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Dual-stream Perception-driven BlindQuality Assessment for
Stereoscopic Omnidirectional Images
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ABSTRACT
The emergence of virtual reality technology has made stereoscopic
omnidirectional images (SOI) easily accessible and prompting the
need to evaluate their perceptual quality. At present, most stereo-
scopic omnidirectional image quality assessment (SOIQA) methods
rely on one of the projection formats, i.e., Equirectangular Pro-
jection (ERP) or CubeMap Projection (CMP). However, while ERP
provides global information and the less distorted CMP comple-
ments it by providing local structural guidance, research on lever-
aging both ERP and CMP in SOIQA remains limited, hindering
a comprehensive understanding of both global and local visual
cues. Motivated by this gap, our study introduces a novel dual-
stream perception-driven network for blind quality assessment
of stereoscopic omnidirectional images. By integrating both ERP
and CMP, our method effectively captures both global and local
information, marking the first attempt to bridge this gap in SOIQA,
particularly through deep learning methodologies. We employ an
inter-intra feature fusion module, which considers both the inter-
complementarity between ERP and CMP and the intra-relationships
within CMP images. This module dynamically and complementar-
ily adjusts the contributions of features from both projections and
effectively integrates them to achieve a more comprehensive per-
ception. Besides, deformable convolution is employed to extract
the local region of interest, simulating the orientation selectivity
of the primary visual cortex. Finally, with the features of left and
right views of SOI, a stereo cross attention module that simulates
the binocular fusion mechanism is proposed to predict the quality
score. Extensive experiments are conducted to evaluate our model
and the state-of-the-art competitors, demonstrating that our model
has achieved the best performance on the databases of LIVE 3D VR,
SOLID, and NBU.

CCS CONCEPTS
• Computing methodologies→ Simulation evaluation;

KEYWORDS
Stereoscopic Omnidirectional Images, Image Quality Assessment,
Virtual Reality, Stereoscopic Visual Perception, Visual Experience
Quality Assessment
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1 INTRODUCTION
With the rapid development of Virtual Reality (VR) technology and
the popularization of head-mounted displays, people have been
able to apply VR technology in various fields, such as leisure and
entertainment, business services, and healthcare [42]. The growing
demand for immersive, 3D viewing is driving developers to pro-
vide better experiences [9]. However, distortion inevitably occurs
during image acquisition, compression, transmission, and recon-
struction, affecting the user’s visual experience [39]. To ensure
better subjective perception quality, it is essential to quantify the
extent of image quality degradation, enabling image optimization
and quality control. Stereoscopic omnidirectional image quality
assessment (SOIQA) methods closely resemble those applied to
2D images and could be categorized into subjective and objective
quality assessment [22]. Although subjective assessment is close
to human perception, it is time-consuming, costly, and difficult
for standardization. Therefore, there is an urgent need to study
objective assessment methods that are consistent with subjective
evaluation to accurately predict the perceived quality of the stereo-
scopic omnidirectional image (SOI).

In VR systems, before encoding, it is necessary to project om-
nidirectional images (OI) onto a 2D plane, and equirectangular
projection (ERP) is often considered as the default projection for-
mat. The projection method maps the longitude lines of the sphere
into equally spaced vertical lines, and maps the sphere’s latitudinal
lines into equally spaced horizontal lines, forming a rectangular
plane that can effectively retain the global information of the OI.
However, there is significant geometric distortion in the polar re-
gions of the ERP image caused by the stretching [20]. Meanwhile,
cubemap projection (CMP) is a projection method that involves
projecting spherical content onto a cubic model, unfolding each
face, and then stitching them together into a rectangular format.
Unlike ERP, CMP projects spherical content onto six faces, which
effectively solves the problem of projection distortion of the north
and south poles, but still has the over-sampling problem within
the edge of each surface. In a nutshell, ERP provides global infor-
mation and the less distorted CMP complements it by providing
local structural guidance [7][11]. The combination of ERP and CMP
allows for a more comprehensive utilization of information in OI,
encompassing both global and local aspects. In this way, the integra-
tion enables the complementary advantages of the two projection
formats, collectively providing a complete visual perception of OI.

Given that ERP offers comprehensive global information while
CMP is considered more localized, the extraction of complementary
features from both formats is of utmost importance. Convolutional
Neural Networks (CNN) can effectively extract features from local
window images based on their shared convolutional kernel weights
and local inductive bias, which has been applied widely in various
computer vision tasks. Nonetheless, due to the limited receptive
field, CNN still fails to explicitly model the long-range relationship.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Meanwhile, Transformer [27] relies on its self-attention mecha-
nism to be able to assign weights to all image blocks to fully extract
the global features of the entire image. While the Transformer ef-
fectively captures long-range dependencies in global features, it
tends to overlook local feature information. Considering that hu-
man visual perception is a hierarchical structure, processing visual
signals from local details to global information, neither local nor
global features alone can comprehensively represent the true visual
perception [21]. The combination of local and global perceptual
quality measurement aligns more closely with the human visual
system (HVS). Hence, employing both CNN and Transformer as a
dual-branch backbone is essential to extract both local and global
feature information.

