’s operation unfeasible.
To address this issue, we introduced a “pseudo” state for each CBV at every timestep. This “pseudo”
state captures information relevant to both the AV and CBV from the perspective of the AV. Cru-
cially, this “pseudo” state is utilized solely to assess the threat posed by each CBV to the AV at
each timestep. By employing this method, we eliminate the need for the viewpoint transformation
function g(-), previously described in Egs. (6) and (8). Instead, the “pseudo” state is directly derived
from the information available at each timestep, simplifying the process and enhancing the accuracy
of LFR.

D Detail Explanation about Feasibility Metric

In Section 4.3, we introduce four key metrics to evaluate the feasibility of AV along collision tra-
jectories induced by various CBV methods. Among these, the Infeasible Ratio (IR) and Infeasible
Distance (ID) are novel metrics proposed in this paper. Their definitions and implications are de-
tailed as follow:

IR: Infeasible Ratio. This metric quantifies the proportion of infeasible states for the AV along
the collision trajectory induced by a specific CBV method. As the CBV approaches the AV, the
likelihood of infeasibility naturally increases. The IR assesses the severity of collision risk by ex-
amining the percentage of these infeasible states, serving as a measure of the overall aggressiveness
of the CBV collision trajectory. Since these trajectories inevitably lead to collisions, they must in-
clude segments where infeasible states occur. Therefore, evaluating the relative performance of IR
is crucial.

ID: Infeasible Distance. This metric records the distance between the CBV and the AV when the AV
first enters the infeasible region along the collision trajectory. Since CBVs may initiate their attacks
from various starting points, the initial locations of collision trajectories can vary significantly. This
variability means the IR metric alone may not fully capture the inevitability of a collision. The
Infeasible Distance (ID) is therefore introduced to record the distance between the AV and CBV at
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the first instance when the AV’s feasibility value exceeds zero. Intuitively, a larger ID indicates a
more adversarial CBV approach, while a shorter ID suggests that the CBV allows the AV to remain
feasible for longer, indicating a potentially avoidable collision.

E Evaluation Metric of the AV

To fairly evaluate the performance of AV methods across different adversarial scenarios, we adopt
the evaluation metrics from SafeBench [25], focusing on two main categories: Safety level and Func-
tionality level. It is important to note that while the Etiquette level is discussed in the SafeBench
paper, it has not been implemented in the actual code. This exclusion is likely due to the prioritiza-
tion of safety and functionality in safety-critical scenarios, where etiquette is less essential. To avoid
confusion, our evaluations strictly follow the implementation details specified in the SafeBench
code, rather than the descriptions in the paper.

Within the Safety level and Functionality level, we define several specific metrics that contribute to
an overall score, which is defined as a weighted sum of all evaluation metrics.

Safety Level. This level evaluates the safety performance of AV methods using two primary metrics:
collision rate (CR) and average distance driven out of road (OR). We define 7 as the scenario
trajectory collected through interaction. The number of collisions in a scenario is represented by
¢(7), and the distance driven out of the road is denoted as d(7). Therefore, the metrics are calculated
as follows: CR = E,[¢(7)], and OR = E.[d(7)].

Functionality Level. This level measures the functional capabilities of AV agents in completing
designated routes within testing scenarios. It employs three metrics: route-following stability (RF),
average percentage of uncompleted route (UC), and average time spent to complete the route (T'S).
RF quantifies the average distance between the AV and the reference route during testing, expressed

as RF =1 — E;[min {M, 1}], where x4, represents the maximum allowable deviation. UC

Tmax

reflects the complement of the average completion percentage of the route, calculated as UC =
1 — E[p(7)], where p(7) is the percentage of route completion of each testing scenario. T'S is
defined as the average time required to complete a route, computed only for fully completed routes:
TS =E.[t(r)|p(T) = 100%)], where ¢(7) denotes the time cost of each testing scenario.

Overall Score. The overall quality of AV methods is quantified by an overall score (O.S), which
aggregates the five metrics using a weighted sum formula: OS = Z?Zl w® x g(m?), where each
m! is a specific metric, w? is its weight, and g(m*) adjusts the metric based on its desirability:

; mLZ, m'is the higher the better
g(m®) = { Minas’ | N : @1
1 — —7#—, m'is the lower the better
where m?, . is a constant representing the maximum allowed value for each metric m’. Further
details about w* and m., . are provided in Table 5.

Table 5: Detailed parameters of evaluation metrics.

Metric Weight w? Maximum allowed value mimm
CR 0.4 1
OR 0.1 10 (m)
RF 0.1 5 (m)
uc 0.3 1
TS 0.1 30 (s)

F Scenario Analysis

F.1 Successful Scenarios

To demonstrate that the FREA method can generate AV-feasible adversarial events across various
traffic scenarios, we present additional visualizations from different towns and intersections, as

17



553

554
555
556

557
558
559
560
561
562
563
564
565
566

shown in Figure 10. Specifically, Figure 10(a) illustrates scenarios where the AV is preparing to
make a right turn, while the CBV exhibits adversarial behavior by overtaking and executing an early
right turn. Figure 10(b) displays situations where the CBV makes a U-turn from its lane, leading
to a potential collision with the AV and creating adversarial scenarios. Figure 10(c) highlight the
adversarial behavior of the CBV within an intersection, where CBV pre-empts the AV while passing
through. These scenarios highlight the FREA method’s adaptability to different traffic infrastructures
and its effectiveness in generating safety-critical scenarios with reasonable adversariality.

(c) Intersection attack

Figure 10: Successful scenarios. Red: AV (Expert). Blue: BV. Purple: CBV (FREA).

F.2 Failure Scenarios

While the FREA method makes progress in generating adversarial yet reasonable safety-critical
scenarios, particularly on the reasonableness of adversarial attacks, it also has several limitations, as
illustrated by the failure cases depicted in Figure 11.

As illustrated in Figure 11(a), after completing its attack, the CBV is released as a normal vehicle
on a narrow road. However, its turning radius exceeds the width of the road, forcing it onto the
pavement and resulting in an unreasonable scenario. In Figure 11(b), after an unsuccessful initial
attack due to the AV’s obstacle avoidance maneuvers, the CBV attempts a second attack through a
reverse maneuver. Although technically feasible, this approach deviates from typical driving objec-
tives, compromising the scenario’s reasonableness. Figure 11(c) shows a scenario where the CBV
crosses a solid yellow line to initiate an attack. Since the state information in FREA lacks map de-
tails, violations of traffic rules are foreseeable. Future studies will focus on enhancing adherence
to traffic regulations. Finally, Figure 11(d) depicts a traffic jam scenario at intersections caused by
unreasonable attacks.
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(b) Reverse attack

(d) Traffic congestion

Figure 11: Failure scenarios: Red: AV (Expert). Blue: BV. Purple: CBV (FREA).

In conclusion, this paper acknowledges specific limitations in generating adversarial yet reasonable
safety-critical scenarios. These limitations primarily include the lack of traffic regulation compliance
and the challenge of aligning CBV behaviors during attacks with their driving objectives. Address-
ing these issues is crucial for developing more reasonable adversarial scenarios.
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