Considering that both ERP and CMP features exhibit information
complementarity and content redundancy, effectively achieving
their complementary fusion is another crucial issue to be addressed.
Indiscriminate fusion strategies, such as concatenation convolution
or addition, would fail to fully leverage the complementary relation-
ship between the two, thus hindering the formation of a complete
visual perception. The inter-complementarity between ERP and
CMP, and the intra-relationships within CMP images need to be
thoroughly explored in the fusion process. Furthermore, the issue
of left-right view fusion also needs to be considered for SOIQA.
Binocular stereoscopic vision involves a complex visual interaction,
encompassing both binocular fusion and rivalry[30]. A key chal-
lenge in stereoscopic vision lies in the correspondence process. To
analyze and integrate features from both left and right views, the
cross-attention mechanisms are usually employed [27]. However,
it’s crucial to tailor these mechanisms to account for the distinct
characteristics of left-right views.

To address the above challenge of SOIQA, we present a novel
Dual-Stream Perception-Driven Network (DSPDNet), which could
optimally leverage the complementary advantages of ERP and CMP.
DSPDNet consists of three modules: dual-stream feature extraction
module (DFM), inter-intra feature fusion module (FFM), and stereo
cross attention module (CAM). Specifically, in the DFM, the feature
extractor for local information in CMP is a modified ResNet in
which deformable blocks [8] are explored to mimic the orientation
selectivity of HVS, and could adaptively select the region of inter-
est. Simultaneously, the feature extractor for global information
in ERP is based on the Swin Transformer. The role of inter-intra
FFM is to combine the global features extracted by ERP with the
local features extracted by CMP, allowing both feature sets to fully
exploit their mutually beneficial complementary functions. To this
end, the squeeze-and-excitation (SE) block for channel attention
is applied on ERP and CMP to obtain six CMP-induced inter fea-
tures, and then integrate themwith the ERP feature via the adaptive
weights calculated by the intra-relationships within CMP images.
Finally, motivated by the cross-attention mechanism, the CAM fully
leverages and integrates feature information from both the left and
right views, allocating weights to better simulate the binocular fu-
sion and rivalry mechanism. Unlike the traditional cross-attention
mechanism that scans all image locations, the CAM specifically fo-
cuses on corresponding features along the horizontal disparity line,
ensuring high flexibility while capturing global correspondence.

In summary, the principal contributions of our paper are sum-
marized as follows:

• To the best of our knowledge, the proposed DSPDNet is the
first study that leverages the complementary advantages of
ERP and CMP via deep learning ways for SOIQA. Specifically,
a hybrid CNN-Transformer feature extraction network is
built to learn the perceptual representation considering local
details and global information.

• For a more comprehensive utilization of local and global fea-
tures of ERP and CMP, an inter-intra feature fusion module
is employed accounting for the inter-complementarity be-
tween ERP and CMP and the intra-relationships within CMP
images. Additionally, deformable convolution is employed
to adaptively select the region of interest.

• Motivated by the cross-attention mechanism, a stereo cross
attention module (CAM) helps the two view images of SOI
learn to obtain mutual attention maps representing the cor-
relation between them, which could simulate the process of
human binocular correspondence process.

2 RELATEDWORK
The stereoscopic omnidirectional image (SOI) has the character-
istics of both the stereoscopic image (SI) and the omnidirectional
image (OI). Therefore, a brief overview of the SI, OI, and SOI quality
assessment methods is given in this section.

2.1 Stereoscopic Image Quality Assessment
Earlier stereoscopic image quality assessment (SIQA) methods usu-
ally take a two-stream architecture that processes the left and right
view images separately. Yasakethu et al. [36] apply 2D metrics in-
cluding PSNR, and SSIM to the two views, and average them for
the quality score at the end. To further increase the accuracy, Sim
et al. [24] utilize deep CNN to extract the semantic features and
quality-aware features of both views, and feed them straight into
support vector regression (SVR) to get the quality score.

Inspired by the theory of binocular perception, recent interests
focus on how to utilize the correlation between the left and right
view of stereoscopic images in SIQA. Zhang et al. [38] propose to
add the difference maps between the two views as the inputs to
the CNN, aiming at taking into account the variability between
binoculars. Besides difference maps, Zhou et al. [40] find the perfor-
mance can be further improved by adding the fusing maps of the
two views. As the information interactions within the human visual
system (HVS) cannot be adequately captured by the simple differ-
ence/fusion maps, a new approach involving binocular interaction
modules [23] is introduced. This module incorporates a new form
of cross-convolution to model binocular interactions within visual
cortical regions, enabling the extraction of more semantic inter and
intra features from the two views. However, these methods only
perform well on 2D images, which cannot be directly applied to
omnidirectional images.

2.2 Omnidirectional Image Quality Assessment
Different from stereoscopic images (SI), omnidirectional image (OI)
provides the observer with a spherical viewing range based on
all positions with an infinite field of view. In practice, projecting
the original spherical image into a 2D plane, i.e., equirectangular
projection (ERP) for encoding is a common choice. Therefore, most
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Figure 1: The framework of the proposed method.

early omnidirectional image quality assessment (OIQA) studies are
conducted based on ERP. Liu et al. [16] extract luminance features,
global entropy, and color features on ERP, and finally get the qual-
ity score by support vector regression (SVR) based on the above
multiple features and human subjective quality evaluation. Mean-
while, Kim et al. [14] partition the ERP into patches and evaluate
it by the patch’s positional features, estimating the weights and
quality scores of the patches, and then aggregating the weights and
scores of all patches to predict the image quality scores. Noticing
that patches sampled from the ERP image contain heavy geometry
deformation, viewports-based OIQAmethods [26, 32] have recently
attracted much attention.

While effectively preserving the global information of the om-
nidirectional image, the conversion to ERP format by the sphere-
to-plane projection introduces a lot of geometric distortion in the
polar regions. To this end, cubemap projection (CMP) that projects
the sphere on six surfaces of the cube is studied and first introduced
into OIQA by Jiang et al. [13]. Later, they design a color omnidirec-
tional distortion unit [12] composed of multiple color CMP images,
trying to simulate the user’s viewing behavior in OIQA. Compared
to ERP, the distortion of CMP is not so serious, but the six planes
may divide the object in an omnidirectional image into several parts,
resulting in object discontinuity [7]. One recent interest in OIQA is
how to utilize the complementarity of these two projection modes
ERP and CMP. Qiu and Shao [20] present an OIQA model that is
pre-trained with local information in CMP and later fine-tuned with

global information in ERP. However, the content redundancy and
information complementarity of ERP and CMP are not carefully
investigated, which is very important when taking them as two
source inputs for OIQA tasks.

2.3 Stereoscopic Omnidirectional Image Quality
Assessment

Stereoscopic omnidirectional image (SOI) usually consists of the left
and right view images, both of which are omnidirectional images
(OI). Quality assessment for SOI has been a relatively recent emerg-
ing topic. Yang et al. [35] study the latitude characteristics of ERP
images and propose an improved OI saliency model, by which more
meaningful features of left and right view images are extracted and
then fused by tensor decomposition for predicting the quality score.
Differently, Poreddy and Appina [18] convert an ERP image into
six CMP images to overcome the aforementioned distortion. Using
CMP features, a bivariate generalized Gaussian distribution model
is presented to model the joint dependence between luminance
and disparity of two views. Zhou et al. [41] design a projection
invariant feature learned from 6 kinds of projection formats (ERP,
CMP, etc.), and prove its effectiveness in SOIQA tasks. However,
the above methods are based on hand-designed features. Although
visual saliency is often adopted to facilitate prediction accuracy,
the hand-designed features still have limited generalization and
flexibility.
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To further improve prediction accuracy, researchers have begun
to introduce deep neural networks into SOIQA recently. Yang et al.
[34] first imply the depth information of ERP images, and then uti-
lize spherical CNN [6] for SOIQA to consider the spherical viewing
characteristics. Noticing that it is still unclear whether spherical
CNN can be well adapted to feature extraction of ERP images, Chai
et al. [1] propose a monocular and binocular interaction-oriented
three-channel network architecture for SOIQA, in which the dif-
ference map of two views is utilized for fusion and deformable
convolution is adopted to ensure the invariant receptive fields of
convolutional kernels on ERP images.

From the recent achievements of SOIQA, research on utilizing
multi-source projection formats of omnidirectional images is in-
sufficient, especially via deep learning ways. To fill the gaps, our
study investigates the complementary of ERP and CMP images,
and proposes a dual-branch backbone with Transformer and de-
formable CNN to simultaneously extract the global features from
ERP and local features from CMP, which are later integrated and
refined for predicting the quality score. Ablation studies show the
integration of local and global perceptual features has achieved
obvious performance improvement.

3 THE PROPOSED METHOD
In this section, we first introduce the general architecture of the
method, and then discuss the details of its main modules.

The overall architecture of our model is shown in Fig. 1. For a
left/right view of a stereoscopic omnidirectional image (SOI), its
ERP image and six CMP images are used together as input. The
ERP image provides global features extracted by Swin Transformer,
while the CMP images provide structural guidance as a supplement.
We utilize ResNet with deformable convolution blocks instead of
conventional convolution to extract these local features from CMP
images. The global and local features are then adaptively fused by an
inter-intra feature fusion module, which enables automatic learning
of the correlation and significance between features derived from
both projection modes. Finally, a stereo cross-attention mechanism
is employed to simulate the interaction between the left and right
view images, mapping the features to obtain an objective quality
score.

3.1 Image Pre-processing
Usually, in a stereoscopic omnidirectional database 𝑂 , the raw data
is stored in both left ERP images 𝐼𝐿 and right ERP images 𝐼𝑅 . The
following modules will be introduced using 𝐼𝐿 as an example, and
the same operations will be applied to 𝐼𝑅 .

For an ERP image 𝐼 ∈ 𝑅𝐶∗𝐻∗𝑊 in 𝐼𝐿 , severe distortion has in-
evitably existed in the bipolar region as shown in Fig.2-(a), which
deforms the object and affects the assessment of its quality. We
transform 𝐼 and obtain its six CMP images {𝐶𝑃𝑖 ∈ 𝑅𝐶∗𝐻∗𝑊 }6

𝑖=1 as
shown in Fig.2-(b). It can be seen that CMP images have reduced
the distortion in ERP. For the convenience of training, we resize
the ERP image 𝐼 and CMP images {𝐶𝑃𝑖 }6𝑖=1. In experiments, 𝐻 and
𝑊 are 256, and 𝐶 is 3.

Figure 2: Comparison of ERP and CMP image distortion in
the same scene.

3.2 Dual-stream Feature Extraction Module
3.2.1 The Local Branch. The input images of the local branch are
the CMP images {𝐶𝑃𝑖 }6𝑖=1. ResNet34 [10] is chosen as the backbone
network for feature extraction, which can obtain very rich local
spatial information with fewer model parameters. Specifically, the
first layer contains a 7x7 convolutional layer and a max pooling.
The following are 4 residual layers that consist of (3,4,6,3) Drop-
Blocks in each layer, respectively. Each DropBlock contains two
3x3 convolution layers with slightly different ways of connecting
residuals, each followed by a batch normalization layer and a ReLU
activation function.

In ResNet34, a deformable convolution block is introduced to
model the response of the human visual system (HVS) to regions
of interest, as illustrated in Fig. 1. Specifically, in the last residual
layer of ResNet34, all 3x3 convolutions within the three dropblocks
are replaced with deformable convolutions. The deformable con-
volution consists of a ordinary convolutional layer OConv and a
deformable convolutional layer DConv. OConv is used to learn
an offset map Δ𝑝 from the input features. With the learned Δ𝑝 ,
the subsequent DConv Block realizes adapting to different object
shapes and geometries through Eq.(1), thereby emphasizing the
human perception of objects.

𝐷𝐹𝐶𝑖
= 𝐷𝐶𝑜𝑛𝑣 (𝐹𝐶𝑖

,Δ𝑝) (1)

Upon obtaining the deformable CNN features {𝐷𝐹𝐶𝑖
∈

𝑅𝐶∗𝑃∗𝑃 }6
𝑖=1, we take them as the local feature 𝐹𝑙𝑜𝑐𝑎𝑙 of the six

CMP images, since they are the different views of the stereoscopic
omnidirectional images. In experiments, 𝐶 and 𝑃 are 512 and 8,
respectively.

3.2.2 The Global Branch. The input image of the global branch is
the ERP image 𝐼 . Swin Transformer [17] is chosen as the backbone
network for global feature extraction. Specifically, the image 𝐼 is
firstly divided into non-overlapping patches. Then, linear embed-
ding is performed to change the number of channels in the patch
to fit the model’s requirements. The patches are processed by the
Swin Transformer modules to extract descriptive feature maps by
window self-attention and shifted window self-attention, enabling
information exchange between different windows. A patch merging
module is used after a Swin Transformer layer to reduce the spatial
size of the feature map while increasing the number of channels.
In this way, the window gradually increases the receptive field,
allowing the extraction of global contextual features. The output of
the global branch is 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅𝐶∗𝑃∗𝑃 .
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Figure 3: Architecture of inter-intra feature fusion module
(FFM).

3.3 Inter-intra Feature Fusion Module
As mentioned above, ERP feature 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅𝐶∗𝑃∗𝑃 provides global
information and the less distorted CMP features 𝐹𝑙𝑜𝑐𝑎𝑙 = {𝐷𝐹𝐶𝑖

∈
𝑅𝐶∗𝑃∗𝑃 }6

𝑖=1 complement it by providing local structural guidance.
The combination of 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 and 𝐹𝑙𝑜𝑐𝑎𝑙 allows for a more compre-
hensive utilization of information in SOI, encompassing both global
and local aspects. Due to the interconnection among various un-
folded faces of the CMP and their differing importance for quality
assessment tasks, it is necessary to consider both the intra fusion
within the CMP and the inter fusion between the ERP and CMP. To
this end, we utilize an inter-intra feature fusion module (FFM) to
dynamically and complementarily integrate the local CMP feature
𝐷𝐹𝐶𝑖

∈ 𝑅𝐶∗𝑃∗𝑃 with the global ERP feature 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅𝐶∗𝑃∗𝑃 . The
structure of FFM is illustrated in Fig. 3.

Firstly, the interfusion of CMP and ERP features are considered
to automatically pick out the valuable parts of each projection.
We concatenate 𝐷𝐹𝐶𝑖

and 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 along the channel dimension and
apply it to a squeeze-and-excitation (SE) block for channel attention
which is composed of two linear layers, one ReLU layer, and one
sigmoid activation function. A bottleneck convolutional layer and
a sigmoid activation function are followed after the SE block to
evaluate how much local information should be provided for the
global features. The interfusion computation process is formulated
in Eq. (2).

𝑃𝑖 = 𝜎 (𝑐𝑜𝑛𝑣 (𝑆𝐸 (𝐷𝐹𝐶𝑖
, 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ))) (2)

where 𝑃𝑖 represents the contribution of 𝐷𝐹𝐶𝑖
. Thus, the fused fea-

ture that could be obtained as follows.

𝐹𝑖 = 𝑃𝑖 · 𝐷𝐹𝐶𝑖
+ (1 − 𝑃𝑖 ) · 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (3)

By Eq. (3), the six CMP images from different perspectives offer
six induced fusion features, each contributing differently and hold-
ing varying importance in the final fusion. To emphasize pertinent
information and mitigate irrelevant redundancies, further learning
of adaptive weights for intra features is necessary. Firstly, the orig-
inal CMP features {𝐷𝐹𝐶𝑖

∈ 𝑅𝐶∗𝐻∗𝑊 }6
𝑖=1 are concatenated, and a

SE block is employed to obtain a vector 𝛼 ∈ 𝑅6𝐶∗1∗1. This vector

Figure 4: Architecture of stereo cross attention module
(CAM).

𝛼 is then divided into six vectors {𝛼𝑖 ∈ 𝑅𝐶∗1∗1}6
𝑖=1. By normaliz-

ing these vectors, we can obtain dynamic weights 𝜔𝑖 . The above
process can be represented by Eq. (4), (5).

𝛼𝑖 = 𝑆𝑝𝑙𝑖𝑡 (𝑆𝐸 (𝐶𝑜𝑛(𝐷𝐹𝐶1 , 𝐷𝐹𝐶2 , ..., 𝐷𝐹𝐶6 ))) (4)

𝜔𝑖 =
𝑆𝑢𝑚(𝛼𝑖 )∑6
𝑖=1𝑆𝑢𝑚(𝛼𝑖 )

(5)

where Con(·) represents channel concatenation, Split(·) repre-
sents the operation of splitting a vector into six vectors, and Sum(·)
represents the summation of all elements in a vector. Ultimately,
we fuse the six CMP-induced inter features {𝐹𝑖 }6𝑖=1 via the adaptive
weights {𝜔𝑖 }6𝑖=1, and integrate them with the ERP feature 𝐹𝑔𝑙𝑜𝑏𝑎𝑙
to obtain the final fused feature 𝐹𝐿 for the left view, as specified in
Eq. (6).

𝐹𝐿 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 +
6∑︁

𝑖=1
𝜔𝑖 · 𝐹𝑖 (6)

3.4 Stereo Cross Attention Module
Upon obtaining the features 𝐹𝐿 and 𝐹𝑅 of the left and right views of
SOI respectively, we discuss how to use the two features to evaluate
the quality of the SOI in this section. Unlike just the weight-sum
of the representation of different views, we propose a stereo cross
attention module (CAM) shown in Fig. 4 to calculate the relevance
of cross-view features, aiming to simulate the binocular fusion
mechanism of the human visual system (HVS).

Specifically, the features 𝐹𝐿 and 𝐹𝑅 are firstly normalized as
𝐹𝐿 = 𝐿𝑁 (𝐹𝐿) and 𝐹𝑅 = 𝐿𝑁 (𝐹𝑅) via layer normalization (LN).
Then, the bidirectional cross-attention is calculated using scaled
dot-product attention (SDPA) [27] between left-right views by Eq.
(7), (8).

𝐹𝐿𝑅 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊 𝐿
1 𝐹𝐿,𝑊

𝑅
1 𝐹𝑅,𝑊

𝑅
2 𝐹𝑅) (7)

𝐹𝑅𝐿 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊 𝑅
1 𝐹𝑅,𝑊

𝐿
1 𝐹𝐿,𝑊

𝐿
2 𝐹𝐿) (8)

Here,𝑊 𝐿
1 ,𝑊

𝑅
1 ,𝑊 𝐿

2 , and𝑊
𝑅
2 are projection matrices. For 𝐹𝐿

𝑅
,

𝑊 𝐿
1 𝐹𝐿 is the query matrix projected by left-view feature, and

𝑊 𝑅
1 𝐹𝑅,𝑊

𝑅
2 𝐹𝑅 are the key and value matrices projected by right-

view feature. Unlike the traditional cross-attention mechanism, we
use the same query matrix and key matrix in 𝐹𝐿

𝑅
and 𝐹𝑅

𝐿
to represent
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Table 1: Performance of competitors and our method on three databases.

Types Approaches
LIVE 3D VR Database SOLID Database NBU Database

SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE

2D-IQA

PSNR 0.6551 0.5948 9.1950 0.8471 0.8629 0.3996 0.7809 0.7828 0.5934

SSIM[28] 0.6127 0.6744 8.4458 0.8664 0.8507 0.4089 0.7997 0.7902 0.5843

MS-SSIM[29] 0.5477 0.5582 9.5082 0.7550 0.7730 0.6430 0.8604 0.8544 0.4954

SIQA

Chen[3] 0.7509 0.7815 7.0807 0.8771 0.8472 0.4100 0.8495 0.8749 0.4408

SINQ[15] 0.8191 0.8207 6.4536 0.7794 0.8105 0.4602 0.7620 0.8030 0.4960

PAD-net[33] 0.6983 0.7057 5.6581 0.7672 0.7887 0.8663 0.8426 0.8270 0.8260

OIQA

S-PSNR[37] 0.6344 0.6865 8.1639 0.8564 0.8700 0.3892 0.8250 0.8080 0.5620

WS-PSNR[25] 0.6125 0.6103 8.9940 0.8512 0.8177 0.4352 0.8020 0.7910 0.5840

VGCN[32] 0.8429 0.8368 5.4584 0.6331 0.6213 0.6970 0.6416 0.7207 0.6398

SOIQA

VP-BSOIQA[19] 0.8013 0.7956 6.8481 0.8420 0.8537 0.4115 0.8600 0.8830 0.4100

Chai-SOIQE[1] 0.8812 0.8637 6.2359 0.8722 0.8799 0.3720 0.9336 0.9465 0.2992

SOIQE[4] 0.6575 0.6795 8.3917 0.9240 0.9270 0.3830 0.9095 0.9197 0.3583

Proposed 0.9378 0.9342 4.0805 0.9613 0.9681 0.2331 0.9776 0.9846 0.1515

each intra-view feature and calculate their correlation along the
width dimension because the left and right views of SOI are highly
symmetric under epipolar constraint [5]. SDPA is an efficient at-
tention mechanism to calculate the attention scores between the
query and the key-value pair in Eq. (9).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝐶

)𝑉 (9)

Finally, the cross attention-based features 𝐹𝐿
𝑅
and 𝐹𝑅

𝐿
are fused

with the features 𝐹𝐿 , 𝐹𝑅 through Eq. (10) and Eq. (11), respectively,
to obtain the final features of left and right views.

𝐹𝐿 = 𝛽𝐿 · 𝐹𝐿𝑅 + 𝐹𝐿 (10)

𝐹𝑅 = 𝛽𝑅 · 𝐹𝑅𝐿 + 𝐹𝑅 (11)
where 𝛽𝐿 and 𝛽𝑅 are trainable channel-wise weights which rep-

resent the contribution of the cross attention-based features. Based
on the cross-view features 𝐹𝐿 and 𝐹𝑅 , the quality score 𝑄 is pre-
dicted by a fully connected layer using Eq. (12).

𝑄 =
𝐹𝐶1(𝐹𝐿) + 𝐹𝐶2(𝐹𝑅)

2
(12)

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we discuss the experimental results of our method
(DSPDNet). Firstly, we describe the databases and evaluation cri-
teria. Next, we compare the performance of our method with the
state-of-the-art ones. Finally, ablation experiments are performed
to investigate each component of the DSPDNet.

4.1 Experimental Settings
1) Databases: We conduct experiments on three publicly available
SOI databases, namely LIVE 3DVR [2], SOLID [31], and NBU [19].

LIVE 3D VR database consists of 15 original images and 450
distorted images, including six types of distortion such as Gaussian
blur, Gaussian noise, downsampling, stitching artifacts, VP9 com-
pression, and H.265 compression. In our experiments, we select 449
distorted images for the training and testing processes. Following
the suggestion of Chen et al. [2], one distorted image is rejected
as an outlier. Each distorted image is provided with a differential
mean opinion score (DMOS) ranging from 0 to 100 as the subjective
quality score. Lower DMOS values indicate better visual quality.

SOLID database comprises 276 distorted 3D VR images, obtained
by compressing six original images with BPG and JPEG compres-
sion, resulting in three depth levels for each set of distorted images.
Each distorted image is provided with a mean opinion score (MOS)
ranging from 0 to 5 as the subjective score. Higher MOS values
indicate better visual quality.

NBU database consists of 12 original images and 396 distorted im-
ages, encompassing three common distortion types, namely JPEG,
JPEG2000, and HEVC. Each distorted image is provided with a MOS
value ranging from 0 to 5 as the subjective score. Higher MOS
values indicate better visual quality.

2) Evaluation Criteria: Three metrics, as the common practice,
are used to make the performance analysis, including Pearson’s
Linear Correlation Coefficient (PLCC), Spearman’s Rank Order
Correlation Coefficient (SROCC), and the Root Mean Square Er-
ror (RMSE). PLCC measures the strength of the linear correlation
between the predicted objective scores and the subjective scores.
SROCC measures the monotonicity of the model’s predicted re-
sults and serves as an effective non-linear correlation metric. The
RMSE is used to assess the consistency of the model’s prediction by
measuring the deviation between the predicted scores and the sub-
jective scores. Higher PLCC and SROCC values closer to 1, as well
as lower RMSE values closer to 0, indicate more accurate prediction
by the model.
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Table 2: Performance (SROCC/PLCC) of all models for different distortion types on LIVE 3D VR database.

Types Approaches
LIVE 3D VR Database (SROCC/PLCC)

Gaussian
Blur

Gaussian
Noise

Down
Sampling

Stitching
Distortion

VP9
Compression

H.265
Compression

2D-IQA

PSNR 0.7728/0.9095 0.8957/0.9238 0.8292/0.9110 0.6953/0.7141 0.5786/0.6672 0.7453/0.7585

SSIM[28] 0.8114/0.9126 0.8935/0.9173 0.8114/0.8956 0.6422/0.7561 0.8135/0.8697 0.8536/0.8558

MS-SSIM[29] 0.8692/0.7693 0.8943/0.8866 0.7742/0.8732 0.6830/0.6608 0.7431/0.7609 0.9350/0.8863

SIQA
Chen[3] 0.8571/0.8801 0.8957/0.9349 0.8464/0.8654 0.7179/0.7349 0.8628/0.8997 0.9436/0.9449

SINQ[15] 0.8886/0.8810 0.9250/0.9337 0.9507/0.9432 0.0706/0.2939 0.7007/0.7168 0.8972/0.8682

OIQA
S-PSNR[37] 0.7757/0.8621 0.8786/0.9123 0.8500/0.8580 0.7223/0.7008 0.6750/0.7080 0.8393/0.8671

WS-PSNR[25] 0.7721/0.8680 0.8743/0.9123 0.8493/0.8579 0.7148/0.7166 0.6486/0.7023 0.8279/0.8233

SOIQA

VP-BSOIQA[19] 0.8836/0.9201 0.8371/0.8387 0.9379/0.9237 0.2983/0.4407 0.6162/0.6131 0.8036/0.8111

Chai-SOIQE[1] 0.9143/0.9401 0.8417/0.8530 0.9571/0.9584 0.6332/0.6255 0.7550/0.7543 0.8600/0.8526

SOIQE[4] 0.9013/0.9406 0.8932/0.9093 0.7898/0.9126 0.7418/0.7784 0.8400/0.8552 0.8974/0.8950

Proposed 0.9643/0.9881 0.9500/0.9779 0.9464/0.9825 0.8813/0.9124 0.8643/0.8602 0.9536/0.9768

3) Implementation Details: To save the training time, the CMP
images are obtained from ERP images and stored locally before-
hand. The overall model is implemented using the PyTorch frame-
work, with ResNet34 loading the pre-trained parameters trained
on ImageNet, and the Swin Transformer using randomly initialized
parameters. The Adam optimizer is used during model training,
with a training period of 200 epochs, a learning rate of 0.0001, and
a decay rate of 0.5. The batch size is set to 8. The database is evenly
divided into K groups, with each group consisting of distorted im-
ages derived from multiple original images. There are no identical
image data between different groups. One group is selected as the
test set, while the remaining K-1 groups are used as the training
set. For the LIVE 3D VR, SOLID, and NBU databases, the values of
K are set to 5, 6, and 12.

4.2 Comparison with the State-of-the-Arts
We test the performance of our model on three databases while
comparing it with 12 state-of-the-art methods. These methods in-
clude 2D IQA methods, i.e., PSNR, SSIM [28], and MS-SSIM [29],
stereoscopic IQA methods, i.e., Chen [3], SINQ [15], and PAD-net
[33], omnidirectional IQA methods, i.e., S-PSNR [37] and WS-PSNR
[25], and VGCN [32], and stereoscopic omnidirectional IQA meth-
ods, i.e., VP-BSOIQA [19], SOIQE [4], and Chai-SOIQE [1]. The final
results are shown in Table 1, with the best performance highlighted
in red. It is worth noting that all the results are obtained using the
codes provided by the authors or from their published papers.

From Table 1, it can be seen that our method has achieved the
best performance in the databases of LIVE 3D VR, SOLID, and NBU,
i.e., with up to 8.2%, 4.4%, and 4.0% relative performance gain of
PLCC, respectively. More conclusions can be drawn as follows.

Themajority of methods exhibit poorer performance on the LIVE
3D VR database compared to the SOLID and NBU databases. The
reasonmight be that the LIVE 3DVR database containsmore diverse
image scenes and complex types of distortion, which makes the task
more challenging on this database. Owing to the complementary

properties of ERP and CMP, the performance degradation of our
method is much smaller.

Besides, the scatter plot of DMOS and predicted quality scores
for the five representative methods (SSIM, PSNR, MS-SSIM, SOIQE,
and our method) on the LIVE 3D VR database is shown in Fig. 5.
The results indicate superior convergence and monotonicity in our
method compared to other competitors.

4.3 Comparison on Individual Distortion Type
To investigate the influence of different distortion types on the
SOIQA task, we choose the LIVE 3D VR database and continue to
conduct experiments on individual distortion types. In experiments,
each single distortion type is selected from the test subset as the
new test set, keeping other settings the same as the default. The
quality scores are obtained in the end for the comparison of perfor-
mance. The results are shown in Table 2, with the best performance
highlighted in red and the second-best performance highlighted
in blue. For the limited space, only the values of SROCC/PLCC are
given in the table.

From Table 2, it can be seen that our method has always per-
formed well, especially when dealing with the distortion caused by
Gaussian blur, Gaussian noise, stitching, and H.265 compression.
Take the stitching for example, SROCC increases by 18.8% from
0.7418 to 0.8813, and PLCC increases by 17.2% from 0.7784 to 0.9124.
More conclusions can be drawn as follows.

No single method achieves the best performance across all distor-
tion types. One reason might be that different distortion types have
distinct characteristics. Neither deep learning features nor hand-
crafted feature design can fully simulate the complex perceptual
process of different distortion types in HVS.

Moreover, for the stitching distortion type, the unique distortion
in omnidirectional images, our method performs best and achieves
the highest performance gain among all distortion types. It indicates
the effectiveness of the comprehensive utilization of ERP and CMP
in SOIQA, encompassing both global and local aspects.
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Figure 5: Scatter plots of predicted quality scores by the five methods against the DMOS values on the LIVE 3D VR database. (a)
SSIM (b) PSNR (c) MS-SSIM (d) SOIQE (e) Our method.

Finally, by calculating the times of achieving the best perfor-
mance under different evaluation metrics, it is found that our
method has the highest number of hits, with a total of 10. This
indicates that our method exhibits greater stability on the LIVE 3D
VR database with different distortion types.

Table 3: Ablation studies on LIVE 3D VR database.

Methods
LIVE 3D VR Database

SROCC PLCC RMSE

𝑤/𝑜 DConv. 0.8818 0.8933 5.1402

𝑤/𝑜 CAM 0.9253 0.9225 4.4129

𝑤/𝑜 Global 0.9296 0.9266 4.3011

𝑤/𝑜 Local 0.2876 0.3433 10.7614

Full model 0.9378 0.9342 4.0805

4.4 Ablation Study
To test the effectiveness of each component of our model, we con-
duct a comprehensive ablation study by disabling the corresponding
components respectively. The experimental setups are the same as
the default. The results are shown in Table 3.

1) Deformable convolution: In the proposed model, de-
formable convolution is used to model the response of the human
visual system (HVS) to the region of interest (ROI). It is believed
that users will first focus on the ROI when they view an image,
which means the quality of the ROI has a great impact on the overall
quality assessment. When we remove the deformable convolution
module from the local branch, we observe a decrease in the per-
formance of all indicators in the first line of Table 3. For example,
SROCC decreases by 6.35% from 0.9378 to 0.8818. It indicates the
effectiveness of the deformable convolution module.

2) Stereo cross attention module: As binocular perception is
a crucial factor to consider in SOIQA, the stereo cross attention
module adopts the attention mechanism to simulate the interaction
between the left and right views. To validate the effectiveness of this
module, we remove the stereo cross attention module and directly

average the scores obtained from the left and right views. The final
scores w.r.t. the three indicators are given in the second line of
Table 3. Compared with the full model, the stereo cross attention
module has achieved obvious performance gains in all evaluation
metrics.

3) Global and local branches: As we employ a dual-stream
framework, it is necessary to investigate the roles of each branch. To
validate the effectiveness of the local branch, we remove the global
branch and the subsequent feature fusion module. A similar process
is performed for the validation of the global branch. According to
Table 3, while the performance of the model with only the local
branch shows a small decrease, i.e., PLCC decreases from 0.9342 to
0.9266, the performance of the model with only the global branch is
significantly reduced. It shows that the local features of CMP images
play a more important role in the assessment of SOI. Meanwhile,
our integration of both ERP and CMP enables the complementary
advantages of the two projection formats, collectively providing a
complete visual perception of SOI.

5 CONCLUSION
In this study, we propose a dual-stream blind quality assessment
model for stereoscopic omnidirectional images (SOI) that takes
both the ERP images and CMP images as input, motivated by the
observation that ERP provides global information and the less dis-
torted CMP complements it by providing local structural guidance.
A dual-stream backbone with Transformer and deformable CNN is
designed to extract these global and local features simultaneously.
Then an inter-intra feature fusion module is utilized to dynami-
cally and complementarily integrate features from both projections,
accounting for the inter-complementarity between ERP and CMP
and the intra-relationships within CMP images. Lastly, with the
features from left and right views of SOI, a stereo cross attention
module that simulates the binocular fusion mechanism is proposed
to predict the quality score. Extensive experiments are conducted
on three publicly available databases, demonstrating that our pro-
posed model outperforms the state-of-the-art competitors. In the
future, we will continue on efficient global and local feature extrac-
tion and integration for SOI to further improve the performance of
our model.
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